Science.gov

Sample records for air water interface

  1. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  2. Non-contact microrheology at the air-water interface

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Shlomovitz, Roie; Levine, Alex; Dennin, Michael

    2012-02-01

    Mechanical properties of biological interfaces, such as cell membranes, have the potential to be measured with optical tweezers. We report on an approach to measure air-water interfacial properties through microrheology of particles near, but not contacting, the surface. An inverted optical tweezer traps beads of micron size or greater in the bulk, and can then translate them perpendicular to the interface. Through the measurement of thermally driven fluctuations, the mobility of the particle is found to vary as a function of submerged depth and the boundary conditions at the interface. Near a rigid wall, the mobility is confirmed to decrease in a way consistent with Faxèn's law. Very close to the free air-water interface, the mobility changes with the opposite sign, increasing by about 30% at the surface, consistent with recent calculations by Shlomovitz and Levine. In addition, the presence of a Langmuir monolayer at the interface is found to significantly change the mobility of the particle close to the interface. With an accurate theory, it should be possible to infer the shear modulus of a monolayer from the fluctuations of the particle beneath the interface. Since particles are not embedded in the monolayer, this technique avoids impacting the system of study.

  3. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  4. Nano- and microstructure of air/oil/water interfaces.

    PubMed

    McGillivray, Duncan J; Mata, Jitendra P; White, John W; Zank, Johann

    2009-04-01

    We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions. PMID:19714829

  5. Powder wettability at a static air-water interface.

    PubMed

    Dupas, Julien; Forny, Laurent; Ramaioli, Marco

    2015-06-15

    The reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application. We highlight theoretically the determinant role of the contact angle and of the particle size distribution. We validate experimentally the model for single spheres and use it to predict the wettability performance of commercial food powders for different contact angles and particles sizes. A good agreement is obtained when comparing the predictions and the wettability of the tested powders. PMID:25721855

  6. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  7. Bacterial Swimming at Air/Water and Oil/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Morse, Michael; Huang, Athena; Li, Guanglai; Tang, Jay

    2012-02-01

    The microbes inhabiting the planet over billions of years have adapted to diverse physical environments of water, soil, and interfaces between water and either solid or air. Following recent studies on bacterial swimming and accumulation near solid surfaces, we turn our attention to the behavior of Caulobacter crescentus, a singly flagellated bacterium, at water/air and water/oil interfaces. The latter is motivated by relevance to microbial degradation of crude oil in light of the recent oil spill in the Gulf of Mexico. Our ongoing study suggests that Caulobacter swarmer cells tend to get physically trapped at both water/air and water/oil interfaces, accumulating at the surface to a greater degree than boundary confinement properties like that of solid surfaces would predict. At the water/air interface, swimmers move in tight circles at half the speed of swimmers in the bulk fluid. At the water/oil interface, swimming circles are even tighter with further reduced swimming speed. We report experimental data and present preliminary analysis of the findings based on low Reynolds number hydrodynamics, the known surface tension, and surface viscosity at the interface. The analysis will help determine properties of the bacterium such as their surface charge and hydrophobicity.

  8. Microscopic dynamics of nanoparticle monolayers at air-water interface.

    PubMed

    Bhattacharya, R; Basu, J K

    2013-04-15

    We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (Π) and isothermal compression modulus (ϵ) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Φ∼0.82. We observe non-monotonic variation in both ϵ and the dynamic heterogeneity, characterized by the dynamical susceptibility χ4 with Φ, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. PMID:23411354

  9. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  10. Detachment of deposited colloids by advancing and receding air-water interfaces.

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B

    2011-08-16

    Moving air-water interfaces can detach colloidal particles from stationary surfaces. The objective of this study was to quantify the effects of advancing and receding air-water interfaces on colloid detachment as a function of interface velocity. We deposited fluorescent, negatively charged, carboxylate-modified polystyrene colloids (diameter of 1 μm) into a cylindrical glass channel. The colloids were hydrophilic with an advancing air-water contact angle of 60° and a receding contact angle of 40°. After colloid deposition, two air bubbles were sequentially introduced into the glass channel and passed through the channel at different velocities (0.5, 7.7, 72, 982, and 10,800 cm/h). The passage of the bubbles represented a sequence of receding and advancing air-water interfaces. Colloids remaining in the glass channel after each interface passage were visualized with confocal microscopy and quantified by image analysis. The advancing air-water interface was significantly more effective in detaching colloids from the glass surface than the receding interface. Most of the colloids were detached during the first passage of the advancing air-water interface, while the subsequent interface passages did not remove significant amounts of colloids. Forces acting on the colloids calculated from theory corroborate our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface movement were stronger than during the receding movement. Theory indicates that, for hydrophilic colloids, the advancing interface movement generally exerts a stronger detachment force than the receding, except when the hysteresis of the colloid-air-water contact angle is small and that of the channel-air-water contact angle is large.

  11. Properties of diphytanoyl phospholipids at the air-water interface.

    PubMed

    Yasmann, Anthony; Sukharev, Sergei

    2015-01-01

    Diphytanoylphosphatidyl choline (DPhPC) is a synthetic ester lipid with methylated tails found in archaeal ether lipids. Because of the stability of DPhPC bilayers and the absence of phase transitions over a broad range of temperatures, the lipid is used as an artificial membrane matrix for the reconstitution of channels, pumps, and membrane-active peptides. We characterized monomolecular films made of DPhPC and its natural ether analog DOPhPC at the air-water interface. We measured compression isotherms and dipole potentials of films made of DPhPC, DPhPE, and DOPhPC. We determined that at 40 mN/m the molecular area of DPhPC is 81.2 Å(2), consistent with X-ray and neutron scattering data obtained in liposomes. This indicates that 40 mN/m is the monolayer-bilayer equivalence pressure for this lipid. At this packing density, the compressibility modulus (Cs(-1 )= 122 ± 7 mN/m) and interfacial dipole potential (V = 355 ± 16 mV) were near their maximums. The molecular dipole moment was estimated to be 0.64 ± 0.02 D. The ether DOPhPC compacted to 70.4 Å(2)/lipid at 40 mN/m displaying a peak compressibility similar to that of DPhPC. The maximal dipole potential of the ether lipid was about half of that for DPhPC at this density, and the elemental dipole moment was about a quarter. The spreading of DPhPC and DOPhPC liposomes reduced the surface tension of the aqueous phase by 46 and 49 mN/m, respectively. This corresponds well to the monolayer collapse pressure. The equilibration time shortened as the temperature increased from 20 to 60 °C, but the surface pressure at equilibrium did not change. The data illustrates the properties of branched chains and the contributions of ester bonds in setting the mechanical and electrostatic parameters of diphytanoyl lipids. These properties determine an environment in which reconstituted voltage- or mechano-activated proteins may function. Electrostatic properties are important in the preparation of asymmetric folded bilayers

  12. Soy milk oleosome behaviour at the air-water interface.

    PubMed

    Waschatko, Gustav; Junghans, Ann; Vilgis, Thomas A

    2012-01-01

    Soy milk is a highly stable emulsion mainly due to the presence of oleosomes, which are oil bodies and function as lipid storage organelles in plants, e.g., in seeds. Oleosomes are micelle-like structures with an outer phospholipid monolayer, an interior filled with triacylglycerides (TAGs), and oleosins anchored hairpin-like into the structure with their hydrophilic parts remaining outside the oleosomes, completely covering their surface (K. Hsieh and A. H. C. Huang, Plant Physiol., 2004, 136, 3427-3434). Oleosins are alkaline proteins of 15-26 kDa (K. Hsieh and A. H. C. Huang, Plant Physiol., 2004, 136, 3427-3434) which are expressed during seed development and maturation and play a major role in the stability of oil bodies. Additionally, the oil bodies of seeds seem to have the highest impact on coalescence, probably due to the required protection against environmental stress during dormancy and germination compared to, e.g., vertebrates' lipoproteins. Surface pressure investigations and Brewster angle microscopy of oleosomes purified from raw soy milk were executed to reveal their diffusion to the air-water interface, rupture, adsorption and structural modification over time at different subphase conditions. Destroying the surface portions of the oleosins by tryptic digestion induced coalescence of oleosomes (J. Tzen and A. Huang, J. Cell. Biol., 1992, 117, 327-335) and revealed severe changes in their adsorption kinetics. Such investigations will help to determine the effects behind oleosome stability and are necessary for a better understanding of the principal function of oleosins and their interactions with phospholipids.

  13. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.

    PubMed

    Pérez-Mosqueda, Luis M; Maldonado-Valderrama, Julia; Ramírez, Pablo; Cabrerizo-Vílchez, Miguel A; Muñoz, José

    2013-11-01

    In this work, we provide an accurate characterization of non-ionic triblock copolymer Pluronic PE9400 at the air-water and limonene-water interfaces, comprising a systematic analysis of surface tension isotherms, dynamic curves, dilatational rheology and desorption profiles. The surface pressure isotherms display two different slopes of the Π-c plot suggesting the existence of two adsorption regimes for PE9400 at both interfaces. Application of a theoretical model, which assumes the coexistence of different adsorbed states characterized by their molar areas, allows quantification of the conformational changes occurring at the adsorbed layer, indentifying differences between the conformations adopted at the air-water and the limonene-water interface. The presence of two maxima in the dilatational modulus vs. interfacial pressure importantly corroborates this conformational change from a 2D flat conformation to 3D brush one. Moreover, the dilatational response provides mechanical diferences between the interfacial layers formed at the two interfaces analyzed. Dynamic surface pressure data were transformed into a dimensionless form and fitted to another model which considers the influence of the reorganization process on the adsorption dynamics. Finally, the desorption profiles reveal that Pluronic PE9400 is irreversibly adsorbed at both interfaces regardless of the interfacial conformation and nature of the interface. The systematic characterization presented in this work provides important new findings on the interfacial properties of pluronics which can be applied in the rational development of new products, such as biocompatible limonene-based emulsions and/or microemulsions.

  14. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-01

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry.

  15. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-01

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry. PMID:27509207

  16. LIF measurements of oxygen concentration gradients along flat and wavy air-water interfaces

    NASA Astrophysics Data System (ADS)

    Woodrow, Philip T., Jr.; Duke, Steve R.

    Instantaneous spatially-varying measurements of concentration gradients occurring during aeration for flat, stagnant air-water interfaces and for interfaces with mechanically-generated waves are presented. Measurements were obtained in a laboratory wave tank using a laser-induced fluorescence (LIF) technique that images planar oxygen concentration fields near air-water interfaces. Pulsed nitrogen laser light focused to a thin sheet induces the fluorescence of pyrene butyric acid (in micromolar concentration) in deoxygenated water. The PBA fluorescence is quenched by dissolved oxygen. A high-resolution CCD camera images in two dimensions the intensities of the fluorescence field, providing spatial measurements of oxygen concentration with magnification of 7 μm per pixel. The concentration fields, gradients, and boundary layer thicknesses along the flat and wavy air-water interfaces are quantified and compared to previous measurements associated with sheared gas-liquid interfaces and with wind-generated waves.

  17. Capillary forces between sediment particles and an air-water interface.

    PubMed

    Chatterjee, Nirmalya; Lapin, Sergey; Flury, Markus

    2012-04-17

    In the vadose zone, air-water interfaces play an important role in particle fate and transport, as particles can attach to the air-water interfaces by action of capillary forces. This attachment can either retard or enhance the movement of particles, depending on whether the air-water interfaces are stationary or mobile. Here we use three standard PTFE particles (sphere, circular cylinder, and tent) and seven natural mineral particles (basalt, granite, hematite, magnetite, mica, milky quartz, and clear quartz) to quantify the capillary forces between an air-water interface and the different particles. Capillary forces were determined experimentally using tensiometry, and theoretically assuming volume-equivalent spherical, ellipsoidal, and circular cylinder shapes. We experimentally distinguished between the maximum capillary force and the snap-off force when the air-water interface detaches from the particle. Theoretical and experimental values of capillary forces were of similar order of magnitude. The sphere gave the smallest theoretical capillary force, and the circular cylinder had the largest force due to pinning of the air-water interface. Pinning was less pronounced for natural particles when compared to the circular cylinder. Ellipsoids gave the best agreement with measured forces, suggesting that this shape can provide a reasonable estimation of capillary forces for many natural particles.

  18. Detachment of colloids from a solid surface by a moving air-water interface.

    PubMed

    Sharma, Prabhakar; Flury, Markus; Zhou, Jun

    2008-10-01

    Colloid attachment to liquid-gas interfaces is an important process used in industrial applications to separate suspended colloids from the fluid phase. Moving gas bubbles can also be used to remove colloidal dust from surfaces. Similarly, moving liquid-gas interfaces lead to colloid mobilization in the natural subsurface environment, such as in soils and sediments. The objective of this study was to quantify the effect of moving air-water interfaces on the detachment of colloids deposited on an air-dried glass surface, as a function of colloidal properties and interface velocity. We selected four types of polystyrene colloids (positive and negative surface charge, hydrophilic and hydrophobic). The colloids were deposited on clean microscope glass slides using a flow-through deposition chamber. Air-water interfaces were passed over the colloid-deposited glass slides, and we varied the number of passages and the interface velocity. The amounts of colloids deposited on the glass slides were visualized using confocal laser scanning microscopy and quantified by image analysis. Our results showed that colloids attached under unfavorable conditions were removed in significantly greater amounts than those attached under favorable conditions. Hydrophobic colloids were detached more than hydrophilic colloids. The effect of the air-water interface on colloid removal was most pronounced for the first two passages of the air-water interface. Subsequent passages of air-water interfaces over the colloid-deposited glass slides did not cause significant additional colloid removal. Increasing interface velocity led to decreased colloid removal. The force balances, calculated from theory, supported the experimental findings, and highlight the dominance of detachment forces (surface tension forces) over the attachment forces (DLVO forces).

  19. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  20. Bromine and heavy halide chemistry at the air/water and air/ice interfaces: a computational approach

    NASA Astrophysics Data System (ADS)

    Gladich, I.; Shepson, P. B.; Szleifer, I.; Carignano, M.

    2010-12-01

    The air-water and air-ice interfaces are critically important surfaces, with respect to the physical and chemical properties of the Earth's atmosphere. In particular chloride, bromide and iodide ions are strongly involved in the reactions occurring at aerosol surfaces that are hydrated and at the air-ice interface in the polar boundary layer. Unfortunately, experimental access to these interfaces are quite problematic and the computational approach, based on molecular dynamic simulations and quantum mechanic calculations, is an interesting alternative approach. In this work, molecular dynamic (MD) simulations are used to study the halide enhancements at the air-water interface in the case of a dilute mixture of iodide, bromide and chloride ions. The MD results show how the air- water halide enhancement is different in the case of mixtures from the case of binary solutions (i.e. anions plus counter-positive ions) and how the presence of these halides at the interfaces depends from their relative concentrations in solution. In detail, heavy halides are strongly enhanced at the interfaces even if they are minor constituents in the bulk. Furthermore the enhancement of the larger halide ions, like bromide, at the surface is greater if lighter halides, like chloride, are in greater excess in the bulk. The applications of this last result on some real system, like sea-water, and the importance of bromide ions in the polar chemistry of ozone depletion events suggest a combined approach, MD and quantum mechanism (QM) calculation, to investigate the ozonation reaction of bromide (Br-+O3 → BrO-+O2 ) in the ice-QLL and in bulk water. The study of the reaction constants suggests how the different environments can affect the kinetics of such reaction. These results can help to understand the complex chemistry occurring at the air-water interface of hydrated aerosol and at the air-ice interface in the polar boundary layer.

  1. Theoretical study of vibrational energy transfer of free OH groups at the water-air interface.

    PubMed

    Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang

    2016-04-14

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.

  2. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  3. The behavior of NaOH at the air-water interface, a computational study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2010-07-14

    Molecular dynamics simulations with a polarizable multi-state empirical valence bond model were carried out to investigate NaOH dissociation and pairing in water bulk and at the air-water interface. It was found that NaOH readily dissociates in the bulk, and the effect of the air-water interface on NaOH dissociation is fairly minor. Also, NaOH complexes were found to be strongly repelled from the air-water interface, which is consistent with surface tension measurements. At the same time, a very strong preference for the hydroxide anion to be oriented towards the air was found that persisted a few angstroms towards the liquid from the Gibbs dividing surface of the air-water interface. This was due to a preference for the hydroxide anion to have its hydrogen pointing towards the air, and the fact that the sodium ion was more likely to be found near the hydroxide oxygen than hydrogen. As a consequence, the simulation results show that surfaces of NaOH solutions should be negatively charged, in agreement with experimental observations, but also that the hydroxide has little surface affinity. This provides the possibility that the surface of water can be devoid of hydroxide anions, but still have a strong negative charge. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Surface behavior of malonic acid adsorption at the air/water interface.

    PubMed

    Blower, Patrick G; Shamay, Eric; Kringle, Loni; Ota, Stephanie T; Richmond, Geraldine L

    2013-03-28

    The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results. PMID:23384061

  5. Estimating pH at the Air/Water Interface with a Confocal Fluorescence Microscope.

    PubMed

    Yang, Haiya; Imanishi, Yasushi; Harata, Akira

    2015-01-01

    One way to determine the pH at the air/water interface with a confocal fluorescence microscope has been proposed. The relation between the pH at the air/water interface and that in a bulk solution has been formulated in connection with the adsorption equilibrium and the dissociation equilibrium of the dye adsorbed. Rhodamine B (RhB) is used as a surface-active fluorescent pH probe. The corrected fluorescence spectrum of RhB molecules at the air/water interface with the surface density of 1.0 nmol m(-2) level shows pH-dependent shifts representing an acid-base equilibrium. Two ways to determine the unknown acid-base equilibrium constant of RhB molecules at the air/water interface have been discussed. With surface-tension measurements, the adsorption properties, maximum surface density, and adsorption equilibrium constants were estimated for both cationic and zwitterionic forms of RhB molecules at the air/water interface.

  6. Smart nanogels at the air/water interface: structural studies by neutron reflectivity.

    PubMed

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A; Zarbakhsh, Ali; Resmini, Marina

    2016-03-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface. PMID:26697736

  7. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  8. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-01

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  9. Locomotion and phenotypic transformation of the amoeboflagellate Naegleria gruberi at the water-air interface.

    PubMed

    Preston, Terence M; King, Conrad A

    2003-01-01

    The protozoon Naegleria gruberi is able to carry out amoeboid locomotion at the water-air interface in a manner indistinguishable from that exhibited on solid substrata with the production of focal contacts and associated filopodia. The speed of locomotion at this interface can be modulated by changes in electrolyte concentrations; these speed changes are identical to those observed at a water-glass interface. The nature of the water-air interface is discussed leading to the hypothesis that surface tension alone could provide suitable properties for the adhesion and translocation of amoebae at this interface without necessitating specific, absorbed molecules. The temporary swimming flagellate stage of Naegleria is able to dock at the interface, make stable adhesions to it, and revert to the amoeboid phenotype. Conversely, amoebae resident at the water-air interface can transform to swimming flagellates and escape into the bulk liquid phase. We report the presence of Naegleria amoebae in the surface microlayers of natural ponds; thus, in freshwater bodies there may be active shuttling of Naegleria amoebae from the benthos to the surface microlayers by means of the non-feeding, swimming flagellate phenotype. The public health implication of this behaviour in the case of the pathogenic relative, Naegleria fowleri, is discussed.

  10. Thermodynamics of iodide adsorption at the instantaneous air-water interface

    NASA Astrophysics Data System (ADS)

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-01

    We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010), 10.1021/jp909219k]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy.

  11. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered. PMID:26398042

  12. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  13. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  14. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  15. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    PubMed

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

    2014-11-25

    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  16. Water permeability of primary mouse keratinocyte cultures grown at the air-liquid interface

    SciTech Connect

    Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Potts, R.O.

    1989-04-01

    In order to study the development of the epidermal permeability barrier in vitro, tritiated water (HTO) flux was measured across murine keratinocytes cultured at the air-liquid interface. Using a micro-diffusion technique, it was shown that air-liquid cultures form areas where the water diffusion is comparable to that of intact neonatal mouse skin. When water permeability is measured over a large area of the culture surface, however, significantly higher flux is obtained. These results show that under the culture conditions used, areas of water barrier comparable to intact neonatal mouse skin coexist with regions of less complete barrier formation.

  17. Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface

    PubMed Central

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R.; Tang, Jay X.

    2013-01-01

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. PMID:23823220

  18. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  19. Thermodynamics of Iodide Adsorption at the Instantaneous Air-Water Interface.

    SciTech Connect

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-21

    We perform simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of the adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler.\\cite{chandler1} Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost layer water.

  20. Surface tension of ab initio liquid water at the water-air interface

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.

    2016-05-01

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  1. Surface tension of ab initio liquid water at the water-air interface.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D

    2016-05-28

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  2. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.

    PubMed

    Bernard, F; Ciuraru, R; Boréave, A; George, C

    2016-08-16

    In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860

  3. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.

    PubMed

    Bernard, F; Ciuraru, R; Boréave, A; George, C

    2016-08-16

    In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins.

  4. Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface.

    PubMed

    Griffith, Elizabeth C; Perkins, Russell J; Telesford, Dana-Marie; Adams, Ellen M; Cwiklik, Lukasz; Allen, Heather C; Roeselová, Martina; Vaida, Veronica

    2015-07-23

    The interaction of L-phenylalanine with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-water interface was explored using a combination of experimental techniques and molecular dynamics (MD) simulations. By means of Langmuir trough methods and Brewster angle microscopy, L-phenylalanine was shown to significantly alter the interfacial tension and the surface domain morphology of the DPPC film. In addition, confocal microscopy was used to explore the aggregation state of L-phenylalanine in the bulk aqueous phase. Finally, MD simulations were performed to gain molecular-level information on the interactions of L-phenylalanine and DPPC at the interface. Taken together, these results show that L-phenylalanine intercalates into a DPPC film at the air-water interface, thereby affecting the surface tension, phase morphology, and ordering of the DPPC film. The results are discussed in the context of biological systems and the mechanism of diseases such as phenylketonuria.

  5. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-01

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements. PMID:26999022

  6. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  7. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface.

    PubMed

    Casey, Jennifer R; Schwartz, Benjamin J; Glover, William J

    2016-08-18

    The properties of the hydrated electron at the air/water interface are computed for both a cavity and a noncavity model using mixed quantum/classical molecular dynamics simulation. We take advantage of our recently developed formalism for umbrella sampling with a restrained quantum expectation value to calculate free-energy profiles of the hydrated electron's position relative to the water surface. We show that it is critical to use an instantaneous description of the air/water interface rather than the Gibbs' dividing surface to obtain accurate potentials of mean force. We find that noncavity electrons, which prefer to encompass several water molecules, avoid the interface where water molecules are scarce. In contrast, cavity models of the hydrated electron, which prefer to expel water, have a local free-energy minimum near the interface. When the cavity electron occupies this minimum, its absorption spectrum is quite red-shifted, its binding energy is significantly lowered, and its dynamics speed up quite a bit compared with the bulk, features that have not been found by experiment. The surface activity of the electron therefore serves as a useful test of cavity versus noncavity electron solvation. PMID:27479028

  8. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface.

    PubMed

    Tse, Ying-Lung Steve; Chen, Chen; Lindberg, Gerrick E; Kumar, Revati; Voth, Gregory A

    2015-10-01

    Significant effort has been undertaken to better understand the molecular details governing the propensity of ions for the air-water interface. Facilitated by computationally efficient reactive molecular dynamics simulations, new and statistically conclusive molecular-scale results on the affinity of the hydrated excess proton and hydroxide anion for the air-water interface are presented. These simulations capture the dynamic bond breaking and formation processes (charge defect delocalization) that are important for correctly describing the solvation and transport of these complex species. The excess proton is found to be attracted to the interface, which is correlated with a favorable enthalpic contribution and consistent with reducing the disruption in the hydrogen bond network caused by the ion complex. However, a recent refinement of the underlying reactive potential energy function for the hydrated excess proton shows the interfacial attraction to be weaker, albeit nonzero, a result that is consistent with the experimental surface tension measurements. The influence of a weak hydrogen bond donated from water to the protonated oxygen, recently found to play an important role in excess hydrated proton transport in bulk water, is seen to also be important for this study. In contrast, the hydroxide ion is found to be repelled from the air-water interface. This repulsion is characterized by a reduction of the energetically favorable ion-water interactions, which creates an enthalpic penalty as the ion approaches the interface. Finally, we find that the fluctuation in the coordination number around water sheds new light on the observed entropic trends for both ions. PMID:26366480

  9. Interaction between graphene oxide and Pluronic F127 at the air-water interface.

    PubMed

    Li, Shanghao; Guo, Jingru; Patel, Ravi A; Dadlani, Anup L; Leblanc, Roger M

    2013-05-14

    Triblock copolymer Pluronic F127 (PF127) has previously been demonstrated to disperse graphene oxide (GO) in electrolyte solution and block the hydrophobic interaction between GO and l-tryptophan and l-tyrosine. However, the nature of this interaction between PF127 and GO remains to be characterized and elucidated. In the present study, we aimed to characterize and understand the interaction between GO and PF127 using a 2-dimensional Langmuir monolayer methodology at the air-water interface by surface pressure-area isotherm measurement, stability, adsorption, and atomic force microscopy (AFM) imaging. Based on the observation of surface pressure-area isotherms, adsorption, and stability of PF127 and PF127/GO mixture at the air-water interface, GO is suggested to change the conformation of PF127 at the air-water interface and also drag PF127 from the interface to the bulk subphase. Atomic force microscopy (AFM) image supports this assumption, as GO and PF127 can be observed by spreading the subphase solution outside the compressing barriers, as shown in the TOC graphic.

  10. Hydrodynamics of a fixed camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  11. Solvent-dependent properties of poly(vinylidene fluoride) monolayers at the air-water interface.

    PubMed

    Zhu, Huie; Matsui, Jun; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2015-03-14

    The present work addresses the solvent-dependent properties of Langmuir films of poly(vinylidene fluoride) (PVDF) and amphiphilic poly(N-dodecylacrylamide) (pDDA) at different mixing ratios. After introducing pDDA nanosheets, PVDF Langmuir films obtain a tremendously enhanced modulus as well as high transfer ratios using the vertical dipping method caused by the support of the pDDA two-dimensional hydrogen bonding network. Brewster angle microscopy (BAM) was used to investigate PVDF monolayers at the air-water interface in situ. Spreading from different solvents, the PVDF molecules take completely different aggregation states at the air-water interface. The PVDF molecules aggregate to become large domains when spread from N-methyl-2-pyrrolidone (NMP). However, the volatile and low-polarity methylethyl ketone (MEK) made the PVDF molecules more dispersive on the water surface. This study also discovers a versatile crystallization control of PVDF homopolymer from complete β phase (NMP) to complete α phase (MEK) at the air-water interface, thereby eliciting useful information for further manipulation of film morphologies and film applications. PMID:25622932

  12. Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface.

    PubMed

    Allan, Daniel B; Firester, Daniel M; Allard, Victor P; Reich, Daniel H; Stebe, Kathleen J; Leheny, Robert L

    2014-09-28

    We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase. PMID:24969505

  13. Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface.

    PubMed

    Allan, Daniel B; Firester, Daniel M; Allard, Victor P; Reich, Daniel H; Stebe, Kathleen J; Leheny, Robert L

    2014-09-28

    We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase.

  14. Formation, disruption and mechanical properties of a rigid hydrophobin film at an air-water interface

    NASA Astrophysics Data System (ADS)

    Walker, Lynn; Kirby, Stephanie; Anna, Shelley; CMU Team

    Hydrophobins are small, globular proteins with distinct hydrophilic and hydrophobic regions that make them extremely surface active. The behavior of hydrophobins at surfaces has raised interest in their potential industrial applications, including use in surface coatings, food foams and emulsions, and as dispersants. Practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, both individually and in the presence of surfactants. Cerato-ulmin (CU) is a hydrophobin that has been shown to strongly stabilize air bubbles and oil droplets through the formation of a persistent protein film at the interface. In this work, we characterize the adsorption behavior of CU at air/water interfaces by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to strongly, irreversibly adsorb at air/water interfaces; the magnitude of the dilatational modulus increases with adsorption time and surface pressure, until the CU eventually forms a rigid film. The persistence of this film is tested through the addition of SDS, a strong surfactant, to the bulk. SDS is found to co-adsorb to interfaces pre-coated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU. These results lend insight into the complex interfacial interactions between hydrophobins and surfactants. Funding from GoMRI.

  15. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact.

  16. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  17. Anisotropic orientational motion of molecular adsorbates at the air-water interface

    SciTech Connect

    Zimdars, D.; Dadap, J.I.; Eisenthal, K.B.; Heinz, T.F.

    1999-04-29

    The ultrafast orientational motions of coumarin 314 (C314) adsorbed at the air/water interface were investigated by time-resolved surface second harmonic generation (TRSHG). The theory and method of using TRSHG to detect both out-of-plane and in-plane orientational motions are discussed. The interfacial solute motions were found to be anisotropic, with differing out-of-plane and in-plane reorientation time constants. This report presents the first direct observation of in-plane orientational motion of a molecule (C314) at the air/water interface using TRSHG. The in-plane reorientation time constant is 600 {+-} 40 ps. The out-of-plane reorientation time constant is 350 {+-} 20 ps. The out-of-plane orientational motion of C314 is similar to the previous results on rhodamine 6G at the air/water interface which indicated increased interfacial friction compared with bulk aqueous solution. The surface reorientation times are 2--3 times slower than the bulk isotropic orientational diffusion time.

  18. Semifluorinated Alkanes at the Air-Water Interface: Tailoring Structure and Rheology at the Molecular Scale.

    PubMed

    Theodoratou, Antigoni; Jonas, Ulrich; Loppinet, Benoit; Geue, Thomas; Stangenberg, Rene; Keller, Rabea; Li, Dan; Berger, Rüdiger; Vermant, Jan; Vlassopoulos, Dimitris

    2016-04-01

    Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure.

  19. Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces.

    PubMed

    Wojciechowski, Kamil

    2013-08-01

    Surface activity of Sigma's Quillaja bark saponin (QBS) was studied by means of dynamic interfacial tension and surface dilational rheology at three fluid/fluid interfaces with the polarity of the non-aqueous phase increasing in the order: air/water, tetradecane/water and olive oil/water. The equilibrium interfacial tension isotherms were fitted to the generalized Frumkin model with surface compressibility for the air/water and tetradecane/water interfaces, whereas the isotherm for the third interface displays a more complex shape. Upon fast compression of a drop of concentrated "Sigma" QBS solution immersed in olive oil, a clearly visible and durable skin was formed. On the other hand, no skin formation was noticed at the air/water interface, and only a little at the tetradecane/water interface. Addition of a fatty acid, however, improved slightly the skin-formation ability of the QBS at the latter interface. The surface behavior of the QBS from Sigma was compared with that from Desert King, Int. ("Supersap"), employed in a recent study by Stanimirova et al. [22]. The two products exhibit different areas per molecule in the saturated adsorbed layer (0.37nm(2) vs. 1.19nm(2) for "Sigma" and "Supersap", respectively). Also their surface rheology is different: although both QBSs form predominantly elastic layers, for "Sigma" the surface storage modulus, εr=103mNm(-1), while for "Supersap" εr=73mNm(-1) at 10(-3)moll(-1) (i.e., around their cmc). The two saponin products exhibit also different ionic character, as proven by the acid-base titration of their aqueous solutions: QBS from Sigma is an ionic surfactant, while the "Supersap" from Desert King is a non-ionic one. PMID:23524082

  20. Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces.

    PubMed

    Wojciechowski, Kamil

    2013-08-01

    Surface activity of Sigma's Quillaja bark saponin (QBS) was studied by means of dynamic interfacial tension and surface dilational rheology at three fluid/fluid interfaces with the polarity of the non-aqueous phase increasing in the order: air/water, tetradecane/water and olive oil/water. The equilibrium interfacial tension isotherms were fitted to the generalized Frumkin model with surface compressibility for the air/water and tetradecane/water interfaces, whereas the isotherm for the third interface displays a more complex shape. Upon fast compression of a drop of concentrated "Sigma" QBS solution immersed in olive oil, a clearly visible and durable skin was formed. On the other hand, no skin formation was noticed at the air/water interface, and only a little at the tetradecane/water interface. Addition of a fatty acid, however, improved slightly the skin-formation ability of the QBS at the latter interface. The surface behavior of the QBS from Sigma was compared with that from Desert King, Int. ("Supersap"), employed in a recent study by Stanimirova et al. [22]. The two products exhibit different areas per molecule in the saturated adsorbed layer (0.37nm(2) vs. 1.19nm(2) for "Sigma" and "Supersap", respectively). Also their surface rheology is different: although both QBSs form predominantly elastic layers, for "Sigma" the surface storage modulus, εr=103mNm(-1), while for "Supersap" εr=73mNm(-1) at 10(-3)moll(-1) (i.e., around their cmc). The two saponin products exhibit also different ionic character, as proven by the acid-base titration of their aqueous solutions: QBS from Sigma is an ionic surfactant, while the "Supersap" from Desert King is a non-ionic one.

  1. Dynamic mechanical properties of a polyelectrolyte adsorbed insoluble lipid monolayer at the air-water interface.

    PubMed

    Park, Chang Young; Kim, Mahn Won

    2015-04-23

    Polymers have been used to stabilize interfaces or to tune the mechanical properties of interfaces in various contexts, such as in oil emulsions or biological membranes. Although the structural properties of these systems are relatively well-studied, instrumental limitations continue to make it difficult to understand how the addition of polymer affects the dynamic mechanical properties of thin and soft films. We have solved this challenge by developing a new instrument, an optical-tweezer-based interface shear microrheometer (ISMR). With this technique, we observed that the interface shear modulus, G*, of a dioctadecyldimethylammonium chloride (DODAC) monolayer at the air-water interface significantly increased with adsorption of polystyrenesulfonate (PSS). In addition, the viscous film (DODAC monolayer) became a viscoelastic film with PSS adsorption. At a low salt concentration, 10 mM of NaCl in the subphase, the viscoelasticity of the DODAC/PSS composite was predominantly determined by a particular property of PSS, that is, it behaves as a Gaussian chain in a θ-solvent. At a high salt concentration, 316 mM of NaCl, the thin film behaved as a polymer melt excluding water molecules. PMID:25826703

  2. Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface

    PubMed Central

    2016-01-01

    Interfaces are ubiquitous in the environment and many atmospheric key processes, such as gas deposition, aerosol, and cloud formation are, at one stage or another, strongly impacted by physical and chemical processes occurring at interfaces. Here, the photoinduced chemistry of an air/water interface coated with nonanoic acid—a fatty acid surfactant we use as a proxy for chemically complex natural aqueous surface microlayers—was investigated as a source of volatile and semivolatile reactive organic species. The carboxylic acid coating significantly increased the propensity of photosensitizers, chosen to mimic those observed in real environmental waters, to partition to the interface and enhance reactivity there. Photochemical formation of functionalized and unsaturated compounds was systematically observed upon irradiation of these coated surfaces. The role of a coated interface appears to be critical in providing a concentrated medium allowing radical–radical reactions to occur in parallel with molecular oxygen additions. Mechanistic insights are provided from extensive analysis of products observed in both gas and aqueous phases by online switchable reagent ion-time of flight-mass spectrometry and by off-line ultraperformance liquid chromatography coupled to a Q Exactive high resolution mass spectrometer through heated electrospray ionization, respectively. PMID:27611489

  3. Spectroscopic signatures of ozone at the air-water interface and photochemistry implications.

    PubMed

    Anglada, Josep M; Martins-Costa, Marilia; Ruiz-López, Manuel F; Francisco, Joseph S

    2014-08-12

    First-principles simulations suggest that additional OH formation in the troposphere can result from ozone interactions with the surface of cloud droplets. Ozone exhibits an affinity for the air-water interface, which modifies its UV and visible light spectroscopic signatures and photolytic rate constant in the troposphere. Ozone cross sections on the red side of the Hartley band (290- to 350-nm region) and in the Chappuis band (450-700 nm) are increased due to electronic ozone-water interactions. This effect, combined with the potential contribution of the O3 + hν → O((3)P) + O2(X(3)Σg(-)) photolytic channel at the interface, leads to an enhancement of the OH radical formation rate by four orders of magnitude. This finding suggests that clouds can influence the overall oxidizing capacity of the troposphere on a global scale by stimulating the production of OH radicals through ozone photolysis by UV and visible light at the air-water interface.

  4. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-01

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  5. Atmospheric photochemistry at a fatty acid–coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids–covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  6. Trapping of Sodium Dodecyl Sulfate at the Air-Water Interface of Oscillating Bubbles.

    PubMed

    Corti, Mario; Pannuzzo, Martina; Raudino, Antonio

    2015-06-16

    We report that at very low initial bulk concentrations, a couple of hundred times below the critical micellar concentration (CMC), anionic surfactant sodium dodecyl sulfate (SDS) adsorbed at the air-water interface of a gas bubble cannot be removed, on the time scale of the experiment (hours), when the surrounding solution is gently replaced by pure water. Extremely sensitive interferometric measurements of the resonance frequency of the bubble-forced oscillations give precise access to the concentration of the surfactant monolayer. The bulk-interface dynamic exchange of SDS molecules is shown to be inhibited below a concentration which we believe refers to a kind of gas-liquid phase transition of the surface monolayer. Above this threshold we recover the expected concentration-dependent desorption. The experimental observations are interpreted within simple energetic considerations supported by molecular dynamics (MD) calculations. PMID:26039913

  7. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  8. Atmospheric photochemistry at a fatty acid-coated air-water interface.

    PubMed

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D James; George, Christian

    2016-08-12

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation. PMID:27516601

  9. The interface between air and water: a perturbation source eliciting adaptive behaviour in ciliates.

    PubMed

    Ricci, N; Erra, F; Russo, A; Banchetti, R

    1992-01-01

    Interference with the water-air interface, both direct (by contact with a flat, rigid surface) and indirect (by inducing a meniscus) caused the ciliated protozoa we investigated to actively collect in the water column or on the substrate directly under the area of altered surface tension. A crowding effect is observed in this "rest area" reaching plateau values within one hour after onset of the experiment. The simple experimental procedures described here induced analogous behaviour in both Paramecium caudatum (a swimmer) and Oxytricha bifaria (a crawler). The ciliates seem in this reaction to be seeking a refuge from vibrations transmitted by the free interface. Our discovery is discussed in its implications for the adaptive biology and ecology of these micro-organisms.

  10. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  11. Real-time investigation of protein unfolding at an air-water interface at the 1 s time scale.

    PubMed

    Yano, Yohko F; Arakawa, Etsuo; Voegeli, Wolfgang; Matsushita, Tadashi

    2013-11-01

    Protein unfolding at an air-water interface has been demonstrated such that the X-ray reflectivity can be measured with an acquisition time of 1 s using a recently developed simultaneous multiple-angle-wavelength-dispersive X-ray reflectometer. This has enabled the electron density profile of the adsorbed protein molecules to be obtained in real time. A globular protein, lysozyme, adsorbed at the air-water interface is found to unfold into a flat shape within 1 s.

  12. A Mechanism for the Entrapment of DNA at an Air-Water Interface

    PubMed Central

    Eickbush, Thomas H.; Moudrianakis, Evangelos N.

    1977-01-01

    Addition of the intercalating dye quinacrine to a low ionic strength solution of DNA in quantities sufficient to saturate the high affinity sites in the DNA will result in the accumulation of the DNA at the solution interface. This entrapment of DNA at the air-water interface has been assayed by the adsorption of DNA to untreated carbon-coated electron microscope grids touched to the solution surface. Other intercalating dyes can also bring about this entrapment, if they possess a side arm large enough to occupy one of the DNA grooves when the dye is intercalated into the DNA. The extension and unwinding of the DNA helix brought about by the intercalating chromophore of the dye molecules are not requirements for the entrapment process. Spermidine, a simple polyamine that will bind to the DNA minor groove but that has no intercalating chromophore, was found to bring about this entrapment. Even simple mono- and divalent cations in the absence of the above ligands were found to promote a low level of surface entrapment. A model for the entrapment of DNA at the air-water interface is proposed in which one (or both) of the hydrophobic grooves of the DNA becomes a surface-active agent as a consequence of the association of various ligands and charge neutralization. ImagesFIGURE 1FIGURE 6 PMID:890027

  13. Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface.

    PubMed

    Wu, Dan; Xu, Guiying; Feng, Yujun; Li, Yiming

    2007-03-10

    The dilational rheological properties of gelatin with cationic gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide) (C(12)C(2)C(12)) at air/water interface were investigated using oscillating barriers method at low frequency (0.005-0.1 Hz), which was compared with single-chain surfactant dodecyltrimethyl ammonium bromide (DTAB). The results indicate that the maximum dilational modulus and the film stability of gelatin-C(12)C(2)C(12) are higher than those of gelatin-DTAB. At high concentration of C(12)C(2)C(12) or DTAB, the dilational modulus of gelatin-surfactant system becomes close to that corresponding to pure surfactant, suggesting gelatin at interface is replaced by surfactant. This replacement is also observed by surface tension measurement. However, it is found that gelatin-C(12)C(2)C(12) system has two obvious breaks but gelatin-DTAB has not in surface tension isotherms. These phenomena are ascribed to the double charges and strong hydrophobicity of C(12)C(2)C(12). Based on these experimental results, a mechanism of gelatin-surfactant interaction at air/water interface is proposed.

  14. Surface pressure-induced layer growth of a monolayer at the air-water interface

    SciTech Connect

    Fang, J.Y.; Uphaus, R.A. )

    1994-04-01

    Spread monolayers containing a nematic liquid crystal and stearic acid were characterized at various mole fractions by determination of surface pressure-area isotherms at the air-water interface. The surface-composition phase diagrams indicate that compression induces a new phase transition in the films, which changes from a mixed monolayer to a supermonomolecular system. X-ray diffraction and optical absorption spectra demonstrate that the supermolecular array consists of an island liquid crystal monolayer and a uniform stearic acid monolayer. 12 refs., 7 figs.

  15. Ligand interaction with the purified serotonin transporter in solution and at the air/water interface

    SciTech Connect

    Faivre, V.; Manivet, P.; Callaway, J.C.; Morimoto, H.; Airaksinen, M.M.; Baszkin, A.; Launay, J.M.; Rosilio, V.

    2000-06-01

    The purified serotonin transporter (SERT) was spread at the air/water interface and the effects both of its surface density and of the temperature on its interfacial behavior were studied. The recorded isotherms evidenced the existence of a stable monolayer undergoing a lengthy rearrangement. SERT/ligand interactions appeared to be dependent on the nature of the studied molecules. Whereas an unrelated drug (chlorcyclizine) did not bind to the spread SERT, it interacted with its specific ligands. Compared to heterocyclic drugs, for which binding appeared to be concentration-dependent, a 'two-site' mechanism was evidenced for pinoline and imipramine.

  16. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C. Gupta, Adbhut Joshi, Aditya Manjuladevi, V. Gupta, Raj Kumar; Varia, Mahesh C.; Kumar, Sandeep

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  17. Organization of tethered polyoxazoline polymer brushes at the air/water interface

    NASA Astrophysics Data System (ADS)

    Gutberlet, T.; Wurlitzer, A.; Dietrich, U.; Politsch, E.; Cevc, G.; Steitz, R.; Lösche, M.

    2000-06-01

    Surface monolayers of short chain poly(methyl oxazoline) (PMeOx) attached to diacylglycerol have been investigated by X-ray and neutron reflectivity in pure systems and in binary mixtures with the unmodified phospholipid DMPC at the air/water interface. Reflectivity curves of pure PMeOx and its mixtures with DMPC indicate an extended conformation of the polymer independent of the available lateral area and pressure. An almost linear increase in the thickness of the polymer layer is found with increasing lateral pressure π. The thickness of the hydrophobic slab within the surface monolayers decreases continuously upon addition of PMeOx to DMPC.

  18. Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface.

    PubMed

    Lenis, Jessica; Razavi, Sepideh; Cao, Kathleen D; Lin, Binhua; Lee, Ka Yee C; Tu, Raymond S; Kretzschmar, Ilona

    2015-12-16

    The compressional instability of particle-laden air/water interfaces is investigated with plain and surface-anisotropic (Janus) particles. We hypothesize that the amphiphilic nature of Janus particles leads to both anisotropic particle-particle and particle-interface interactions that can yield particle films with unique collapse mechanisms. Analysis of Langmuir isotherms and microstructural characterization of the homogeneous polystyrene particle films during compression reveal an interfacial buckling instability followed by folding, which is in good agreement with predictions from classical elasticity theory. In contrast, Janus particle films exhibit a different behavior during compression, where the collapse mode occurs through the subduction of the Janus particle film. Our results suggest that particle-laden films comprised of surface-anisotropic particles can be engineered to evolve new material properties. PMID:26588066

  19. Motion of Optically Heated Spheres at the Water-Air Interface.

    PubMed

    Girot, A; Danné, N; Würger, A; Bickel, T; Ren, F; Loudet, J C; Pouligny, B

    2016-03-22

    A micrometer-sized spherical particle classically equilibrates at the water-air interface in partial wetting configuration, causing about no deformation to the interface. In condition of thermal equilibrium, the particle just undergoes faint Brownian motion, well visible under a microscope. We report experimental observations when the particle is made of a light-absorbing material and is heated up by a vertical laser beam. We show that, at small laser power, the particle is trapped in on-axis configuration, similarly to 2-dimensional trapping of a transparent sphere by optical forces. Conversely, on-axis trapping becomes unstable at higher power. The particle escapes off the laser axis and starts orbiting around the axis. We show that the laser-heated particle behaves as a microswimmer with velocities on the order of several 100 μm/s with just a few milliwatts of laser power. PMID:26916053

  20. Quantifying the effect of the air/water interface in marine active source EM

    NASA Astrophysics Data System (ADS)

    Wright, David

    2015-07-01

    The marine controlled source EM surveying method has become an accepted tool for deep water exploration for oil and gas reserves. In shallow water (< 500 m) data are complicated by the signal which interacts with the water-air interface which can dominate the response at the receiver. By decomposing the 1-D response to an impulsive current dipole source in the time domain and frequency domain I separate the response into: (1) an earth response, (2) a direct arrival, (3) a coupled airwave which travels through the air and (4) a surface coupling term which travels through the earth. The last two terms are coupled to the sea surface as well as to the earth resistivity structure but one travels through the air between source and receiver and the other only through the earth. Using a range of simple models I quantify the effect of these four terms in the time domain and the frequency domain. The results show that in shallow water the total response is significantly larger than in very deep water and that a large part of this extra energy comes from surface coupling, which is reflected at the sea surface and does not propagate through the air but through the earth. As a result, this term is highly sensitive to the resistivity of the earth. This means that the sea surface in shallow water not only significantly increases the signal strength of CSEM data but also enhances the sensitivity to subsurface resistivity structure. Compared with the surface coupling term, the coupled part of the airwave contains very little information about the earth, and is limited to the near surface. Time domain separation of the airwave from the surface coupling response results in greater sensitivity to a deep resistive target than frequency domain separation although there is also reasonable sensitivity in the frequency domain.

  1. Field observations of turbulent dissipation rate profiles immediately below the air-water interface

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian

    2016-06-01

    Near surface profiles of turbulence immediately below the air-water interface were measured with a free-floating Particle Image Velocimetry (PIV) system on Lake Michigan. The surface-following configuration allowed the system to measure the statistics of the aqueous-side turbulence in the topmost layer immediately below the water surface (z≈0˜15 cm, z points downward with 0 at the interface). Profiles of turbulent dissipation rate (ɛ) were investigated under a variety of wind and wave conditions. Various methods were applied to estimate the dissipation rate. Results suggest that these methods yield consistent dissipation rate profiles with reasonable scattering. In general, the dissipation rate decreases from the water surface following a power law relation in the top layer, ɛ˜z-0.7, i.e., the slope of the decrease was lower than that predicted by the wall turbulence theory, and the dissipation was considerably higher in the top layer for cases with higher wave ages. The measured dissipation rate profiles collapse when they were normalized with the wave speed, wave height, water-side friction velocity, and the wave age. This scaling suggests that the enhanced turbulence may be attributed to the additional source of turbulent kinetic energy (TKE) at the "skin layer" (likely due to micro-breaking), and its downward transport in the water column.

  2. Equation of state and adsorption dynamics of soft microgel particles at an air-water interface.

    PubMed

    Deshmukh, Omkar S; Maestro, Armando; Duits, Michel H G; van den Ende, Dirk; Stuart, Martien Cohen; Mugele, Frieder

    2014-09-28

    Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly (N-isopropylacrylamide) (PNIPAM) microgel particles adsorbed onto an air-water interface using a Langmuir film balance. We detect a finite surface pressure at very low surface concentration of particles, for which standard theories based on hard disk models predict negligible pressures, implying that the particles must deform strongly upon adsorption to the interface. Furthermore, we study the evolution of the surface pressure due to the adsorption of PNIPAM particles as a function of time using pendant drop tensiometry. The equation of state determined in the equilibrium measurements allows us to extract the adsorbed amount as a function of time. We find a mixed-kinetic adsorption that is initially controlled by the diffusion of particles towards the interface. At later stages, a slow exponential relaxation indicates the presence of a coverage-dependent adsorption barrier related to crowding of particles at the interface. PMID:24954112

  3. Biogenic amine – surfactant interactions at the air-water interface.

    PubMed

    Penfold, J; Thomas, R K; Li, P X

    2015-07-01

    The strong interaction between polyamines and anionic surfactants results in pronounced adsorption at the air-water interface and can lead to the formation of layered surface structures. The transition from monolayer adsorption to more complex surface structures depends upon solution pH, and the structure and molecular weight of the polyamine. The effects of manipulating the polyamine molecular weight and structure on the adsorption of the anionic surfactant sodium dodecyl sulphate at the air-water interface are investigated using neutron reflectivity and surface tension, for the biogenic amines putrescine, spermidine and spermine. The results show how changing the number of amine groups and the spacing between the amine groups impacts upon the surface adsorption. At lower pH, 3-7, and for the higher molecular weight polyamines, spermidine and spermine, ordered multilayer structures are observed. For putrescine at all pH and for spermidine and spermine at high pH, monolayer adsorption with enhanced surfactant adsorption compared to the pure surfactant is observed. The data for the biogenic amines, when compared with similar data for the polyamines ethylenediamine, diethylenetriamine and triethylenetetramine, indicate that the spacing between amines groups is more optimal for the formation of ordered surface multilayer structures.

  4. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  5. Hydration, Orientation, and Conformation of Methylglyoxal at the Air-Water Interface.

    PubMed

    Wren, Sumi N; Gordon, Brittany P; Valley, Nicholas A; McWilliams, Laura E; Richmond, Geraldine L

    2015-06-18

    Aqueous-phase processing of methylglyoxal (MG) has been suggested to constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected because its carbonyl moieties can hydrate to form geminal diols, as well as because MG and its hydration products can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active, but an improved description of its surface behavior is crucial to understanding MG-SOA formation. These studies investigate MG adsorption, focusing on its hydration state at the air-water interface, using a combined experimental and theoretical approach that involves vibrational sum frequency spectroscopy, molecular dynamics simulations, and density functional theory calculations. Together, the experimental and theoretical data show that MG exists predominantly in a singly hydrated state (diol) at the interface, with a diol-tetrol ratio at the surface higher than that for the bulk. In addition to exhibiting a strong surface activity, we find that MG significantly perturbs the water structure at the interface. The results have implications for understanding the atmospheric fate of methylglyoxal.

  6. Phospholipid surface bilayers at the air-water interface. II. Water permeability of dimyristoylphosphatidylcholine surface bilayers.

    PubMed Central

    Ginsberg, L; Gershfeld, N L

    1985-01-01

    Dispersions of dimyristoylphosphatidylcholine (DMPC) in water have been reported to form a structure at 29 degrees C at the equilibrium air/water surface with a molecular density equal to that of a typical bilayer. In this study, the water permeability of this structure has been evaluated by measuring the rate of water evaporation from DMPC dispersions in water in the temperature range where the surface film density exceeds that of a monolayer. Evaporation rates for the lipid dispersions did not deviate from those for lipid-free systems throughout the entire temperature range examined (20-35 degrees C) except at 29 degrees C, where a barrier to evaporation was detected. This strengthens the view that the structure that forms at this temperature has the properties of a typical bilayer. PMID:3978199

  7. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  8. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  9. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    SciTech Connect

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.

  10. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules. PMID:16851456

  11. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  12. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

    PubMed

    Pillar, Elizabeth A; Camm, Robert C; Guzman, Marcelo I

    2014-12-16

    Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon.

  13. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

    PubMed

    Pillar, Elizabeth A; Camm, Robert C; Guzman, Marcelo I

    2014-12-16

    Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon. PMID:25423038

  14. Real-time imaging of crystallization in polylactide enantiomeric monolayers at the air-water interface.

    PubMed

    Kim, Young Shin; Snively, Christopher M; Liu, Yujuan; Rabolt, John F; Chase, D Bruce

    2008-10-01

    A newly developed planar array infrared reflection-absorption spectrograph (PA-IRRAS) offers significant advantages over conventional approaches including fast acquisition speed, excellent compensation for water vapor, and an excellent capacity for large infrared accessories, e.g., a water trough. In this study, the origin of stereocomplexation in a polylactide enantiomeric monolayer at the air-water interface was investigated using PA-IRRAS. PA-IRRAS was used as a probe to follow the real-time conformational changes associated with intermolecular interactions of polymer chains during the compression of the monolayers. It was found that a mixture of poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) (D/L) formed a stereocomplex when the two-dimensional monolayer developed at the air-water interface before film compression, indicating that there is no direct correlation between film compression and stereocomplexation. PA-IRRAS spectra of the stereocomplex exhibited distinct band shifts in crystalline sensitive components, e.g., the vas(C-O-C, h) mode, as well as amorphous-dependent components, e.g., the vs(C-O-C) mode, when compared with the spectra of PLLA alone. On the other hand, time-resolved PA-IRRAS spectra, which were obtained as the films were being compressed, revealed that both monolayers of PLLA and mixed PLLA/PDLA stereocomplex were crystallized into a 10(3)-helix and a 3(1)-helix, respectively, with a distinct band shift in crystalline sensitive components only. Fourier self-deconvolution of the spectra demonstrated that the band shift in crystalline sensitive components is correlated with the intermolecular interaction of polymer chains. PMID:18781784

  15. Amyloid fibril formation at a uniformly sheared air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Hirsa, Amir

    2013-11-01

    Amyloid fibril formation is a process by which protein molecules in solution form nuclei and aggregate into fibrils. Amyloid fibrils have long been associated with several common diseases such as Parkinson's disease and Alzheimer's. More recently, fibril protein deposition has been implicated in uncommon disorders leading to the failure of various organs including the kidneys, heart, and liver. Fibrillization can also play a detrimental role in biotherapeutic production. Results from previous studies show that a hydrophobic interface, such air/water, can accelerate fibrillization. Studies also show that agitation accelerates fibrillization. When attempting to elucidate fundamental mechanisms of fibrillization and distinguish the effects of interfaces and flow, it can be helpful to experiment with uniformly sheared interfaces. A new Taylor-Couette device is introduced for in situ, real-time high resolution microscopy. With a sub-millimeter annular gap, surface tension acts as the channel floor, permitting a stable meniscus to be placed arbitrarily close to a microscope to study amyloid fibril formation over long periods.

  16. Ultrafast Reorientational Dynamics of Leucine at the Air-Water Interface.

    PubMed

    Donovan, Michael A; Yimer, Yeneneh Y; Pfaendtner, Jim; Backus, Ellen H G; Bonn, Mischa; Weidner, Tobias

    2016-04-27

    Ultrafast dynamics of protein side chains are involved in important biological processes such as ligand binding, protein folding, and hydration. In addition, the dynamics of a side chain can report on local environments within proteins. While protein side chain dynamics have been probed for proteins in solution with nuclear magnetic resonance and infrared methods for decades, information about side chain dynamics at interfaces is lacking. At the same time, the dynamics and motions of side chains can be particularly important for interfacial binding and protein-driven surface manipulation. We here demonstrate that ultrafast reorientation dynamics of leucine amino acids at interfaces can be recorded in situ and in real time using polarization- and time-resolved pump-probe sum frequency generation (SFG). Combined with molecular dynamics simulations, time-resolved SFG was used to probe the reorientation of the isopropyl methyl groups of l-leucine at the air-water interface. The data show that the methyl units reorient diffusively at an in plane rate of Dφ = 0.07 rad(2)/ps and an out of plane rate of Dθ = 0.05 rad(2)/ps. PMID:27057584

  17. Gaseous exchange of polycyclic aromatic hydrocarbons across the air-water interface of lower Chesapeake Bay

    SciTech Connect

    Gustafson, K.E.; Dickhut, R.M.

    1995-12-31

    The gaseous exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) across the air-water interface of lower Chesapeake Bay were determined using a modified two-film exchange model. Sampling covered the period January 1994 to June 1995 for five sites on lower Chesapeake Bay ranging from rural to urban and highly industrialized. Simultaneous air and water samples were collected and the atmospheric gas phase and water column dissolved phase analyzed via GC/MS for 17 PAHs. The direction and magnitude of flux for each PAH was calculated using Henry`s law constants, hydrological and meteorological parameters, Temperature was observed to be an important environmental factor in determining both the direction and magnitude of PAH gas exchange. Nonetheless, wind speed significantly impacts mass transfer coefficients, and therefore was found to control the magnitude of flux. Spatial and temporal variation of PAH gaseous exchange fluxes were examined. Fluxes were determined to be both into and out of Chesapeake Bay. The range of gas exchange fluxes ({minus}560 to 600{micro}g/M{sup 2}*Mo) is of the same order to 10X greater than atmospheric wet and dry depositional fluxes to lower Chesapeake Bay. The results of this study support the hypothesis that gas exchange is a major transport process affecting the net loadings of PAHs in lower Chesapeake Bay.

  18. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-01

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  19. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-01

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  20. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.

    PubMed

    Tong, Yujin; Kampfrath, Tobias; Campen, R Kramer

    2016-07-21

    Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces. PMID:27339861

  1. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  2. Polyampholyte/surfactant complexes at the water-air interface: a surface tension study.

    PubMed

    Fechner, Mabya; Koetz, Joachim

    2013-06-25

    The present paper is related to interactions between strongly alternating polyampholytes, i.e., copolymers of N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives, varying in hydrophobicity and excess charges and the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS). Surface tension measurements have revealed a complex behavior with the formation of polyampholyte-SDS complexes at water-air interfaces which depends on both the hydrophobic character of the polyampholyte and electrostatic attractive forces between the polyampholyte and the anionic surfactant in dependence on pH. Hereby, maleamic acid copolymers with additional carboxylic groups in the phenylic side chain show a significant lower surface tension at the critical association concentration (CAC) due to the formation of surface-active SDS complexes and multicomplexes. In the presence of only one carboxylic group in the p-position the CAC can be strongly shifted by varying the pH due to repulsive electrostatic interactions.

  3. Atomistic simulation study of linear alkylbenzene sulfonates at the water/air interface

    PubMed Central

    He, Xibing; Guvench, Olgun; MacKerell, Alexander D.; Klein, Michael L.

    2010-01-01

    Molecular Dynamics simulations with the CHARMM atomistic force field have been used to study monolayers of a series of linear alkylbenzene sulfonates (LAS) at the water/air interface. Both the numbers of carbon atoms in the LAS alkyl tail (1 to 11), and the position of attachment of the benzene ring on the alkyl chain have been varied. Totally 36 LAS homologues and isomers have been investigated. The surface tensions of the systems and the average tilt angles of the LAS molecules are found to be related to both the length and the degree of branching of the alkyl tails, whereas the solubility and mobility are mostly determined by the tail length. PMID:20614916

  4. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    NASA Astrophysics Data System (ADS)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  5. DNS and measurements of scalar transfer across an air-water interface during inception and growth of Langmuir circulation

    NASA Astrophysics Data System (ADS)

    Hafsi, A.; Ma, Y.; Buckley, M.; Tejada-Martinez, A. E.; Veron, F.

    2016-05-01

    Direct numerical simulations (DNS) of an initially quiescent coupled air-water interface driven by an air flow with free stream speed of 5 m/s have been conducted and scalar transfer from the air side to the water side and subsequent vertical transport in the water column have been analysed. Two simulations are compared: one with a freely deforming interface, giving rise to gravity-capillary waves and aqueous Langmuir turbulence (LT) characterized by small-scale (centimeter-scale) Langmuir cells (LC), and the other with the interface intentionally held flat, i.e., without LC. It is concluded that LT serves to enhance vertical transport of the scalar in the water side and in the process increases scalar transfer efficiency from the air side to the water side relative to the shear-dominated turbulence in the flat interface case. Furthermore, transition to LT was observed to be accompanied by a spike in scalar flux characterized by an order of magnitude increase. These episodic flux increases, if linked to gusts and overall unsteadiness in the wind field, are expected to be an important contributor in determining the long-term average of the air-sea gas fluxes.

  6. Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface.

    PubMed

    Franjic, Kresimir; Miller, Dwayne

    2010-01-01

    The extraordinary ability of the hydrogen-bond network of water in the condensed phase to thermalize vibrational excitations within several picoseconds, even under supercritical conditions, offers the possibility of creating highly excited thermodynamic states at water surfaces on ultrafast time scales using vibrationally resonant short infrared laser pulses. We experimentally and numerically studied such states created by depositing ~100 ps long pulses tuned to the 3400 cm(-1) O–H stretch vibration at the water/air interface using time-resolved dark-field imaging and time-resolved optical reflectivity. The results are reasonably well described by using a hydrodynamic ablation model under the assumption of impulsive heat deposition. The large thermoelastic stress amplitudes on the order of 1 GPa created within 100 ps by depositing laser pulses with ~1 J cm(-2) fluence were inferred from the numerical simulations. Stresses of this magnitude drive the excited water layer into a very fast expansion resulting in rapid adiabatic cooling and thorough vaporization within a few nanoseconds. The spatial and temporal lengths scales of the ablation plume are nearly ideal for ejecting molecules into the gas phase with minimum perturbation for applications ranging from mass spectrometry and laser surgery to the development of extremely high pressure molecular beams.

  7. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M

    2004-07-01

    Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.

  8. Spread Films of Human Serum Albumin at the Air-Water Interface: Optimization, Morphology, and Durability.

    PubMed

    Campbell, Richard A; Ang, Joo Chuan; Sebastiani, Federica; Tummino, Andrea; White, John W

    2015-12-22

    It has been known for almost one hundred years that a lower surface tension can be achieved at the air-water interface by spreading protein from a concentrated solution than by adsorption from an equivalent total bulk concentration. Nevertheless, the factors that control this nonequilibrium process have not been fully understood. In the present work, we apply ellipsometry, neutron reflectometry, X-ray reflectometry, and Brewster angle microscopy to elaborate the surface loading of human serum albumin in terms of both the macroscopic film morphology and the spreading dynamics. We show that the dominant contribution to the surface loading mechanism is the Marangoni spreading of protein from the bulk of the droplets rather than the direct transfer of their surface films. The films can be spread on a dilute subphase if the concentration of the spreading solution is sufficient; if not, dissolution of the protein occurs, and only a textured adsorbed layer slowly forms. The morphology of the spread protein films comprises an extended network with regions of less textured material or gaps. Further, mechanical cycling of the surface area of the spread films anneals the network into a membrane that approach constant compressibility and has increased durability. Our work provides a new perspective on an old problem in colloid and interface science. The scope for optimization of the surface loading mechanism in a range of systems leading to its exploitation in deposition-based technologies in the future is discussed.

  9. Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross D.; Carignano, Marcelo A.; Kais, Sabre; Zhu, Chongjing; Zhong, Jie; Zeng, Xiao C.; Francisco, Joseph S.; Gladich, Ivan

    2016-06-01

    Methylamine is an abundant amine compound detected in the atmosphere which can affect the nature of atmospheric aerosol surfaces, changing their chemical and optical properties. Molecular dynamics simulation results show that methylamine accommodation on water is close to unity with the hydrophilic head group solvated in the interfacial environment and the methyl group pointing into the air phase. A detailed analysis of the hydrogen bond network indicates stronger hydrogen bonds between water and the primary amine group at the interface, suggesting that atmospheric trace gases will likely react with the methyl group instead of the solvated amine site. These findings suggest new chemical pathways for methylamine acting on atmospheric aerosols in which the methyl group is the site of orientation specific chemistry involving its conversion into a carbonyl site providing hydrophilic groups for uptake of additional water. This conversion may explain the tendency of aged organic aerosols to form cloud condensation nuclei. At the same time, formation of NH2 radical and formaldehyde is suggested to be a new source for NH2 radicals at aerosol surfaces, other than by reaction of absorbed NH3. The results have general implications for the chemistry of other amphiphilic organics, amines in particular, at the surface of atmospherically relevant aerosols.

  10. Duolayers at the Air/Water Interface: Improved Lifetime through Ionic Interactions.

    PubMed

    Prime, Emma L; Solomon, David H; Dagley, Ian J; Qiao, Greg G

    2016-08-01

    Ionic interactions to stabilize Langmuir films at the air/water interface have been used to develop improved duolayer films. Two-component mixtures of octadecanoic (stearic) acid and poly(diallyldimethylammonium chloride) (polyDADMAC) with different ratios were prepared and applied to the water surface. Surface pressure isotherm cycles demonstrated a significant improvement in film stability with the inclusion of the polymer. Viscoelastic properties were measured using canal viscometry and oscillating barriers, with both methods showing that the optimum ratio for improved properties was four octadecanoic acid molecules to one DADMAC unit (1:0.25). At this ratio it is expected multiple strong ionic interactions are formed along each polymer chain. Brewster angle microscopy showed decreased domain size with increased ratios of polyDADMAC, indicating that the polymer is interspersed across the surface. This new method to stabilize and increase the viscoelastic properties of charged monolayer films, using a premixed composition, will have application in areas such as water evaporation mitigation, optical devices, and foaming. PMID:27420341

  11. Effect of grafted polymer species on particle monolayer structure at the air-water interface.

    PubMed

    Mouri, Emiko; Okazaki, Yoshitaka; Komune, Seishu; Yoshinaga, Kohji

    2011-03-01

    We have studied poly(methyl methacrylate)-grafted(PMMA) particle monolayer systems at the air-water interface. In previous papers, we reported that PMMA chains grafted from particles (silica particle and polystyrene latex) were extended on water surfaces. Through observing deposited particle monolayers on substrates using SEM, we have confirmed that PMMA of large molecular weights were either dispersed or arrayed in structure with long inter-particle distances approximately 500 nm. In contrast, low molecular weight PMMA were observed to aggregate upon deposition. We speculated that the difference in morphology in deposited particle monolayers would be attributed to the affinity between the grafted polymer and the substrate. To examine the effect of this affinity three new polymer-grafted silica particles were synthesized with a fairly high graft density of about 0.14 approximately 0.43 nm(-2). As well as PMMA-grafted silica particles (SiO2-PMMA), poly(2-hydroxyethyl methacrylate) and poly(t-butyl methacrylate)--grafted silica particles (SiO2-PHEMA and SiO2-PtBuMA) were also prepared and subjected to pi-A isotherm measurements and SEM observations. These pi-A isotherms indicated that polymer-grafted silica formed monolayer at the air-water interface, and the onset area of increasing surface pressure suggests that the polymer chains are extended on a water surface. However, the morphology of the deposited monolayer is highly dependent on polymer species: SiO2-PHEMA showed that the dispersed particle monolayer structure was independent of grafted molecular weight while SiO2-tBuMA showed an aggregated structure that was also independent of grafted moleculer weight. SiO2-PMMA showed intermediate tendencies: dispersed structure was observed with high grafted molecular weight and aggregated structure was observed with low grafted molecule weight. The morphology on glass substrate would be explaiened by hydrophilic interaction between grafted polymer and hydrophilic glass

  12. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    PubMed

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  13. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  14. Characterization of composite phthalocyanine-fatty acid films from the air/water interface to solid supports.

    PubMed

    Giancane, G; Manno, D; Serra, A; Sgobba, V; Valli, L

    2011-12-22

    A commercial vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPc) was dissolved in chloroform and spread on ultrapure water subphase in a Langmuir trough. The floating film was thoroughly characterized at the air-water interface by means of the Langmuir isotherm, Brewster angle microscopy, UV-vis reflection spectroscopy, and infrared measurements carried out directly at the air-water interface. All the results showed the formation of a non-uniform and aggregated floating layer, too rigid to be transferred by the Langmuir-Blodgett (LB) method. For this reason, a mixture of arachidic acid and VOPc was realized, characterized, and transferred by the LB technique on solid substrates. Interface measurements and atomic force microscopy analysis suggested the formation of a uniform arachidic acid film and a superimposed VOPc placed in prone configuration.

  15. Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.

    PubMed

    Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-08-10

    Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications. PMID:27437907

  16. Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.

    PubMed

    Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-08-10

    Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.

  17. Surface modification of gold nanoparticles and their monolayer behavior at the air/water interface

    NASA Astrophysics Data System (ADS)

    Hsu, Chaio-Ling; Wang, Ke-Hsuan; Chang, Chien-Hsiang; Hsu, Wen-Ping; Lee, Yuh-Lang

    2011-01-01

    Gold nanoparticles were prepared by two different methods. The first method was chemically grafting the particles with different lengths of alkylthiol (C6SH, C12SH and C18SH). For the second method, the Au particles were surface modified first by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups which play a role to physically adsorb cationic surfactant in chloroform. This method was termed physical/chemical method. In the first method, the effects of alkyl chain length and dispersion solvent on the monolayer behavior of surface modified gold nanoparticles was evaluated. The gold nanoparticles prepared by 1-hexanthiol demonstrated the narrowest size distribution. Most of them showed narrower particle size distributions in chloroform than in hexane. For the physical/chemical method, the particles can spread more uniformly on the water surface which is attributed to the amphiphilic character of the particles at the air/water interface. However, the particles cannot pack closely due to the relatively weak particle-particle interaction. The effect of alkyl chain length was also assessed for the second method.

  18. Formation of a Rigid Hydrophobin Film and Disruption by an Anionic Surfactant at an Air/Water Interface.

    PubMed

    Kirby, Stephanie M; Zhang, Xujun; Russo, Paul S; Anna, Shelley L; Walker, Lynn M

    2016-06-01

    Hydrophobins are amphiphilic proteins produced by fungi. Cerato-ulmin (CU) is a hydrophobin that has been associated with Dutch elm disease. Like other hydrophobins, CU stabilizes air bubbles and oil droplets through the formation of a persistent protein film at the interface. The behavior of hydrophobins at surfaces has raised interest in their potential applications, including use in surface coatings, food foams, and emulsions and as dispersants. The practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, alone and in the presence of added surfactants. In this study, the adsorption behavior of CU at air/water interfaces is characterized by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to adsorb irreversibly at air/water interfaces. The magnitude of the dilatational modulus increases with adsorption time and surface pressure until CU eventually forms a rigid film. The persistence of this film is tested through the sequential addition of strong surfactant sodium dodecyl sulfate (SDS) to the bulk liquid adjacent to the interface. SDS is found to coadsorb to interfaces precoated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU by SDS. Sequential adsorption results in mixed layers with properties not observed in interfaces generated from complexes formed in the bulk. These results lend insight to the complex interfacial interactions between hydrophobins and surfactants. PMID:27164189

  19. Measurement and computation of hydrodynamic coupling at an air/water interface with an insoluble monolayer

    NASA Astrophysics Data System (ADS)

    Hirsa, Amir H.; Lopez, Juan M.; Miraghaie, Reza

    2001-09-01

    The coupling between a bulk vortical flow and a surfactant-influenced air/water interface has been examined in a canonical flow geometry through experiments and computations. The flow in an annular region bounded by stationary inner and outer cylinders is driven by the constant rotation of the floor and the free surface is initially covered by a uniformly distributed insoluble monolayer. When driven slowly, this geometry is referred to as the deep-channel surface viscometer and the flow is essentially azimuthal. The only interfacial property that affects the flow in this regime is the surface shear viscosity, [mu]s, which is uniform on the surface due to the vanishingly small concentration gradient. However, when operated at higher Reynolds number, secondary flow drives the surfactant film towards the inner cylinder until the Marangoni stress balances the shear stress on the bulk fluid. In general, the flow can be influenced by the surface tension, [sigma], and the surface dilatational viscosity, [kappa]s, as well as [mu]s. However, because of the small capillary number of the present flow, the effects of surface tension gradients dominate the surface viscosities in the radial stress balance, and the effect of [mu]s can only come through the azimuthal stress. Vitamin K1 was chosen for this study since it forms a well-behaved insoluble monolayer on water and [mu]s is essentially zero in the range of concentration on the surface, c, encountered. Thus the effect of Marangoni elasticity on the interfacial stress could be isolated. The flow near the interface was measured in an optical channel using digital particle image velocimetry. Steady axisymmetric flow was observed at the nominal Reynolds number of 8500. A numerical model has been developed using the axisymmetric Navier Stokes equations to examine the details of the coupling between the bulk and the interface. The nonlinear equation of state, [sigma](c), for the vitamin K1 monolayer was measured and utilized in

  20. Advances in simulating radiance signatures for dynamic air/water interfaces

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.; Gerace, Aaron

    2015-05-01

    The air-water interface poses a number of problems for both collecting and simulating imagery. At the surface, the magnitude of observed radiance can change by multiple orders of magnitude at high spatiotemporal frequency due to glinting effects. In the volume, similarly high frequency focusing of photons by a dynamic wave surface significantly changes the reflected radiance of in-water objects and the scattered return of the volume itself. These phenomena are often manifest as saturated pixels and artifacts in collected imagery (often enhanced by time delays between neighboring pixels or interpolation between adjacent filters) and as noise and greater required computation times in simulated imagery. This paper describes recent advances made to the Digital Image and Remote Sensing Image Generation (DIRSIG) model to address the simulation issues to better facilitate an understanding of a multi/hyper-spectral collection. Glint effects are simulated using a dynamic height field that can be driven by wave frequency models and generates a sea state at arbitrary time scales. The volume scattering problem is handled by coupling the geometry representing the surface (facetization by the height field) with the single scattering contribution at any point in the water. The problem is constrained somewhat by assuming that contributions come from a Snell's window above the scattering point and by assuming a direct source (sun). Diffuse single scattered and multiple scattered energy contributions are handled by Monte Carlo techniques employed previously. The model is compared to existing radiative transfer codes where possible, with the objective of providing a robust movel of time-dependent absolute radiance at many wavelengths.

  1. Structural properties and organization of hexadecanol isomers at the air/water interface

    NASA Astrophysics Data System (ADS)

    Walker, Robert; Can, Süleyman; Mago, Deesha

    2006-03-01

    A wealth of experimental data and theoretical modeling has led to well-honed intuition about the surface properties and structure of symmetric amphiphiles adsorbed to liquid surfaces. Less clear is how asymmetric amphiphiles organize in two dimensions at different surface coverages. We have studied the structure and two dimensional phase behavior of hexadecanol isomers adsorbed to the air/water interface. These isomers include the linear, n-hexadecanol as well structures with the alcohol functional group in the 2-, 3-, and 4- positions. Surface pressure methods are employed to study thermodynamic behavior of these insoluble monolayers, and vibrational sum frequency generation -- a vibrational spectroscopy with surface specificity -- is used to probe the molecular conformation and orientation of molecules within films. At their equilibrium spreading pressures, both 1- and 2- hexadecanol form very compact films having a high degree of conformational order and molecular areas of 19 and 28 sq. Angstroms/molecule in the tightly packed limit. In contrast, monolayers formed by 3-hexadecanol and 4-hexadecanol are much more disordered - but very similar to each other - and occupy much larger areas/molecule (75 sq. Angstroms/molec) in the tightly packed limit.

  2. Orientation-controlled parallel assembly at the air-water interface

    NASA Astrophysics Data System (ADS)

    Park, Kwang Soon; Hao Hoo, Ji; Baskaran, Rajashree; Böhringer, Karl F.

    2012-10-01

    This paper presents an experimental and theoretical study with statistical analysis of a high-yield, orientation-specific fluidic self-assembly process on a preprogrammed template. We demonstrate self-assembly of thin (less than few hundred microns in thickness) parts, which is vital for many applications in miniaturized platforms but problematic for today's pick-and-place robots. The assembly proceeds row-by-row as the substrate is pulled up through an air-water interface. Experiments and analysis are presented with an emphasis on the combined effect of controlled surface waves and magnetic force. For various gap values between a magnet and Ni-patterned parts, magnetic force distributions are generated using Monte Carlo simulation and employed to predict assembly yield. An analysis of these distributions shows that a gradual decline in yield following the probability density function can be expected with degrading conditions. The experimentally determined critical magnetic force is in good agreement with a derived value from a model of competing forces acting on a part. A general set of design guidelines is also presented from the developed model and experimental data.

  3. Influence of the air-water interface on hydrosol lidar operation.

    PubMed

    Kokhanenko, Grigorii P; Krekova, Margarita M; Penner, Loganes E; Shamanaev, Vitalii S

    2005-06-10

    The results of seawater sensing by use of an airborne lidar with a changeable field of view (FOV) are presented, together with the results of numerical simulation of lidar operation by the Monte Carlo method. It is demonstrated that multiple scattering and wind-driven sea waves have opposite effects on the measured attenuation coefficient. At small FOVs the wind-driven sea waves cause the lidar signal decay rate to increase compared with the size of the plane surface and hence result in an overestimation of the retrieved attenuation coefficient. Inefficient operation of lidars with small FOVs is caused by strong fluctuations of lidar signal power that cannot be described by a normal distribution. Specific features of the fluctuations can be interpreted as manifestations of the well-known effect of backscattered signal amplification caused by the double passage of radiation through the same inhomogeneities. As for the plane air-water interface, multiple scattering is significant for large FOVs and compensates for the effect of wind-driven sea waves. The applicability of simple sea-surface models to a description of lidar signal power fluctuations is discussed.

  4. Dipolar interactions between domains in lipid monolayers at the air-water interface.

    PubMed

    Rufeil-Fiori, Elena; Wilke, Natalia; Banchio, Adolfo J

    2016-05-25

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems. PMID:27139819

  5. Kinetics of trans-cis isomerization in azobenzene dimers at an air-water interface

    SciTech Connect

    Kumar, Bharat; Suresh, K. A.

    2009-08-15

    We have studied the kinetics of trans to cis isomerization under the illumination of ultraviolet light, in the Langmuir monolayer of mesogenic azobenzene dimer, bis-[5-(4{sup '}-n-dodecyloxy benzoyloxy)-2-(4{sup ''}-methylphenylazo)phenyl] adipate, at an air-water interface. We find that the trans to cis isomerization reaction of the molecules in the monolayer shows deviation from the first-order kinetics unlike those reported on Langmuir monolayers of azobenzene molecules. We attribute the deviation from first-order kinetics to the simultaneous photoisomerization of trans isomers to form cis isomers and the reverse thermal isomerization of cis isomers to form trans isomers. Our analysis of the rate of change of mole fraction of trans isomers to form cis isomers indicates a first-order kinetics for trans to cis photoisomerization reaction and a second-order kinetics for cis to trans thermal isomerization reaction. This second-order kinetics mechanism is similar to the Lindemann-Hinshelwood mechanism for the unimolecular reactions at low concentration of reactants. The formation of the activated cis isomer by collisions is a slow process as compared to the decay of the activated cis isomer to trans isomer in the liquid expanded phase. This results in the second-order kinetics for the thermal isomerization of cis isomers.

  6. Dipolar interactions between domains in lipid monolayers at the air-water interface.

    PubMed

    Rufeil-Fiori, Elena; Wilke, Natalia; Banchio, Adolfo J

    2016-05-25

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems.

  7. Multi-scale modeling of mycosubtilin lipopeptides at the air/water interface: structure and optical second harmonic generation.

    PubMed

    Loison, Claire; Nasir, Mehmet Nail; Benichou, Emmanuel; Besson, Françoise; Brevet, Pierre-François

    2014-02-01

    Monolayers of the lipopeptide mycosubtilin are studied at the air/water interface. Their structure is investigated using molecular dynamics simulations. All-atom models suggest that the lipopeptide is flexible and aggregates at the interface. To achieve simulation times of several microseconds, a coarse-grained (CG) model based on the MARTINI force field was also used. These CG simulations describe the formation of half-micelles at the interface for surface densities up to 1 lipopeptide per nm(2). In these aggregates, the tyrosine side chain orientation is found to be constrained: on average, its main axis, as defined along the C-OH bond, aligns along the interface normal and points towards the air side. The origin of the optical second harmonic generation (SHG) from mycosubtilin monolayers at the air/water interface is also investigated. The molecular hyperpolarizability of the lipopeptide is obtained from quantum chemistry calculations. The tyrosine side chain contribution to the hyperpolarizability is found to be dominant. The orientation distribution of tyrosine, associated with a dominant hyperpolarizability component along the C-OH bond of the tyrosine, yields a ratio of the susceptibility elements χ((2))(ZZZ)/χ((2))(ZXX) consistent with the experimental measurements recently reported by M. N. Nasir et al. [Phys. Chem. Chem. Phys., 2013, 15, 19919].

  8. Multi-scale modeling of mycosubtilin lipopeptides at the air/water interface: structure and optical second harmonic generation.

    PubMed

    Loison, Claire; Nasir, Mehmet Nail; Benichou, Emmanuel; Besson, Françoise; Brevet, Pierre-François

    2014-02-01

    Monolayers of the lipopeptide mycosubtilin are studied at the air/water interface. Their structure is investigated using molecular dynamics simulations. All-atom models suggest that the lipopeptide is flexible and aggregates at the interface. To achieve simulation times of several microseconds, a coarse-grained (CG) model based on the MARTINI force field was also used. These CG simulations describe the formation of half-micelles at the interface for surface densities up to 1 lipopeptide per nm(2). In these aggregates, the tyrosine side chain orientation is found to be constrained: on average, its main axis, as defined along the C-OH bond, aligns along the interface normal and points towards the air side. The origin of the optical second harmonic generation (SHG) from mycosubtilin monolayers at the air/water interface is also investigated. The molecular hyperpolarizability of the lipopeptide is obtained from quantum chemistry calculations. The tyrosine side chain contribution to the hyperpolarizability is found to be dominant. The orientation distribution of tyrosine, associated with a dominant hyperpolarizability component along the C-OH bond of the tyrosine, yields a ratio of the susceptibility elements χ((2))(ZZZ)/χ((2))(ZXX) consistent with the experimental measurements recently reported by M. N. Nasir et al. [Phys. Chem. Chem. Phys., 2013, 15, 19919]. PMID:24346061

  9. Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface.

    PubMed

    Mori, Taizo; Sakakibara, Keita; Endo, Hiroshi; Akada, Misaho; Okamoto, Ken; Shundo, Atsuomi; Lee, Michael V; Ji, Qingmin; Fujisawa, Takuya; Oka, Kenichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2013-06-18

    In this article, we propose a novel methodology for the formation of monodisperse regularly sized disks of several nanometer thickness and with diameters of less than 100 nm using Langmuir monolayers as fabrication media. An amphiphilic triimide, tri-n-dodecylmellitic triimide (1), was spread as a monolayer at the air-water interface with a water-soluble macrocyclic oligoamine, 1,4,7,10-tetraazacyclododecane (cyclen), in the subphase. The imide moieties of 1 act as hydrogen bond acceptors and can interact weakly with the secondary amine moieties of cyclen as hydrogen bond donors. The monolayer behavior of 1 was investigated through π-A isotherm measurements and Brewster angle microscopy (BAM). The presence of cyclen in the subphase significantly shifted isotherms and induced the formation of starfish-like microstructures. Transferred monolayers on solid supports were analyzed by reflection absorption FT-IR (FT-IR-RAS) spectroscopy and atomic force microscopy (AFM). The Langmuir monolayer transferred onto freshly cleaved mica by a surface touching (i.e., Langmuir-Schaefer) method contained disk-shaped objects with a defined height of ca. 3 nm and tunable diameter in the tens of nanometers range. Several structural parameters such as the disk height, molecular aggregation numbers in disk units, and 2D disk density per unit surface area are further discussed on the basis of AFM observations together with aggregate structure estimation and thermodynamic calculations. It should be emphasized that these well-defined structures are produced through simple routine procedures such as solution spreading, mechanical compression, and touching a substrate at the surface. The controlled formation of defined nanostructures through easy macroscopic processes should lead to unique approaches for economical, energy-efficient nanofabrication.

  10. Surface Tension Drives the Orientation of Crystals at the Air-Water Interface.

    PubMed

    Chevalier, Nicolas R; Guenoun, Patrick

    2016-07-21

    The fabrication of oriented crystalline thin films is essential for a range of applications ranging from semiconductors to optical components, sensors, and catalysis. Here we show by depositing micrometric crystal particles on a liquid interface from an aerosol phase that the surface tension of the liquid alone can drive the crystallographic orientation of initially randomly oriented particles. The X-ray diffraction patterns of the particles at the interface are identical to those of a monocrystalline sample cleaved along the {104} (CaCO3) or {111} (CaF2) face. We show how this orientation effect can be used to produce thin coatings of oriented crystals on a solid substrate. These results also have important implications for our understanding of heterogeneous crystal growth beneath amphiphile monolayers and for 2D self-assembly processes at the air-liquid interface. PMID:27389283

  11. Surface Tension Drives the Orientation of Crystals at the Air-Water Interface.

    PubMed

    Chevalier, Nicolas R; Guenoun, Patrick

    2016-07-21

    The fabrication of oriented crystalline thin films is essential for a range of applications ranging from semiconductors to optical components, sensors, and catalysis. Here we show by depositing micrometric crystal particles on a liquid interface from an aerosol phase that the surface tension of the liquid alone can drive the crystallographic orientation of initially randomly oriented particles. The X-ray diffraction patterns of the particles at the interface are identical to those of a monocrystalline sample cleaved along the {104} (CaCO3) or {111} (CaF2) face. We show how this orientation effect can be used to produce thin coatings of oriented crystals on a solid substrate. These results also have important implications for our understanding of heterogeneous crystal growth beneath amphiphile monolayers and for 2D self-assembly processes at the air-liquid interface.

  12. Ammonia Flux at the Air-Water Interface of Tampa Bay

    NASA Astrophysics Data System (ADS)

    Mizak, C. A.; Poor, N. D.

    2003-12-01

    Recent nitrogen deposition research in the Tampa Bay Estuary indicates that ammonia deposition dominates the total dry nitrogen flux to the bay. Gaseous plus aerosol ammonia contribute approximately 450 tons per year or 60% of the total nitrogen deposition of 760 tons per year to the estuary. Research data also indicate that during the summer months, Tampa Bay may act as a source for atmospheric ammonia as water temperature and ammonium concentrations increase. Ammonia flux estimates will be derived from thirty days of daily summer air and water sampling at the Gandy Bridge air monitoring site located adjacent to Tampa Bay. Ammonia concentrations were measured at two heights with a URG, Inc. dual-pump annular denuder system (ADS), and water grab samples from two depths were analyzed in the laboratory for ammonium concentration. Hourly relative humidity, air and water temperature, pH and salinity were recorded at this site, and hourly wind speed and direction were obtained from the Environmental Protection Commission of Hillsborough County. Rainwater samples were obtained with a University of Michigan sequential rainwater collector and analyzed in the laboratory for ammonium concentration. The direction and magnitude for the ammonia flux will be calculated with a modified NOAA buoy model from measurements of wind speed, air and water temperature, air and water ammonia and ammonium concentrations, relative humidity, water pH and salinity. The results of this research will be used to improve the NOAA Buoy model, and to compare observed with modeled ammonia gradients.

  13. Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum.

    PubMed

    Medders, Gregory R; Paesani, Francesco

    2016-03-23

    The molecular characterization of the air/water interface is a key step in understanding fundamental multiphase phenomena ranging from heterogeneous chemical processes in the atmosphere to the hydration of biomolecules. The apparent simplicity of the air/water interface, however, masks an underlying complexity associated with the dynamic nature of the water hydrogen-bond network that has so far hindered an unambiguous characterization of its microscopic properties. Here, we demonstrate that the application of quantum many-body molecular dynamics, which enables spectroscopically accurate simulations of water from the gas to the condensed phase, leads to a definitive molecular-level picture of the interface region. For the first time, excellent agreement is obtained between the simulated vibrational sum-frequency generation spectrum and the most recent state-of-the-art measurements, without requiring any empirical frequency shift or ad hoc scaling of the spectral intensity. A systematic dissection of the spectral features demonstrates that a rigorous representation of nuclear quantum effects as well as of many-body energy and electrostatic contributions is necessary for a quantitative reproduction of the experimental data. The unprecedented accuracy of the simulations presented here indicates that quantum many-body molecular dynamics can enable predictive studies of aqueous interfaces, which by complementing analogous experimental measurements will provide unique molecular insights into multiphase and heterogeneous processes of relevance in chemistry, biology, materials science, and environmental research. PMID:26943730

  14. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    PubMed

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities.

  15. DNS of scalar transfer across an air-water interface during inception and growth of Langmuir circulation

    NASA Astrophysics Data System (ADS)

    Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice; Ma, Yi; USF/UDEL Collaboration

    2015-11-01

    Upon a blowing of a wind over an initially quiescent air-sea interface, first short capillary waves are generated which in time coexist with longer waves as part of a broad spectrum of waves. The interaction between the Stokes drift velocity induced by surface gravity waves and the mean current induced by surface wind stress leads to Langmuir turbulence (LT) characterized by Langmuir circulation (LC) consisting of parallel downwind-elongated, counter rotating vortices roughly aligned in the direction of the wind. The typical length scale of LC ranges from several centimeters when short capillary waves first appear up to tens of meters when the spectrum of waves broadens. Results are presented from direct numerical simulation (DNS) of an initially quiescent coupled air-water interface driven by an air flow with free stream speed of 5 m/s. Cases with a freely deforming interface (characterized by gravity-capillary waves giving rise to small-scale LC) and with the interface intentionally held fixed (i.e. without LC) will be compared to understand the mechanisms by which the LT enhances scalar transfer from the airside to the waterside and bulk concentration throughout the water column. Time-permitting, we will compare our results with available laboratory physical experiments.

  16. Capillarity-induced directed self-assembly of patchy hexagram particles at the air-water interface.

    PubMed

    Kang, Sung-Min; Choi, Chang-Hyung; Kim, Jongmin; Yeom, Su-Jin; Lee, Daeyeon; Park, Bum Jun; Lee, Chang-Soo

    2016-07-01

    Directed self-assembly can produce ordered or organized superstructures from pre-existing building blocks through pre-programmed interactions. Encoding desired information into building blocks with specific directionality and strength, however, poses a significant challenge for the development of self-assembled superstructures. Here, we demonstrate that controlling the shape and patchiness of particles trapped at the air-water interface can represent a powerful approach for forming ordered macroscopic complex structures through capillary interactions. We designed hexagram particles using a micromolding method that allowed for precise control over the shape and, more importantly, the chemical patchiness of the particles. The assembly behaviors of these hexagram particles at the air-water interface were strongly affected by chemical patchiness. In particular, two-dimensional millimeter-scale ordered structures could be formed by varying the patchiness of the hexagram particles, and we attribute this effect to the delicate balance between the attractive and repulsive interactions among the patchy hexagram particles. Our results provide important clues for encoding information into patchy particles to achieve macroscopic assemblies via a simple molding technique and potentially pave a new pathway for the programmable assembly of particles at the air-water interface.

  17. Capillarity-induced directed self-assembly of patchy hexagram particles at the air-water interface.

    PubMed

    Kang, Sung-Min; Choi, Chang-Hyung; Kim, Jongmin; Yeom, Su-Jin; Lee, Daeyeon; Park, Bum Jun; Lee, Chang-Soo

    2016-07-01

    Directed self-assembly can produce ordered or organized superstructures from pre-existing building blocks through pre-programmed interactions. Encoding desired information into building blocks with specific directionality and strength, however, poses a significant challenge for the development of self-assembled superstructures. Here, we demonstrate that controlling the shape and patchiness of particles trapped at the air-water interface can represent a powerful approach for forming ordered macroscopic complex structures through capillary interactions. We designed hexagram particles using a micromolding method that allowed for precise control over the shape and, more importantly, the chemical patchiness of the particles. The assembly behaviors of these hexagram particles at the air-water interface were strongly affected by chemical patchiness. In particular, two-dimensional millimeter-scale ordered structures could be formed by varying the patchiness of the hexagram particles, and we attribute this effect to the delicate balance between the attractive and repulsive interactions among the patchy hexagram particles. Our results provide important clues for encoding information into patchy particles to achieve macroscopic assemblies via a simple molding technique and potentially pave a new pathway for the programmable assembly of particles at the air-water interface. PMID:27328067

  18. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface.

  19. Interfacial dynamic and dilational rheology of polyelectrolyte/surfactant two-component nanoparticle systems at air-water interface

    NASA Astrophysics Data System (ADS)

    Tong, L. J.; Bao, M. T.; Li, Y. M.; Gong, H. Y.

    2014-10-01

    The interfacial characteristics of nanoparticles and consequent inter-particle interactions at the interface are poorly understood. In this work, the interfacial dynamic and corresponding dilational surface rheology of self-assembled polyelectrolyte/surfactant nanoparticles at the air-water interface are characterized. The nanoparticles are prepared from dodecyltrimethylammonium (DTAB) and poly (sodium 4-styrene-sulfonate) (PSS) by mixing them in aqueous solution. The interfacial dynamic characteristics have been carried out by comparing the surface pressure with the dilational rheological response of these nanoparticles at interface. The results indicate that this type of nanoparticles can adsorb at the interface forming a nanoparticle monolayer, which leads to the surface tension decreased markedly. The dependence of surface pressure on time shows the instability and disassembly process of nanoparticles at the interface. On the basis of these observations, it is proposed that the nanoparticles undergo a dynamic process that interface induced nanoparticles disassembly into DTAB/PSS complexes. The presence of PSS in the subphase can promote the process of nanoparticles disassembly. A transition point in dilational elasticity and viscosity response of the nanoparticles versus oscillation frequency further validate the micro dynamic process of nanoparticles and the formation of polyelectrolyte/surfactant complex monolayer at the interface.

  20. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.

    PubMed

    Baer, Marcel D; Kuo, I-Feng W; Tobias, Douglas J; Mundy, Christopher J

    2014-07-17

    The propensities of the water self-ions, H3O(+) and OH(-), for the air-water interface have implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O(+) and/or OH(-) prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs interfacial behavior of H3O(+) and OH(-) that employs forces derived from density functional theory with a generalized gradient approximation exchange-correlation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O(+) as a function of the position of the ion in the vicinity of an air-water interface. The PMF suggests that H3O(+) has equal propensity for the interface and the bulk. We compare the PMF for H3O(+) to our previously computed PMF for OH(-) adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs in the bulk are connected with interfacial propensity. We find that the solvation shell of H3O(+) is only slightly dependent on its position in the water slab, while OH(-) partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions.

  1. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure.

    PubMed

    Kudryashova, Elena V; Visser, Antonie J W G; De Jongh, Harmen H J

    2005-02-01

    In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native ovalbumin, heat-treated ov-albumin-being a cluster of 12-16 predominantly noncovalently bound proteins, and succinylated ovalbumin, as a form with diminished aggregation properties due to increased electrostatic repulsion. While the bulk diffusion of aggregated protein is clearly slower compared to monomeric protein, the efficiency of transport to the interface is increased, just like the efficiency of sticking to rather than bouncing from the interface. On a timescale of hours, the aggregated protein dissociates and adopts a conformation comparable to that of native protein adsorbed to the interface. The exerted surface pressure is higher for aggregated material, most probably because the deformability of the particle is smaller. Aggregated protein has a lower ability to desorb from the interface upon compression of the surface layer, resulting in a steadily increasing surface pressure upon reducing the available area for the surface layer. This observation is opposite to what is observed for succinylated protein that may desorb more easily and thereby suppresses the buildup of a surface pressure. Generally, this work demonstrates that modulating the ability of proteins to self-associate offers a tool to control the rheological properties of interfaces.

  2. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air-Water Interface.

    PubMed

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-08-16

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. Here, we report on the equilibrium properties of two common SEPs adsorbed to the air-water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air-water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. The influence of intermolecular interactions on the surface adsorption energies is discussed. PMID:27452922

  3. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.

    PubMed

    Martins-Costa, Marilia T C; García-Prieto, Francisco F; Ruiz-López, Manuel F

    2015-02-14

    Understanding the influence of solute-solvent interactions on chemical reactivity has been a subject of intense research in the last few decades. Theoretical studies have focused on bulk solvation phenomena and a variety of models and methods have been developed that are now widely used by both theoreticians and experimentalists. Much less attention has been paid, however, to processes that occur at liquid interfaces despite the important role such interfaces play in chemistry and biology. In this study, we have carried out sequential molecular dynamics simulations and quantum mechanical calculations to analyse the influence of the air-water interface on the reactivity of formaldehyde, acetaldehyde and benzaldehyde, three simple aldehydes of atmospheric interest. The calculated free-energy profiles exhibit a minimum at the interface, where the average reactivity indices may display large solvation effects. The study emphasizes the role of solvation dynamics, which are responsible for large fluctuations of some molecular properties. We also show that the photolysis rate constant of benzaldehyde in the range 290-308 nm increases by one order of magnitude at the surface of a water droplet, from 2.7 × 10(-5) s(-1) in the gas phase to 2.8 × 10(-4) s(-1) at the air-water interface, and we discuss the potential impact of this result on the chemistry of the troposphere. Experimental data in this domain are still scarce and computer simulations like those presented in this work may provide some insights that can be useful to design new experiments.

  4. OH-Radical Oxidation of Surface-Active cis-Pinonic Acid at the Air-Water Interface.

    PubMed

    Enami, Shinichi; Sakamoto, Yosuke

    2016-05-26

    Gaseous biogenic volatile organic compounds (BVOCs) are immediately oxidized by gaseous oxidants to form BVOC-acids that rapidly condense onto aqueous aerosol phase and thus contribute to the growth of atmospheric particles. Because BVOC-acids are highly hydrophobic and hence surface-active in nature, it seems critical to study the oxidation by gaseous hydroxyl radical (·OH(g)) at the air-water interface. Here we report on the fast (≤10 μs) oxidation of aqueous cis-pinonic acid (C10H16O3, CPA, cis-pinonate anion's m/z = 183), a representative BVOC-acid, by ·OH(g) at the air-water interface for the first time. We find that cis-pinonate anion is more enriched at the air-water interface by ∼4 and ∼14 times than n-octanoate anion at 10 and 100 μM, respectively, as revealed by an interface-specific mass spectrometry of the equimolar mixture of microjets. Exposure of aqueous CPA microjets to ·OH(g) pulses from the 266 nm laser photolysis of O3(g)/O2(g)/H2O(g)/N2(g) mixtures yields pinonic peroxyl radicals (m/z = 214) that lead to the functionalization products carbonyls (m/z = 197), alcohols (m/z = 199), and pinonic hydroperoxides (m/z = 215) in addition to smaller-mass products including carbonyls (m/z = 155 and 157). We confirmed the formation of the corresponding alcohols, aldehydes, and hydroperoxides in experiments performed in D2O solvent. The analysis of total mass balance implies a significant amount (>70%) of products would be emitted into the gas-phase during the heterogeneous ·OH-oxidations. Our results suggest ·OH-oxidations of amphiphilic BVOC-acids at the air-water interface may play a far more significant role in photochemical aging process of aqueous aerosols than previously assumed. PMID:27098046

  5. Revised parameters for modeling the transport of PCB components across an air water interface

    SciTech Connect

    Bopp, R.F.

    1983-03-20

    A number of revisions of the data base and conceptualizations utilized in air-water transport models for PCB components are suggested. The most significant of these involves the assignment of physical chemical properties on the basis of degree of chlorination. the effect of temperature on the rate of transport is also discussed. The revised model is tested on a number of natural situations and compared with available data.

  6. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    PubMed

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  7. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    SciTech Connect

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  8. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  9. Water velocity at water-air interface is not zero: Comment on "Three-dimensional quantification of soil hydraulic properties using X-ray computed tomography and image-based modeling" by Saoirse R. Tracy et al.

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Fan, X. Y.; Li, Z. Y.

    2016-07-01

    Tracy et al. (2015, doi: 10.1002/2014WR016020) assumed in their recent paper that water velocity at the water-air interface is zero in their pore-scale simulations of water flow in 3-D soil images acquired using X-ray computed tomography. We comment that such a treatment is physically wrong, and explain that it is the water-velocity gradient in the direction normal to the water-air interface, rather than the water velocity, that should be assumed to be zero at the water-air interface if one needs to decouple the water flow and the air flow. We analyze the potential errors caused by incorrectly taking water velocity at the water-air interface zero based on two simple examples, and conclude that it is not physically sound to make such a presumption because its associated errors are unpredictable.

  10. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

  11. Thermodynamic, morphological and structural properties of dissociated fatty acid monolayers at the air-water interface

    NASA Astrophysics Data System (ADS)

    Johann, Robert

    2001-10-01

    Research on monolayers of amphiphilic lipids on aqueous solution is of basic importance in surface science. Due to the applicability of a variety of surface sensitive techniques, floating insoluble monolayers are very suitable model systems for the study of order, structure formation and material transport in two dimensions or the interactions of molecules at the interface with ions or molecules in the bulk (headword 'molecular recognition'). From the behavior of monolayers conclusions can be drawn on the properties of lipid layers on solid substrates or in biological membranes. This work deals with specific and fundamental interactions in monolayers both on the molecular and on the microscopic scale and with their relation to the lattice structure, morphology and thermodynamic behavior of monolayers at the air-water interface. As model system especially monolayers of long chain fatty acids are used, since there the molecular interactions can be gradually adjusted by varying the degree of dissociation by means of the suphase pH value. For manipulating the molecular interactions besides the subphase composition also temperature and monolayer composition are systematically varied. The change in the monolayer properties as a function of an external parameter is analyzed by means of isotherm and surface potential measurements, Brewster-angle microscopy, X-ray diffraction at grazing incidence and polarization modulated infrared reflection absorption spectroscopy. For this a quantitative measure for the molecular interactions and for the chain conformational order is derived from the X-ray data. The most interesting results of this work are the elucidation of the origin of regular polygonal and dendritic domain shapes, the various effects of cholesterol on molecular packing and lattice order of long chain amphiphiles, as well as the detection of an abrupt change in the head group bonding interactions, the chain conformational order and the phase transition pressure

  12. Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank

    NASA Astrophysics Data System (ADS)

    Herlina; Jirka, G. H.

    The interaction between oxygen absorption into liquids and bottom shear-induced turbulence was investigated in a grid-stirred tank using a laser-induced fluorescence (LIF) technique. The LIF technique enabled visualization as well as quantification of planar concentration fields of the dissolved oxygen (DO) near the air-water interface. Qualitative observation of the images provided more insight into the physical mechanism controlling the gas transfer process. The high data resolution is an advantage for revealing the concentration distribution within the boundary layer, which is a few hundreds of a micrometer thick. Mean and turbulent fluctuation characteristics were obtained and compared with previous results.

  13. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  14. Interpreting Vibrational Sum-frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study

    SciTech Connect

    Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei; Tao, Fu-Ming; Dang, Liem X.

    2010-06-01

    We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc. 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  15. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  16. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  17. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.

    PubMed

    Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V

    2013-04-01

    The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.

  18. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface.

  19. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. PMID:25666640

  20. Turbulence at the Air-Water Interface in Lakes of Different Sizes: Consequences for Gas Transfer Coefficients

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Crowe, A. T.; Amaral, J. H.; Arneborg, L.; Bastviken, D.; Forsberg, B. R.; Melack, J. M.; Tota, J.; Tedford, E. W.; Karlsson, J.; Podgrajsek, E.; Andersson, A.; Rutgersson, A.

    2014-12-01

    Similarity scaling predicts that wind induced shear will be the dominant source of turbulence near the air-water interface in lakes with low to moderate wind forcing. Turbulence is expected to be enhanced with wave activity; results are conflicting on the effects of heating and cooling. We measured turbulence with an acoustic Doppler velocimeter (ADV) and / or a temperature-gradient microstructure profiler and obtained correlative time series measurements of meteorology and water column temperature in a 800 m2 arctic pond, a 1 ha boreal lake, and a large tropical reservoir. Turbulence measurements with both instruments corroborated those calculated from similarity scaling in the boreal lake. Within the arctic pond, dissipation rates obtained with the ADV were in agreement with those from similarity scaling when winds exceeded ~1.5 m/s with a greater frequency of measurable dissipation rates when surface waves were present. Dissipation rates in the tropical reservoir reached and often exceeded 10-6 m2 s-3 in the upper meter under light winds and decreased by an order of magnitude with cooling or rainfall. Under cooling, dissipation rates were at least an order of magnitude higher in the uppermost 25 cm bin than in the water column below. Gas transfer coefficients calculated from concurrent measurements of greenhouse gas fluxes with floating chambers and the surface renewal model using the estimates of turbulence were in agreement. These results support the predictions of Monin-Obuhov similarity scaling in that shear dominates turbulence production near the air-water interface under heating and cooling, illustrate spatial variability in turbulence production in small water bodies due to the intermittency of wind interacting with the water's surface, are in agreement with prior oceanic observations that shear and associated turbulence can be intensified in shallow mixing layers under heating with light winds, and illustrate the utility of similarity scaling for

  1. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  2. Polystyrene-poly(ethylene oxide) diblock copolymer: the effect of polystyrene and spreading concentration at the air/water interface.

    PubMed

    Glagola, Cameron P; Miceli, Lia M; Milchak, Marissa A; Halle, Emily H; Logan, Jennifer L

    2012-03-20

    Polystyrene-block-poly(ethylene oxide) (PS-PEO) is an amphiphilic diblock copolymer that undergoes microphase separation when spread at the air/water interface, forming nanosized domains. In this study, we investigate the impact of PS by examining a series of PS-PEO samples containing constant PEO (~17,000 g·mol(-1)) and variable PS (from 3600 to 200,000 g·mol(-1)) through isothermal characterization and atomic force microscopy (AFM). The polymers separated into two categories: predominantly hydrophobic and predominantly hydrophilic with a weight percent of PEO of ~20% providing the boundary between the two. AFM results indicated that predominantly hydrophilic PS-PEO forms dots while more hydrophobic samples yield a mixture of dots and spaghetti with continent-like structures appearing at ~7% PEO or less. These structures reflect a blend of polymer spreading, entanglement, and vitrification as the solvent evaporates. Changing the spreading concentration provides insight into this process with higher concentrations representing earlier kinetic stages and lower concentrations demonstrating later ones. Comparison of isothermal results and AFM analysis shows how polymer behavior at the air/water interface correlates with the observed nanostructures. Understanding the impact of polymer composition and spreading concentration is significant in leading to greater control over the nanostructures obtained through PS-PEO self-assembly and their eventual application as polymer templates.

  3. [Diurnal changes in greenhouse gases at water-air interface of Xiangxi River in autumn and their influencing factors].

    PubMed

    Huang, Wen-Min; Zhu, Kong-Xian; Zhao, Wei; Yu, Bo-Shi; Yuan, Xi-Gong; Feng, Rui-Jie; Bi, Yong-Hong; Hu, Zheng-Yu

    2013-04-01

    With the closed chamber and gas chromatography method, a 24-hour continuous monitoring was carried out to understand the greenhouse gases fluxes across the water-air interface of the Xiangxi River Bay, the Three-Gorges Reservoir in Autumn. Results indicated that the fluxes of CO2, CH4 and N2O across the water-air interface showed an obvious diurnal variation. The absorption and emission process of CH4 showed strong diurnal variation during the experimental period, reaching the highest emission at 1 am, whereas CO2 and N2O were emitted all day. The fluxes of CO2 ranged from 20.1-97.5 mg x (m2 x h)(-1) at day and 32.7-42.5 mg x (m2 x h)(-1) at night, the fluxes of N2O ranged from 18.4-133.7 microg x (m2 x h)(-1) at day and 42.1-102.6 microg x (m2 x h)(-1) at night. The fluxes of CO2 had positive correlation with wind speed and negative correlation with pH. The fluxes of N2O had positive correlation with pH.

  4. Ellipsometric characterization of ethylene oxide-butylene oxide diblock copolymer adsorption at the air-water interface.

    PubMed

    Blomqvist, B Rippner; Benjamins, J-W; Nylander, T; Arnebrant, T

    2005-05-24

    Ellipsometry was used to determine the adsorbed layer thickness (d) and the surface excess (adsorbed amount, Gamma) of a nonionic diblock copolymer, E(106)B(16), of poly(ethylene oxide) (E) and poly(butylene oxide) (B) at the air-water interface. The results were obtained (i) by the conventional ellipsometric evaluation procedure using the change of both ellipsometric angles Psi and Delta and (ii) by using the change of Delta only and assuming values of the layer thickness. It was demonstrated that the calculated surface excesses from the different methods were in close agreement, independent of the evaluation procedure, with a plateau adsorption of about 2.5 mg/m(2) (400 A(2)/molecule). Furthermore, the amount of E(106)B(16) adsorbed at the air-water interface was found to be almost identical to that adsorbed from aqueous solution onto a hydrophobic solid surface. In addition, the possibility to use combined measurements with H(2)O or D(2)O as substrates to calculate values of d and Gamma was investigated and discussed. We also briefly discuss within which limits the Gibbs equation can be used to determine the surface excess of polydisperse block copolymers. PMID:15896051

  5. Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition

    NASA Astrophysics Data System (ADS)

    Yui, Hiroharu; Fujiwara, Hideyuki; Sawada, Tsuguo

    2002-07-01

    Anomalous enhancement of stimulated Raman scattering (SRS) derived from the OH stretching vibration of interfacial water molecules is observed when excess electrons are generated at an air/water interface by focusing an intense pulsed beam under a total internal reflection configuration. The characteristic SRS peak appears at 3200 cm-1 and is attributed to the water molecules being in an ice-like hydrogen-bonding environment at the interface. The mechanism of the SRS enhancement is discussed in terms of the enhancement of the nonlinear polarizability of the interfacial water by the large electrostatic fields induced by the transiently generated excess electrons at the interface.

  6. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  7. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  8. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  9. Probing Shear Thinning Behaviors of IgG Molecules at the Air-Water Interface via Rheological Methods.

    PubMed

    Gleason, Camille; Yee, Chanel; Masatani, Peter; Middaugh, C Russell; Vance, Aylin

    2016-01-19

    Shear thinning behavior, often observed in shear viscosity tests of IgG therapeutic molecules, could lead to significant disparities in the projections for the viscosity profile of a molecule. Despite its importance, molecular determinants of sheer thinning in protein suspensions are largely unknown. To better understand the factors influencing sheer thinning, viscosity profiles of IgG1 and IgG2 molecules were monitored over a wide range of bulk concentrations (0.007-70 mg/mL). The degree of shear-thinning of 70 and 0.007 mg/mL samples was minimal in comparison to the 0.7 mg/mL solution for both IgG molecules. These observations suggest that bulk concentration alone does not determine the degree of sheer thinning, and additional factors play a role. Additional data reveals, within a threshold range of concentrations, that a strong correlation exists between the degree of shear thinning and the surface area to volume (SA:V) ratio of an IgG sample exposed to the interface. The influence of the interface, however, diminishes when the bulk concentration falls outside this concentration window. Also revealed by interfacial oscillatory rheological testing, both IgG molecules showed solid-like behavior (G'i) at the air-water interface at 0.7 mg/mL, whereas liquid-like behavior (G″i) was dominant at 0.007 and 70 mg/mL concentrations. These observations imply that the lack of solid-like behavior was due to the absence of a network structure. Likewise the addition of polysorbate 20 (PS20) to the 0.7 mg/mL solutions decreased the degree of shear thinning by disrupting the network structure at the interface. Taken together, the results presented here suggest that, although shear thinning behavior is a manifestation of an interfacial, rather than a bulk, phenomenon, the extent of it depends on how susceptible the surface molecules are to the air-water interface, where the surface molecular structures are influenced by the bulk properties.

  10. Water at Interfaces.

    PubMed

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding. PMID:27232062

  11. Static and dynamic evanescent wave light scattering studies of diblock copolymers adsorbed at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lin, Binhua; Rice, Stuart A.; Weitz, D. A.

    1993-11-01

    We report the results of static and dynamic evanescent wave light scattering studies of a monolayer of a diblock copolymer, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) with weight averaged molecular weights (Mw) of 880 000:290 000 supported at the air/water interface. Our studies probe the interfacial structural and dynamic properties of the monolayer on a length scale which is a fraction of the wavelength of light. The static light scattering studies were carried out as a function of polymer surface coverage and temperature; we also report some preliminary data for the dependence of the static structure function on the relative molecular weights of the PS and PMMA blocks. The complementary dynamic light scattering studies were carried out only as a function of surface coverage. Our data suggest that, upon spreading in the air/water interface, PS-b-PMMA (880:290 K) copolymers form thin disklike aggregates containing about 240 molecules. These data are consistent with a model in which each such aggregate is a ``furry disk'' with a dense core consisting of a layer of collapsed PS blocks atop a thin layer of extended PMMA blocks on the water surface and a brushlike boundary of extended PMMA blocks. The data show that the furry disks diffuse freely when the surface coverage is small, but when the surface coverage is large, they are immobile. Our data also suggest that the furry disks can aggregate to form even larger ``islands'' of disks with an extension greater than 20 μm. The static structure function of the assembly of furry disks is well described, over a wide range of surface coverage, by the structure factor of a two-dimensional hard disk fluid modulated by a two-dimensional hard disk form factor.

  12. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    PubMed

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. PMID:24332621

  13. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    PubMed

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.

  14. Urease and hexadecylamine-urease films at the air-water interface: an x-ray reflection and grazing incidence x-ray diffraction study.

    PubMed Central

    Gidalevitz, D; Huang, Z; Rice, S A

    1999-01-01

    We report the results of surface x-ray scattering measurements performed on urease and hexadecylamine-urease films at the air-aqueous solution interface. It is demonstrated that although hexadecylamine does not form a stable monolayer on the pure aqueous surface, it does self-assemble into a stable, well-organized structure when spread on top of a urease film at the air-water interface. It is also likely that protein and hexadecylamine domains coexist at the interface. PMID:10233095

  15. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    PubMed

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  16. Surface activity and molecular organization of metallacarboranes at the air-water interface revealed by nonlinear optics.

    PubMed

    Gassin, Pierre-Marie; Girard, Luc; Martin-Gassin, Gaelle; Brusselle, Damien; Jonchère, Alban; Diat, Olivier; Viñas, Clara; Teixidor, Francesc; Bauduin, Pierre

    2015-03-01

    Because of their amphiphilic structure, surfactants adsorb at the water-air interface with their hydrophobic tails pointing out of the water and their polar heads plunging into the liquid phase. Unlike classical surfactants, metallabisdicarbollides (MCs) do not have a well-defined amphiphilic structure. They are nanometer-sized inorganic anions with an ellipsoidal shape composed of two carborane semicages sandwiching a metal ion. However, MCs have been shown to share many properties with surfactants, such as self-assembly in water (formation of micelles and vesicles), formation of lamellar lyotropic phases, and surface activity. By combining second harmonic generation and surface tension measurement, we show here that cobaltabis(dicarbollide) anion {[(C2B9H11)2Co](-) also named [COSAN](-)} with H(+) as a counterion, the most representative metallacarborane, adsorbs vertically at the water surface with its long axis normal to the surface. This vertical molecular orientation facilitates the formation of intermolecular and nonconventional dihydrogen bonds such as the B-H(δ-)···(δ+)H-C bond that has recently been proven to be at the origin of the self-assembly of MCs in water. Therefore, it appears here that lateral dihydrogen bonds are also involved in the surface activity of MCs.

  17. Structure and conformation of peptides at air/aqueous interface and their impact on interfacial water structure

    NASA Astrophysics Data System (ADS)

    Chandra Jena, Kailash; Tomar, Deepak

    Process of protein folding is very essential for the proper functioning of the protein molecules at membrane surface and other organelles. Understanding the process of protein folding at various biological relevant aqueous interfaces are very important to understand various complicated chemical and physical processes relevant to chemistry, physics, and medicine. The building blocks of proteins molecules are amino acids and the chemistry of each amino acid is very different; as a consequence their sequence plays an important role for various conformations upon adsorption for the protein molecules. In the present study, we have investigated the interfacial structure and conformation of two amino acids (L-Proline and L-Tyrosine) and peptide molecules formed from these two amino acids (L-Tyr-Pro). We have used sum frequency generation (SFG) vibrational spectroscopy to probe the air/aqueous interface. We have studied the impact of adsorption of the amino acids and the peptide molecules on the interfacial water structure by slowly varying concentration and ionic strength of the solutions. Our preliminary result shows a huge impact of the adsorption process of peptide molecules on the hydrogen bonding environment of interfacial structure of water. Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001.

  18. Dynamic performance of duolayers at the air/water interface. 2. Mechanistic insights from all-atom simulations.

    PubMed

    Christofferson, Andrew J; Yiapanis, George; Leung, Andy H M; Prime, Emma L; Tran, Diana N H; Qiao, Greg G; Solomon, David H; Yarovsky, Irene

    2014-09-18

    The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

  19. Nanostructure of Poly(N-isopropylacrylamide) Brush at the Air/Water Interface and Its Responsivity to Temperature and Salt.

    PubMed

    Matsuoka, Hideki; Uda, Kyohei

    2016-08-23

    Nanostructure and transition of the poly(N-isopropylacrylamide (PNIPAm) brush at the air/water interface were investigated by π-A isotherm and X-ray reflectivity, and an interesting behavior was observed with the change in temperature and salt. The polymer monolayer of poly(n-butyl acrylate)(PnBA)-b-PNIPAm on the water surface showed a transition between carpet-only/carpet+brush structures as a function of brush density, which was controlled by compression/expansion, as was the case for ionic brush systems. The brush stretching factor was about 50%, which was slightly less than that for a strongly ionic brush. The number of water molecules inside the brush layer was estimated to be 11-13 per repeating unit of PNIPAm chain. This value is very close to the number of hydrated water molecules reported, which means that all the water molecules inside the brush layer were hydrated water. With elevating temperature, the PNIPAm brush shrank, and the number of water molecules in the brush layer was reduced to 3. These observations certainly indicated a dehydration process. Interestingly, a part of the PNIAPm chain formed a "hydrophobic PNIPAm layer" on the carpet layer under the PnBA hydrophobic layer. A similar transition was observed also by the addition of salt to the water subphase. Although the formation of "hydrophobic PNIPAm layer" was not observed in this case, shrinking of the brush was observed with increasing salt concentration, and finally it became a carpet-only structure, which contained no water molecules. This salt effect was found to be ion specific, and its effectiveness was in the order of F(-) > Cl(-) > Br(-), which is in agreement with the Hofmeister series. PMID:27467013

  20. Behaviors of bovine serum albumin and rapeseed proteins at the air/water interface after grafting aliphatic or aromatic chains.

    PubMed

    Gerbanowski, Alice; Rabiller, Claude; Guéguen, Jacques

    2003-06-15

    The influence of grafting aliphatic or aromatic groups on the behaviors of bovine serum albumin (BSA) and rapeseed proteins (napin and cruciferin) at the air/water interface is studied. From compression isotherms, it is shown that the chemical modification induces an increase in the interfacial molecular areas of the three proteins. The more hydrophobic the groups grafted, the more important this increase is. The dilatational modulus clearly emphasized that the grafting of hydrophobic groups also leads to an increase of the collapse pressure, demonstrating a higher cohesiveness and resistance to pressure of the interfacial films. These results are discussed on the basis of the physicochemical changes due to these chemical modifications, especially the conformation, the surface hydrophobicity, and the flexibility of the modified proteins. The improvement of surface properties obtained by grafting aliphatic or aromatic chains onto these proteins looks very promising in regard to emulsifying and foaming properties.

  1. The Equilibria of Diosgenin-Phosphatidylcholine and Diosgenin-Cholesterol in Monolayers at the Air/Water Interface.

    PubMed

    Janicka, Katarzyna; Jastrzebska, Izabella; Petelska, Aneta Dorota

    2016-08-01

    Diosgenin (Dio) has shown many treatment properties, but the most important property is cytotoxic activity in cancer cells. In this study, we investigated monolayers of Dio, cholesterol (Ch), and phosphatidylcholine (PC) at the air/water interface. The measurements were carried with a Langmuir Teflon trough and a Nima 9000 tensiometer program. The surface tension values of pure and mixed monolayers were used to calculate π-A isotherms and determine molecular surface areas. We were able to demonstrate the formation of complexes between Dio and PC and Dio and Ch molecules also. We considered the equilibrium between individual components and the formed complexes. In addition, we established that diosgenin and the lipids formed highly stable 1:1 complexes. PMID:27350149

  2. Characerization of photosynthetic reaction centres from Rhodobacter sphaeroides at the air-water interface and in Langmuir-Blodgett films

    SciTech Connect

    Fang, J.Y.; Gaul, D.F.; Chumanov, G.; Cotton, T.M.; Uphaus, R.A. |

    1995-11-01

    Monolayers of the reaction center complex from Rhodobacter sphaeroides were prepared from dodecyl {Beta}-maltoside suspensions at an air-water interface. The stability of these monolayers was determined. A value of 28 nm{sup 2} per complex was obtained for the cross-sectional area from the equilibrium surface pressure-area isotherms. Multilayer films of alternating arachidic acid-reaction center monolayers were constructed on quartz slides by the Langmuir-Blodgett technique. Absorption spectroscopy was used to confirm the structural integrity of the complex and to determine the transfer ratio. Low-angle X-ray diffraction measurements were performed on these multilayers. A value of 64 A was obtained for the thickness of the reaction center monolayer in the multilayer film. This novel approach can be used to study multilayers of other membrane-bound proteins. 20 refs., 9 figs.

  3. Synthesis of a Two-Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface.

    PubMed

    Dai, Wenyang; Shao, Feng; Szczerbiński, Jacek; McCaffrey, Ryan; Zenobi, Renato; Jin, Yinghua; Schlüter, A Dieter; Zhang, Wei

    2016-01-01

    A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

  4. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures. PMID:27091668

  5. Introducing high-quality planar defects into colloidal crystals via self-assembly at the air/water interface

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Demeyer, Pieter-Jan; Zhou, Xingping; Kruglova, Olga; Verellen, Niels; Moshchalkov, Victor V.; Song, Kai; Clays, Koen

    2015-02-01

    We demonstrate a facile method for fabrication of colloidal crystals containing a planar defect by using PS@SiO2 core-shell spheres as building blocks. A monolayer of solid spheres was embedded in core-shell colloidal crystals serving as the defect layer, which formed by means of self-assembly at the air/water interface. Compared with previous methods, this fabrication method results in pronounced passbands in the band gaps of the colloidal photonic crystal. The FWHM of the obtained passband is only ~16nm, which is narrower than the previously reported results. The influence of the defect layer thickness on the optical properties of these sandwiched structures was also investigated. No high-cost processes or specific equipment is needed in our approach. Inverse opals with planar defects can be obtained via calcination of the PS cores, without the need of infiltration. The experimental results are in good agreement with simulations performed using the FDTD method.

  6. Structural and topographical characteristics of adsorbed WPI and monoglyceride mixed monolayers at the air-water interface.

    PubMed

    Patino, Juan M Rodríguez; Fernández, Marta Cejudo

    2004-05-25

    In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.

  7. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  8. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Matsuzaki, Korenobu; Kusaka, Ryoji; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Nagata, Takashi; Tahara, Tahei

    2016-06-22

    Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps. PMID:27281547

  9. Ozonolysis of methyl oleate monolayers at the air-water interface: oxidation kinetics, reaction products and atmospheric implications.

    PubMed

    Pfrang, Christian; Sebastiani, Federica; Lucas, Claire O M; King, Martin D; Hoare, Ioan D; Chang, Debby; Campbell, Richard A

    2014-07-14

    Ozonolysis of methyl oleate monolayers at the air-water interface results in surprisingly rapid loss of material through cleavage of the C=C bond and evaporation/dissolution of reaction products. We determine using neutron reflectometry a rate coefficient of (5.7 ± 0.9) × 10(-10) cm(2) molecule(-1) s(-1) and an uptake coefficient of ∼3 × 10(-5) for the oxidation of a methyl ester monolayer: the atmospheric lifetime is ∼10 min. We obtained direct experimental evidence that <2% of organic material remains at the surface on atmospheric timescales. Therefore known long atmospheric residence times of unsaturated fatty acids suggest that these molecules cannot be present at the interface throughout their ageing cycle, i.e. the reported atmospheric longevity is likely to be attributed to presence in the bulk and viscosity-limited reactive loss. Possible reaction products were characterized by ellipsometry and uncertainties in the atmospheric fate of organic surfactants such as oleic acid and its methyl ester are discussed. Our results suggest that a minor change to the structure of the molecule (fatty acid vs. its methyl ester) considerably impacts on reactivity and fate of the organic film. PMID:24870051

  10. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines.

  11. Tuning the Structure and Rheology of Polystyrene Particles at the Air-Water Interface by Varying the pH.

    PubMed

    Truzzolillo, Domenico; Sharaf, Hossameldeen; Jonas, Ulrich; Loppinet, Benoit; Vlassopoulos, Dimitris

    2016-07-12

    We form films of carboxylated polystyrene particles (C-PS) at the air-water interface and investigate the effect of subphase pH on their structure and rheology by using a suite of complementary experimental techniques. Our results suggest that electrostatic interactions drive the stability and the structural order of the films. In particular, we show that by increasing the pH of the subphase from 9 up to 13, the films exhibit a gradual transition from solid to liquidlike, which is accompanied by a loss of the long-range order (that characterizes them at lower values of pH). Direct optical visualization of the layers, scanning electron microscopy, and surface pressure isotherms indicate that the particles deposited at the interface form three-dimensional structures involving clusters, with the latter being suppressed and a quasi-2D particle configuration eventually reached at the highest pH values. Evidently, the properties of colloidal films can be tailored significantly by altering the pH of the subphase.

  12. Urban water interfaces

    NASA Astrophysics Data System (ADS)

    Gessner, M. O.; Hinkelmann, R.; Nützmann, G.; Jekel, M.; Singer, G.; Lewandowski, J.; Nehls, T.; Barjenbruch, M.

    2014-06-01

    Urban water systems consist of large-scale technical systems and both natural and man-made water bodies. The technical systems are essential components of urban infrastructure for water collection, treatment, storage and distribution, as well as for wastewater and runoff collection and subsequent treatment. Urban aquatic ecosystems are typically subject to strong human influences, which impair the quality of surface and ground waters, often with far-reaching impacts on downstream aquatic ecosystems and water users. The various surface and subsurface water bodies in urban environments can be viewed as interconnected compartments that are also extensively intertwined with a range of technical compartments of the urban water system. As a result, urban water systems are characterized by fluxes of water, solutes, gases and energy between contrasting compartments of a technical, natural or hybrid nature. Referred to as urban water interfaces, boundaries between and within these compartments are often specific to urban water systems. Urban water interfaces are generally characterized by steep physical and biogeochemical gradients, which promote high reaction rates. We hypothesize that they act as key sites of processes and fluxes with notable effects on overall system behaviour. By their very nature, urban water interfaces are heterogeneous and dynamic. Therefore, they increase spatial heterogeneity in urban areas and are also expected to contribute notably to the temporal dynamics of urban water systems, which often involve non-linear interactions and feedback mechanisms. Processes at and fluxes across urban water interfaces are complex and less well understood than within well-defined, homogeneous compartments, requiring both empirical investigations and new modelling approaches at both the process and system level. We advocate an integrative conceptual framework of the urban water system that considers interfaces as a key component to improve our fundamental

  13. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    PubMed

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  14. PREFACE: Water at interfaces Water at interfaces

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  15. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    SciTech Connect

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.

    2014-07-17

    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations

  16. Toward a simple molecular understanding of sum frequency generation at air-water interfaces

    SciTech Connect

    Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.

    2009-01-13

    Second-order vibrational spectroscopies successfully isolate signals from interfaces, but they report on intermolecular structure in a complicated and indirect way. Here we adapt a perspective on vibrational response developed for bulk spectroscopies to explore the microscopic fluctuations to which sum frequency generation (SFG), a popular surface-specific measurement, is most sensitive. We focus exclusively on inhomogeneous broadening of spectral susceptibilities for OH stretching of HOD as a dilute solute in D{sub 2}O. Exploiting a simple connection between vibrational frequency shifts and an electric field variable, we identify several functions of molecular orientation whose averages govern SFG. The frequency-dependence of these quantities is well captured by a pair of averages, involving alignment of OH and OD bonds with the surface normal at corresponding values of the electric field. The approximate form we obtain for SFG susceptibility highlights a dramatic sensitivity to the way a simulated liquid slab is partitioned for calculating second-order response.

  17. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  18. An experimental and theoretical study of the aggregate structure of calix[6]arenes in Langmuir films at the water/air interface.

    PubMed

    de Lara, Lucas S; Wrobel, Ellen C; Lazzarotto, Márcio; de Lázaro, Sérgio R; Camilo, Alexandre; Wohnrath, Karen

    2016-08-17

    In this paper, the aggregate formation of para-tert-butylcalix[6]arene molecules (Calix6) in dimeric structures was investigated at the water/air interface using experimental and theoretical studies. A specific orientation for such Calix6 molecules was observed with an average area of 133 Å(2), which corresponds to a flat-on orientation with the OH groups parallel to the interface. By varying the pressure on the Calix6 monolayer, the molecules tend to organize at the water/air interface and subsequently, at higher pressures, aggregates were formed atop the monolayer as cluster structures. Morphological characterization by the Brewster Angle Microscopy technique showed the formation of larger domains at lower pressures. Based on such experimental evidence, molecular dynamics (MD) simulations were performed to investigate possible dimeric structures for aggregated Calix6 molecules, which are localized at the water/air interface, where one molecule remains in the water phase and the other remains in the air phase. By increasing surface pressure, experimental and theoretical results corroborate the intermolecular interactions among Calix6 molecules. These results are relevant because a dimeric structure has a molecular cavity, which is a candidate for host-guest chemistry, an ion receptor or a drug-delivery system. PMID:27485988

  19. Extracellular enzyme activity at the air-water interface of an estuarine lake

    NASA Astrophysics Data System (ADS)

    Mudryk, Z. J.; Skórczewski, P.

    2004-01-01

    Variations in hydrolytic activity of eight extracellular enzymes in surface and subsurface waters in estuarine Lake Gardno were measured. The ranking of potential activity rates of the assayed enzymes was the same in both surface and subsurface water, i.e. esterase > lipase > aminopeptidase > phosphatase > β-glucosidase > α-glucosidase > chitinase > β-lactosidase. The vertical activity profiles show that esterase, aminopeptidase, α-glucosidase, β-glucosidase and β-lactosidase reached the highest values in surface layer, whereas lipase, phosphatase and chitinase showed maximum activity in subsurface water. Significant differences in enzyme activity between different parts of the studied lake were demonstrated, with higher values in the seawater zone, and lower values in the freshwater zone.

  20. Intraday evaporation and heat fluxes variation at air-water interface of extremely shallow lakes in Chilean Andean Plateau

    NASA Astrophysics Data System (ADS)

    Vergara, Jaime; de la Fuente, Alberto

    2016-04-01

    Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, heat and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the air-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum fluxes, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent heat, sensible heat, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible heat fluxes are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday

  1. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  2. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films.

    PubMed Central

    Pum, D; Weinhandl, M; Hödl, C; Sleytr, U B

    1993-01-01

    S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde. Images PMID:8478338

  3. Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface.

    PubMed

    Matsuoka, Hideki; Yamakawa, Yuta; Ghosh, Arjun; Saruwatari, Yoshiyuki

    2015-05-01

    Zwitterionic amphiphilic diblock copolymer, poly(ethylhexyl acrylate)-b-poly(carboxybetaine) (PEHA-b-PGLBT), was synthesized by the reversible addition-fragmentation chain transfer (RAFT) method with precise control of block length and polydispersity. The polymers thus obtained were spread onto the water surface to form a polymer monolayer. The fundamental property and nanostructure of the block copolymer monolayer were systematically studied by the surface pressure-molecular area (π-A) isotherm, Brewster angle microscopy (BAM), and X-ray reflectivity (XR) techniques. The π values of the monolayer increased by compression in relatively larger A regions. After showing a large plateau region by compression, the π value sharply increased at very small A regions, suggesting the formation of poly(GLBT) brush formation just beneath the water surface. The domain structure of μm size was observed by BAM in the plateau region. XR profiles for the monolayer at higher surface pressure regions clearly showed the PGLBT brush formation in addition to PGLBT carpet layer formation under the hydrophobic PEHA layer on the water surface, as was observed for both anionic and cationic brush layer in the water surface monolayer studied previously. The critical brush density, where the PGLBT brush is formed, was estimated to be about 0.30 chains/nm(2) for the (EHA)45-b-(GLBT)60 monolayer, which is relatively large compared to other ionic brushes. This observation is consistent with the fact that the origin of brush formation is mainly steric hindrance between brush chains. The brush thickness increased by compression and also by salt addition, unlike the normal ionic brush (anionic and cationic), whose thickness tended to decrease, i.e., shrink, by salt addition. This might be a character unique to the zwitterionic brush, and its origin is thought to be transition to an ionic nature from the almost nonionic inner salt caused by salt addition since both the cation and anion of the

  4. Ionic Liquid Films at the Water-Air Interface: Langmuir Isotherms of Tetra-alkylphosphonium-Based Ionic Liquids.

    PubMed

    Shimizu, Karina; Canongia Lopes, José N; Gonçalves da Silva, Amélia M P S

    2015-08-01

    The behavior of ionic liquids trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P6 6 6 14][Ntf2] and [P6 6 6 14][N(CN)2], respectively, at the water-air interface was investigated using the Langmuir trough technique. The obtained surface pressure versus mean molecular area (MMA) isotherms, π-A, and surface potential versus MMA isotherms, ΔV-A, show distinct interfacial behavior between the two systems. The results were interpreted at a molecular level using molecular dynamics simulations: the different compression regimes along the [P6 6 6 14][Ntf2] isotherm correspond to the self-organization of the ions at the water surface into compact and planar monolayers that coalesce at an MMA value of ca. 1.85 nm(2)/ion pair to form an expanded liquidlike layer. Upon further compression, the monolayer collapses at around 1.2 nm(2)/ion pair to yield a progressively thicker and less organized layer. These transitions are much more subdued in the [P6 6 6 14][N(CN)2] system because of the more hydrophilic nature of the dicyanamide anion. The numerical density profiles obtained from the MD simulation trajectories are also able to emphasize the very unusual packing of the four long alkyl side chains of the cation above and below the ionic layer that forms at the water surface. Such a distribution is also different for the two studied systems during the different compression regimes.

  5. Supramolecular Systems Behavior at the Air-Water Interface. Molecular Dynamic Simulation Study.

    NASA Astrophysics Data System (ADS)

    Sandoval, C.; Saavedra, M.; Gargallo, L.; Radić, D.

    2008-08-01

    Atomistic molecular dynamics simulation (MDS) was development to investigate the structural and dynamic properties of a monolayer of supramolecular systems. The simulations were performed at room temperature, on inclusion complexes (ICs) of α-cyclodextrin (CD) with poly(ethylene-oxide)(PEO), poly(ɛ-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF). The simulations were carried out for a surface area of 30Å. The trajectories of the MDS show that the system more stable was IC-PEC, being the less stable IC-PEO. The disordered monolayer for the systems was proved by the orientation correlation function and the radial distribution function between the polar groups of ICs and the water molecules. We found that the system IC-PEC was more stable that the systems IC-PTHF and IC-PEO.

  6. Long-timescale dynamics of thiol capped Au nanoparticle clusters at the air-water interface

    NASA Astrophysics Data System (ADS)

    Choudhuri, Madhumita; Datta, Alokmay

    2014-04-01

    A two-dimensional network of thiol-capped Au nanoparticle (AuNP) clusters is self-organized on a Stearic Acid (amphiphilic fatty acid) Langmuir monolayer on water surface. The AuNP clusters are found to form a pattern of connected and enclosed microspaces in the stearic acid template. The network features can be controlled by changing the surface pressure of the monolayer during compression. The two-dimensional dynamics of this network has been studied over a long timescale using Brewster Angle Microscopy (BAM). The dynamics is very slow, indicating the stability of the network system, and is essentially driven by the tendency to lower the number of nodes or joints in the network.

  7. SUPRAMOLECULAR SYSTEMS BEHAVIOR AT THE AIR-WATER INTERFACE. MOLECULAR DYNAMIC SIMULATION STUDY

    SciTech Connect

    Sandoval, C.; Saavedra, M.; Gargallo, L.; Radic, D.

    2008-08-28

    Atomistic molecular dynamics simulation (MDS) was development to investigate the structural and dynamic properties of a monolayer of supramolecular systems. The simulations were performed at room temperature, on inclusion complexes (ICs) of {alpha}-cyclodextrin (CD) with poly(ethylene-oxide)(PEO), poly({epsilon}-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF). The simulations were carried out for a surface area of 30A ring . The trajectories of the MDS show that the system more stable was IC-PEC, being the less stable IC-PEO. The disordered monolayer for the systems was proved by the orientation correlation function and the radial distribution function between the polar groups of ICs and the water molecules. We found that the system IC-PEC was more stable that the systems IC-PTHF and IC-PEO.

  8. Carbon dioxide fluxes across the air-water interface and its impact on carbon availability in aquatic systems

    SciTech Connect

    Portielje, R.; Lijklema, L.

    1995-06-01

    Diffusion of CO{sub 2} across the air-water interface was analyzed with a model that simulates both transport and reaction of CO{sub 2} in a stagnant boundary layer. The atmospheric C influx was determined in relation to several environmental variables: pH, total dissolved inorganic C, temperature, and the thickness of the stagnant boundary layer in relation to ambient windspeed. We used the model to calculate the atmospheric CO{sub 2} influx into experimental ditches for a period of 6 to 8 months, starting in early spring. Three of the six ditches were dominated by aquatic macrophytes and three by benthic algae. Each series received three levels of external N and P input. A comparison with net C assimilation during the same period, as estimated from continuous oxygen measurements, showed that, especially in the ditches dominated by submersed macrophytes, a sizable fraction of the C requirements during this period could have been obtained from atmospheric CO{sub 2}. In the ditches dominated by benthic algae, this fraction was considerably less, but nonetheless substantial, and was related to the level of N and P loading. Increased primary production due to enhanced external N and P loading increased the atmospheric C input due to the resultant higher pH values. The trophic state with respect to N and P and the availability of C are therefore interrelated. 25 refs., 8 figs., 5 tabs.

  9. Self-Assembly and Lipid Interactions of Diacylglycerol Lactone Derivatives Studied at the Air/Water Interface

    PubMed Central

    Philosof-Mazor, Liron; Volinsky, Roman; Comin, Maria J.; Lewin, Nancy E.; Kedei, Noemi; Blumberg, Peter M.; Marquez, Victor E.; Jelinek, Raz

    2009-01-01

    Synthetic diacylglycerol lactones (DAG-lactones) have been shown to be effective modulators of critical cellular signaling pathways. The biological activity of these amphiphilic molecules depends in part upon their lipid interactions within the cellular plasma membrane. This study explores the thermodynamic and structural features of DAG-lactone derivatives and their lipid interactions at the air/water interface. Surface-pressure/area isotherms and Brewster angle microscopy revealed the significance of specific side-groups attached to the terminus of a very rigid 4-(2-phenylethynyl) benzoyl chain of the DAG-lactones, which affected both the self-assembly of the molecules and their interactions with phospholipids. The experimental data highlight the formation of different phases within mixed DAG-lactone/phospholipid monolayers and underscore the relationship between the two components in binary mixtures of different mole ratios. Importantly, the results suggest that DAG-lactones are predominantly incorporated within fluid phospholipid phases rather than in the condensed phases that form, for example, by cholesterol. Moreover, the size and charge of the phospholipid headgroups do not seem to affect DAG-lactone interactions with lipids. PMID:18788772

  10. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants.

    PubMed

    Rippner Blomqvist, B; Ridout, M J; Mackie, A R; Wärnheim, T; Claesson, P M; Wilde, P

    2004-11-01

    Nonequilibrium interfacial layers formed by competitive adsorption of beta-lactoglobulin and the nonionic triblock copolymer PEO99-PPO65-PEO99 (F127) to the air-water interface were investigated in order to explain the influence of polymeric surfactants on protein film surface rheology and foam stability. Surface dilatational and shear rheological methods, surface tension measurements, dynamic thin-film measurements, diffusion measurements (from fluorescence recovery after photo bleaching), and determinations of foam stability were used as methods. The high surface viscoelasticity, both the shear and dilatational, of the protein films was significantly reduced by coadsorption of polymeric surfactant. The drainage rate of single thin films, in the presence of beta-lactoglobulin, increased with the amount of added F127, but equilibrium F127 films were found to be thicker than beta-lactoglobulin films, even at low concentration of the polymeric surfactant. It is concluded that the effect of the nonionic triblock copolymer on the interfacial rheology of beta-lactoglobulin layers is similar to that of low molecular weight surfactants. They differ however in that F127 increases the thickness of thin liquid films. In addition, the significant destabilizing effect of low molecular weight surfactants on protein foams is not found in the investigated system. This is explained as due to long-range steric forces starting to stabilize the foam films at low concentrations of F127. PMID:15518507

  11. Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface.

    PubMed

    Baba, Teruhiko; Takai, Katsuki; Takagi, Toshiyuki; Kanamori, Toshiyuki

    2013-01-01

    A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.

  12. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants.

    PubMed

    Rippner Blomqvist, B; Ridout, M J; Mackie, A R; Wärnheim, T; Claesson, P M; Wilde, P

    2004-11-01

    Nonequilibrium interfacial layers formed by competitive adsorption of beta-lactoglobulin and the nonionic triblock copolymer PEO99-PPO65-PEO99 (F127) to the air-water interface were investigated in order to explain the influence of polymeric surfactants on protein film surface rheology and foam stability. Surface dilatational and shear rheological methods, surface tension measurements, dynamic thin-film measurements, diffusion measurements (from fluorescence recovery after photo bleaching), and determinations of foam stability were used as methods. The high surface viscoelasticity, both the shear and dilatational, of the protein films was significantly reduced by coadsorption of polymeric surfactant. The drainage rate of single thin films, in the presence of beta-lactoglobulin, increased with the amount of added F127, but equilibrium F127 films were found to be thicker than beta-lactoglobulin films, even at low concentration of the polymeric surfactant. It is concluded that the effect of the nonionic triblock copolymer on the interfacial rheology of beta-lactoglobulin layers is similar to that of low molecular weight surfactants. They differ however in that F127 increases the thickness of thin liquid films. In addition, the significant destabilizing effect of low molecular weight surfactants on protein foams is not found in the investigated system. This is explained as due to long-range steric forces starting to stabilize the foam films at low concentrations of F127.

  13. Modification of beta-lactoglobulin by oligofructose: impact on protein adsorption at the air-water interface.

    PubMed

    Trofimova, Daria; de Jongh, Harmen H J

    2004-06-22

    Maillard products of beta-lactoglobulin (betaLg) and fructose oligosaccharide (FOS) were obtained in different degrees of modification depending on incubation time and pH. By use of a variety of biochemical and spectroscopic tools, it was demonstrated that the modification at limited degrees does not significantly affect the secondary, tertiary, and quaternary structure of betaLg. The consequence of the modification on the thermodynamics of the protein was studied using differential scanning calorimetry, circular dichroism, and by monitoring the fluorescence intensity of protein samples with different concentrations of guanidine-HCl. The modification leads to lowering of the denaturation temperature by 5 degrees C and a reduction of the free energy of stabilization of about 30%. Ellipsometry and drop tensiometry demonstrated that upon adsorption to air-water interfaces in equilibrium modified betaLg exerts a lower surface pressure than native betaLg (16 versus 22 mN/m). Moreover, the surface elastic modulus increased with increasing surface pressure but reached significantly smaller values in the case of FOS-betaLg. Compared to native betaLg, modification of the protein with oligofructose moieties results in higher surface loads and thicker surface layers. The consequences of these altered surface rheological properties are discussed in view of the functional behavior in technological applications.

  14. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.

    PubMed

    Engelhardt, Kathrin; Weichsel, Ulrike; Kraft, Elena; Segets, Doris; Peukert, Wolfgang; Braunschweig, Björn

    2014-04-17

    Mixtures of β-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that

  15. An automatic remotely web-based control equipment for investigating gas flux at water - air interfaces

    NASA Astrophysics Data System (ADS)

    Duc, N. T.; Silverstein, S.; Wik, M.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2014-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. Capturing the high temporal variability of these fluxes has been labor intensive using manual based methods, or expensive using available high resolution equipment (e.g. eddy correlation methods). Here, we present an inexpensive device that includes an easily mobile diffusive flux chamber and a bubble counter (inverted funnel) all in one. It is equipped with wireless data readout and web-based remote monitoring and control functions. The device can be programmed to measure in situ mixing ratios of gas in the chamber, and accumulation of ebullitive gas in the funnel. The device can also collect gas samples into sample bottles for subsequent analyses (e.g concentration, stable isotopes) in the laboratory.

  16. Polymerization of a diacetylenic phospholipid monolayer at the air-water interface

    NASA Astrophysics Data System (ADS)

    Bourdieu, L.; Chatenay, D.; Daillant, J.; Luzet, D.

    1994-01-01

    Monolayers of a polymerizable phospholipid on water have been studied both before and after polymerization. Before polymerization, the phase diagram is established by isotherm measurements and optical microscopy (epifluorescence and direct observation between crossed polarizer and analyzer). This allows us to bring into evidence a coexistence region between a condensed and an expanded phase, above a triple point temperature T_t = 20 ^{circ}C. The dramatic influence of impurities on the size of coexistence domains between the condensed phase and the expanded one is clearly demonstrated, even at a very low concentration of impurities. Structural and morphological modifications during the polymerization where investigated using X-ray surface scattering together with atomic force microscopy. Whatever the polymerization conditions (constant area or constant pressure), X-ray reflectivity clearly shows the reorientation of the diacetylenic links. Only constant area polymerization leads to a viscoelastic behavior of the film, as shown by talcum decoration. The topochemical nature of the polymerization of diacetylenic groups induces strong constraints on the monolayers and, when the polymerization is achieved at constant area, leads to the collapse of the films evidenced by both techniques.

  17. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  18. Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confinement and Water Discharge.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2016-09-20

    We present an innovative apparatus allowing self-assembly at air/water interface in a smooth and reproducible way. The combination of water discharge and surface confinement of the area over which self-assembly takes place allows transfer of the assembled monolayer without any risk of damage to the colloidal crystal. As we demonstrate, the designed approach offers remarkable advantages in terms of cost and robustness compared to state-of-the art methods and is suitable for the fabrication of highly ordered monolayers even for more challenging assembly experiments such as transfer on rough substrates or assembly of binary colloids. Hence, our apparatus represents a significant headway toward high scale production of large area colloidal crystals. For the binary colloid assembly experiments, we also report the first experimental demonstration of a morphology based on the alternation of three and four small particles in the interstices between large particles. PMID:27574790

  19. Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confinement and Water Discharge.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2016-09-20

    We present an innovative apparatus allowing self-assembly at air/water interface in a smooth and reproducible way. The combination of water discharge and surface confinement of the area over which self-assembly takes place allows transfer of the assembled monolayer without any risk of damage to the colloidal crystal. As we demonstrate, the designed approach offers remarkable advantages in terms of cost and robustness compared to state-of-the art methods and is suitable for the fabrication of highly ordered monolayers even for more challenging assembly experiments such as transfer on rough substrates or assembly of binary colloids. Hence, our apparatus represents a significant headway toward high scale production of large area colloidal crystals. For the binary colloid assembly experiments, we also report the first experimental demonstration of a morphology based on the alternation of three and four small particles in the interstices between large particles.

  20. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Pillar, E. A.; Guzman, M. I.

    2013-12-01

    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  1. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  2. Molecular dynamics shows that ion pairing and counterion anchoring control the properties of triflate micelles: a comparison with triflate at the air/water interface.

    PubMed

    Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Horinek, Dominik

    2014-02-11

    Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.

  3. Charge and pressure-tuned surface patterning of surfactant-encapsulated polyoxometalate complexes at the air-water interface.

    PubMed

    Xu, Miao; Li, Haolong; Zhang, Liying; Wang, Yizhan; Yuan, Yuan; Zhang, Jianming; Wu, Lixin

    2012-10-16

    In this paper, four organic-inorganic hybrid complexes were prepared using a cationic surfactant dimethyldioctadecylammonium (DODA) to replace the counter cations of four Keggin-type polyoxometalate (POM) clusters with gradually increased negative charges, PW(12)O(40)(3-), SiW(12)O(40)(4-), BW(12)O(40)(5-), and CoW(12)O(40)(6-). The formed surfactant-encapsulated POM (SEP) complexes showed typical amphiphilic properties and can be spread onto the air-water interface to form Langmuir monolayers. The interfacial behavior of the SEP monolayer films was systemically studied by multiple in situ and ex situ characterization methods including Brewster angle microscopy (BAM), atomic force microscopy (AFM), reflection-absorption infrared (RAIR), and X-ray photoelectron spectroscopy (XPS). We found that the increasing alkyl chain density of SEPs leads to an enhanced stability and a higher collapse pressure of SEP Langmuir monolayers. Moreover, a second layer evolved as patterns from the initial monolayers of all the SEPs, when the surface pressures approached the collapse values. The rational combination of alkyl chain density and surface pressure can precisely control the size and the morphology of SEP patterns transforming from disk-like to leaf-like structures on a micrometer scale. The pattern formation was demonstrated to be driven by the self-optimized surface energy of SEP monolayers. This finding can direct a new strategy for the fabrication of POM-hybrid films with controllable patterns, which should be instructive for designing POM-based thin film devices. PMID:22991980

  4. Liquid Surface X-ray Studies of Gold Nanoparticle-Phospholipid Films at the Air/Water Interface.

    PubMed

    You, Siheng Sean; Heffern, Charles T R; Dai, Yeling; Meron, Mati; Henderson, J Michael; Bu, Wei; Xie, Wenyi; Lee, Ka Yee C; Lin, Binhua

    2016-09-01

    Amphiphilic phospholipids and nanoparticles functionalized with hydrophobic capping ligands have been extensively investigated for their capacity to self-assemble into Langmuir monolayers at the air/water interface. However, understanding of composite films consisting of both nanoparticles and phospholipids, and by extension, the complex interactions arising between nanomaterials and biological membranes, remains limited. In this work, dodecanethiol-capped gold nanoparticles (Au-NPs) with an average core diameter of 6 nm were incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers with surface densities ranging from 0.1 to 20% area coverage at a surface pressure of 30 mN/m. High resolution liquid surface X-ray scattering studies revealed a phase separation of the DPPC and Au-NP components of the composite film, as confirmed with atomic force microscopy after the film was transferred to a substrate. At low Au-NP content, the structural organization of the phase-separated film is best described as a DPPC film containing isolated islands of Au-NPs. However, increasing the Au-NP content beyond 5% area coverage transforms the structural organization of the composite film to a long-range interconnected network of Au-NP strands surrounding small seas of DPPC, where the density of the Au-NP network increases with increasing Au-NP content. The observed phase separation and structural organization of the phospholipid and nanoparticle components in these Langmuir monolayers are useful for understanding interactions of nanoparticles with biological membranes. PMID:27459364

  5. Charge and pressure-tuned surface patterning of surfactant-encapsulated polyoxometalate complexes at the air-water interface.

    PubMed

    Xu, Miao; Li, Haolong; Zhang, Liying; Wang, Yizhan; Yuan, Yuan; Zhang, Jianming; Wu, Lixin

    2012-10-16

    In this paper, four organic-inorganic hybrid complexes were prepared using a cationic surfactant dimethyldioctadecylammonium (DODA) to replace the counter cations of four Keggin-type polyoxometalate (POM) clusters with gradually increased negative charges, PW(12)O(40)(3-), SiW(12)O(40)(4-), BW(12)O(40)(5-), and CoW(12)O(40)(6-). The formed surfactant-encapsulated POM (SEP) complexes showed typical amphiphilic properties and can be spread onto the air-water interface to form Langmuir monolayers. The interfacial behavior of the SEP monolayer films was systemically studied by multiple in situ and ex situ characterization methods including Brewster angle microscopy (BAM), atomic force microscopy (AFM), reflection-absorption infrared (RAIR), and X-ray photoelectron spectroscopy (XPS). We found that the increasing alkyl chain density of SEPs leads to an enhanced stability and a higher collapse pressure of SEP Langmuir monolayers. Moreover, a second layer evolved as patterns from the initial monolayers of all the SEPs, when the surface pressures approached the collapse values. The rational combination of alkyl chain density and surface pressure can precisely control the size and the morphology of SEP patterns transforming from disk-like to leaf-like structures on a micrometer scale. The pattern formation was demonstrated to be driven by the self-optimized surface energy of SEP monolayers. This finding can direct a new strategy for the fabrication of POM-hybrid films with controllable patterns, which should be instructive for designing POM-based thin film devices.

  6. Interaction of N-myristoylethanolamine with cholesterol investigated in a Langmuir film at the air-water interface.

    PubMed

    Kamlekar, Ravi Kanth; Chandra, M Sharath; Radhakrishnan, T P; Swamy, Musti J

    2009-01-01

    The dramatic increase in the content of N-acylethanolamines (NAEs) having different acyl chains in various tissues when subjected to stress has resulted in significant interest in investigations on these molecules. Previous studies suggested that N-myristoylethanolamine (NMEA) and cholesterol interact to form a 1:1 (mol/mol) complex. In studies reported here, pressure-area isotherms of Langmuir films at the air-water interface have shown that at low fractions of cholesterol, the average area per molecule is lower than that predicted for ideal mixing, whereas at high cholesterol content the observed molecular area is higher, with a cross-over point at the equimolar composition. A plausible model that can explain these observations is the following: addition of small amounts of cholesterol to NMEA results in a reorientation of the NMEA molecules from the tilted disposition in the crystalline state to the vertical and stabilization of the intermolecular interactions, leading to the formation of a compact monolayer film, whereas at the other end of the composition diagram, addition of small amounts of NMEA to cholesterol leads to a tilting of the cholesterol molecules resulting in an increase in the average area per molecule. In Brewster angle microscopy experiments, a stable and bright homogeneous condensed phase was observed at a relatively low applied pressure of 2 mN.m(-1) for the NMEA:Chol. (1:1, mol/mol) mixture, whereas all other samples required significantly higher pressures (>10 mN.m(-1)) to form a homogeneous condensed phase. These observations are consistent with the formation of a 1:1 stoichiometric complex between NMEA and cholesterol and suggest that increase in the content of NAEs under stress may modulate the composition and dynamics of lipid rafts in biological membranes, resulting in alterations in signaling events involving them, which may be relevant to the putative cytoprotective and stress-combating ability of NAEs.

  7. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    PubMed

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano

    2015-12-01

    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  8. Bio-inspired fabrication of hierarchical FeOOH nanostructure array films at the air-water interface, their hydrophobicity and application for water treatment.

    PubMed

    Liu, Lei; Yang, Liu-Qing; Liang, Hai-Wei; Cong, Huai-Ping; Jiang, Jun; Yu, Shu-Hong

    2013-02-26

    Hierarchical FeOOH nanostructure array films constructed by different nanosized building blocks can be synthesized at the air-water interface via a bio-inspired gas-liquid diffusion method. In this approach, poly(acrylic acid) (PAA) as a crystal growth modifier plays a crucial role in mediating the morphology and polymorph of FeOOH crystals. With the increase of PAA concentration, the shape of the building blocks assembling into FeOOH films can be tailored from nanosheets, to rice spikes, then to branched fibers, and finally to nanowires. What is more, a low concentration of PAA will induce the formation of α-FeOOH, while a high one could stabilize FeOOH in the form of the γ-FeOOH phase. After being modified with a thin layer of polydimethylsiloxane (PDMS), the as-prepared FeOOH films exhibited strong hydrophobicity with water contact angles (CA) from 134° to 148° or even superhydrophobicity with a CA of 164° in the sample constructed by nanosheets. When the FeOOH nanostructures were dispersed in water by ultrasound, they displayed quite promising adsorption performance of heavy metal ions for water treatment, where the highest adsorption capacity can reach 77.2 mg·g⁻¹ in the sample constructed by nanowires. This bio-inspired approach may open up the possibilities for the fabrication of other functional nanostructure thin films with unique properties.

  9. Coadsorption of carbofuran and lead at the air/water interface. Possible occurrence of non-volatile pollutant cotransfer to the atmosphere.

    PubMed

    Acharid, Abdelhaq; Quentel, François; Elléouet, Catherine; Olier, René; Privat, Mireille

    2006-02-01

    The weak solubility of carbofuran allows adsorption at the air/water interface. Carbofuran-rich layers can then induce the coadsorption of metallic salts such as lead nitrate; on the other hand, when carbofuran is missing, no adsorption of this salt takes place. This phenomenon was quantitatively studied through surface tension measurements under concentration conditions close to the environmental ones. Heavy metal salt adsorbed about ten times more than carbofuran. Evidence was then provided that the simultaneous presence of both pollutants in water favours their adsorption and passing from water to the atmosphere through mechanisms such as bubbling.

  10. In situ studies of metal coordinations and molecular orientations in monolayers of amino-acid-derived Schiff bases at the air-water interface.

    PubMed

    Liu, Huijin; Zheng, Haifu; Miao, Wangen; Du, Xuezhong

    2009-03-01

    The surface behaviors of monolayers of amino-acid-derived Schiff bases, namely, 4-(4-(hexadecyloxy)benzylideneamino)benzoic acid (HBA), at the air-water interface on pure water and ion-containing subphases (Cu2+, Ca2+, and Ba2+) have been clarified by a combination of surface pressure-area isotherms and surface plasmon resonance (SPR) technique, and the metal coordinations and molecular orientations in the monolayers have been investigated using in situ infrared reflection absorption spectroscopy (IRRAS). The presence of metal ions gives rise to condensation of the monolayers (Cu2+, pH 6.1; Ca2+, pH 11; Ba2+, pH 10), even leading to the formation of three-dimensional structures of the compressed monolayer in the case of Ba2+ (pH 12). The metal coordinations with the carboxyl groups at the interface depend on the type of metal ions and pH of the aqueous subphase. The orientations of the aromatic Schiff base segments with surface pressure are elaborately described. The spectral behaviors of the Schiff base segments with incidence angle in the case of Ba2+ (pH 12) have so far presented an excellent example for the selection rule of IRRAS at the air-water interface for p-polarization with vibrational transition moments perpendicular to the water surface. The chain orientations in the monolayers are quantitatively determined on the assumption that the thicknesses of the HBA monolayers at the air-water interface are composed of the sublayers of alkyl chains and Schiff base segments. PMID:19437705

  11. Molecular assemblies of 4-(hexadecyloxy)-n-(pyridinylmethylene)anilines at the air-water interface and Cu(II)-promoted vesicle formation via metal coordination.

    PubMed

    Wang, Haibo; Miao, Wangen; Liu, Huijin; Zhang, Xianfeng; Du, Xuezhong

    2010-09-01

    The molecular assemblies of 4-(hexadecyloxy)-N-(pyridinylmethylene)anilines (HPA) at the air-water interface on pure water and aqueous Cu(II) subphases have been investigated using in situ infrared reflection absorption spectroscopy (IRRAS). The Schiff base units were oriented with their long axes almost perpendicular to the water surface, and both imine and pyridinyl nitrogen atoms of the Schiff base units were coordinated to Cu(II) ions together with their geometrical conversions. The alkyl chains in the monolayers were quantitatively determined on the assumption that the HPA monolayers at the air-water interface were composed of sublayers of alkyl chains and Schiff base units, and the chain orientation angle on pure water was 30 +/- 2 degrees and increased to 37 +/- 2 degrees on the aqueous Cu(II) subphase. The HPA amphiphiles could not be dispersed in pure water but could self-organize into vesicles with metal-coordinated headgroups and interdigitated-packed alkyl chains in the presence of Cu(II) ions in aqueous solution. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), UV-vis spectroscopy, and small-angle X-ray diffraction (XRD) were used to investigate the aggregate structures and specific properties of the coordinated vesicles. PMID:20698514

  12. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  13. Environmental controls of energy and trace gas exchanges at the water-air interface: Global synthesis of eddy fluxes over inland waters

    NASA Astrophysics Data System (ADS)

    Golub, M.; Desai, A. R.; Bohrer, G.; Blanken, P.; Deshmukh, C. S.; Franz, D.; Guérin, F.; Heiskanen, J. J.; Jammet, M.; Jonsson, A.; Karlsson, J.; Koebsch, F.; Liu, H.; Lohila, A.; Lundin, E.; Mammarella, I.; Rutgersson, A.; Sachs, T.; Serça, D.; Spence, C.; Strachan, I. B.; Vesala, T.; Weyhenmeyer, G. A.; Xiao, W.; Glatzel, S.

    2015-12-01

    Current estimates of energy and trace gases from inland waters often rely on limited point in time measurements, therefore, short time variation of fluxes and mechanism controlling the fluxes are particularly understudied. Here we present the results of a global synthesis of eddy fluxes from 29 globally distributed aquatic sites. The objective of this study was to quantify the magnitudes and variation of energy and CO2 fluxes and investigate their responses to environmental controls across half-hourly to monthly time scales. The coupled observations of in-lake physical and biogeochemical parameters with meteorology and eddy covariance fluxes were analyzed using decomposed correlation and wavelength coherence analysis to quantify the critical time scales that are associated with variation of energy and CO2 fluxes, and related drivers. The rates of fluxes were synthesized according to time scale, climate, and water body type. The diurnal cycles of both energy and CO2 fluxes variation were attributed to wind speed, solar radiation cycle, vapor pressure deficit, temperature gradients at water-air interface, and metabolism. Weekly time scales of variations were correlated with synoptic weather patterns. The monthly sums of energy fluxes showed a latitudinal gradient with the maxima observed in mid-latitude waterbodies. We found an inconsistent latitudinal pattern of monthly CO2 fluxes. Instead, we found correlation with proxies of lake productivity suggesting lake-specific characteristics play an important role in controlling flux magnitudes and variation. The results presented here highlight the importance of quantifying short-term variation of energy and trace gases fluxes towards improving the understanding of the water and carbon cycles and linked ecological processes.

  14. Morphological and structural characteristics of diazo dyes at the air-water interface: in situ Brewster angle microscopy and polarized UV/vis analysis.

    PubMed

    Yamaki, Sahori B; Andrade, Acácio A; Mendonça, Cléber R; Oliveira, Osvaldo N; Atvars, Teresa D Z

    2005-03-15

    A morphological analysis is presented for Langmuir films of the diazo dyes Sudan 4 (S4), Sudan 3 (S3), and Sudan red (SR), using Brewster angle microscopy. Stable nonmonomolecular structures are formed at the air-water interface denoted as a plateau in the pressure-area isotherms. Monolayer domains are evident by the contrastless image even before the pressure onset, which grow in size until it reached a condensed monolayer. This behavior resembles that of Langmuir films from simple aromatic fatty acids. Films from all the azo dyes display similar features, according to the surface potential isotherms and in situ polarized UV/vis spectroscopy except for the larger area per molecule occupied by S4 and SR. This is attributed to the presence of CH(3) groups that cause steric hindrance modifying the organization of diazo dye molecules at the air-water interface. UV/vis polarized absorption spectroscopy showed preferential orientation of S4 and S3 on the water surface, while SR molecules lie isotropically. For these three diazo dyes, film absorption was negligible at very large areas per molecule, becoming nonzero only at a critical area coinciding with the onset of surface potential. The critical area is ascribed to the formation of a H-bonded network between water molecules and diazo dye headgroups. PMID:15721920

  15. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  16. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  17. Determination and comparison of how the chain number and chain length of a lipid affects its interactions with a phospholipid at an air/water interface.

    PubMed

    Ngyugen, Hang; McNamee, Cathy E

    2014-06-01

    We determined how the number of chains in a lipid and its chain length affects its interactions with a phospholipid model membrane, and whether the number of chains or the chain length of lipids affects their interactions with the phospholipids more. This was achieved by using a Langmuir trough and a fluorescence microscope to study the interactions of mono-, di-, and triglycerides with a phospholipid monolayer at an air/water interface. The effect of the number of chains in a lipid on its interactions with phospholipids at air/water interfaces was shown by surface pressure-area per molecule isotherms and their thermodynamic analysis to worsen as the number of alkyl chains was increased to be greater than one. An increase in the packing density decreased the mixing ability of the lipids with the phospholipids, resulting in the formation of aggregates in the mixed monolayer. The aggregation was explained by the intermolecular hydrophobic and van der Waals attractions between the lipid molecules. Fluorescence microscopy revealed partial mixing without aggregation for monoglycerides, but the presence of lipid aggregation for diglycerides and triglycerides. The effect of decreasing the chain length of triglycerides from a long chain to a medium chain caused the interactions of the lipids with the phospholipid molecules at the air/water interface to significantly improve. Decreasing the chain length of monoglycerides from a long chain to a medium chain worsened their interaction with the phospholipid molecules. The effect of decreasing the triglyceride chain length on their interactions with phospholipids was much greater than the effect of decreasing the number of alkyl chains in the lipid.

  18. Photophysical behavior in spread monolayers. Dansyl fluorescence as a probe for polarity at the air-water interface. [N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine

    SciTech Connect

    Grieser, F.; Thistlethwaite, P.; Urquhart, R.; Patterson, L.K.

    1987-09-24

    The emission spectrum of N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine (dansyldihexadecylamine) in monolayers at the air-water interface has been studied. In some cases sudden shifts in the dansyl emission can be correlated with particular features of the surface pressure-area isotherms. These spectral shifts can be explained in terms of a change in the conformation of the head group on the surface and with aggregation of the dansyldihexadecylamine. In other cases the dansyl emission shows a blue shift with increasing compression that can be associated with reduced head-group hydration.

  19. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.

    PubMed

    Dai, Zhengfei; Li, Yue; Duan, Guotao; Jia, Lichao; Cai, Weiping

    2012-08-28

    Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).

  20. Self-assembly of diblock co-polymers at air-water interface: A microscopy and x-ray scattering study

    NASA Astrophysics Data System (ADS)

    Giri, R. P.; Mukhopadhyay, M. K.

    2016-05-01

    The spontaneous surface aggregation of diblock copolymer, containing polystyrene-polydimethylsiloxane or PS-PDMS, have been studied at air-water interface using Brewster's angle microscopy (BAM) and grazing incidence small angle x-ray scattering (GISAXS) technique. Pronounced differences in the molecular weight and solvent dependence of the size of aggregation on the water surface are observed. Structural characterization is done using atomic force microscopy (AFM) for a monolayer transferred to Si substrate. It shows that, individual polymer chains coalesce to form some disc like micelle aggregation on the Si surface which is also evident from the BAM image of the water floated monolayer. GISAXS study is also corroborating the same result.

  1. Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air-water interface.

    PubMed

    Zhao, Lingyun; Feng, Si-Shen

    2006-08-01

    Cholesterol is a main component of the cell membrane and could have significant effects on drug-cell membrane interactions and thus the therapeutic efficacy of the drug. It also plays an important role in liposomal formulation of drugs for controlled and targeted delivery. In this research, Langmuir film technique, atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are employed for a systematic investigation on the effects of cholesterol component on the molecular interactions between a prototype antineoplastic drug (paclitaxel) and 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) within the cell membrane by using the lipid monolayer at the air-water interface as a model of the lipid bilayer membrane and the biological cell membrane. Analysis of the measured surface pressure (pi) versus molecular area (a) isotherms of the mixed DPPC/paclitaxel/cholesterol monolayers at various molar ratios shows that DPPC, paclitaxel and cholesterol can form a non-ideal miscible system at the air-water interface. Cholesterol enhances the intermolecular forces between paclitaxel and DPPC, produces an area-condensing effect and thus makes the mixed monolayer more stable. Investigation of paclitaxel penetration into the mixed DPPC/cholesterol monolayer shows that the existence of cholesterol in the DPPC monolayer can considerably restrict the drug penetration into the monolayer, which may have clinical significance for diseases of high cholesterol. FTIR and AFM investigation on the mixed monolayer deposited on solid surface confirmed the obtained results.

  2. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface

    NASA Astrophysics Data System (ADS)

    Lian, Zengju

    2016-07-01

    We study the electrostatic pair interaction between two nonuniformly like-charged colloidal spheres trapped in an air-water interface. Under the linear Poisson-Boltzmann approximation, a general form of the electrostatic potential for the system is shown in terms of multipole expansions. After combining the translation-rotation transform of the coordinates with the numerical multipoint collection, we give a semi-analytical result of the electrostatic pair interaction between the colloids. The pair interaction changes quantitatively or even qualitatively with different distributions of the surface charges on the particles. Because of the anisotropic distribution of the surface charge and the asymmetric dielectric medium, the dipole moment of the ion cloud associating with the particle orients diagonally to the air-water interface with an angle α. When the angle is large, the colloids interact repulsively, while they attract each other when the angle is small. The attractive colloids may be "Janus-like" charged and be arranged with some specific configurations. Whatever the repulsions or the attractions, they all decay asymptotically ∝1/d3 (d is the center-center distance of the particles) which is consistent with our general acknowledge. The calculation results also provide an insight of the effect of the ion concentration, particle size, and the total charge of the particle on the pair interaction between the particles.

  3. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface.

    PubMed

    Lian, Zengju

    2016-07-01

    We study the electrostatic pair interaction between two nonuniformly like-charged colloidal spheres trapped in an air-water interface. Under the linear Poisson-Boltzmann approximation, a general form of the electrostatic potential for the system is shown in terms of multipole expansions. After combining the translation-rotation transform of the coordinates with the numerical multipoint collection, we give a semi-analytical result of the electrostatic pair interaction between the colloids. The pair interaction changes quantitatively or even qualitatively with different distributions of the surface charges on the particles. Because of the anisotropic distribution of the surface charge and the asymmetric dielectric medium, the dipole moment of the ion cloud associating with the particle orients diagonally to the air-water interface with an angle α. When the angle is large, the colloids interact repulsively, while they attract each other when the angle is small. The attractive colloids may be "Janus-like" charged and be arranged with some specific configurations. Whatever the repulsions or the attractions, they all decay asymptotically ∝1/d(3) (d is the center-center distance of the particles) which is consistent with our general acknowledge. The calculation results also provide an insight of the effect of the ion concentration, particle size, and the total charge of the particle on the pair interaction between the particles. PMID:27394119

  4. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    PubMed

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  5. Mechanism of Action of Thymol on Cell Membranes Investigated through Lipid Langmuir Monolayers at the Air-Water Interface and Molecular Simulation.

    PubMed

    Ferreira, João Victor N; Capello, Tabata M; Siqueira, Leonardo J A; Lago, João Henrique G; Caseli, Luciano

    2016-04-01

    A major challenge in the design of biocidal drugs is to identify compounds with potential action on microorganisms and to understand at the molecular level their mechanism of action. In this study, thymol, a monoterpenoid found in the oil of leaves of Lippia sidoides with possible action in biological surfaces, was incorporated in lipid monolayers at the air-water interface that represented cell membrane models. The interaction of thymol with dipalmitoylphosphatidylcholine (DPPC) at the air-water interface was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), polarization-modulation reflection-absorption spectroscopy (PM-IRRAS), and molecular dynamics simulation. Thymol expands DPPC monolayers, decreases their surface elasticity, and changes the morphology of the lipid monolayer, which evidence the incorporation of this compound in the lipid Langmuir film. Such incorporation could be corroborated by PM-IRRAS since some specific bands for DPPC were changed upon thymol incorporation. Furthermore, potential of mean force obtained by molecular dynamics simulations indicates that the most stable position of the drug along the lipid film is near the hydrophobic regions of DPPC. These results may be useful to understand the interaction between thymol and cell membranes during biochemical phenomena, which may be associated with its pharmaceutical properties at the molecular level.

  6. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties.

    PubMed

    Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2015-09-10

    We investigated the solvation of carboxylate ions from formate to hexanoate, in droplets of 50 to 1000 water molecules and neat water, by computations using standard molecular dynamics and sophisticated polarizable models. The carboxylate ions from methanoate to hexanoate show strong propensity for the air/water interface in small droplets. Only the ions larger than propanoate retain propensity for the interface in larger droplets, where their enthalpic stabilization by ion/water dispersion is reduced there by 3 kcal mol(-1) per CH2 group. This is compensated by entropy effects over +3.3 cal mol(-1) K(-1) per CH2 group. On the surface, the anionic headgroups are strongly oriented toward the aqueous core, while the hydrophobic alkyl chains are repelled into air and lose their structure-making effects. These results reproduce the structure-making effects of alkyl groups in solution, and suggest that the hydrocarbon chains of ionic headgroups and alkyl substituents solvate independently. Extrapolation to bulk solution using standard extrapolation schemes yields absolute carboxylate solvation energies. The results for formate and acetate yield a proton solvation enthalpy of about 270 kcal mol(-1), close to the experiment-based value. The largest carboxylate ions yield a value smaller by about 10 kcal mol(-1), which requires studies in much larger droplets. PMID:26287943

  7. Point-spread function associated with underwater imaging through a wavy air-water interface: theory and laboratory tank experiment.

    PubMed

    Brown, W C; Majumdar, A K

    1992-12-20

    The point-spread function needed for imaging underwater objects is theoretically derived and compared with experimental results. The theoretical development is based on the emergent-ray model, in which the Gram-Charlier series for the non-Gaussian probability-density function for emergent angles through a wavy water surface was assumed. To arrive at the point-spread model, we used a finite-element methodology with emergent-ray angular probability distributions as fundamental building functions. The model is in good agreement with the experiment for downwind conditions. A slight deviation between theory and experiment was observed for the crosswind case; this deviation may be caused by the possible interaction of standing waves with the original air-ruffled capillary waves that were not taken into account in the model.

  8. Direct impact of nonequilibrium aggregates on the structure and morphology of Pdadmac/SDS layers at the air/water interface.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Noskov, Boris A; Varga, Imre

    2014-07-29

    We discuss different nonequilibrium mechanisms by which bulk aggregates directly modify, and can even control, the interfacial structure and morphology of an oppositely charged polyelectrolyte/surfactant (P/S) mixture. Samples are categorized at the air/water interface with respect to the dynamic changes in the bulk phase behavior, the bulk composition, and the sample history using complementary surface-sensitive techniques. First, we show that bulk aggregates can spontaneously interact with the adsorption layer and are retained in it and that this process occurs most readily for positively charged aggregates with an expanded structure. In this case, key nonequilibrium issues of aggregate dissociation and spreading of surface-active material at the interface have a marked influence on the macroscopic interfacial properties. In a second distinct mechanism, aggregates inherently become trapped at the interface during its creation and lateral flocculation occurs. This irreversible process is most pronounced for aggregates with the lowest charge. A third mechanism involves the deposition of aggregates at interfaces due to their transport under gravity. The specificity of this process at an interface depends on its location and is mediated by density effects in the bulk. The prevalence of each mechanism critically depends on a number of different factors, which are outlined systematically here for the first time. This study highlights the sheer complexity by which aggregates can directly impact the interfacial properties of a P/S mixture. Our findings offer scope for understanding seemingly mysterious irreproducible effects which can compromise the performance of formulations in wide-ranging applications from foams to emulsions and lubricants.

  9. Spectroscopic [correction of eSpectroscopic] and structural properties of valine gramicidin A in monolayers at the air-water interface.

    PubMed Central

    Lavoie, Hugo; Blaudez, Daniel; Vaknin, David; Desbat, Bernard; Ocko, Benjamin M; Salesse, Christian

    2002-01-01

    Monomolecular films of valine gramicidin A (VGA) were investigated in situ at the air-water interface by x-ray reflectivity and x-ray grazing incidence diffraction as well as polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). These techniques were combined to obtain information on the secondary structure and the orientation of VGA and to characterize the shoulder observed in its pi-A isotherm. The thickness of the film was obtained by x-ray reflectivity, and the secondary structure of VGA was monitored using the frequency position of the amide I band. The PM-IRRAS spectra were compared with the simulated ones to identify the conformation adopted by VGA in monolayer. At large molecular area, VGA shows a disordered secondary structure, whereas at smaller molecular areas, VGA adopts an anti-parallel double-strand intertwined beta(5.6) helical conformation with 30 degrees orientation with respect to the normal with a thickness of 25 A. The interface between bulk water and the VGA monolayer was investigated by x-ray reflectivity as well as by comparing the experimental and the simulated PM-IRRAS spectra on D(2)O and H(2)O, which suggested the presence of oriented water molecules between the bulk and the monolayer. PMID:12496123

  10. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  11. Hydrodynamical entrapment of ciliates at the air-liquid interface

    NASA Astrophysics Data System (ADS)

    Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2012-11-01

    We found the new phenomenon of the entrapment of ciliates at the air-water interface, though they are not trapped by a solid interface. We first characterize the behaviours of cells at the interface by comparing it to those away from interfaces. The results showed that the cell's swimming velocity is considerably reduced at the air-water interface. In order to experimentally verify the possible physiological causes of the entrapment, we observed their behaviours in absence of positive chemotaxis for oxygen and the negative geotaxis. The results illustrated that the entrapment phenomenon was not dependent on these physiological conditions. The experiments using surfactant revealed that the entrapment phenomenon was strongly affected by the velocity-stress conditions at the interface. This fact was confirmed numerically by a boundary element method, i.e. the stress-free condition at the air-liquid interface is one of the main mechanisms of the entrapment phenomenon found in the experiments. Since the entrapment phenomenon found in this study affects the cell-cell interactions and the mass transport at the interface, the knowledge obtained in this study is useful for better understanding the complex behaviours of swimming microorganisms in nature. PhD student in the Physiological Flow Studies Laboratory.

  12. Langmuir structure of poly (2-vinylpyridine-b-hexyl isocyanate) rod-coil diblock copolymers at the air/water Interface

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan

    2005-03-01

    We conducted a systematic interfacial study for the complete range (5%-90% of rod mole percentage) of an amphiphilic rod-coil system, poly (hexyl isocyanate)-b-(2-vinylpyridine) at the air/water and air/solid interface. We applied Langmuir balance technique, scanning probe microscopy (SPM), transmission electron microscopy (TEM) and X-ray reflectivity for the complete characterization of the monolayer at the interfaces. The phase isotherms showed the well amphiphilic balance for the diblock copolymers, and the formation of stable monolayers. With the increasing rod content, the consistent increase in the monolayer packing density was observed by the phase isotherms and supported by X-ray reflectivity. SPM and TEM characterization showed their interesting surface morphology according to the varying rod mole percentage in the rod-coil system. Rod mole percentage 5%-15% showed micellar morphology. Rod mole percentage 23%-32% showed distinct and dispersed rods, whereas rod mole percentage 70%-90% showed well packed structure similar to lamella phase. We found the tendency of the diblock system to adopt a packed monomolecular structure has increased by the increasing rod content. This lead us to conclude that it is the hexyl-isocyanate (rod part) that governs mostly the interfacial behavior of rod-coil block copolymers.

  13. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation. PMID:26027770

  14. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  15. Intermolecular forces in lipid monolayers. Two-dimensional virial coefficients for pentadecanoic acid from micromanometry on spread monolayers at the air/water interface.

    PubMed

    Pallas, Norman R; Pethica, Brian A

    2009-07-01

    The lateral intermolecular forces between surfactant or lipid molecules in monolayers at interfaces are fundamental to understanding the phenomena of surface activity and the interactions of lipids in two-dimensional structures such as smectic phases and biomembranes. The classical approach to these forces is via the two-dimensional virial coefficients, which requires precise micromanometry on monolayer isotherms in the dilute gaseous region. Low pressure isotherms out to high surface areas in the two-dimensional gas range have been measured at 15, 25 and 30 degrees C for insoluble monolayers of n-pentadecanoic acid spread at the interface between water-vapour saturated air and a dilute aqueous solution of HCl. The data allow estimates of virial coefficients up to the third term. The second virial coefficients are compared with those predicted from a statistical mechanical model for monolayers of n-alkylcarboxylic acids treated as side-by-side parallel chains extended at the surface with the carboxyl head groups shielded in the water phase. The two sets coincide at approximately 26 degrees C, but the experimental estimates show a much larger dependence on temperature than the model predicts. Chain conformation effects, head group interactions and surface field polarization are discussed as possible temperature-dependent contributions to the lateral potentials of mean force.

  16. Molecular recognition of 7-(2-octadecyloxycarbonylethyl)guanine to cytidine at the air/water interface and LB film studied by Fourier transform infrared spectroscopy.

    PubMed

    Miao, Wangen; Luo, Xuzhong; Liang, Yingqiu

    2003-03-15

    Monolayer behavior of a nucleolipid amphiphile, 7-(2-octadecyloxycarbonylethyl)guanine (ODCG), on aqueous cytidine solution was investigated by means of surface-molecular area (pi-A) isotherms. It indicates that molecular recognition by hydrogen bonding is present between ODCG monolayer and the cytidine in subphase. The Fourier transform infrared (FTIR) transmission spectroscopic result indicates that the cytidine molecules in the subphase can be transferred onto solid substrates by Langmuir-Blodgett (LB) technique as a result of the formation of Watson-Crick base-pairing at the air/water interface. Investigation by rotating polarized FTIR transmission also suggests that the headgroup recognition of this amphiphile to the dissolved cytidine influence the orientation of the tailchains.

  17. Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Inoue, Ken-Ichi; Ishiyama, Tatsuya; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-05-19

    Femtosecond vibrational dynamics at the air/water interface is investigated by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy and molecular dynamics (MD) simulation. The low- and high-frequency sides of the hydrogen-bonded (HB) OH stretch band at the interface are selectively excited with special attention to the bandwidth and energy of the pump pulses. Narrow bleach is observed immediately after excitation of the high-frequency side of the HB OH band at ∼3500 cm(-1), compared to the broad bleach observed with excitation of the low-frequency side at ∼3300 cm(-1). However, the time-resolved spectra observed with the two different excitations become very similar at 0.5 ps and almost indistinguishable by 1.0 ps. This reveals that efficient spectral diffusion occurs regardless of the difference of the pump frequency. The experimental observations are well-reproduced by complementary MD simulation. There is no experimental and theoretical evidence that supports extraordinary slow dynamics in the high-frequency side of the HB OH band, which was reported before. PMID:27120559

  18. Method for Collecting Air-Water Interface Microbes Suitable for Subsequent Microscopy and Molecular Analysis in both Research and Teaching Laboratories

    PubMed Central

    Henk, Margaret C.

    2004-01-01

    A method has been developed for collecting air-water interface (AWI) microbes and biofilms that enables analysis of the same sample with various combinations of bright-field and fluorescence light microscopy optics, scanning and transmission electron microscopy (TEM), and atomic force microscopy. The identical sample is then subjected to molecular analysis. The sampling tool consists of a microscope slide supporting appropriate substrates, TEM grids, for example, that are removable for the desired protocols. The slide with its substrates is then coated with a collodion polymer membrane to which in situ AWI organisms adhere upon contact. This sampling device effectively separates the captured AWI bacterial community from the bulk water community immediately subtending. Preliminary data indicate that the AWI community differs significantly from the water column community from the same sample site when both are evaluated with microscopy and with 16S ribosomal DNA sequence-based culture-independent comparisons. This microbe collection method can be used at many levels in research and teaching. PMID:15066847

  19. Surface rheology of PEO-PPO-PEO triblock copolymers at the air-water interface: comparison of spread and adsorbed layers.

    PubMed

    Blomqvist, B Rippner; Wärnheim, T; Claesson, P M

    2005-07-01

    The dilatational rheological properties of monolayers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-type block copolymers at the air-water interface have been investigated by employing an oscillating ring trough method. The properties of adsorbed monolayers were compared to spread layers over a range of surface concentrations. The studied polymers were PEO26-PPO39-PEO26 (P85), PEO103-PPO40-PEO103 (F88), and PEO99-PPO65-PEO99 (F127). Thus, two of the polymers have similar PPO block size and two of them have similar PEO block size, which allows us to draw conclusions about the relationship between molecular structure and surface dilatational rheology. The dilatational properties of adsorbed monolayers were investigated as a function of time and bulk solution concentration. The time dependence was found to be rather complex, reflecting structural changes in the layer. When the dilatational modulus measured at different concentrations was replotted as a function of surface pressure, one unique master curve was obtained for each polymer. It was found that the dilatational behavior of spread (Langmuir) and adsorbed (Gibbs) monolayers of the same polymer is close to identical up to surface concentrations of approximately 0.7 mg/m2. At higher coverage, the properties are qualitatively alike with respect to dilatational modulus, although some differences are noticeable. Relaxation processes take place mainly within the interfacial layers by a redistribution of polymer segments. Several conformational transitions were shown to occur as the area per molecule decreased. PEO desorbs significantly from the interface at segmental areas below 20 A(2), while at higher surface coverage, we propose that segments of PPO are forced to leave the interface to form a mixed sublayer in the aqueous region. PMID:15982044

  20. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.

    PubMed

    Fauser, Heiko; von Klitzing, Regine; Campbell, Richard A

    2015-01-01

    We have studied the oppositely charged polyelectrolyte/surfactant mixture of poly(acrylamidomethylpropanesulfonate) sodium salt (PAMPS) and tetradecyl trimethylammonium bromide (C14TAB) using a combination of neutron reflectivity and ellipsometry measurements. The interfacial composition was determined using three different analysis methods involving the two techniques for the first time. The bulk surfactant concentration was fixed at a modest value while the bulk polyelectrolyte concentration was varied over a wide range. We reveal complex changes in the surface adsorption behavior. Mixtures with low bulk PAMPS concentrations result in the components interacting synergistically in charge neutral layers at the air/water interface. At the bulk composition where PAMPS and C14TAB are mixed in an equimolar charge ratio in the bulk, we observe a dramatic drop in the surfactant surface excess to leave a large excess of polyelectrolyte at the interface, which we infer to have loops in its interfacial structure. Further increase of the bulk PAMPS concentration leads to a more pronounced depletion of material from the surface. Mixtures containing a large excess of PAMPS in the bulk showed enhanced adsorption, which is attributed to the large increase in total ionic strength of the system and screening of the surfactant headgroup charges. The data are compared to our former results on PAMPS/C14TAB mixtures [Kristen et al. J. Phys. Chem. B, 2009, 23, 7986]. A peak in the surface tension is rationalized in terms of the changing surface adsorption and, unlike in more concentrated systems, is unrelated to bulk precipitation. Also, a comparison between the determined interfacial composition with zeta potential and foam film stability data shows that the highest film stability occurs when there is enhanced synergistic adsorption of both components at the interface due to charge screening when the total ionic strength of the system is highest. The additional contribution to the

  1. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  2. Self-assembly at Air/Water Interfaces and Carbohydrate Binding Properties of the Small Secreted Protein EPL1 from the fungus Trichoderma atroviride*

    PubMed Central

    Frischmann, Alexa; Neudl, Susanna; Gaderer, Romana; Bonazza, Klaus; Zach, Simone; Gruber, Sabine; Spadiut, Oliver; Friedbacher, Gernot; Grothe, Hinrich; Seidl-Seiboth, Verena

    2013-01-01

    The protein EPL1 from the fungus Trichoderma atroviride belongs to the cerato-platanin protein family. These proteins occur only in filamentous fungi and are associated with the induction of defense responses in plants and allergic reactions in humans. However, fungi with other lifestyles also express cerato-platanin proteins, and the primary function of this protein family has not yet been elucidated. In this study, we investigated the biochemical properties of the cerato-platanin protein EPL1 from T. atroviride. Our results showed that EPL1 readily self-assembles at air/water interfaces and forms protein layers that can be redissolved in water. These properties are reminiscent of hydrophobins, which are amphiphilic fungal proteins that accumulate at interfaces. Atomic force microscopy imaging showed that EPL1 assembles into irregular meshwork-like substructures. Furthermore, surface activity measurements with EPL1 revealed that, in contrast to hydrophobins, EPL1 increases the polarity of aqueous solutions and surfaces. In addition, EPL1 was found to bind to various forms of polymeric chitin. The T. atroviride genome contains three epl genes. epl1 was predominantly expressed during hyphal growth, whereas epl2 was mainly expressed during spore formation, suggesting that the respective proteins are involved in different biological processes. For epl3, no gene expression was detected under most growth conditions. Single and double gene knock-out strains of epl1 and epl2 did not reveal a detectable phenotype, showing that these proteins are not essential for fungal growth and development despite their abundant expression. PMID:23250741

  3. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    NASA Astrophysics Data System (ADS)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  4. Supramolecular control of photochemical and electrochemical properties of two oligothiophene derivatives at the air/water interface.

    PubMed

    Selector, Sophiya; Fedorova, Olga; Lukovskaya, Elena; Anisimov, Alexander; Fedorov, Yuri; Tarasova, Nina; Raitman, Oleg; Fages, Frederic; Arslanov, Vladimir

    2012-02-01

    Two geometric isomers of oligothiophene derivatives containing two crowned styryl fragments in 2- or 3-positions of thiophene rings are able to form stable monolayers on the water subphase. The organizing of crown-containing oligothiophenes in monolayers is guided by the π-stacking interaction of hydrophobic styrylthiophene fragments and interaction of hydrophilic macrocycles with the water subphase. The difference in structure of oligothiophene molecules leads to the formation of distinct monolayer architectures with various electrochemical and optical characteristics.

  5. Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study.

    PubMed

    Gang, Hongze; Liu, Jinfeng; Mu, Bozhong

    2015-10-01

    The binding structure and kinetics of ionized surfactin monolayer formed at the air/water interface to five counterions, Li+, Na+, K+, Ca2+, and Ba2+ (molar ratios of surfactin to monovalent and divalent counterions are 1:2 and 1:1 respectively), have been studied using molecular dynamics simulation. The results show that surfactin exhibits higher binding affinity to divalent counterions, Ca2+, and Ba2+, and smaller monovalent counterion, Li+, than Na+ and K+. Both carboxyl groups in surfactin are accessible for counterions, but the carboxyl group in Glu1 is easier to access by counterions than Asp5. Salt bridges are widely built between carboxyl groups by counterions, and the probability of the formation of intermolecular salt bridge is markedly larger than that of intramolecular salt bridge. Divalent counterions perform well in forming salt bridges between carboxyl groups. The salt bridges mediated by Ca2+ are so rigid that the lifetimes are about 0.13 ns, and the break rates of these salt bridges are 1-2 orders of magnitude smaller than those mediated by K+ which is about 5 ps in duration. The positions of the hydration layer of carboxyl groups are independent of counterions, but the bound counterions induce the dehydration of carboxyl groups and disturb the hydrogen bonds built between carboxyl group and hydration water.

  6. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.

    PubMed

    Liyana-Arachchi, Thilanga P; Zhang, Zenghui; Ehrenhauser, Franz S; Avij, Paria; Valsaraj, Kalliat T; Hung, Francisco R

    2014-01-01

    Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water

  7. The Turbulent Boundary Layer Near the Air-Water Interface on a Surface-Piercing Flat Plate

    NASA Astrophysics Data System (ADS)

    Washuta, Nathan; Masnadi, Naeem; Duncan, James H.

    2015-11-01

    Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with a 3- g acceleration in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Cinematic Stereo PIV measurements are performed in planes parallel to the free surface by imaging the flow from underneath the tank in order to study the modification of the boundary layer flow field due to the effects of the water free surface. The support of the Office of Naval Research under grant N000141110029 is gratefully acknowledged.

  8. Interfacial Water Structure and Cation Binding with the Dppc Phosphate at Air /aqueous Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Allen, Heather C.

    2012-06-01

    Molecular-level knowledge of water structure and cation binding specificity to lipid headgroups at lipid/water interfaces plays a key role in many relevant chemical, biological, and environmental processes. To obtain information on the molecular organization at aqueous interfaces, vibrational sum frequency generation (VSFG) has been applied extensively as an interface-specific technique. Dipalmitoylphosphocholine (DPPC) is a major component of cell membranes and has been used as a proxy for the organic coating on fat-coated aerosols. In the present work, in addition to conventional VSFG studies on cation interaction with the phosphate headgroup moiety of DPPC, we employ phase-sensitive vibrational sum frequency generation (PS-VSFG) to investigate the average direction of the transition dipole moment of interfacial water molecules. The average orientation of water structure at DPPC/water interfaces is inferred. DPPC orients interfacial water molecules on average with their net transition dipole moment pointing towards the surface. The influence of Na+, K+, Mg2+, Ca2+ is identified in regard to interfacial water structure and DPPC headgroup organization. Ca2+ is observed to have greater impact on the water structure and a unique binding affinity to the phosphate headgroup relative to other cations tested. In highly concentrated Ca2+ regimes the already disturbed interfacial hydrogen-bonding network reorganizes to resemble that of the neat salt solution interface.

  9. Spatial and seasonal variability of CO2 flux at the air-water interface of the Three Gorges Reservoir.

    PubMed

    Le, Yang; Lu, Fei; Wang, Xiaoke; Duan, Xiaonan; Tong, Lei; Ouyang, Zhiyun; Li, Hepeng

    2013-11-01

    Diffusive carbon dioxide (CO2) emissions from the water surface of the Three Gorges Reservoir, currently the largest hydroelectric reservoir in the world, were measured using floating static chambers over the course of a yearlong survey. The results showed that the average annual CO2 flux was (163.3 +/- 117.4) mg CO2/(m2.hr) at the reservoir surface, which was larger than the CO2 flux in most boreal and temperate reservoirs but lower than that in tropical reservoirs. Significant spatial variations in CO2 flux were observed at four measured sites, with the largest flux measured at Wushan (221.9 mg CO2/(m2.hr)) and the smallest flux measured at Zigui (88.6 mg CO2/(m(2).hr)); these differences were probably related to the average water velocities at different sites. Seasonal variations in CO2 flux were also observed at four sites, starting to increase in January, continuously rising until peaking in the summer (June-August) and gradually decreasing thereafter. Seasonal variations in CO2 flux could reflect seasonal dynamics in pH, water velocity, and temperature. Since the spatial and temporal variations in CO2 flux were significant and dependent on multiple physical, chemical, and hydrological factors, it is suggested that long-term measurements should be made on a large spatial scale to assess the climatic influence of hydropower in China, as well as the rest of the world.

  10. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air-water interface.

    PubMed

    Le Guillou, J; Ropers, M-H; Gaillard, C; David-Briand, E; Desherces, S; Schmitt, E; Bencharif, D; Amirat-Briand, L; Tainturier, D; Anton, M

    2013-08-01

    Cryopreservation is widely used to preserve the quality of bull spermatozoa over time. Sequestration of seminal plasma proteins by low density lipoproteins and formation of a protective film around the spermatozoa membrane by low density lipoproteins were the main mechanisms proposed. However, the organization of lipids in the outer leaflet of the spermatozoa membrane has been never considered as a possible parameter. This study evaluated whether a change in the organization of the outer leaflet of the spermotozoa membrane could occur during cooling down. The organization of the main components of the spermatozoa membrane's outer layer at the liquid-gas interface was analysed. Cryopreservative media (at 8° and 34°C) were used to study the miscibility of the spermatozoa membrane lipids using epifluorescence imaging and by tensiometry on Langmuir films. The results show that the four lipids: sphingomyelin, cholesterol, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PC) and plasmalogen 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (P-PC) were not fully miscible and their organization was controlled by temperature. Cholesterol and sphingomyelin form condensed domains surrounded by a mixture of PC and P-PC at 34°C while these condensed domains are surrounded by separated domains of pure PC and pure P-PC at 8°C. The organization of the outer membrane lipids, in particular the separation of PC and P-PC lipids during cooling down, must be considered to fully understand preservation of membrane integrity during cryopreservation. PMID:23563290

  11. Spread mixed monolayers of deoxycholic and dehydrocholic acids at the air-water interface, effect of subphase pH. Characterization by axisymmetric drop shape analysis.

    PubMed

    Messina, Paula V; Fernández-Leyes, Marcos D; Prieto, Gerardo; Ruso, Juan M; Sarmiento, Félix; Schulz, Pablo C

    2008-01-01

    Bile acids (deoxycholic and dehydrocholic acids) spread mixed monolayers behavior at the air/water interface were studied as a function of subphase pH using a constant surface pressure penetration Langmuir balance based on the Axisymmetric Drop Shape Analysis (ADSA). We examined the influence of electrostatic, hydrophobic and hydration forces on the interaction between amphiphilic molecules at the interface by the collapse area values, the thermodynamic parameters and equation of state virial coefficients analysis. The obtained results showed that at neutral (pH=6.7) or basic (pH=10) subphase conditions the collapse areas values are similar to that of cholanoic acid and consistent with the cross-sectional area of the steroid nucleus (approximately 40 A(2)). The Gibbs energy of mixing values (DeltaG(mix)<0) and the first virial coefficients of the equation of state (b(0)<1) indicated that a miscible monolayer with laterally structured microdomains existed. The aggregation number (1/b(0)) was estimated within the order of 6 (pH=6.7) and 3 (pH=10). At pH=3.2, acidic subphase conditions, no phase separation occurs (DeltaG(mix)<0) but a high expanded effect of the monolayer could be noted. The mixed monolayer behavior was no ideal and no aggregates were formed (b(0)> or =1). Such behavior indicates that the polar groups of the molecules interacts each other more strongly by repulsive electrostatic forces than with the more hydrophobic part of the molecule.

  12. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  13. Extraordinary cohesiveness of a boronic acid-based calix[6]arene monolayer at the air-water interface

    SciTech Connect

    Hendel, R.A.; Janout, V.; Lee, W.; Regen, S.L.

    1996-11-13

    In this paper, we describe the design and synthesis of calix[6]arene. We also report our unexpected finding that monolayers of the surfactant exhibit extraordinary cohesiveness while in intimate contact with water; i.e., dehydration is not essential for stabilizing the film. The specific molecule that was chosen as a synthetic target was 5,11,17,23,29, 35-hexakis(3-dihydroxybora-1-propyl)-37,38,39,40,41, 42-hexakis(hexadecycloxy)calix[6]-arene, I. The synthesis of I proved to be straightforward using methods that have previously been developed for calix[6]arene and alkylboronic acids synthesis. 10 refs., 2 figs.

  14. Structure of Ceramide-1-Phosphate at the Air-Water Solution Interface in the Absence and Presence of Ca[superscript 2+

    SciTech Connect

    Kooijman, Edgar E.; Vaknin, David; Bu, Wei; Joshi, Leela; Kang, Shin-Woong; Gericke, Arne; Mann, Elizabeth K.; Kumar, Satyendra

    2009-03-24

    Ceramide-1-phosphate, the phosphorylated form of ceramide, gained attention recently due to its diverse intracellular roles, in particular in inflammation mediated by cPLA{sub 2}{alpha}. However, surprisingly little is known about the physical chemical properties of this lipid and its potential impact on physiological function. For example, the presence of Ca{sup 2+} is indispensable for the interaction of Cer-1-P with the C2 domain of cPLA{sub 2}{alpha}. We report on the structure and morphology of Cer-1-P in monomolecular layers at the air/water solution interface in the absence and presence of Ca{sup 2+} using diverse biophysical techniques, including synchrotron x-ray reflectivity and grazing angle diffraction, to gain insight into the role and function of Cer-1-P in biomembranes. We show that relatively small changes in pH and the presence of monovalent cations dramatically affect the behavior of Cer-1-P. On pure water Cer-1-P forms a solid monolayer despite the negative charge of the phosphomonoester headgroup. In contrast, pH 7.2 buffer yields a considerably less solid-like monolayer, indicating that charge-charge repulsion becomes important at higher pH. Calcium was found to bind strongly to the headgroup of Cer-1-P even in the presence of a 100-fold larger Na{sup +} concentration. Analysis of the x-ray reflectivity data allowed us to estimate how much Ca{sup 2+} is bound to the headgroup, 0.5 Ca{sup 2+} and 1.0 Ca{sup 2+} ions per Cer-1-P molecule for the water and buffer subphase respectively. These results can be qualitatively understood based on the molecular structure of Cer-1-P and the electrostatic/hydrogen-bond interactions of its phosphomonoester headgroup. Biological implications of our results are also discussed.

  15. Determination of chain orientation in the monolayers of amino-acid-derived schiff base at the air-water interface using in situ infrared reflection absorption spectroscopy.

    PubMed

    Liu, Huijin; Miao, Wangen; Du, Xuezhong

    2007-10-23

    The chain orientation in the monolayers of amino-acid-derived Schiff base, 4-(4-dodecyloxy)-2-hydroxybenzylideneamino)benzoic acid (DSA), at the air-water interface has been determined using infrared reflection absorption spectroscopy (IRRAS). On pure water, a condensed monolayer is formed with the long axes of Schiff base segments almost perpendicular to the water surface. In the presence of metal ions (Ca2+, Co2+, Zn2+, Ni2+, and Cu2+) in the subphase, the monolayer is expanded and the long axes of the Schiff base segments are inclined with respect to the monolayer normal depending on metal ion. The monolayer thickness, which is an important parameter for quantitative determination of orientation of hydrocarbon chains, is composed of alkyl chains and salicylideneaniline portions for the DSA monolayers. The effective thickness of the Schiff base portions is roughly estimated in the combination of the IRRAS results and surface pressure-area isotherms for computer simulation, since the only two observable p- and s-polarized reflectance-absorbance (RA) values can be obtained. The alkyl chains with almost all-trans conformations are oriented at an angle of about 10 degrees for H2O, 15 degrees for Ca2+, 30 degrees for Co2+, 35 degrees -40 degrees for Zn2+, and 35 degrees -40 degrees for Ni2+ with respect to the monolayer normal. The chain segments linked with gauche conformers in the case of Cu2+ are estimated to be 40 degrees -50 degrees away from the normal. PMID:17902721

  16. Ligand Shell Composition-Dependent Effects on the Apparent Hydrophobicity and Film Behavior of Gold Nanoparticles at the Air-Water Interface.

    PubMed

    Bradford, Stephen M; Fisher, Elizabeth A; Meli, M-Vicki

    2016-09-27

    Nanoparticles with well-defined interfacial energy and wetting properties are needed for a broad range of applications involving nanoparticle self-assembly including the formation of superlattices, stability of Pickering emulsions, and for the control of nanoparticle interactions with biological membranes. Theoretical, simulated, and recent experimental studies have found nanometer-scale chemical heterogeneity to have important effects on hydrophobic interactions. Here we report the study of 4 nm gold nanoparticles with compositionally well-defined mixed ligand shells of hydroxyl-(OH) and methyl-(CH3) terminated alkylthiols as Langmuir films. Compositions ranging from 0-25% hydroxyl were examined and reveal nonmonotonic changes in particle hydrophobicity at the air-water interface. Unlike nanoparticles capped exclusively with a methyl-terminated alkylthiol, extensive particle aggregation is found for ligand shells containing <2% hydroxyl-terminated chains. This aggregation was lessened upon increasing the quantity of OH-terminated chains. Nanoparticles capped with 25% OH yield films of well-separated nanoparticles exhibiting a fluid-phase regime in the surface pressure vs area isotherm. Compression-expansion hysteresis, monolayer collapse, and mean nanoparticle area measurements support the TEM-observed changes in film morphology. Such clear changes in the hydrophobicity of nanoparticles based on very small changes in the ligand shell composition are shown to impact the process of interfacial nanoparticle self-assembly and are an important demonstration of nanoscale wetting with consequences in both materials and biological applications of nanoparticles that require tunable hydrophobicity. PMID:27594307

  17. Multiple H-bonds directed self-assembly of an amphiphilic and plate-like codendrimer with janus faces at water-air interface.

    PubMed

    Yang, Miao; Wang, Wei; Lieberwirth, Ingo; Wegner, Gerhard

    2009-05-01

    An amphiphilic diblock codendrimer composed of a third generation poly(methallyl dichloride) end-capped by eight hydroxyl groups (PMDC(OH)(8)) and a second generation poly(urethane amide) end-capped by four alkyl groups (PUA(C16)(4)) were found to self-assemble into highly oriented ribbons at the water-air interface. Further investigation on the ribbon formation shows that the ribbons are hierarchically self-organized by the janus and plate-like shape of g3-PMDC(OH)(8)-b-g2-PUA(C16)(4). Sextuple H-bonds existing at different positions of the molecular plate are the main driving force for the one-dimensional growth of the ribbon. The recognition of these H-bonds leads to a highly ordered stacking of the codendrimers, and the crystallization of the alkyl chains results in a primary ribbon with a ca. 7.6 +/- 0.5 nm width. The primary ribbons prefer to organize into secondary ribbons with an average width of 53 +/- 6.0 nm. The manner of recognition and assembly is similar to the organization of a kind of toy building block with janus faces, which provides a new strategy to the design of well-defined nanomaterials. PMID:19361164

  18. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  19. Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface.

    PubMed

    Chakraborty, Aishik; Hui, Erica; Waring, Alan J; Dhar, Prajnaparamita

    2016-04-01

    The overall goal of this work is to study the combined effects of Mini-B, a 34 residue synthetic analog of the lung surfactant protein SP-B, and cholesterol, a neutral lipid, on a model binary lipid mixture containing dipalmitolphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), that is often used to mimic the primary phospholipid composition of lung surfactants. Using surface pressure vs. mean molecular area isotherms, fluorescence imaging and analysis of lipid domain size distributions; we report on changes in the structure, function and stability of the model lipid-protein films in the presence and absence of varying composition of cholesterol. Our results indicate that at low cholesterol concentrations, Mini-B can prevent cholesterol's tendency to lower the line tension between lipid domain boundaries, while maintaining Mini-B's ability to cause reversible collapse resulting in the formation of surface associated reservoirs. Our results also show that lowering the line tension between domains can adversely impact monolayer folding mechanisms. We propose that small amounts of cholesterol and synthetic protein Mini-B can together achieve the seemingly opposing requirements of efficient LS: fluid enough to flow at the air-water interface, while being rigid enough to oppose irreversible collapse at ultra-low surface tensions. PMID:26775740

  20. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. PMID:26624532

  1. Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface.

    PubMed

    Chakraborty, Aishik; Hui, Erica; Waring, Alan J; Dhar, Prajnaparamita

    2016-04-01

    The overall goal of this work is to study the combined effects of Mini-B, a 34 residue synthetic analog of the lung surfactant protein SP-B, and cholesterol, a neutral lipid, on a model binary lipid mixture containing dipalmitolphosphatidylcholine (DPPC) and palmitoyl-oleoyl-phosphatidylglycerol (POPG), that is often used to mimic the primary phospholipid composition of lung surfactants. Using surface pressure vs. mean molecular area isotherms, fluorescence imaging and analysis of lipid domain size distributions; we report on changes in the structure, function and stability of the model lipid-protein films in the presence and absence of varying composition of cholesterol. Our results indicate that at low cholesterol concentrations, Mini-B can prevent cholesterol's tendency to lower the line tension between lipid domain boundaries, while maintaining Mini-B's ability to cause reversible collapse resulting in the formation of surface associated reservoirs. Our results also show that lowering the line tension between domains can adversely impact monolayer folding mechanisms. We propose that small amounts of cholesterol and synthetic protein Mini-B can together achieve the seemingly opposing requirements of efficient LS: fluid enough to flow at the air-water interface, while being rigid enough to oppose irreversible collapse at ultra-low surface tensions.

  2. Two-dimensional crystallization of catalase on a monolayer film of poly(1-benzyl-L-histidine) spread at the air/water interface.

    PubMed

    Sato, A; Furuno, T; Toyoshima, C; Sasabe, H

    1993-03-01

    Two-dimensional (2D) crystals of beef liver catalase were prepared by adsorption to a film of synthetic polypeptide, poly(1-benzyl-L-histidine) (PBLH), spread at the air/water interface. The crystallization experiments were carried out in the pH range of 4.8-6.4 for catalase solutions at low concentration (10 micrograms/ml). The pH-dependence suggested an electrostatic interaction in the binding of catalase to the PBLH film. At lower pH, small crystals were formed at a low binding rate, and at higher pH the binding was rapid and densely-packed 2D arrays with poor crystallinity were formed. To stimulate crystal growth, a thermal treatment was applied. One-shot heating of the interfacial catalase-PBLH film to 35-40 degrees C was remarkably effective to form larger 2D crystals. The structure of catalase 2D crystals has been analyzed by Fourier filtering of the transmission electron micrographs. The crystal form is a new one, containing four catalase molecules in the unit cell with lattice parameters of alpha = 187 A, b = 225 A and gamma = 92.8 degrees.

  3. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles

  4. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging.

    PubMed

    Stanimirova, Rumyana D; Gurkov, Theodor D; Kralchevsky, Peter A; Balashev, Konstantin T; Stoyanov, Simeon D; Pelan, Eddie G

    2013-05-21

    Here, we combine experiments with Langmuir trough and atomic force microscopy (AFM) to investigate the reasons for the special properties of layers from the protein HFBII hydrophobin spread on the air-water interface. The hydrophobin interfacial layers possess the highest surface dilatational and shear elastic moduli among all investigated proteins. The AFM images show that the spread HFBII layers are rather inhomogeneous, (i.e., they contain voids, monolayer and multilayer domains). A continuous compression of the layer leads to filling the voids and transformation of a part of the monolayer into a trilayer. The trilayer appears in the form of large surface domains, which can be formed by folding and subduction of parts from the initial monolayer. The trilayer appears also in the form of numerous submicrometer spots, which can be obtained by forcing protein molecules out of the monolayer and their self-assembly into adjacent pimples. Such structures are formed because not only the hydrophobic parts, but also the hydrophilic parts of the HFBII molecules can adhere to each other in the water medium. If a hydrophobin layer is subjected to oscillations, its elasticity considerably increases, up to 500 mN/m, which can be explained with compaction. The relaxation of the layer's tension after expansion or compression follows the same relatively simple law, which refers to two-dimensional diffusion of protein aggregates within the layer. The characteristic diffusion time after compression is longer than after expansion, which can be explained with the impedence of diffusion in the more compact interfacial layer. The results shed light on the relation between the mesoscopic structure of hydrophobin interfacial layers and their unique mechanical properties that find applications for the production of foams and emulsions of extraordinary stability; for the immobilization of functional molecules at surfaces, and as coating agents for surface modification.

  5. OH-radical specific addition to the antioxidant glutathione S-atom at the air-water interface - Relevance to the redox balance of the lung epithelial lining fluid and the causality of adverse health effects induced by air pollution

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2015-12-01

    Inhalation of oxidant pollutants upsets the redox balance (RB) of the lung epithelial lining fluid (ELF) by triggering the formation of reactive OH-radicals therein. RB is deemed to be controlled by the equilibrium between the most abundant ELF protective antioxidant glutathione (GSH) and its putative disulfide GSSG oxidation product. The actual species produced from the oxidation of GSH initiated by ·OH in ELF interfacial layers exposed to air, i.e., under realistic ELF conditions, however, were never identified. Here we report the online electrospray mass spectrometric detection of sulfenate (GSO-), sulfinate (GSO2-) and sulfonate (GSO3-) on the surface of aqueous GSH solutions collided with ·OH(g). We show that these products arise from ·OH specific additions to S-atoms, rather than via H-abstraction from GS-H. The remarkable specificity of ·OH in interfacial water vis-a-vis its lack of selectivity in bulk water implicates an unprecedented steering process during ·OH-GSH encounters at water interfaces. A non-specific systemic immune response to inhaled oxidants should be expected if they were initially converted into a common ·OH intermediate on the ELF (e.g., via fast Fenton chemistry) and oxidative stress signaled by the [GSH]/[GSOH] ratio.

  6. Surface characteristics of phosphatidylglycerol phosphate from the extreme halophile Halobacterium cutirubrum compared with those of its deoxy analogue, at the air/water interface.

    PubMed

    Quinn, P J; Kates, M; Tocanne, J F; Tomoaia-Cotişel, M

    1989-07-15

    The relationship between area per molecule and surface pressure of monolayers of phosphatidylglycerol phosphate from extreme halophile Halobacterium cutrirubrum and its deoxy analogue, deoxyphosphatidylglycerol phosphate, spread at an air/water interface was examined. The effect of ionization of the primary and secondary acidic functions of the phosphate groups of the two lipids on surface characteristics of compression isotherms was determined by spreading monolayers on subphases with pH values ranging from below the apparent pKa of the primary ionization (pH 0) to greater than that of secondary ionization (pH 10.9). The limiting molecular area increases with decreasing pH below 2. Ionization of the primary phosphate functions of both phospholipids (with bulk pK1 values close to 4) is associated with a marked expansion of the films, as judged by values of limiting molecular area. Ionization of the secondary phosphate functions causes further expansion of the films, with the apparent pK2 of deoxyphosphatidylglycerol phosphate slightly less than that indicated for phosphatidylglycerol phosphate. Values of surface-compressibility modulus calculated from the surface characteristics of the phosphatidylglcerol phosphate monolayers showed that films spread on subphases with a pH of about the apparent pK1 of the primary phosphate functions were the least compressible. Increasing or decreasing subphase pH caused an increase in compressibility; this effect on compressibility was much less with monolayers of deoxyphosphatidylglycerol phosphate at high pH. The effect of inorganic counter-ions on monolayer characteristics of phosphatidylglycerol phosphate was examined by using subphases of NaCl concentrations varying from 0.01 to 1 M. The limiting molecular area was found to increase exponentially with respect to the subphase NaCl concentration.

  7. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.

    PubMed

    Ariga, Katsuhiko; Urakawa, Toshihiro; Michiue, Atsuo; Kikuchi, Jun-ichi

    2004-08-01

    As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.

  8. Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection.

    PubMed

    Pandey, Chandra Mouli; Dewan, Srishti; Chawla, Seema; Yadav, Birendra Kumar; Sumana, Gajjala; Malhotra, Bansi Dhar

    2016-09-21

    We report results of the studies relating to controlled deposition of the amino-functionalized silica-coated zinc oxide (Am-Si@ZnO) nano-assemblies onto an indium tin oxide (ITO) coated glass substrate using Langmuir-Blodgett (LB) technique. The monolayers have been deposited by transferring the spread solution of Am-Si@ZnO stearic acid prepared in chloroform at the air-water interface, at optimized pressure (16 mN/m), concentration (10 mg/ml) and temperature (23 °C). The high-resolution transmission electron microscopic studies of the Am-Si@ZnO nanocomposite reveal that the nanoparticles have a microscopic structure comprising of hexagonal assemblies of ZnO with typical dimensions of 30 nm. The surface morphology of the LB multilayer observed by scanning electron microscopy shows uniform surface of the Am-Si@ZnO film in the nanometer range (<80 nm). These electrodes have been utilized for chronic myelogenous leukemia (CML) detection by covalently immobilizing the amino-terminated oligonucleotide probe sequence via glutaraldehyde as a crosslinker. The response studies of these fabricated electrodes carried out using electrochemical impedance spectroscopy show that this Am-Si@ZnO LB film based nucleic acid sensor exhibits a linear response to complementary DNA (10(-6)-10(-16) M) with a detection limit of 1 × 10(-16) M. This fabricated platform is validated with clinical samples of CML positive patients and the results demonstrate its immense potential for clinical diagnosis. PMID:27590542

  9. Effect of the degree of dissociation of molecules in a monolayer at an air/water interface on the force between the monolayer and a like-charged particle in the subphase.

    PubMed

    McNamee, Cathy E; Kappl, Michael; Butt, Hans-Juergen; Nguyen, Hang; Sato, Shinichiro; Graf, Karlheinz; Healy, Thomas W

    2012-11-26

    We used the monolayer particle interaction apparatus to measure the force between a monolayer of stearic acid or octadecanol at the air/water interface and a colloidal silica sphere. The silica sphere approached the monolayer from the aqueous subphase. The aim was to analyze how the magnitude of the charge of a deformable interface affects the interaction between that interface and a like-charged hard particle. The charge density of the stearic acid monolayer was controlled by adjusting the pH (5.8-9) and the surface pressure. The octadecanol monolayer acted as a reference; the alcohol headgroup did not dissociate between pH 5.8-9.0. Stable monolayers of dissociated stearic acid molecules were formed at the air/water interface by dissolving stearic acid into the subphase to give a saturated concentration at each pH value studied. The approach force curve showed that the electrostatic repulsion increased with an increasing degree of dissociation and therefore the charge of the monolayer. The strength of the repulsion corresponded to that measured between two like-charged hard surfaces, but the apparent range of the repulsion was larger for a deformable interface. Retracting force curves displayed a significant adhesion, whose magnitude and range depended on the surface pressure and subphase pH.

  10. Holographic optical tweezers: manipulations at an air-liquid interface

    NASA Astrophysics Data System (ADS)

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-08-01

    By performing experiments at an air-water interface, we operate Holographic Optical Tweezers in a qualitatively new environment. In this regime, trapping and moving of micro particles may allow access to parameters like local viscosity and surface tension. Polystyrene micro beads are naturally stabilized in the interface due to a minimum in surface energy. For this reason, they can also be manipulated by light patterns with small axial field gradients, without causing the particles to escape due to scattering forces. In this manner, the interface provides a true two-dimensional "working environment", where particles can be manipulated with high effciency. For example, we demonstrate different optical "micro tools", which utilize scattering and gradient forces to enable controlled transport of matter within the surface.

  11. Ordering of solid microparticles at liquid crystal-water interfaces.

    PubMed

    Lin, I-Hsin; Koenig, Gary M; de Pablo, Juan J; Abbott, Nicholas L

    2008-12-25

    We report a study of the organization of solid microparticles at oil-water interfaces, where the oil is a thermotropic liquid crystal (LC). The study was motivated by the proposition that microparticle organization and LC ordering would be coupled at these interfaces. Surfactant-functionalized polystyrene microparticles were spread at air-water interfaces at prescribed densities and then raised into contact with supported films of nematic 4-pentyl-4'-cyanobiphenyl (5CB). Whereas this method of sample preparation led to quantitative transfer of microparticles from the air-water interface to an isotropic oil-water interface, forces mediated by the nematic order of 5CB were observed to rapidly displace microparticles laterally across the interface of the water upon contact with nematic 5CB, thus leading to a 65% decrease in the density of microparticles at the LC-water interface. These lateral forces were determined to be caused by microparticle-induced deformation of the LC, the energy of which was estimated to be approximately 10(4) kT. We also observed microparticles transferred to the LC-water interface to assemble into chainlike structures that were not seen when using isotropic oils, indicating the presence of LC-mediated interparticle interactions at this interface. Optical textures of the LC in the vicinity of the microparticles were consistent with formation of topological defects with dipolar symmetry capable of promoting the chaining of the microparticles. The presence of microparticles at the interface also impacted the ordering of the LCs, including a transition from parallel to perpendicular ordering of the LC with increasing microparticle density. These observations, when combined, demonstrate that LC-mediated interactions can direct the assembly of solid microparticles at LC-water interfaces and that the ordering of the LC is also strongly coupled to the presence of microparticles.

  12. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    EPA Science Inventory

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  13. Orientational Dynamics of Water at an Extended Hydrophobic Interface.

    PubMed

    Xiao, Shunhao; Figge, Florian; Stirnemann, Guillaume; Laage, Damien; McGuire, John A

    2016-05-01

    We report on the orientational dynamics of water at an extended hydrophobic interface with an octadecylsilane self-assembled monolayer on fused silica. The interfacial dangling OH stretch mode is excited with a resonant pump, and its evolution followed in time by a surface-specific, vibrationally resonant, infrared-visible sum-frequency probe. High sensitivity pump-probe anisotropy measurements and isotopic dilution clearly reveal that the decay of the dangling OH stretch excitation is almost entirely due to a jump to a hydrogen-bonded configuration that occurs in 1.61 ± 0.10 ps. This is more than twice as fast as the jump time from one hydrogen-bonded configuration to another in bulk H2O but about 50% slower than the reported out-of-plane reorientation at the air/water interface. In contrast, the intrinsic population lifetime of the dangling OH stretch in the absence of such jumps is found to be >10 ps. Molecular dynamics simulations of air/water and hexane/water interfaces reproduce the fast jump dynamics of interfacial dangling OH with calculated jump times of 1.4 and 1.7 ps for the air and hydrophobic interfaces, respectively. The simulations highlight that while the air/water and hydrophobic/water surfaces exhibit great structural similarities, a small stabilization of the OH groups by the hydrophobic interface produces the pronounced difference in the dynamics of dangling bonds. PMID:27045950

  14. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    PubMed Central

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style. PMID:26758742

  15. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface.

    PubMed

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  16. Comparison of the influence of fluorocarbon and hydrocarbon surfactants on the adsorptions of SDS, DTAB and C12E8 at the air/water interface by MD simulation

    NASA Astrophysics Data System (ADS)

    Pang, Jinyu; Xu, Guiying

    2012-06-01

    Adsorptions of sodium dodecylsulfate (SDS), dodecyltrimethylammonium bromide (DTAB) and octaethylene glycol monododecyl ether (C12E8) at the air/water interface in the presence of hydrocarbon and fluorocarbon surfactants (HCEP and FCEP) were investigated by molecular dynamics (MD) simulation. With the addition of HCEP or FCEP, the monolayer is more organized than in individual surfactant systems. Extremely expanded C12E8 chain in a smaller tilt angle is discovered in C12E8/HCEP system. In SDS or DTAB systems, relatively small tilt angle of surfactants is observed in the presence of FCEP. Their analog, a silicone surfactant DSEP shows a favorable effect on interfacial properties with DTAB.

  17. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Self-Assembling of Colloidal Particles Dispersed in Mixture of Ethanol and Water at the Air-Liquid Interface of Colloidal Suspension at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Ai-Jun; Chen, Sheng-Li; Dong, Peng; Zhou, Qian; Yuan, Gui-Mei; Su, Gu-Cong

    2009-08-01

    Self-assembling of colloidal particles dispersed in a mixture of ethanol and water at the air-liquid interface of the colloidal suspension at room temperature is investigated, and a method of rapidly assembling colloidal particles is proposed. By this method, a uniform colloidal crystal thin film over ten square centimeters in area can be fabricated in 10 min without special facilities and heating the suspension. SEM images and a normal incidence transmission spectrum of the sample show that the colloidal crystal film fabricated by this method is of high quality. In addition, this method is very suitable for fabricating colloidal crystal heterostructures.

  18. Diffusive exchange of polycyclic aromatic hydrocarbons across the air-water interface of the Patapsco River, an urbanized subestuary of the Chesapeake Bay

    SciTech Connect

    Bamford, H.A.; Offenberg, J.H.; Larsen, R.K.; Ko, F.C.; Baker, J.E.

    1999-07-01

    Air-water exchange fluxes of 13 polycyclic aromatic hydrocarbons (PAHs) were determined along a transect in the Patapsco River from the Inner Harbor of Baltimore, MD, to the mainstem of the northern Chesapeake Bay. Sampling took place at six sites during three sampling intensives (June 1996, February 1997, and July 1997) and at one site every ninth day between March 1997 and March 1998 to measure spatial, daily, and annual variability in the fluxes. The direction and magnitude of the daily fluxes of individual PAHs were strongly influenced by the wind speed and direction, by the air temperature, and by the highly variable PAH concentrations in the gas and dissolved phases. Individual fluxes ranged from 14,200 ng m{sup {minus}2} day{sup {minus}1} net volatilization of fluorene during high winds to 11,400 ng m{sup {minus}2} day{sup {minus}1} net absorption of phenanthrene when prevailing winds blowing from the northwest across the city of Baltimore elevated gaseous PAH concentrations over the water. The largest PAH volatilization fluxes occurred adjacent to the stormwater discharges, driven by elevated dissolved PAH concentrations in surface waters. Estimated annual volatilization fluxes ranged from 1.1 {micro}g m{sup {minus}2} yr{sup {minus}1} for chrysene to 800 {micro}g m{sup {minus}2} yr{sup {minus}1} for fluorene.

  19. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    EPA Science Inventory

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  20. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L. A.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2014-02-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

  1. Dielectric constant of water in the interface.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å.

  2. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2013-07-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acid (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and <1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. The potential impact of such chemistry on the atmosphere of the marine boundary layer is discussed.

  3. Vibrational spectroscopy of water at interfaces.

    PubMed

    Skinner, J L; Pieniazek, P A; Gruenbaum, S M

    2012-01-17

    Understanding liquid water's behavior at the molecular level is essential to progress in fields as disparate as biology and atmospheric sciences. Moreover, the properties of water in bulk and water at interfaces can be very different, making the study of the hydrogen-bonding networks therein very important. With recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, it is now possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider here three aqueous interfaces: the water liquid-vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface. In the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy (such as FTIR, pump-probe, two-dimensional IR, and the like) can be used to probe the interfacial water. In this Account, we discuss our attempts to model these three systems and interpret the existing experiments. For the water liquid-vapor interface, we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and canceling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H(2)O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red

  4. Automatic Web-Based, Radio-Network System To Monitor And Control Equipment For Investigating Gas Flux At Water - Air Interfaces

    NASA Astrophysics Data System (ADS)

    Duc, N. T.; Silverstein, S.; Wik, M.; Beckman, P.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2015-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive automatic device that includes an easily mobile diffusive flux chamber and a bubble counter, all in one. Besides a function of automatically collecting gas samples for subsequent various analyses in the laboratory, this device utilizes low cost CO2 sensor (SenseAir, Sweden) and CH4 sensor (Figaro, Japan) to measure GHG fluxes. To measure the spatial variability of emissions, each of the devices is equipped with an XBee module to enable a local radio communication DigiMesh network for time synchronization and data readout at a server-controller station on the lakeshore. Software of this server-controller is operated on a low cost Raspberry Pi computer which has a 3G connection for remote monitoring - controlling functions from anywhere in the world. From field studies in Abisko, Sweden in summer 2014 and 2015, the system has resulted in measurements of GHG fluxes comparable to manual methods. In addition, the deployments have shown the advantage of a low cost automatic network system to study GHG fluxes on lakes in remote locations.

  5. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces.

    PubMed

    Tobias, Douglas J; Stern, Abraham C; Baer, Marcel D; Levin, Yan; Mundy, Christopher J

    2013-01-01

    Chemistry occurring at or near the surface of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces.

  6. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems. PMID:27010817

  7. Chemical physics of water-water interfaces.

    PubMed

    Vis, Mark; Erné, Ben H; Tromp, Robert H

    2016-03-01

    A brief review is given on recent progress in experimental and theoretical investigations of the interface between coexisting aqueous phases of biopolymers. The experimental aspects are introduced using results obtained from a model system consisting of aqueous mixtures of nongelling gelatin and dextran. The focus is on the interfacial tension and interfacial electric potential (Donnan potential). These quantities are experimentally accessible and can be shown to be closely related.

  8. Interface water diffusion in silicon direct bonding

    NASA Astrophysics Data System (ADS)

    Tedjini, M.; Fournel, F.; Moriceau, H.; Larrey, V.; Landru, D.; Kononchuk, O.; Tardif, S.; Rieutord, F.

    2016-09-01

    The kinetics of water diffusion through the gap formed by the direct bonding of two silicon wafers is studied using two different techniques. X-ray reflectivity is able to monitor the interface density changes associated with the water front progression. The water intake is also revealed through the defect creation upon annealing, creating a rim-like pattern whose extent also gives the water diffusion law. At room temperature, the kinetics observed by either technique are consistent with the Lucas-Washburn law for diffusion through a gap width smaller than 1 nm, excluding any significant no-slip layer thickness.

  9. Fluctuations of Permeable Interfaces in Water-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Sagis, Leonard M. C.

    2007-02-01

    The fluctuations of highly permeable interfaces, encountered in phase-separated biopolymer solutions, liposomes, polymersomes, or colloidosomes, are investigated. An expression for the power spectrum of the height correlation function is derived for a multicomponent system, incorporating the effects of mass transfer across the interface, using nonequilibrium thermodynamics. We also derive an expression for the relaxation time of the height correlation function, and calculate the relaxation time for a phase-separated gelatin-dextran-water system. Comparing our expression with the expression for an impermeable interface shows that mass transfer has a significant impact on the relaxation time of the interface.

  10. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  11. The apparent charge of nanoparticles trapped at a water interface.

    PubMed

    Bossa, Guilherme Volpe; Roth, Joseph; Bohinc, Klemen; May, Sylvio

    2016-05-14

    Charged spherical nanoparticles trapped at the interface between water and air or water and oil exhibit repulsive electrostatic forces that contain a long-ranged dipolar and a short-ranged exponentially decaying component. The former are induced by the unscreened electrostatic field through the non-polar low-permittivity medium, and the latter result from the overlap of the diffuse ion clouds that form in the aqueous phase close to the nanoparticles. The magnitude of the long-ranged dipolar interaction is largely determined by the residual charges that remain attached to the air- (or oil-) exposed region of the nanoparticle. In the present work we address the question to what extent the charges on the water-immersed part of the nanoparticle provide an additional contribution to the dipolar interaction. To this end, we model the electrostatic properties of a spherical particle - a nanoparticle or a colloid - that partitions equatorially to the air-water interface, thereby employing nonlinear Poisson-Boltzmann theory in the aqueous solution and accounting for the propagation of the electric field through the interior of the particle. We demonstrate that the apparent charge density on the air-exposed region of the particle, which determines the dipole potential, is influenced by the electrostatic properties in the aqueous solution. We also show that this electrostatic coupling through the particle can be reproduced qualitatively by a simple analytic planar capacitor model. Our results help to rationalize the experimentally observed weak but non-vanishing salt dependence of the forces that stabilize ordered two-dimensional arrays of interface-trapped nanoparticles or colloids.

  12. The apparent charge of nanoparticles trapped at a water interface.

    PubMed

    Bossa, Guilherme Volpe; Roth, Joseph; Bohinc, Klemen; May, Sylvio

    2016-05-14

    Charged spherical nanoparticles trapped at the interface between water and air or water and oil exhibit repulsive electrostatic forces that contain a long-ranged dipolar and a short-ranged exponentially decaying component. The former are induced by the unscreened electrostatic field through the non-polar low-permittivity medium, and the latter result from the overlap of the diffuse ion clouds that form in the aqueous phase close to the nanoparticles. The magnitude of the long-ranged dipolar interaction is largely determined by the residual charges that remain attached to the air- (or oil-) exposed region of the nanoparticle. In the present work we address the question to what extent the charges on the water-immersed part of the nanoparticle provide an additional contribution to the dipolar interaction. To this end, we model the electrostatic properties of a spherical particle - a nanoparticle or a colloid - that partitions equatorially to the air-water interface, thereby employing nonlinear Poisson-Boltzmann theory in the aqueous solution and accounting for the propagation of the electric field through the interior of the particle. We demonstrate that the apparent charge density on the air-exposed region of the particle, which determines the dipole potential, is influenced by the electrostatic properties in the aqueous solution. We also show that this electrostatic coupling through the particle can be reproduced qualitatively by a simple analytic planar capacitor model. Our results help to rationalize the experimentally observed weak but non-vanishing salt dependence of the forces that stabilize ordered two-dimensional arrays of interface-trapped nanoparticles or colloids. PMID:27049110

  13. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    NASA Astrophysics Data System (ADS)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  14. Surface Prevalence of Perchlorate Anions at the Air/Aqueous Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-12-19

    Air/aqueous interfaces provide a unique environment for many chemical, environmental, and biological processes. To gain insight, molecular-level understanding of the interfacial water organization and ion distributions at these interfaces is required. Here, the air/aqueous interface of NaClO4 salt solutions was investigated by means of conventional and heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy. It is found that perchlorate (ClO4(-)) ions exist in the interfacial region and prefer to reside on average above their counterions. This finding is inferred from the average orientation of the OH transition dipole moment of interfacial water molecules governed by the direction of the net electric field arising from the interfacial ion distributions. At the air/aqueous interface of NaClO4 salt solutions, the net dipole moments of hydrogen-bonded water molecules are oriented preferentially toward the vapor phase. Contrary to some other salts (e.g., sulfates), the presence of ClO4(-) may cause a full reversal in the direction of the interfacial electric field at a higher concentration (≥1.7 M). Another interpretation for the positive Im χ((2)) spectra of NaClO4 salt solutions could be an increase in the population of water species contributing positively to the net OH transition dipole moment. Regardless of the mechanism, this effect becomes even more pronounced with increasing salt concentration. PMID:26296170

  15. SOFC chromite sintering and electrolyte/air-electrode interface reactions

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Youngblood, G.E.

    1992-04-01

    Air sintering of chromites was investigated in La(Sr)CrO[sub 3], La(Ca)CrO[sub 3], and Y(Ca)CrO[sub 3]. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La[sub 1-x]Sr[sub x]MnO[sub 3]. 5 refs.

  16. SOFC chromite sintering and electrolyte/air-electrode interface reactions

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Youngblood, G.E.

    1992-04-01

    Air sintering of chromites was investigated in La(Sr)CrO{sub 3}, La(Ca)CrO{sub 3}, and Y(Ca)CrO{sub 3}. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La{sub 1-x}Sr{sub x}MnO{sub 3}. 5 refs.

  17. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  18. Study of the adsorption of sodium dodecyl sulfate (SDS) at the air/water interface: targeting the sulfate headgroup using vibrational sum frequency spectroscopy.

    PubMed

    Johnson, C Magnus; Tyrode, Eric

    2005-07-01

    The surface sensitive technique vibrational sum frequency spectroscopy (VSFS), has been used to study the adsorption behaviour of SDS to the liquid/vapour interface of aqueous solutions, specifically targeting the sulfate headgroup stretches. In the spectral region extending from 980 to 1850 cm(-1), only the vibrations due to the SO(3) group were detectable. The fitted amplitudes for the symmetric SO(3) stretch observed at 1070 cm(-1) for the polarization combinations ssp and ppp, were seen to follow the adsorption isotherm calculated from surface tension measurements. The orientation of the sulfate headgroup in the concentration range spanning from 1.0 mM to above the critical micellar concentration (c.m.c.) was observed to remain constant within experimental error, with the pseudo-C(3) axis close to the surface normal. Furthermore, the effect of increasing amounts of sodium chloride at SDS concentrations above c.m.c. was also studied, showing an increase of approximately 12% in the fitted amplitude for the symmetric SO(3) stretch when increasing the ionic strength from 0 to 300 mM NaCl. Interestingly, the orientation of the SDS headgroup was also observed to remain constant within this concentration range and identical to the case without NaCl.

  19. Instability of water-ice interface under turbulent flow

    NASA Astrophysics Data System (ADS)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  20. The impact and bounce of air bubbles at a flat fluid interface.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-04-01

    The rise and impact of bubbles at an initially flat but deformable liquid-air interface in ultraclean liquid systems are modelled by taking into account the buoyancy force, hydrodynamic drag, inertial added mass effect and drainage of the thin film between the bubble and the interface. The bubble-surface interaction is analyzed using lubrication theory that allows for both bubble and surface deformation under a balance of normal stresses and surface tension as well as the long-range nature of deformation along the interface. The quantitative result for collision and bounce is sensitive to the impact velocity of the rising bubble. This velocity is controlled by the combined effects of interfacial tension via the Young-Laplace equation and hydrodynamic stress on the surface, which determine the deformation of the bubble. The drag force that arises from the hydrodynamic stress in turn depends on the hydrodynamic boundary conditions on the bubble surface and its shape. These interrelated factors are accounted for in a consistent manner. The model can predict the rise velocity and shape of millimeter-size bubbles in ultra-clean water, in two silicone oils of different densities and viscosities and in ethanol without any adjustable parameters. The collision and bounce of such bubbles with a flat water/air, silicone oil/air and ethanol/air interface can then be predicted with excellent agreement when compared to experimental observations. PMID:26924623

  1. Air-stable droplet interface bilayers on oil-infused surfaces

    SciTech Connect

    Boreyko, Jonathan B; Polizos, Georgios; Datskos, Panos G; Sarles, Stephen A; Collier, Pat

    2014-01-01

    Droplet interface bilayers (DIBs) are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit non-coalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom-up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the non-coalescing water droplets. As with traditional oil-submerged DIBs, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in air environments, which could potentially enable biosensing of atmospheric particulates.

  2. Cascades of popping bubbles along air/foam interfaces.

    PubMed

    Vandewalle, N; Lentz, J F

    2001-08-01

    We report image analysis of popping bubbles during the collapsing of two-dimensional (2D) and 3D aqueous foams. Although temporal and spatial correlations between successive popping bubbles within avalanches are emphasized, the breaking of a soap film at the air/foam interface seems to be independent of (i) the topology, (ii) the local curvature, and (iii) the size of the popping bubble. Possible mechanisms for cascades of pops are proposed and discussed. PMID:11497589

  3. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions

    PubMed Central

    2016-01-01

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently “exclude” unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of “exclusion-based” sample preparation, which we term “AirJump”. Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by “jumping” analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility

  4. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions.

    PubMed

    Berry, Scott M; Pezzi, Hannah M; LaVanway, Alex J; Guckenberger, David J; Anderson, Meghan A; Beebe, David J

    2016-06-22

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility. PMID:27249333

  5. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions.

    PubMed

    Berry, Scott M; Pezzi, Hannah M; LaVanway, Alex J; Guckenberger, David J; Anderson, Meghan A; Beebe, David J

    2016-06-22

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.

  6. The formation of surface multilayers at the air-water interface from sodium diethylene glycol monoalkyl ether sulfate/AlCl3 solutions: the role of the alkyl chain length.

    PubMed

    Xu, Hui; Penfold, Jeffrey; Thomas, Robert K; Petkov, Jordan T; Tucker, Ian; Webster, John P R

    2013-10-15

    The influence of the alkyl chain length on surface multilayer formation at the air-water interface for the anionic surfactant sodium diethylene glycol monoalkyl ether sulfate, SAE2S, in the presence of Al(3+) multivalent counterions, in the form of AlCl3, is described. In the absence of electrolyte, the saturated monolayer adsorption is determined by the headgroup geometry and is independent of the alkyl chain length. In the presence of Al(3+) counterions, surface multilayer formation occurs, due to the strong SAE2S/Al(3+) binding and complexation. The neutron reflection data show that the alkyl chain length of the surfactant has a significant impact upon the evolution of the surface multilayer structure with surfactant and AlCl3 concentration. Increasing the alkyl chain length from decyl to tetradecyl results in the surface multilayer formation occurring at lower surfactant and AlCl3 concentrations. At the short alkyl chain lengths, decyl and dodecyl, the regions of multilayer formation with a small number of bilayers are increasingly extended with decreasing alkyl chain length. For the alkyl chain lengths of tetradecyl and hexadecyl, the surface behavior is further affected by decreases in the surfactant solubility in the presence of AlCl3, and this ultimately dominates the surface behavior at the longer alkyl chain lengths.

  7. LIQUID AIR INTERFACE CORROSION TESTING FOR FY2010

    SciTech Connect

    Zapp, P.

    2010-12-16

    An experimental study was undertaken to investigate the corrosivity to carbon steel of the liquid-air interface of dilute simulated radioactive waste solutions. Open-circuit potentials were measured on ASTM A537 carbon steel specimens located slightly above, at, and below the liquid-air interface of simulated waste solutions. The 0.12-inch-diameter specimens used in the study were sized to respond to the assumed distinctive chemical environment of the liquid-air interface, where localized corrosion in poorly inhibited solutions may frequently be observed. The practical inhibition of such localized corrosion in liquid radioactive waste storage tanks is based on empirical testing and a model of a liquid-air interface environment that is made more corrosive than the underlying bulk liquid due to chemical changes brought about by absorbed atmospheric carbon dioxide. The chemical changes were assumed to create a more corrosive open-circuit potential in carbon in contact with the liquid-air interface. Arrays of 4 small specimens spaced about 0.3 in. apart were partially immersed so that one specimen contacted the top of the meniscus of the test solution. Two specimens contacted the bulk liquid below the meniscus and one specimen was positioned in the vapor space above the meniscus. Measurements were carried out for up to 16 hours to ensure steady-state had been obtained. The results showed that there was no significant difference in open-circuit potentials between the meniscus-contact specimens and the bulk-liquid-contact specimens. With the measurement technique employed, no difference was detected between the electrochemical conditions of the meniscus versus the bulk liquid. Stable open-circuit potentials were measured on the specimen located in the vapor space above the meniscus, showing that there existed an electrochemical connection through a thin film of solution extending up from the meniscus. This observation supports the Hobbs-Wallace model of the development

  8. The adsorption behavior of ionic surfactants and their mixtures with nonionic polymers and with polyelectrolytes of opposite charge at the air-water interface.

    PubMed

    Bahramian, Alireza; Thomas, Robert K; Penfold, Jeffrey

    2014-03-13

    The surface phase approach of Butler has been used to derive a model of the surface tension (ST) of surfactant solutions in terms of the ST of the surfactant in the absence of water, an area parameter corresponding approximately to the limiting area per molecule, and the critical micelle concentration (CMC). This isotherm is then used to account for the ST behavior of aqueous solutions of weakly interacting polymer-surfactant (P-S) and strongly interacting polyelectrolyte-surfactant (PE-S) mixtures. For P-S systems, no additional parameters are required other than the critical aggregation concentration (CAC) and the onset of the ST plateau at micellization (T3). The model accounts for experimental isotherms for sodium dodecyl sulfate (SDS) with poly(ethylene oxide) or poly(vinylpyrrolidone). For PE-S systems, the initial CAC has no effect on the ST and is well below the decrease in ST that leads to the first ST plateau at T1. This decrease is modeled approximately using a Langmuir isotherm. The remaining ST behavior is analyzed with the model surfactant isotherm and includes modeling the ST when there is separation into two phases. The behavior in the phase separation region depends on the dissociability of the PE-S complex. Loss of surface activity accompanied by a peak in the ST may occur when there is part formation of a nondissociable complex (neutral with segment/surfactant = 1). The model successfully explains the ST of several experimental systems with and without ST peaks, including poly(dimethyldiallylammonium chloride)-SDS and poly(sodium styrenesulfonate)-alkyltrimethylammonium bromide (C(n)TAB) with n = 12, 14, and 16.

  9. The adsorption behavior of ionic surfactants and their mixtures with nonionic polymers and with polyelectrolytes of opposite charge at the air-water interface.

    PubMed

    Bahramian, Alireza; Thomas, Robert K; Penfold, Jeffrey

    2014-03-13

    The surface phase approach of Butler has been used to derive a model of the surface tension (ST) of surfactant solutions in terms of the ST of the surfactant in the absence of water, an area parameter corresponding approximately to the limiting area per molecule, and the critical micelle concentration (CMC). This isotherm is then used to account for the ST behavior of aqueous solutions of weakly interacting polymer-surfactant (P-S) and strongly interacting polyelectrolyte-surfactant (PE-S) mixtures. For P-S systems, no additional parameters are required other than the critical aggregation concentration (CAC) and the onset of the ST plateau at micellization (T3). The model accounts for experimental isotherms for sodium dodecyl sulfate (SDS) with poly(ethylene oxide) or poly(vinylpyrrolidone). For PE-S systems, the initial CAC has no effect on the ST and is well below the decrease in ST that leads to the first ST plateau at T1. This decrease is modeled approximately using a Langmuir isotherm. The remaining ST behavior is analyzed with the model surfactant isotherm and includes modeling the ST when there is separation into two phases. The behavior in the phase separation region depends on the dissociability of the PE-S complex. Loss of surface activity accompanied by a peak in the ST may occur when there is part formation of a nondissociable complex (neutral with segment/surfactant = 1). The model successfully explains the ST of several experimental systems with and without ST peaks, including poly(dimethyldiallylammonium chloride)-SDS and poly(sodium styrenesulfonate)-alkyltrimethylammonium bromide (C(n)TAB) with n = 12, 14, and 16. PMID:24552283

  10. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  12. Water resources and the land-water interface.

    PubMed

    Karr, J R; Schlosser, I J

    1978-07-21

    Development and implementation of local and regional plans to control nonpoint sources of pollution from agricultural land are major mandates of section 208 of Public Law 92-500. Many planners tend to equate erosion control as measured by the universal soil loss equation with improvements in water quality. Others implement channel management practices which degrade rather than improve water quality and thereby decrease the effectiveness of other efforts to control nonpoint sources. Planners rarely recognize the importance of the land-water interface in regulating water quality in agricultural watersheds. More effective planning can result from the development of "best management systems" which incorporate theory from all relevant disciplines.

  13. Long term stability of immiscible ferrofluid/water interfaces

    NASA Astrophysics Data System (ADS)

    Malouin, Bernard; Posada, David; Hirsa, Amir

    2010-11-01

    Recently we have demonstrated pinned-contact, coupled droplet pairs of aqueous ferrofluids in air that can form electromagnetically-activated capillary switches and oscillators. The great variety of available ferrofluids, however, enables the use of immiscible oil-based ferrofluid droplets in a water environment to obtain the same behavior. Such immersed ferrofluid oscillators exhibit natural frequencies (for 5 mm devices) of about 10 Hz. Here we report on the observation of a gradual increase in the resonant frequency of the system in time. Experimental observations suggest that the drift in the natural frequency is a consequence of changes occurring at the ferrofluid/water interface. The interfacial structure of such a complex system (water, oil, surfactant, iron particles) is examined along with its evolution in time, using various microscopy techniques.

  14. Molecular simulation study of the adsorption of naphthalene and ozone on atmospheric air/ice interfaces.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2011-08-25

    The adsorption of gas-phase naphthalene and ozone on atmospheric air/ice interfaces was investigated using classical molecular dynamics (MD) simulations and potential of mean force (PMF) calculations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the air/ice interface, rather than being dissolved into the bulk of the quasi-liquid layer (QLL) or incorporated into the ice crystals. When the air/ice interface is coated with increasing concentrations of naphthalene molecules, the QLL becomes thinner and surface adsorption of ozone is enhanced. Furthermore, ozone tends to adsorb on top of the naphthalene film, although significant penetration of ozone into this film is also observed. Naphthalene molecules tend to adopt a flat orientation on the air/ice interface. Less variation in the orientation was observed for lower concentrations of naphthalene, whereas variations in the ozone concentration do not affect the orientation of naphthalene molecules. However, as the concentration of ozone increases, most of the naphthalene molecules still prefer to stay close to the mobile water molecules in the QLL, but a significant fraction of the naphthalene molecules spends a considerable amount of time inside the thicker layer of ozone. We also monitored the number of contacts between naphthalene and ozone at the air/ice interface upon variations in the concentrations of these two species. These contacts were assumed to be proportional to the reaction rate between these two species. When the number of ozone molecules was held constant, the number of contacts showed a linear relationship to the number of naphthalene molecules. However, when the naphthalene concentration was held constant, for all systems we observed a linear relationship at low ozone concentrations and a plateau at high ozone concentrations.

  15. Advanced Crew Interface Designs for Safer Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced crew interface designs to improve performance for safe air travel. NASA's goal is to provide enabling technologies that will increase aviation safety by a factor of five within 10 years, and by a factor of ten within 25 years. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  16. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids.

    PubMed Central

    Taneva, S; Keough, K M

    1994-01-01

    The effects of pulmonary surfactant protein SP-B on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), and a mixture of DPPC:DPPG (7:3, mol:mol) were studied using spread films at the air-water interface. The addition of SP-B to the phospholipid monolayers gave positive deviations from additivity of the mean areas in the films. At low protein concentrations (less than 45% amino acid residues which corresponds to 0.5 mol% or 10 weight% SP-B) monolayers of SP-B/DPPC, SP-B/DPPG and SP-B/(DPPC:DPPG) collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At higher concentrations of SP-B in the protein-lipid monolayers, kink points appeared in the isotherms at about 40-45 mN.m-1, implying possible exclusion of material from the films, hence, changes in the original monolayer compositions. Calculated analyses of the monolayer compositions as a function of surface pressure indicated that nearly pure SP-B, associated with small amounts of phospholipid (2-3 lipid molecules per SP-B dimer), was lost from SP-B/DPPC, SP-B/DPPG, and SP-B/(DPPC:DPPG) films at surface pressures higher than 40-45 mN.m-1. The results are consistent with a low effectiveness of SP-B in removing saturated phospholipids, DPPC or DPPG, from the spread SP-B/phospholipid films. PMID:8038385

  17. Self-Organization of Polystyrene-b-polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent Spreading.

    PubMed

    Guennouni, Zineb; Cousin, Fabrice; Fauré, Marie-Claude; Perrin, Patrick; Limagne, Denis; Konovalov, Oleg; Goldmann, Michel

    2016-03-01

    We present an in situ structural study of the surface behavior of PS-b-PAA monolayers at the air/water interface at pH 2, for which the PAA blocks are neutral and using N,N-dimethyformamide (DMF) as spreading solvent. The surface pressure versus molecular area isotherm shows a perfectly reversible pseudoplateau over several cycles of compression/decompression. The width of such plateau enlarges when increasing temperature, conversely to what is classically observed in the case of an in-plane first order transition. We combined specular neutron reflectivity (SNR) experiments with contrast variation to solve the profile of each block perpendicular to the surface with grazing-incidence small-angle scattering (GISAXS) measurements to determine the in-plane structure of the layer. SNR experiments showed that both PS and PAA blocks remain adsorbed on the surface for all surface pressure probed. A correlation peak at Q(xy)* = 0.021 Å(-1) is evidenced by GISAXS at very low surface pressure which intensity first increases on the plateau. When compressing further, its intensity decays while Q(xy)* is shifted toward low Q(xy). The peak fully disappears at the end of the plateau. These results are interpreted by the formation of surface aggregates induced by DMF molecules at the surface. These DMF molecules remain adsorbed within the PS core of the aggregates. Upon compression, they are progressively expelled from the monolayer, which gives rise to the pseudoplateau on the isotherm. The intensity of the GISAXS correlation peak is set by the amount of DMF within the monolayer as it vanishes when all DMF molecules are expelled. This result emphizes the role of the solvent in Langmuir monolayer formed by amphiphilic copolymers which hydrophobic and hydrophilic parts are composed by long polymer chains.

  18. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces

    SciTech Connect

    Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.; Levin, Yan; Mundy, Christopher J.

    2013-04-01

    Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.

  19. Air stripping for treatment of produced water

    SciTech Connect

    Fang, C.S.; Lin, J.H.

    1988-05-01

    In a laboratory study, air stripping shows a promising potential for treatment of produced water to meet new government regulations on total organic carbon (TOC). Reservoir hydrocarbons dissolved in water, such as volatile paraffins and aromatics, can be removed by air stripping through interphase mass transfer. However, air stripping cannot remove many chemicals added to crude oil by the operator.

  20. Toxicity of Silver Nanoparticles at the Air-Liquid Interface

    PubMed Central

    Holder, Amara L.; Marr, Linsey C.

    2013-01-01

    Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles. PMID:23484109

  1. Influence of sea-air interface on upward laser beam propagation

    NASA Astrophysics Data System (ADS)

    Zhou, Tian-hua; He, Yan; Zhu, Xiao-lei; Chen, Wei-biao

    2013-08-01

    The roughness of sea surface affects the optical property of the exiting upward laser, which constrains the application of the LIDAR and Laser Communication in ocean. The paper designs one pool test to study the influence of sea-air interfaces and develops a corresponding geometric optical model. It analyzes the optical property of the upward laser through the sea-air interface systematic. Results show that the roughness of wavy sea surface will affect beam spreading, pointing and scintillation when transmitting through the boundary. Further, experiment results in one water tank with man-made wave show that the incident angle and divergence angle are very important to the upward laser on the real-time and statistics change. Selecting one appropriate incident angle and divergence angle will get one stabilized performance, which is useful to the laser practical application on the marine areas.

  2. Stereoselective synthesis of (2S,3S,4Z)-4-fluoro-1,3-dihydroxy-2-(octadecanoylamino)octadec-4-ene, [(Z)-4-fluoroceramide], and its phase behavior at the air/water interface

    PubMed Central

    Nikolova, Gergana S

    2008-01-01

    natural ceramide. Conclusions Asymmetric aldol reaction proved to be successful for the preparation of enantiopure 4-fluoroceramide. Surface/pressure isotherms and hysteresis curves of ceramide and its 4-fluoro derivative showed that the presence of fluorine leads to stronger intermolecular interactions between the hydrophobic chains of neighboring molecules, and therefore to increasing stability of the monolayer of 4-fluoroceramide at the air water interface. PMID:18941484

  3. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  4. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  5. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  6. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    PubMed

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2016-03-01

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better

  7. Control of membrane permeability in air-stable droplet interface bilayers.

    PubMed

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G; Taylor, Graham; Sarles, Stephen A; Boreyko, Jonathan B; Hayes, Douglas G; Collier, C Patrick

    2015-04-14

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments.

  8. Control of membrane permeability in air-stable droplet interface bilayers.

    PubMed

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G; Taylor, Graham; Sarles, Stephen A; Boreyko, Jonathan B; Hayes, Douglas G; Collier, C Patrick

    2015-04-14

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments. PMID:25790280

  9. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  10. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  11. Ion Organization and Reversed Electric Field at Air/aqueous Interfaces Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Huang, Zishuai; Jubb, Aaron M.; Allen, Heather C.

    2012-06-01

    Sum frequency generation (SFG) is a second order optical spectroscopy that probes regions of non centrosymmetry, interfaces, and allows for the understanding of molecular organization at air/aqueous interfaces. An overview of our work in this area is presented with emphasis on phase-sensitive SFG (PS-SFG) spectroscopy. PS-SFG is a variant of SFG and is used in our laboratory to investigate the average direction of the transition dipole of interfacial water molecules. The orientation of water at air/aqueous inorganic salts interfaces of CaCl2, NaCl, Na2SO4, (NH4)2SO4, and Na2CO3 is inferred from the direct measurement of the transition dipole moment. We find that charge separation at the air/water interface is most obvious for the aqueous ammonium sulfate solution where the local electric field has a greater magnitude at this interface relative to the other salt solutions. The magnitude of the electric field in the surface extending to the subsurface regions decreases in the order: (NH4)2SO4 > Na2SO4 > Na2CO3 ≥ CaCl2 > NaCl; the electric field is opposite in direction for the sulfates and carbonate relative to the chloride salts.

  12. A molecular view of latex-water interfaces

    NASA Astrophysics Data System (ADS)

    Li, Zifeng; Fichthorn, Kristen; Milner, Scott; Yuan, Fang; Larson, Ronald

    2013-03-01

    Latex paints and coatings are colloidal suspensions, in which amorphous polymer particles are dispersed in an aqueous phase. The polymer-water interface plays a key role in the stability and rheology of the suspension. To obtain a molecular level view of this interface, atomistic simulations were performed for a slab of poly(methyl methacrylate)-poly(butyl acrylate) random copolymer in water, focusing on polymer and water density profiles, the hydrogen bonding of water with polymer carbonyl groups, and surface tension. The carbonyl groups at the interface were found to orient significantly towards water. We also calculated the temperature dependence of the surface tension between the polymer/water and polymer/ vacuum interfaces, including tail corrections for cut-off dispersion interactions, and we predict the contact angle of a water droplet at room temperature. Dow Chemical Corporate

  13. Turbulent transport across an interface between dry and humid air in a stratified environment

    NASA Astrophysics Data System (ADS)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  14. Control of membrane permeability in air-stable droplet interface bilayers

    DOE PAGES

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results inmore » loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.« less

  15. Control of membrane permeability in air-stable droplet interface bilayers

    SciTech Connect

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results in loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.

  16. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  17. Profile of the Interface between a Hydrophobic Surface and Water

    NASA Astrophysics Data System (ADS)

    Perez-Salas, Ursula; Stalgren, Johan; Majkrzak, Charles; Heinrich, Frank; Toney, Michael; Vanderah, David

    2008-03-01

    Aqueous interfaces are ubiquitous and play a fundamental role in biology, chemistry, and geology. The structure of water near interfaces is of the utmost importance, including chemical reactivity and macromolecular function. Theoretical work by Chandler et al. on polar-apolar interfaces predicts that a water depletion layer exists between a hydrophobic surface and bulk water for hydrophobes larger than ˜20nm2 (a ˜4A in radius apolar molecule). Until now, what the interface really looks like remains in dispute since recent experiments give conflicting results: from complete wetting (no water depletion layer) to a water depletion layer. Those experiments that have found a water depletion layer report 40-70% water in the depletion zone: 40 -70% and a width of ˜3A. However, an alternative interpretation to the profiles exists where no depletion layer is required. By studying hydrophobic SAM surfaces against several water mixtures we obtained the hydrophobic/water profile by phase sensitive neutron reflectivity. With this model independent technique we observe a 2 times wider and drier depletion water layer: 6A thick and 0-25% water. Given the level of disagreement, I will review the topic of immiscible interfaces and show how phase sensitive reflectometry is unique in obtaining nm resolution profiles without fitting bias.

  18. Two-particle microrheology at oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Chih-yuan; Song, Yanmei; Dai, Lenore L.

    2009-10-01

    We have explored and validated two-particle (2P) microrheology at polydimethylsiloxane (oil)-water interfaces using confocal laser scanning microscopy. The loss and storage moduli of the oil-water interfaces as a function of frequency are quantified using different tracer particles. In contrast to one-particle interfacial microrheology in which the measured rheological results depend largely on the surface chemistry of tracer particles, the work here suggests that 2P tracking significantly minimizes the tracer particle effect. The viscous response dominates the oil-water interfaces and varies linearly with frequency, over the experimental range of the oil viscosity and frequency.

  19. Dynamics of water interacting with interfaces, molecules, and ions.

    PubMed

    Fayer, Michael D

    2012-01-17

    Water is a critical component of many chemical processes, in fields as diverse as biology and geology. Water in chemical, biological, and other systems frequently occurs in very crowded situations: the confined water must interact with a variety of interfaces and molecular groups, often on a characteristic length scale of nanometers. Water's behavior in diverse environments is an important contributor to the functioning of chemical systems. In biology, water is found in cells, where it hydrates membranes and large biomolecules. In geology, interfacial water molecules can control ion adsorption and mineral dissolution. Embedded water molecules can change the structure of zeolites. In chemistry, water is an important polar solvent that is often in contact with interfaces, for example, in ion-exchange resin systems. Water is a very small molecule; its unusual properties for its size are attributable to the formation of extended hydrogen bond networks. A water molecule is similar in mass and volume to methane, but methane is a gas at room temperature, with melting and boiling points of 91 and 112 K, respectively. This is in contrast to water, with melting and boiling points of 273 and 373 K, respectively. The difference is that water forms up to four hydrogen bonds with approximately tetrahedral geometry. Water's hydrogen bond network is not static. Hydrogen bonds are constantly forming and breaking. In bulk water, the time scale for hydrogen bond randomization through concerted formation and dissociation of hydrogen bonds is approximately 2 ps. Water's rapid hydrogen bond rearrangement makes possible many of the processes that occur in water, such as protein folding and ion solvation. However, many processes involving water do not take place in pure bulk water, and water's hydrogen bond structural dynamics can be substantially influenced by the presence of, for example, interfaces, ions, and large molecules. In this Account, spectroscopic studies that have been used

  20. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  1. Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory

    SciTech Connect

    Bu, W.; Vaknin, D.; Travesset, A.

    2010-07-13

    Surface sensitive synchrotron-x-ray scattering studies reveal the distributions of monovalent ions next to highly charged interfaces. A lipid phosphate (dihexadecyl hydrogen phosphate) was spread as a monolayer at the air-water interface, containing CsI at various concentrations. Using anomalous reflectivity off and at the L{sub 3} Cs{sup +} resonance, we provide spatial counterion distributions (Cs{sup +}) next to the negatively charged interface over a wide range of ionic concentrations. We argue that at low salt concentrations and for pure water the enhanced concentration of hydroniums H{sub 3}O{sup +} at the interface leads to proton transfer back to the phosphate group by a high contact potential, whereas high salt concentrations lower the contact potential resulting in proton release and increased surface charge density. The experimental ionic distributions are in excellent agreement with a renormalized-surface-charge Poisson-Boltzmann theory without fitting parameters or additional assumptions.

  2. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D'Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-08-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment.

  3. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface.

    PubMed

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D'Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-01-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,...) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment. PMID:26244712

  4. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    PubMed Central

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-01-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment. PMID:26244712

  5. Theoretical study on wettability of graphene/water interface

    NASA Astrophysics Data System (ADS)

    Ishimoto, Takayoshi

    2015-12-01

    We analyzed the interaction energy between water clusters and graphene model compound by using density functional theory. The mono- and multi-layer interaction of water on graphene models are regarded as the low and high contact angles, which correspond to the wettability of interface, respectively. We clearly found the size dependency of water molecules on graphene model compound for the wettability.

  6. Spectroscopic Properties of Anisole at the Air-Ice Interface: A Combined Experimental-Computational Approach.

    PubMed

    Malongwe, Joseph K'Ekuboni; Nachtigallová, Dana; Corrochano, Pablo; Klán, Petr

    2016-06-14

    A combined experimental and computational approach was used to investigate the spectroscopic properties of anisole in aqueous solutions and at the ice-air interface in the temperature range of 77-298 K. The absorption, diffuse reflectance, and emission spectra of ice samples containing anisole prepared by different techniques, such as slow freezing (frozen aqueous solutions), shock freezing (ice grains), or anisole vapor deposition on ice grains, were measured to evaluate changes in the contaminated ice matrix that occur at different temperatures. It was found that the position of the lowest absorption band of anisole and its tail shift bathochromically by ∼4 nm in frozen samples compared to liquid aqueous solutions. On the other hand, the emission spectra of aqueous anisole solutions were found to fundamentally change upon freezing. While one emission band (∼290 nm) was observed under all circumstances, the second band at ∼350 nm, assigned to an anisole excimer, appeared only at certain temperatures (150-250 K). Its disappearance at lower temperatures is attributed to the formation of crystalline anisole on the ice surface. DFT and ADC(2) calculations were used to interpret the absorption and emission spectra of anisole monomer and dimer associates. Various stable arrangements of the anisole associates were found at the disordered water-air interface in the ground and excited states, but only those with a substantial overlap of the aromatic rings are manifested by the emission band at ∼350 nm. PMID:27243785

  7. The air-sea interface and surface stress under tropical cyclones.

    PubMed

    Soloviev, Alexander V; Lukas, Roger; Donelan, Mark A; Haus, Brian K; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms(-1). Around 60 ms(-1), the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  8. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  9. Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface

    PubMed Central

    2015-01-01

    We report on experiments that probe photosensitized chemistry at the air/water interface, a region that does not just connect the two phases but displays its own specific chemistry. Here, we follow reactions of octanol, a proxy for environmentally relevant soluble surfactants, initiated by an attack by triplet-state carbonyl compounds, which are themselves concentrated at the interface by the presence of this surfactant. Gas-phase products are determined using PTR-ToF-MS, and those remaining in the organic layer are determined by ATR-FTIR spectroscopy and HPLC-HRMS. We observe the photosensitized production of carboxylic acids as well as unsaturated and branched-chain oxygenated products, compounds that act as organic aerosol precursors and had been thought to be produced solely by biological activity. A mechanism that is consistent with the observations is detailed here, and the energetics of several key reactions are calculated using quantum chemical methods. The results suggest that the concentrating nature of the interface leads to its being a favorable venue for radical reactions yielding complex and functionalized products that themselves could initiate further secondary chemistry and new particle formation in the atmospheric environment. PMID:26068588

  10. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  11. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  12. Dynamics of charged microparticles at oil-water interfaces.

    PubMed

    Wu, Chih-Yuan; Tarimala, Sowmitri; Dai, Lenore L

    2006-02-28

    Solid-stabilized emulsions have been used as a model system to investigate the dynamics of charged microparticles with diameters of 1.1 microm at oil-water interfaces. Using confocal microscopy, we investigated the influences of interfacial curvature, cluster size, and temperature on the diffusion of solid particles. Our work suggests that a highly curved emulsion interface slows the motion of solid particles. This qualitatively supports the theoretical work by Danov et al. (Danov, K. D.; Dimova, R.; Pouligny, B. Phys. Fluids 2000, 12, 2711); however, the interfacial curvature effect decreases with increasing oil-phase viscosity. The diffusion of multiparticle clusters at oil-water interfaces is a strong function of cluster size and oil-phase viscosity and can be quantitatively related to fractal dimension. Finally, we report the influence of temperature and quantify the diffusion activation energy and friction factor of the particles at the investigated oil-water interfaces.

  13. Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase.

    PubMed

    Heath, Aubrey A; Valsaraj, Kalliat T

    2015-08-01

    Atmospheric aerosols (e.g., fog droplets) are complex, multiphase mediums. Depending on location, time of day, and/or air mass source, there can be considerable variability within these droplets, relating to temperature, pH, and ionic strength. Due to the droplets' inherently small size, the reactions that occur within these droplets are determined by bulk aqueous phase and air-water interfacial conditions. In this study, the reaction of benzene and hydroxyl radicals is examined kinetically in a thin-film flow-tube reactor. By varying the aqueous volume (e.g., film thickness) along the length of the reactor, both bulk and interfacial reaction rates are measured from a single system. Temperature, pH, and ionic strength are varied to model conditions typical of fog events. Oxygen-poor conditions are measured to study oxygen's overall effect on the reaction pathway. Initial rate activation energies and the bulk aqueous phase and interfacial contributions to the overall rate constant are also obtained. PMID:26158391

  14. Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase.

    PubMed

    Heath, Aubrey A; Valsaraj, Kalliat T

    2015-08-01

    Atmospheric aerosols (e.g., fog droplets) are complex, multiphase mediums. Depending on location, time of day, and/or air mass source, there can be considerable variability within these droplets, relating to temperature, pH, and ionic strength. Due to the droplets' inherently small size, the reactions that occur within these droplets are determined by bulk aqueous phase and air-water interfacial conditions. In this study, the reaction of benzene and hydroxyl radicals is examined kinetically in a thin-film flow-tube reactor. By varying the aqueous volume (e.g., film thickness) along the length of the reactor, both bulk and interfacial reaction rates are measured from a single system. Temperature, pH, and ionic strength are varied to model conditions typical of fog events. Oxygen-poor conditions are measured to study oxygen's overall effect on the reaction pathway. Initial rate activation energies and the bulk aqueous phase and interfacial contributions to the overall rate constant are also obtained.

  15. Computer simulation on the water/platinum interface

    SciTech Connect

    Spohr, E. )

    1989-08-10

    A molecular model for the water/platinum interface has been devised. It includes the surface corrugation of the metal and orientationally anisotropic water-metal interactions obtained from quantum chemical cluster calculations. Barriers for the surface diffusion and for the reorientation of a single water molecule on the quadratic (100) face of the face-centered-cubic platinum crystal are discussed. The flexible Bopp-Jancso-Heinzinger water model describes the water-water interactions, and the platinum-platinum interactions are described by a single force constant. Molecular dynamics simulations of a water lamina confined by (100) platinum surfaces have been performed using these interaction potentials. The structure is discussed on the basis of one-particle density profiles and solvent pair correlation functions. The surface-induced structural inhomogeneity ranges up to distances of 10 {angstrom}. In the center of the lamina water properties are bulklike. Hydrogen bonding in the vicinity of the interface is only slightly reduced relative to the bulk. The orientational structure of water is strongly influenced by water-water interactions and is considerably different from the preferential orientation according to the water-platinum interaction potential. It leads to a dipolar potential drop across the interface of 1.1 V.

  16. Fatty-acid monolayers at the nematic/water interface: phases and liquid-crystal alignment.

    PubMed

    Price, Andrew D; Schwartz, Daniel K

    2007-02-01

    The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.

  17. Effects of air polishing on the resin composite-dentin interface.

    PubMed

    Shimizu, Yutaka; Tada, Kazuhiro; Seki, Hideaki; Kakuta, Kiyoshi; Miyagawa, Yukio; Shen, Jie-Fei; Morozumi, Yuko; Kamoi, Hisahiro; Sato, Soh

    2014-07-01

    The aim of this study was to examine defect depths and volumes at the resin composite-dentin (R/D) interface after air polishing with different particles and spray angles. Samples were 54 dentin specimens that were formed in saucer-shaped cavities filled with resin composite. Each specimen was air polished with either sodium bicarbonate (NaHCO3) or one of two glycine (Gly) powders. The air polisher was set at angles of 90° to the interface and at 45° to the interface from both the dentin and resin composite sides. Air polishing with Gly powder produced defects with less depth and volume than NaHCO3 powder (p < 0.05). Air polishing with a spray angle of 45° to the interface from the resin composite side produced fewer defects (p < 0.05) than polishing from the dentin side. Air polishing to the R/D interface from the resin composite side produced fewer defects to the interface because the hardness of the resin composite was higher than that of dentin.

  18. AIRS total precipitable water over high latitudes

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Bromwich, D. H.; Fishbein, E.; Olsen, E. T.; Granger, S.; Lee, S.; Lambrigtsen, B.; Chen, L.

    2006-12-01

    Given the importance of atmospheric conditions over the Arctic and Antarctica to the global climate system, hydrological cycles, and cryopspheric dynamics, and the poor coverage of traditional data over these region, AIRS data will play a significant role in filling the information gaps. In this study, we examine the quality of AIRS total atmospheric precipitable water (PWV) and explore its potential applications over the Antarctica and Arctic. For Antarctica, both Level II matching files and Level III gridded products of AIRS are compared with radiosonde records at Dome C and ECMWF's analysis products during December 10, 2003 to January 26, 2004. Results will testify to the quality of AIRS moisture data over glacial surfaces. For the Arctic region, AIRS level III data are used to compare with AMSR-E data and ECMWF analysis product during September of 2004. Results will reveal the quality of AIRS data over high-latitude water, sea ice, and land surfaces. The potential of AIRS data to improve model simulation will be discussed.

  19. Alveolar air-tissue interface and nuclear magnetic resonance behavior of the lung

    NASA Astrophysics Data System (ADS)

    Cutillo, Antonio G.; Ailion, David C.; Ganesan, Krishnamurthy; Morris, Alan H.; Durney, Carl H.

    1995-05-01

    The nuclear magnetic resonance (NMR) properties of lung are markedly affected by the alveolar air-tissue interface, which produces internal magnetic field inhomogeneity because of the different magnetic susceptibilities of air and water. This internal magnetic field inhomogeneity results in a marked shortening of the free induction decay (FID) (in the time domain) and in inhomogeneous NMR line broadening (in the frequency domain). The signal loss due to internal magnetic field inhomogeneity can be measured as the difference Δ between the spin-echo signals obtained using temporally symmetric and asymmetric spin-echo sequences; the degree of asymmetry of the asymmetric sequence is characterized by the asymmetry time τa. In accordance with predictions based on the analysis of theoretical models, experiments in excised rat lungs (studied at various inflation levels) have shown that Δ depends on τa and is very low in degassed lungs. When measured at τa equals 6 ms, the difference signal (Δ6ms) increases markedly with alveolar opening but does not vary significantly during the rest of the inflation-deflation cycle. In edematous (oleic acid-injured) lungs, the values of Δ6ms measured at low inflation levels are significantly below those observed in normal lungs. These results suggest that Δ6ms is very sensitive to alveolar recruitment and relatively insensitive to alveolar distension. Therefore, measurements of Δ6ms may provide a means of assessing the relative contributions of these two factors to the pressure-volume behavior of lung. Such measurements may contribute to the characterization of pulmonary edema (for example, by detecting the loss of alveolar air-tissue interface due to alveolar flooding, by differentiating interstitial from alveolar pulmonary edema, and by assessing the effects of positive airway pressures). NMR lineshape measurements can also provide valuable information regarding lung geometry and the characterization of pulmonary edema.

  20. A Janus-paper PDMS platform for air-liquid interface cell culture applications

    NASA Astrophysics Data System (ADS)

    Rahimi, Rahim; Ochoa, Manuel; Donaldson, Amy; Parupudi, Tejasvi; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ghaemmaghami, Amir; Ziaie, Babak

    2015-05-01

    A commercially available Janus paper with one hydrophobic (polyethylene-coated) face and a hygroscopic/hydrophilic one is irreversibly bonded to a polydimethylsiloxane (PDMS) substrate incorporating microfluidic channels via corona discharge surface treatment. The bond strength between the polymer-coated side and PDMS is characterized as a function of corona treatment time and annealing temperature/time. A maximum strength of 392 kPa is obtained with a 2 min corona treatment followed by 60 min of annealing at 120 °C. The water contact angle of the corona-treated polymer side decreases with increased discharge duration from 98° to 22°. The hygroscopic/hydrophilic side is seeded with human lung fibroblast cells encapsulated in a methacrylated gelatin (GelMA) hydrogel to show the potential of this technology for nutrient and chemical delivery in an air-liquid interface cell culture.

  1. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  2. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. PMID:26762189

  3. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  4. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  5. Colloidal crystal formation at the "Nafion-water" interface.

    PubMed

    Bunkin, Nikolay F; Gorelik, Vladimir S; Kozlov, Valeriy A; Shkirin, Alexey V; Suyazov, Nikolay V

    2014-03-27

    In our recent work [Bunkin et al. Water 2013, 4, 129-154] it was first obtained that the water layer, having a size of several tens of micrometers and being adjacent to the swollen Nafion interface, is characterized by enhanced optical density; the refractive index of water at the interface is 1.46. Furthermore, the birefringence effect was observed in this layer. To explain these results, it has been hypothesized that because of "disentangling" of charged polymer chains from the Nafion surface toward the bulk of water, a photonic crystal close to the surface is formed [Bunkin et al. Water 2013, 4, 129-154]. In this paper, we describe experiments with laser-stimulated luminescence from dry and swollen Nafion. It was shown in the experiment with dry Nafion that the apparatus function of our experimental setup (Green's function) is well-described by a Gaussian profile. It was obtained that a highly concentrated colloidal suspension of Nafion particles with a steep spatial boundary is formed in the water layer adjacent to the interface. The volume density of the Nafion particles as a function of the distance from the Nafion interface was found. These findings can be considered indirect confirmation of the previously formulated photonic crystal hypothesis [Bunkin et al. Water 2013, 4, 129-154]. PMID:24568638

  6. Colloidal crystal formation at the "Nafion-water" interface.

    PubMed

    Bunkin, Nikolay F; Gorelik, Vladimir S; Kozlov, Valeriy A; Shkirin, Alexey V; Suyazov, Nikolay V

    2014-03-27

    In our recent work [Bunkin et al. Water 2013, 4, 129-154] it was first obtained that the water layer, having a size of several tens of micrometers and being adjacent to the swollen Nafion interface, is characterized by enhanced optical density; the refractive index of water at the interface is 1.46. Furthermore, the birefringence effect was observed in this layer. To explain these results, it has been hypothesized that because of "disentangling" of charged polymer chains from the Nafion surface toward the bulk of water, a photonic crystal close to the surface is formed [Bunkin et al. Water 2013, 4, 129-154]. In this paper, we describe experiments with laser-stimulated luminescence from dry and swollen Nafion. It was shown in the experiment with dry Nafion that the apparatus function of our experimental setup (Green's function) is well-described by a Gaussian profile. It was obtained that a highly concentrated colloidal suspension of Nafion particles with a steep spatial boundary is formed in the water layer adjacent to the interface. The volume density of the Nafion particles as a function of the distance from the Nafion interface was found. These findings can be considered indirect confirmation of the previously formulated photonic crystal hypothesis [Bunkin et al. Water 2013, 4, 129-154].

  7. Compact optical system for imaging underwater and through the air/sea interface

    NASA Astrophysics Data System (ADS)

    Alley, Derek; Mullen, Linda; Laux, Alan

    2012-06-01

    Typical line-of-sight (LOS)/monostatic optical imaging systems include a laser source and receiver that are co-located on the same platform. The performance of such systems is deteriorated in turbid ocean water due to the large amount of light that is scattered on the path to and from an object of interest. Imagery collected with the LOS/monostatic system through the air/sea interface is also distorted due to wave focusing/defocusing effects. The approach of this project is to investigate an alternate, non-line-of-sight (NLOS)/bistatic approach that offers some advantages over these traditional LOS/monostatic imaging techniques. In this NLOS system the laser and receiver are located on separate platforms with the laser located closer to the object of interest. As the laser sequentially scans the underwater object, a time-varying intensity signal corresponding to reflectivity changes in the object is detected by the distant receiver. A modulated laser illuminator is used to communicate information about the scan to the distant receiver so it can recreate the image with the collected scattered light. This NLOS/bistatic configuration also enables one to view an underwater target through the air-sea interface (transmitter below the surface and receiver above the surface) without the distortions experienced with the LOS/monostatic sensor. In this paper, we will review the results of recent laboratory water tank experiments where an underwater object was imaged with the receiver both below and above the sea surface.

  8. Static and dynamic correlations in water at hydrophobic interfaces

    PubMed Central

    Mittal, Jeetain; Hummer, Gerhard

    2008-01-01

    We study the static and dynamic properties of the water-density fluctuations in the interface of large nonpolar solutes. With the help of extensive molecular dynamics simulations of TIP4P water near smooth spherical solutes, we show that for large solutes, the interfacial density profile is broadened by capillary waves. For purely repulsive solutes, the squared width of the interface increases linearly with the logarithm of the solute size, as predicted by capillary-wave theory. The apparent interfacial tension extracted from the slope agrees with that of a free liquid–vapor interface. The characteristic length of local density fluctuations is ≈0.5 nm, measured along the arc, again consistent with that of a free liquid–vapor interface. Probed locally, the interfacial density fluctuations exhibit large variances that exceed those expected for an ideal gas. Qualitatively consistent with theories of the free liquid–vapor interface, we find that the water interface near large and strongly nonpolar solutes is flickering, broadened by capillary-wave fluctuations. These fluctuations result in transitions between locally wet and dry regions that are slow on a molecular time scale. PMID:19074279

  9. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from

  10. Assembly of transmembrane proteins on oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Yunker, Peter; Landry, Corey; Chong, Shaorong; Weitz, David

    2015-03-01

    Transmembrane proteins are difficult to handle by aqueous solution-based biochemical and biophysical approaches, due to the hydrophobicity of transmembrane helices. Detergents can solubilize transmembrane proteins; however, surfactant coated transmembrane proteins are not always functional, and purifying detergent coated proteins in a micellar solution can be difficult. Motivated by this problem, we study the self-assembly of transmembrane proteins on oil-water interfaces. We found that the large water-oil interface of oil drops prevents nascent transmembrane proteins from forming non-functional aggregates. The oil provides a hydrophobic environment for the transmembrane helix, allowing the ectodomain to fold into its natural structure and orientation. Further, modifying the strength or valency of hydrophobic interactions between transmembrane proteins results in the self-assembly of spatially clustered, active proteins on the oil-water interface. Thus, hydrophobic interactions can facilitate, rather than inhibit, the assembly of transmembrane proteins.

  11. The Oil-Water Interface: Mapping the Solvation Potential

    SciTech Connect

    Bell, Richard C.; Wu, Kai; Iedema, Martin J.; Schenter, Gregory K.; Cowin, James P.

    2009-01-06

    Ions moving across the oil water interface are strongly impacted by the continuous changes in solvation. The solvation potential for Cs+ is directly measured as they approach the oil-water interface (“oil” = 3-methylpentane), from 0.4 to 4 nm away. The oil-water interfaces are created at 40K using molecular beam epitaxy and a softlanding ion beam, with pre-placed ions. The solvation potential slope was determined at each distance by balancing it against an increasing electrostatic potential made by increasing the number of imbedded ions at that distance, and monitoring the resulting ion motion. The potential approaches the Born model for greater than z>0.4nm, and shows the predicted reduction of the polarizability at z<0.4nm.

  12. Swimming of a model ciliate near an air-liquid interface.

    PubMed

    Wang, S; Ardekani, A M

    2013-06-01

    In this work, the role of the hydrodynamic forces on a swimming microorganism near an air-liquid interface is studied. The lubrication theory is utilized to analyze hydrodynamic effects within the narrow gap between a flat interface and a small swimmer. By using an archetypal low-Reynolds-number swimming model called "squirmer," we find that the magnitude of the vertical swimming velocity is on the order of O(εlnε), where ε is the ratio of the gap width to the swimmer's body size. The reduced swimming velocity near an interface can explain experimental observations of the aggregation of microorganisms near a liquid interface. PMID:23848775

  13. Anomalous effective polarity of an air/liquid-mixture interface: a heterodyne-detected electronic and vibrational sum frequency generation study.

    PubMed

    Mondal, Sudip Kumar; Inoue, Ken-ichi; Yamaguchi, Shoichi; Tahara, Tahei

    2015-10-01

    We study the effective polarity of an air/liquid-mixture interface by using interface-selective heterodyne-detected electronic sum frequency generation (HD-ESFG) and vibrational sum frequency generation (HD-VSFG) spectroscopies. With water and N,N-dimethylformamide (DMF) chosen as two components of the liquid mixture, the bulk polarity of the mixture is controlled nearly arbitrarily by the mixing ratio. The effective polarity of the air/mixture interface is evaluated by HD-ESFG with a surface-active solvatochromic molecule used as a polarity indicator. Surprisingly, the interfacial effective polarity of the air/mixture interface increases significantly, when the bulk polarity of the mixture decreases (i.e. when the fraction of DMF increases). Judging from the hydrogen-bond structure at the air/mixture interface clarified by HD-VSFG, this anomalous change of the interfacial effective polarity is attributed to the interface-specific solvation structure around the indicator molecule at the air/mixture interface.

  14. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  15. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  16. Bacterial motility near crude oil and water interface

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jomayra E. Sánchez; Molaei, Mehdi; Sheng, Jian

    2013-11-01

    Study of biodegradation of crude oil by microbes requires profound understanding of their movement near oil-water interface as well as in/out of phase movement. Bacterial motilities are known to be modified by the presence of an interface through hydrodynamic interactions in addition to the chemotactic behavior towards the oil phase. Using digital holographic microscopy and phase contrast microscopy, we study locomotion of Pseudomonas sp (P62), a well-known hydrocarbon degrader under various chemo- and mechano-environmental conditions. Baseline experiments have been performed at different nutrient levels and Ion levels to identify effects of chemical environment on cell motility. Utilizing novel microfluidics and surface functionalization, we have established a stable vertical oil-water interface between top and bottom surfaces of the microfluidics, which allow clear optical access to observe bacterial movement near the interface. Three-dimensional trajectories of bacteria, obtained by analyzing recorded by digital holography microscopy, enable us to characterize bacterial swimming and orientation near interfaces. Chemotaxis velocity and swimming induced dispersion are measured directly as well as cell concentration distributions with respect to the distance to the interface. NIH, NSF, GoMRI.

  17. Reconstructing the protein-water interface.

    PubMed

    Makarov, V A; Andrews, B K; Pettitt, B M

    1998-06-01

    Using molecular dynamics simulations of fully hydrated proteins and analysis of crystal structures contained in the Protein Data Bank, we develop a transferable set of perpendicular radial distribution functions for water molecules around globular proteins. These universal functions may be used to reconstruct the unique three-dimensional solvent density distribution around every individual protein with a modest error. We discuss potential applications of this solvent treatment in protein x-ray crystallographic refinements and in theoretical modeling. We also present a fast, grid-based algorithm for construction of the perpendicular solvent density distributions.

  18. Ultrafast excited-state dynamics at interfaces: fluorescent DNA probes at the dodecane/water interface

    NASA Astrophysics Data System (ADS)

    Licari, Giuseppe; Vauthey, Eric

    2015-08-01

    Although the interfaces between two isotropic media are of primary importance in many areas of science and technology, their properties are only partially understood. Our strategy to obtain an insight into these properties is to investigate the ultrafast excited-state dynamics of environment-sensitive molecular probes at liquid interfaces using time-resolved surface second harmonic generation, and to compare it with the dynamics of the same molecules in bulk solutions. Additionally, this approach gives rich information on how the chemical reactivity may change when going from the bulk phase to the interface. This is illustrated by an investigation performed with a series of fluorescent DNA probes at the dodecane/water interface without and with the presence of DNA in the aqueous phase. Substantial differences in the conformation of these cyanine dyes (aggregated or not) and in the excited-state dynamics are observed when going from bulk solutions to the interface. Moreover, the presence of double-stranded DNA in the aqueous phase induces some chirality at the interface.

  19. Air/water interfacial formation of freestanding, stimuli-responsive, self-healing catecholamine Janus-faced microfilms.

    PubMed

    Hong, Seonki; Schaber, Clemens F; Dening, Kirstin; Appel, Esther; Gorb, Stanislav N; Lee, Haeshin

    2014-12-01

    A catecholamine freestanding film is discovered to be spontaneously formed at the air-water interface, and the film has unique properties of robust surface adhesiveness, self-healing, and stimuli-responsive properties. The interfacial film-producing procedure is a simple single step containing polyamines and catechol(amine)s. It is found that oxygen-rich regions existing at an air-water interface greatly accelerate the catecholamine crosslinking reaction. PMID:25220108

  20. Air/water interfacial formation of freestanding, stimuli-responsive, self-healing catecholamine Janus-faced microfilms.

    PubMed

    Hong, Seonki; Schaber, Clemens F; Dening, Kirstin; Appel, Esther; Gorb, Stanislav N; Lee, Haeshin

    2014-12-01

    A catecholamine freestanding film is discovered to be spontaneously formed at the air-water interface, and the film has unique properties of robust surface adhesiveness, self-healing, and stimuli-responsive properties. The interfacial film-producing procedure is a simple single step containing polyamines and catechol(amine)s. It is found that oxygen-rich regions existing at an air-water interface greatly accelerate the catecholamine crosslinking reaction.

  1. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-09-01

    Detonation experiments are conducted in a 52 {mm} square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3. Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ }) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  2. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  3. Mechanical Evolution of Bacterial Films at Oil-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Allan, Daniel; Vaccari, Liana; Sheng, Jian; Leheny, Robert; Stebe, Kathleen

    2014-03-01

    Bacteria can assemble at the interface between oil and water to form films that strongly affect the mechanical properties of the interface. In comparison with biofilms on solid substrates, such biofilm formation at fluid-fluid interfaces has been the subject of relatively little study. The microstructure of the films, which can include not only packings of bacteria but macromolecular surfactants secreted by the bacteria and the remains of dead bacteria, resembles a quasi-two-dimensional colloidal suspension in a polymer solution. We have characterized the mechanical response of bacterial films at oil-aqueous interfaces during their formation via passive microrheology and pendant drop imaging. With increasing age, the films undergo a transition from a viscous to an elastic interfacial shear rheology and eventually acquire a bending rigidity. These findings will be discussed in terms of viscoelstic models and in the context of the active nature of the bacteria in the films and in the adjoining aqueous suspension.

  4. Interactions of anesthetics with the membrane-water interface

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Cieplak, P.; Wilson, M. A.

    1996-01-01

    Although the potency of conventional anesthetics correlates with lipophilicity, an affinity to water also is essential. It was recently found that compounds with very low affinities to water do not produce anesthesia regardless of their lipophilicity. This finding implies that clinical anesthesia might arise because of interactions at molecular sites near the interface of neuronal membranes with the aqueous environment and, therefore, might require increased concentrations of anesthetic molecules at membrane interfaces. As an initial test of this hypothesis, we calculated in molecular dynamics simulations the free energy profiles for the transfer of anesthetic 1,1,2-trifluoroethane and nonanesthetic perfluoroethane across water-membrane and water-hexane interfaces. Consistent with the hypothesis, it was found that trifluoroethane, but not perfluoroethane, exhibits a free energy minimum and, therefore, increased concentrations at both interfaces. The transfer of trifluoroethane from water to the nonpolar hexane or interior of the membrane is accompanied by a considerable, solvent-induced shift in the conformational equilibrium around the C-C bond.

  5. Nucleation processes of nanobubbles at a solid/water interface.

    PubMed

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-01-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules. PMID:27090291

  6. Nucleation processes of nanobubbles at a solid/water interface

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-04-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

  7. Nucleation processes of nanobubbles at a solid/water interface

    PubMed Central

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-01-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules. PMID:27090291

  8. Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics

    PubMed Central

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Chen, Hui-Yuan; Yang, Szu-Chi; Huang, Yu-Ru; -Ju Chen, I.; Chen, Yun-Wen; Gusev, Vitalyi; Chen, Miin-Jang; Kuo, Jer-Lai; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2014-01-01

    Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces. PMID:25176017

  9. Thermodynamics of surface defects at the aspirin/water interface

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Zheng, Chen; Reuter, Karsten

    2014-09-01

    We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.

  10. Investigating the interface of superhydrophobic surfaces in contact with water.

    PubMed

    Doshi, Dhaval A; Shah, Pratik B; Singh, Seema; Branson, Eric D; Malanoski, Anthony P; Watkins, Erik B; Majewski, Jaroslaw; van Swol, Frank; Brinker, C Jeffrey

    2005-08-16

    Neutron reflectivity (NR) is used to probe the solid, liquid, vapor interface of a porous superhydrophobic (SH) surface submerged in water. A low-temperature, low-pressure technique was used to prepare a rough, highly porous organosilica aerogel-like film. UV/ozone treatments were used to control the surface coverage of hydrophobic organic ligands on the silica framework, allowing the contact angle with water to be continuously varied over the range of 160 degrees (superhydrophobic) to <10 degrees (hydrophilic). NR shows that the superhydrophobic nature of the surface prevents infiltration of water into the porous film. Atomic force microscopy and density functional theory simulations are used in combination to interpret the NR results and help establish the location, width, and nature of the SH film-water interface.

  11. SO{sub 2} uptake on ice spheres: Liquid nature of the ice-air interface

    SciTech Connect

    Conklin, M.H.; Bales, R.C.

    1993-09-20

    The amount of SO{sub 2} gas absorbed by ice of known surface area at equilibrium was used to estimate the volume of liquid water present at the ice-air interface at temperatures from {minus}1 to {minus}60{degrees}C. Calculations were based on Henry`s law and acid dissociation equilibrium. The liquid volume is lowest at lower temperatures and ionic strength and under most conditions was greater than the volumes calculated based on freezing-point depression. The equivalent layer thickness, assuming that liquid water is uniformly distributed around the grains, ranged from 3-30 nm at {minus}60{degrees}C to 500-3000 nm at {minus}1{degrees}C. Corresponding ionic strengths for the two temperatures were 1.7-0.0012 M and 0.005-0.00009 M. Lower values were for ice made from distilled water, and higher values were for ice made from 10{sup {minus}3} M NaCl. Estimated pH values were from 2.9 at {minus}60{degrees}C to 4.1 at {minus}1{degrees}C. Results demonstrate that gas absorption can be used to estimate an equivalent liquid volume and thickness for the ice-air interfacial region. While not directly comparable to physical measurements, the estimated values should be directly applicable to modeling uptake of SO{sub 2} and other trace gases by ice. Lack of good thermodynamic data for temperature below 0{degrees}C is the main limitation to applying this method. 23 refs., 3 figs., 1 tab.

  12. A simple method for locating the fresh water-salt water interface using pressure data.

    PubMed

    Kim, Kue-Young; Chon, Chul-Min; Park, Ki-Hwa

    2007-01-01

    Salt water intrusion is a key issue in dealing with exploitation, restoration, and management of fresh ground water in coastal aquifers. Constant monitoring of the fresh water-salt water interface is necessary for proper management of ground water resources. This study presents a simple method to estimate the depth of the fresh water-salt water interface in coastal aquifers using two sets of pressure data obtained from the fresh and saline zones within a single borehole. This method uses the density difference between fresh water and saline water and can practically be used at coastal aquifers that have a relatively sharp fresh water-salt water interface with a thin transition zone. The proposed method was applied to data collected from a coastal aquifer on Jeju Island, Korea, to estimate the variations in the depth of the interface. The interface varied with daily tidal fluctuations and heavy rainfall in the rainy season. The estimated depth of the interface showed a good agreement with the measured electrical conductivity profile.

  13. Conjugated polymelectrolyte assembly at water-oil interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Huang, Caili; Thomas, Russell; Russell Team

    Conjugated polyelectrolytes featured with conjugated backbone and functional side chains are interesting optoelectronic materials and widely used to modify electrodes in electronic devices such as light emitting diodes and solar cells to enhance device performance. Conjugated polyelectrolyte can be designed to have alternating hydrophilic and hydrophobic side chains, and thus inducing interesting surface and interface properties. In this work, we using polyfluorene based material, to study its behavior at water-toluene interface. The aliphatic side-chains will favorably interact with toluene, and amine side-chains will interact with water, making this material a good surfactant. At interface the polymer chain is stretched to a Janus type of geometry. Flattened molecules will assemble into ultra thin films via pi-pi intermolecular stacking, and thus creating barriers between liquids. When liquid volume is reduced, jamming at interface will show up. These properties are strongly affected by the environment of the liquids, such as temperature and PH values, and polyelectrolyte diffusion to interfaces. This study leads to new methods to structure liquids using single component, which can be extended to applications such as electro-spinning or fabricate flow devices.

  14. Air expansion in a water rocket

    NASA Astrophysics Data System (ADS)

    Romanelli, Alejandro; Bove, Italo; González Madina, Federico

    2013-10-01

    We study the thermodynamics of a water rocket in the thrust phase, taking into account the expansion of the air with water vapor, vapor condensation, and the corresponding latent heat. We set up a simple experimental device with a stationary bottle and verify that the gas expansion in the bottle is well approximated by a polytropic process PVβ = constant, where the parameter β depends on the initial conditions. We find an analytical expression for β that depends only on the thermodynamic initial conditions and is in good agreement with the experimental results.

  15. SWAN: An expert system with natural language interface for tactical air capability assessment

    NASA Technical Reports Server (NTRS)

    Simmons, Robert M.

    1987-01-01

    SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.

  16. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  17. A theoretical remark about waves on a static water surface beneath a layer of moving air

    NASA Astrophysics Data System (ADS)

    Kida, T.; Hayashi, R.; Yasutomi, Z.

    1990-12-01

    Grundy and Tuck (1987) treat the problem of large-amplitude waves on an air-water interface where the air is a steady nonuniform flow and the water is stationary. Both periodic nonlinear Stokes-like waves far downstream and a configuration of the water surface from the edge region of a hovercraft were computed. However, there is no work that treats the existence of such Stokes-like waves theoretically. The present work aims to prove the existence of such solutions in the case where the cushion pressure is low, that is, the depression at the upstream stagnation point from the mean water level is small.

  18. Hydrated Electrons at the Plasma-Water Interface

    NASA Astrophysics Data System (ADS)

    Graves, David; Gopalakrishnan, Ranga; Kawamura, Emi; Lieberman, Michael

    2015-09-01

    When atmospheric pressure plasma interacts with liquid water surfaces, complex processes involving both charged and neutral species generally occur but the details of the processes are not well understood. One plasma-generated specie of considerable interest that can enter an adjacent liquid water phase is the electron. Hydrated electrons are well known to be important in radiation chemistry as initiating precursors for a variety of other reactive compounds. Recent experimental evidence for hydrated electrons near the atmospheric pressure plasma-water interface was reported by Rumbach et al.. We present results from a model of a dc argon plasma coupled to an anodic adjacent water layer that aims to simulate this experiment. The coupled plasma-electrolyte model illustrates the nature of the plasma-water interface and reveals important information regarding the self-consistent electric fields on each side of the interface as well as time- and space-resolved rates of reaction of key reactive species. We suggest that the reducing chemistry that results from electron hydration may be useful therapeutically in countering local excess oxidative stress. Supported by the Department of Energy, Office of Fusion Science Plasma Science Center

  19. Simulation study of water/silicon oxide interface

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Rempe, Susan; Stevens, Mark; Grest, Gary; Tsige, Mesfin

    2006-03-01

    The interaction of water with solid surfaces plays a crucial role in many phenomena. The water-silica interface is one of the typical systems encountered in technological and natural materials. Numerous technological applications of silica were found to rely on its specific surface properties. Large scale quantum mechanics (QM) and classical molecular dynamics (MD) simulations are used to study the molecular configurations and wetting properties of water at the interface of different silicon oxide surfaces. In order to understand how the surface coverage of silanols (-SiOH) affects the wetting behavior of the silica surfaces, both crystalline ((001) α-quartz (coverage 9.6 nm-2) and (100) β-cristobalite (7.8 nm-2)) and amorphous silica (5.0 nm-2) substrates have been studied. The binding energy of the water, the number of water molecules hydrogen-bonded to the surface and the configuration of the hydrogen-bonded water molecules are determined as a function of silanol coverage from QM simulations. The number of water molecules within a monolayer and the orientation of the water molecules within the monolayer and in the bulk are determined from MD simulations. Results from two classical force fields are compared to one another and to the relevant quantities from the QM simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  1. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  2. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  3. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  4. Human islet amyloid polypeptide at the air-aqueous interface: a Langmuir monolayer approach.

    PubMed

    Li, Shanghao; Micic, Miodrag; Orbulescu, Jhony; Whyte, Jeffrey D; Leblanc, Roger M

    2012-11-01

    Human islet amyloid polypeptide (hIAPP) is the source of the major component of the amyloid deposits found in the islets of Langerhans of around 95 per cent type 2 diabetic patients. The formation of aggregates and mature fibrils is thought to be responsible for the dysfunction and death of the insulin-producing pancreatic β-cells. Investigation on the conformation, orientation and self-assembly of the hIAPP at time zero could be beneficial for our understanding of its stability and aggregation process. To obtain these insights, the hIAPP at time zero was studied at the air-aqueous interface using the Langmuir monolayer technique. The properties of the hIAPP Langmuir monolayer at the air-aqueous interface on a NaCl subphase with pH 2.0, 5.6 and 9.0 were examined by surface pressure- and potential-area isotherms, UV-Vis absorption, fluorescence spectroscopy and Brewster angle microscopy. The conformational and orientational changes of the hIAPP Langmuir monolayer under different surface pressures were characterized by p-polarized infrared-reflection absorption spectroscopy, and the results did not show any prominent changes of conformation or orientation. The predominant secondary structure of the hIAPP at the air-aqueous interface was α-helix conformation, with a parallel orientation to the interface during compression. These results showed that the hIAPP Langmuir monolayer at the air-aqueous interface was stable, and no aggregate or domain of the hIAPP at the air-aqueous interface was observed during the time of experiments.

  5. Theoretical investigation of the water/corundum (0001) interface

    NASA Astrophysics Data System (ADS)

    Polly, Robert; Schimmelpfennig, Bernd; Flörsheimer, Mathias; Kruse, Klaus; AbdElMonem, Ahmed; Klenze, Reinhardt; Rauhut, Guntram; Fanghänel, Thomas

    2009-02-01

    For the reliable long-term modeling of the actinide migration in geological formations, the adsorption/desorption properties and the reactivity of mineral surfaces must be understood at the molecular level. The adsorption of radioisotopes at mineral surfaces of the aquifer is an important process that leads to the retention of contaminants such as radionuclides. Their transport by the ground water is either retarded or even completely inhibited by the presence of such a surface. Accordingly, this subject is of main importance for the safety assessment of nuclear waste repositories. As part of a joint theoretical/experimental effort, the interaction of water with the corundum (0001) surface is studied using several theoretical methods (Møller-Plesset perturbation theory, coupled cluster singles doubles with triplet corrections, as well as density functional theory). We focus in this study on the determination of the bond lengths and tilt angles of the surface OH species and their respective vibrational frequencies. The theoretical results are confirmed by subsequent simulation of the interface selective nonlinear sum frequency spectra. The excellent agreement of the simulated with the experimental spectra allows an assignment of the observed peaks in the sum frequency spectra of the water/corundum (0001) interface on the basis of our theoretical data. In this theoretical study we are able to give a unique interpretation of the observed sum frequency spectra of the water/corundum (0001) interface.

  6. Hydrodynamics of Particles at an Oil-Water Interface.

    PubMed

    Dani, Archit; Keiser, Geoff; Yeganeh, Mohsen; Maldarelli, Charles

    2015-12-15

    This study is a theoretical and experimental investigation of the hydrodynamics of the mutual approach of two floating spherical particles moving along an oil-water interface. An analytical expression is obtained for the (inertialess) Stokes drag for an isolated particle translating on a flat interface as a function of the immersion depth into the water phase for the case in which the viscosity of the oil is much larger than that of the water. An approximation for the viscous drag due to the mutual approach of identical spheres is formulated as the product of the isolated drag multiplied by the resistance of approaching spheres in an infinite medium. Experiments are undertaken on the capillary attraction of large, millimeter-sized Teflon spheres floating at the interface between a very viscous oil and water. With the use of image visualization and particle tracking, the separation distance as a function of time [[Formula: see text](t)] is measured along with the immersion depth and predicted by setting the capillary attraction force equal to the viscous drag resistance. The excellent agreement validates the approximating formula. PMID:26488685

  7. Groundwater air stripping: Effect on water toxicity

    SciTech Connect

    Eldridge, R.B.; Simpson, C.W.; Elliott, D.J.

    1995-02-01

    An air stripping unit was designed to reduce groundwater hydrocarbon content and biotoxicity to acceptable levels. A pilot plant study was conducted to determine the water treatability and to optimize the commercial unit design conditions. A measurement of the pilot plant effluent toxicity was obtained from {open_quotes}Microtox{close_quotes} analysis and rigorous bio-assays. These results indicated that reduction of the water hydrocarbon content to permitted discharge limits was accompanied by the elimination of water toxicity. The Onda mass transfer model was used to prepare the commercial unit design. A post-installation evaluation indicated that the model gave a good representation of the commercial unit performance. Toxicity reductions observed in the pilot plant were also observed in the commercial unit. 3 refs., 5 figs., 3 tabs.

  8. Adsorption of diatoms at the oil-water interface

    NASA Astrophysics Data System (ADS)

    Fathollahi, Niloofar; Sheng, Jian

    2013-11-01

    Statistically robust experimental observations on 3D trajectory of diatoms approaching an oil-water interface is crucial for understanding sorption mechanisms of active particles, and interfacial rheology with over-arching implications in interfacial dynamics, droplet break and coalescence. Digital Holographic Cinematography is utilized to measure 3-D trajectories of diatoms, Thalassiosira pseudomona and T. weissflogii and simultaneously track the interface. Experiments are conducted in a 300 × 100 × 100 mm chamber containing 32 ppt artificial seawater. A stationary pendant drop is created on the tip of a needle located at the center of the chamber. Three oil samples, Louisiana crude, hexadecane, and mineral oil, are used. Diatoms are injected at a height above the drop with a negligible velocity, where Diatom precipitates freely on its excess weight. Holograms of diatom and drop are recorded at 5 fps with a magnification of 1.3X and are streamed in real time allowing for long-term study of sorption onto a slowly aging interface. A novel autofocus algorithm enables us to determine 3D locations within an uncertainty of 0.05 particle diameter. This allows us to perform super-resolution measurement to determine the effects of location and orientation of diatoms on the adsorption rate at the oil-water interface. Funded by GoMRI.

  9. Influence of oscillating features of a laser-induced bubble on laser propulsion in water environment near different interfaces

    NASA Astrophysics Data System (ADS)

    Chen, J.; Han, B.; Dou, L.; Pan, Y.-X.; Shen, Z.-H.; Lu, J.; Ni, X.-W.

    2010-12-01

    Laser propulsion in a water environment is influenced by oscillating features of a laser-induced bubble. In our study an optical beam deflection method is used to investigate dynamics of laser-induced semispherical cavitation bubbles near three different interfaces: the rigid boundary (water-solid interface), the free surface (water-air interface) and the liquid-liquid interface (water-soybean oil interface), and in the bulk. The maximum radius of the first bubble oscillation Rmax1 was widened and the collapse time T1 is prolonged in the case of the rigid boundary. Rmax1 is diminished and T1 is shortened in the case of the free surface and the water-oil interface, among which the latter makes Rmax1 even smaller. In order to get the maximum propelling force in different distances near different medium interfaces, different pulse energy of the laser is used. The bubble moves toward the rigid boundary and moves away from the free surface during its oscillations. This will change the application point of the propelling force on the object, and cause a change in the propelling direction of the object.

  10. Protein oxidation at the air-lung interface.

    PubMed

    Kelly, F J; Mudway, I S

    2003-12-01

    Whilst performing its normal functions the lung is required to deal with a range of toxic insults. Whether these are infectious agents, allergens or air pollutants they subject the lung to a range of direct and indirect oxidative stresses. In many instances these challenges lead to oxidative alterations of peptides and proteins within the lung. Measurement of protein oxidation products permits the degree of oxidative stress to be assessed and indicates that endogenous antioxidant defences are overwhelmed. The range of protein oxidation products observed is diverse and the nature and extent of specific oxidation products may inform us about the nature of the damaging ROS and NOS. Recently, there has been a significant shift away from the measurement of these oxidation products simply to establish the presence of oxidative stress, to a focus on identifying specific proteins sensitive to oxidation and establishing the functional consequences of these modifications. In addition the identification of specific enzyme systems to repair these oxidative modifications has lead to the belief that protein function may be regulated through these oxidation reactions. In this review we focus primarily on the soluble protein components of within the surface liquid layer in the lung and the consequence of their undue oxidation.

  11. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  12. Air-stable droplet interface bilayers on oil-infused surfaces

    PubMed Central

    Boreyko, Jonathan B.; Polizos, Georgios; Datskos, Panos G.; Sarles, Stephen A.; Collier, C. Patrick

    2014-01-01

    Droplet interface bilayers are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit noncoalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the noncoalescing water droplets. As with traditional oil-submerged droplet interface bilayers, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in ambient environments, which could potentially enable biosensing of airborne matter. PMID:24821774

  13. Surface potential of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  14. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  15. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  16. Instability of an interface between air and a low conducting liquid subjected to charge injection

    NASA Astrophysics Data System (ADS)

    Chicón, Rafael; Pérez, Alberto T.

    2006-10-01

    We study the linear stability of an interface between air and a low conducting liquid in the presence of unipolar injection of charge. As a consequence of charge injection, a volume charge density builds up in the air gap and a surface charge density on the interface. Above a certain voltage threshold the electrical stresses may destabilize the interface, giving rise to a characteristic cell pattern known as rose-window instability. Contrary to what occurs in the classical volume electrohydrodynamic instability in insulating liquids, the typical cell size is several times larger than the liquid depth. We analyze the linear stability through the usual procedure of decomposing an arbitrary perturbation into normal modes. The resulting homogeneous linear system of ordinary differential equations is solved using a commercial software package. Finally, an analytical method is developed that provides a solution valid in the limit of small wavenumbers.

  17. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  18. Ordered polyelectrolyte assembly at the oil–water interface

    PubMed Central

    Beaman, Daniel K.; Robertson, Ellen J.; Richmond, Geraldine L.

    2012-01-01

    Polyelectrolytes (PEs) are widely used in applications such as water purification, wastewater treatment, and mineral recovery. Although much has been learned in past decades about the behavior of PEs in bulk aqueous solutions, their molecular behavior at a surface, and particularly an oil–water interface where many of their applications are most relevant, is largely unknown. From these surface spectroscopic and thermodynamics studies we report the unique molecular characteristics that several common polyelectrolytes, poly(acrylic acid) and poly(methylacrylic acid), exhibit when they adsorb at a fluid interface between water and a simple insoluble organic oil. These PEs are found to adsorb to the interface from aqueous solution in a multistepped process with a very thin initial layer of oriented polymer followed by multiple layers of randomly oriented polymer. This additional layering is thwarted when the PE conformation is constrained. The adsorption/desorption process is highly pH dependent and distinctly different than what might be expected from bulk aqueous phase behavior. PMID:22345565

  19. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  20. Photodetoxification and purification of water and air

    SciTech Connect

    Anderson, M.; Blake, D.M.

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  1. Two-dimensional pigment monolayer assemblies for light-harvesting applications: Structural characterization at the air/water interface with X-ray specular reflectivity and on solid substrates by optical absorption spectroscopy

    SciTech Connect

    Gregory, B.W.; Vaknin, D.; Gray, J.D. |; Ocko, B.M.; Stroeve, P.; Cotton, T.M.; Struve, W.S.

    1997-03-13

    X-ray specular reflectivity at the liquid/gas interface of dihexadecyl phosphate (DHDP) on pure H{sub 2}O and on a series of pigment-containing aqueous solutions are reported along with visible absorption spectra of corresponding monomolecular Langmuir-Blodgett films on quartz substrates. Reflectivity from DHDP reveals that at large surface pressure, the film is closely packed with untilted hydrocarbon chains and hydrated phosphate headgroups. Visible absorption spectra of all transferred films indicate a closely packed single pigment layer, consistent with reflectivity results. The existence of a complete pigment monolayer over the measured surface-pressure-molecular area isotherms has been evidenced by both X-ray reflectivity and visible optical studies. 64 refs., 8 figs., 3 tabs.

  2. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  3. Experimental demonstration of coupling of heat and matter fluxes at a gas-water interface

    NASA Astrophysics Data System (ADS)

    Phillips, Leon F.

    1994-09-01

    Air-water fluxes of oxygen and carbon dioxide have been calculated for a model which incorporates a turbulent air layer and takes into account the effects of the fluxes of sensible and latent heat on the temperature of the liquid surface. The calculated fluxes are compared with the experimental results of Liss et al (1981), Smith and Jones (1985), and Smith et al. (1991). The results of this comparison clearly demonstrate both the importance of coupling, in the sense of irreversible thermodynamics, of heat and matter fluxes at the gas-water interface and the important role of the surface temperature of the liquid in controlling the magnitude and sometimes even the direction of the gas flux. The large carbon dioxide fluxes found by Smith and coworkers can be accounted for by assuming eddy diffusion, rather than molecular diffusion, on the seaside of the interface. This is consistent with an earlier suggestion that their measurements were affected by proximity to a surf zone. The present calculations might serve as the basis of a practical method of determining air-sea fluxes of CO2 and other trace gases.

  4. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium.

    PubMed

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús

    2015-08-13

    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains. PMID:26189700

  5. Adhesive interfaces of enamel and dentin prepared by air-abrasion at different distances

    NASA Astrophysics Data System (ADS)

    Chinelatti, Michelle Alexandra; do Amaral, Thais Helena Andreolli; Borsatto, Maria Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-03-01

    The purpose of this study was to analyse, by scanning electron microscopy (SEM), the morphology of enamel and dentin/adhesive interfaces in cavities prepared by air-abrasion at different working distances. Thirty sound third human molars were selected and, on both their buccal and lingual surfaces, class V cavities were prepared by air-abrasion, at 2-, 4-, 6-, 8- and 10-mm working distances, or high-speed bur (control group). After preparation, all cavities were etched with 35% phosphoric acid gel and restored with Single Bond/Filtek Z-250. Buccal and lingual surfaces were separated and restorations sectioned in a buccolingual direction, providing two sections of each cavity, which were analysed by scanning electron microscopy. It was observed that the distances of 6 and 8 mm promoted more homogeneous dentin/adhesive interfaces, with tags formation, and more uniform for enamel, which were similar to the control group. It may be concluded that the air-abrasion working distance can influence the morphology of enamel and dentin/adhesive interfaces, and the intermediate distances provided better adhesive interfaces.

  6. Theoretical analysis of injecting the compressed air through a defensive well into aquifer aimed to separate between polluted and fresh water

    NASA Astrophysics Data System (ADS)

    Boger, M.; Ravina, I.

    2012-12-01

    Injecting a compressed air, through a well, located between the sea or a polluted lake and fresh ground water, creates a "hydraulic barrier" that prevents their mixing. Steady influx of air to a saturated soil produces a pressure gradient from the well and replacement of water by air, hence the interface between air and water increases. After the compression process is stopped, the soil pores are filled with air, so that saturated soil becomes unsaturated with a decreased conductivity. Creating such a barrier, first by the air pressure and second by blocking of the pores, is welcomed at the interface sea-fresh water area, for example. It prevents the loss of fresh water to the sea and it decreases sea water movement into the aquifer. Another positive effect of the air injection is the air flow through unsaturated zone, above the ground water, that decreases polluted water down-seepage from the surface thus defending the fresh ground water against pollution. The regular water well or special drilled one will be used as defensive well. The radius of defensive well can be smaller than the one of the water well. The explanation of the defensive well exploitation in the field for one and multi layer aquifers is presented. Analytical evaluations of the pressure loss and shape of the air-water interfaces in saturated soil are presented for: (a) steady air flow for a one layer aquifer and for a three layer one (leaky aquifer case), (b) transient air flow for a one layer aquifer. It is shown that the shape of air-water interfaces is generally an inverted cone, where the decrease of air pressure in the aquifer with the distance from the well is approximately logarithmic. The necessary pressure to create the effective air flow in the aquifer is only about tens percent higher than static water pressure in the well.

  7. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  8. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is...

  9. Computational study of effect of water finger on ion transport through water-oil interface

    NASA Astrophysics Data System (ADS)

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  10. Computational study of effect of water finger on ion transport through water-oil interface.

    PubMed

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase. PMID:27394116

  11. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure

    PubMed Central

    2014-01-01

    Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005

  12. Peptide Folding and Translocation Across the Water-Membrane Interface

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The ability of small peptides to organize at aqueous interfaces was examined by performing a series of large-scale, molecular dynamics computer simulations of several peptides composed of two amino acids, nonpolar leucine (L) and polar glutamine (Q). The peptides differed in size and sequence of the amino acids. Studies on dipeptides LL, LQ, QL and QQ were extended to two heptamers, LQQLLQL and LQLQLQL, designed to maximize interfacial stability of an alpha-helix and a beta-strand, respectively, by exposing polar side chains to water and nonpolar side chains to a nonpolar phase. Finally, a transition of an undecamer, composed entirely of leucine residues, from a disordered structure in water to an alpha-helix in a nonpolar phase representing the interior of the membrane was investigated. Complete folding of a peptide in solution was accomplished for the first time in computer simulations. The simulations revealed several basic principles governing the sequence-dependent organization of peptides at interfaces. Short peptides tend to accumulate at interfaces and acquire ordered structures, providing that they have a proper sequence of polar and nonpolar amino acids. The dominant factor determining the interfacial structure of peptides is the hydrophobic effect, which is manifested at aqueous interfaces as a tendency for polar and nonpolar groups of the solute to segregate into the aqueous and nonpolar phases, respectively. If peptides consist of nonpolar residue's only, they become inserted into the nonpolar phase. As demonstrated by the example of the leucine undecamer, such peptides fold into an alpha-helix as they partition into the nonpolar medium. The folding proceeds through an intermediate, called 3-10-helix, which remains in equilibrium with the alpha-helix. Once in the nonpolar environment, the peptides can readily change their orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The

  13. Numerical Simulation of Air Bubble Characteristics in Stationary Water

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Wang, Y. X.

    The motion of air bubble in water plays a key role in such diverse aspects as air bubble curtain breakwater, air curtain drag reduction, air cushion isolation, weakening the shock wave in water by air bubble screen, etc. At present, the research on air bubble behaviors can be subdivided into several processes: air bubble formation from submerged orifices; interaction and coalescence during the ascending. The work presented in this paper focuses on numerical simulation of air bubble characteristics in stationary water, for example, air bubble formation, the ascending speed, the departing period, and so on. A series of models to simulate the characteristics of air bubble are developed by the VOF method in the two phase flow module of FLUENT. The numerical simulation results are consistent with the theoretical characteristics of air bubble in many aspects. So it is concluded that numerical simulation of air bubble characteristics in stationary water based on FLUENT is feasible. Due to the fact that the characteristics of air bubble are complicated questions, it is important that study on the air bubble behaviors in stationary water should be conducted on deeply.

  14. Enhanced sound transmission from water to air at low frequencies.

    PubMed

    McDonald, B Edward; Calvo, David C

    2007-12-01

    Excitation of acoustic radiation into the air from a low-frequency point source under water is investigated using plane wave expansion of the source spectrum and Rayleigh reflection/transmission coefficients. Expressions are derived for the acoustic power radiated into air and water as a function of source depth and given to lowest order in the air/water density ratio. Near zero source depth, the radiation into the water is quenched by the source's acoustic image, while the power radiated into air reaches about 1% of the power that would be radiated into unbounded water.

  15. Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface

    PubMed Central

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-01-01

    There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634

  16. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  17. Water at an electrochemical interface - a simulation study

    SciTech Connect

    Willard, Adam; Reed, Stewart; Madden, Paul; Chandler, David

    2008-08-22

    The results of molecular dynamics simulations of the properties of water in an aqueous ionic solution close to an interface with a model metallic electrode are described. In the simulations the electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions with charged species, and it is maintained at a constant electrical potential with respect to the solution so that the model is a textbook representation of an electrochemical interface through which no current is passing. We show how water is strongly attracted to and ordered at the electrode surface. This ordering is different to the structure that might be imagined from continuum models of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching the surface. We describe the concomitant motion and configurations of the water and ions as functions of the electrode potential, and we analyze the length scales over which ionic atmospheres fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength. The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of the aqueous environment near a metal surface. The importance of this finding for a description of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free energy profiles for transfer of charge between the electrode and a redox species in the solution and comparing the results with the predictions of continuum theories. Significant departures from the electrochemical textbook descriptions of the phenomenon are found and their physical origins are characterized from the atomistic perspective of the simulations.

  18. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  19. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  20. Transport properties of water at functionalized molecular interfaces

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-09-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface.

  1. Tabular water properties interface for Hydra-TH :

    SciTech Connect

    Carpenter, John H.; Belcourt, Kenneth Noel

    2013-04-01

    Completion of the CASL L3 milestone THM.CFD.P6.03 provides a tabular material properties capability to the Hydra code. A tabular interpolation package used in Sandia codes was modified to support the needs of multi-phase solvers in Hydra. Use of the interface is described. The package was released to Hydra under a government use license. A dummy physics was created in Hydra to prototype use of the interpolation routines. Finally, a test using the dummy physics verifies the correct behavior of the interpolation for a test water table. 3

  2. Growth of large naphthalene and anthracene single-crystal sheets at the liquid–air interface

    SciTech Connect

    Postnikov, V. A.; Chertopalov, S. V.

    2015-07-15

    The growth of organic single crystals of naphthalene (C{sub 10}H{sub 8}) and anthracene (C{sub 14}H{sub 10}) at the liquid‒air interface from a mixture of solvents has been investigated. The growth technique used in the study makes it possible to obtain single-crystal sheets up to 10 mm in size for 24 h. The surface morphology and structure of the crystals have been analyzed by optical microscopy and X-ray diffraction. C{sub 10}H{sub 8} and C{sub 14}H{sub 10} single crystals grow coplanarly along the (001) plane. A thermodynamic model of the flat-crystal nucleus formation at the liquid‒air interface, based on the analysis of the change in the free Gibbs energy, is considered.

  3. Crystalline Gibbs monolayers of DNA-capped nanoparticles at the air-liquid interface.

    PubMed

    Campolongo, Michael J; Tan, Shawn J; Smilgies, Detlef-M; Zhao, Mervin; Chen, Yi; Xhangolli, Iva; Cheng, Wenlong; Luo, Dan

    2011-10-25

    Using grazing-incidence small-angle X-ray scattering in a special configuration (parallel SAXS, or parSAXS), we mapped the crystallization of DNA-capped nanoparticles across a sessile droplet, revealing the formation of crystalline Gibbs monolayers of DNA-capped nanoparticles at the air-liquid interface. We showed that the spatial crystallization can be regulated by adjusting both ionic strength and DNA sequence length and that a modified form of the Daoud-Cotton model could describe and predict the resulting changes in interparticle spacing. Gibbs monolayers at the air-liquid interface provide an ideal platform for the formation and study of equilibrium nanostructures and may afford exciting routes toward the design of programmable 2D plasmonic materials and metamaterials.

  4. Molecular Structure at Polymer/Air and Polymer/Solid Interfaces Studied by IR-Visible Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Dougal, S. M.; Yeganeh, M. S.; Gautam, K. S.; Schwab, A. D.; Dhinojwala, A.

    2000-03-01

    Understanding the local molecular orientation at polymer interfaces is crucial to the successful application of these materials. Although it is expected that the orientation and packing of chemical groups at polymer/air and polymer/solid will be very different, there has been no direct experimental evidence. We have applied IR-visible sum frequency generation to non-destructively characterize polymer/air and polymer/solid interfaces using polystyrene (PS) as a model system. The SFG spectra at both PS/air and PS/sapphire interfaces are dominated by aromatic phenyl ring stretching vibrations with relatively small contributions in the aliphatic regions. This indicates segregation of phenyl rings at both interfaces. Our results show that the orientation of phenyl rings are very different at PS/air and PS/sapphire interfaces. The orientation of phenyl rings as a function of PS film thickness and temperature will be discussed.

  5. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.

    PubMed

    Jung, Yong Chae; Bhushan, Bharat

    2009-12-15

    Biomimetics, mimicking nature for engineering solutions, provides a model for the development of superhydrophobic/superoleophobic and self-cleaning surfaces. A number of biomimetic superhydrophobic surfaces have been developed by using a hydrophobic coating, surface roughness, and the ability to form air pockets between solid and water. Oleophobic surfaces that have the potential for self-cleaning and antifouling from biological and organic contaminants in both air and water need to be studied. The surface tension of oil and organic liquids is lower than that of water, so to create a superoleophobic surface, the surface energy of the solid surface in air should be lower than that of oil. The wetting behavior of water and oil droplets for hydrophobic/philic and oleophobic/philic surfaces in three-phase interfaces was studied. In order to make the surface oleophobic at a solid-air-oil interface, a material with a surface energy lower than that of oil was used. In underwater applications, the oleophobicity/philicity of an oil droplet in water was studied on the surfaces with different surface energies of various interfaces and contact angles of water and oil droplets in air. A model for predicting the contact angles of water and oil droplets was proposed. To validate the model, the wetting behavior of flat and micropatterned surfaces with varying pitch values were studied. Furthermore, the wetting behavior of the nano- and hierarchical structures found in Lotus plant surfaces and the shark skin replica as an example of aquatic animal were also studied. On the basis of the experimental data and the model, the trends were explained. PMID:19637877

  6. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.

    PubMed

    Jung, Yong Chae; Bhushan, Bharat

    2009-12-15

    Biomimetics, mimicking nature for engineering solutions, provides a model for the development of superhydrophobic/superoleophobic and self-cleaning surfaces. A number of biomimetic superhydrophobic surfaces have been developed by using a hydrophobic coating, surface roughness, and the ability to form air pockets between solid and water. Oleophobic surfaces that have the potential for self-cleaning and antifouling from biological and organic contaminants in both air and water need to be studied. The surface tension of oil and organic liquids is lower than that of water, so to create a superoleophobic surface, the surface energy of the solid surface in air should be lower than that of oil. The wetting behavior of water and oil droplets for hydrophobic/philic and oleophobic/philic surfaces in three-phase interfaces was studied. In order to make the surface oleophobic at a solid-air-oil interface, a material with a surface energy lower than that of oil was used. In underwater applications, the oleophobicity/philicity of an oil droplet in water was studied on the surfaces with different surface energies of various interfaces and contact angles of water and oil droplets in air. A model for predicting the contact angles of water and oil droplets was proposed. To validate the model, the wetting behavior of flat and micropatterned surfaces with varying pitch values were studied. Furthermore, the wetting behavior of the nano- and hierarchical structures found in Lotus plant surfaces and the shark skin replica as an example of aquatic animal were also studied. On the basis of the experimental data and the model, the trends were explained.

  7. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    PubMed Central

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  8. Quantitative assessment of radiation force effect at the dielectric air-liquid interface

    PubMed Central

    Capeloto, Otávio Augusto; Zanuto, Vitor Santaella; Malacarne, Luis Carlos; Baesso, Mauro Luciano; Lukasievicz, Gustavo Vinicius Bassi; Bialkowski, Stephen Edward; Astrath, Nelson Guilherme Castelli

    2016-01-01

    We induce nanometer-scale surface deformation by exploiting momentum conservation of the interaction between laser light and dielectric liquids. The effect of radiation force at the air-liquid interface is quantitatively assessed for fluids with different density, viscosity and surface tension. The imparted pressure on the liquids by continuous or pulsed laser light excitation is fully described by the Helmholtz electromagnetic force density. PMID:26856622

  9. Molecular structure and hydrophobic solvation thermodynamics at an octane-water interface

    NASA Astrophysics Data System (ADS)

    Patel, Harshit A.; Nauman, E. Bruce; Garde, Shekhar

    2003-11-01

    We present results from atomically detailed molecular dynamics simulation of an octane-water liquid-liquid interface. We specifically focus on water structure, orientation, coordination numbers, and hydrogen bonding at the interface. In addition, we probe the interface through insertions of different nonpolar solutes at various locations in the system. Several interesting details of the interface emerge from our calculations. We find that the number density profiles of both water and octane vary monotonically through the interface in a sigmoidal fashion over approximately 1 nm 1-99 interfacial width. Interestingly, the overall heavy-atom density profile shows a distinct minimum in the interfacial region that reflects the hydrophobic nature of the hydration at the octane-water interface. Furthermore, calculations of excess chemical potentials of attractive Lennard-Jones and purely repulsive hydrophobic solutes display an interfacial minimum, indicating the relative ease of cavity formation at the interface. The inhomogeneous nature of the interface affects the water structure and hydrogen-bonding properties at the interface. We find that water coordination number as well as the number of hydrogen bonds water molecules make with their neighbors decreases through the interface as we move from bulk water to the octane phase. As a result, we find populations of water with low coordination numbers, including monomeric water species in the interfacial region. Although the number of hydrogen bonds per water is low in the interfacial region, a larger fraction of coordination waters is hydrogen bonded to the central water in the interfacial region.

  10. Water movement in building walls: interfaces influence on the moisture flux

    NASA Astrophysics Data System (ADS)

    Delgado, J. M. P. Q.; de Freitas, V. P.; Guimarães, A. S.

    2016-01-01

    Most building elements are a composite of different material layers; however the majority of the works presented in literature were developed for multi-layered elements with perfect contact interface, without resistance. Experimental results presented in literature showed that a considerable hydraulic resistance could be created by the imperfect contact between two porous building materials. Moisture transport in multi-layered building elements can deviate from the moisture transport found for the combination of the single material elements, so the assumption of perfect hydraulic contact could lead to significant errors in predicting the moisture transport. This work presents an experimental campaign and a critical analysis of water absorption in samples of two different building materials (clay brick and autoclaved aerated concrete) with and without joints at different positions (heights) and different contact configurations (natural contact and air space between layers). The results show that when the moisture reaches the interface there is a slowing of the wetting process due to the interfaces hygric resistance. The interfaces hygric resistance, in the AAC samples, is only observed for the joint located from a distance of 2 cm of the wetting plane. The penetration coefficient of the two building materials analysed is very different. Finally, the evolution of the distribution of liquid in the porous medium was analysed in terms of the Boltzmann transform method and anomalous diffusion equation.

  11. Water movement in building walls: interfaces influence on the moisture flux

    NASA Astrophysics Data System (ADS)

    Delgado, J. M. P. Q.; de Freitas, V. P.; Guimarães, A. S.

    2016-11-01

    Most building elements are a composite of different material layers; however the majority of the works presented in literature were developed for multi-layered elements with perfect contact interface, without resistance. Experimental results presented in literature showed that a considerable hydraulic resistance could be created by the imperfect contact between two porous building materials. Moisture transport in multi-layered building elements can deviate from the moisture transport found for the combination of the single material elements, so the assumption of perfect hydraulic contact could lead to significant errors in predicting the moisture transport. This work presents an experimental campaign and a critical analysis of water absorption in samples of two different building materials (clay brick and autoclaved aerated concrete) with and without joints at different positions (heights) and different contact configurations (natural contact and air space between layers). The results show that when the moisture reaches the interface there is a slowing of the wetting process due to the interfaces hygric resistance. The interfaces hygric resistance, in the AAC samples, is only observed for the joint located from a distance of 2 cm of the wetting plane. The penetration coefficient of the two building materials analysed is very different. Finally, the evolution of the distribution of liquid in the porous medium was analysed in terms of the Boltzmann transform method and anomalous diffusion equation.

  12. Support vector data description for detecting the air-ground interface in ground penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GRP signal for alignment purposes. A common simple technique for doing this is to assume that the highest return in an A-scan is from the reflection due to the ground and to use that as the location of the interface. However there are many situations, such as the presence of nose clutter or shallow sub-surface objects, that can cause the global maximum estimate to be incorrect. A Support Vector Data Description (SVDD) is a one-class classifier related to the SVM which encloses the class in a hyper-sphere as opposed to using a hyper-plane as a decision boundary. We apply SVDD to the problem of detection of the air-ground interface by treating each sample in an A-scan, with some number of leading and trailing samples, as a feature vector. Training is done using a set of feature vectors based on known interfaces and detection is done by creating feature vectors from each of the samples in an A-scan, applying the trained SVDD to them and selecting the one with the least distance from the center of the hyper-sphere. We compare this approach with the global maximum approach, examining both the performance on human truthed data and how each method affects false alarm and true positive rates when used as the alignment method in mine detection algorithms.

  13. Conformational transitions of cytochrome c in sub-micron-sized capsules at air/buffer interface.

    PubMed

    Jaganathan, Maheshkumar; Dhathathreyan, Aruna

    2014-09-30

    This work presents the design of sub-micron-sized capsules of Cytochrome c (cyt c) in the range 300-350 nm and the conformational transitions of the protein that occur when the films of these capsules spread at the air/buffer interface are subjected to repeated compression-expansion cycles. Steady state fluorescence, time-resolved fluorescence, and circular dichroic (CD) spectra have been used to study the highly compact native conformation (70% helicity) of the protein in the capsules and its stability has been analyzed using cyclic voltammetry. The capsules have been characterized using zeta sizer and high resolution transmission electron microscopy (HRTEM). Surface concentration-surface pressure (Γ-π) isotherms of the films of the capsules spread at air/buffer interface following compression-expansion show destabilizing effect on cyt c. FTIR and CD spectra of these films skimmed from the surface show that the protein transitions gradually from its native helical to an anomalous beta sheet aggregated state. This results from a competition between stabilizing hydrated polar segments of the protein in the capsule and destabilizing nonspecific hydrophobic interactions arising at the air/buffer interface. This 2D model could further our understanding of the spatial and temporal roles of proteins in confined spaces and also in the design of new drug delivery vehicles using proteins.

  14. Charge separation across the silica nanoparticle/water interface

    SciTech Connect

    Dimitrijevic, N.M.; Henglein, A.; Meisel, D.

    1999-08-26

    Aqueous suspensions of silica particles at high concentrations were irradiated with a short pulse of electrons in the presence of scavengers of OH radicals. The scavengers were chosen to minimize their adsorption on the particle surface. It was found that essentially no holes cross the particle/water interface to generate OH radicals. All of the holes that are originally generated by the ionizing radiation in the silica remain in the particle; even at the smallest size used (7-nm diameter). This is contrasted with electrons, which were earlier shown to escape the particles into the water, even at much larger particle sizes. Implications to removal of pollutants and to management of radioactive materials are often cited as motivation for these studies.

  15. X-ray and neutron surface scattering for studying lipid/polymer assemblies at the air-liquid and solid-liquid interfaces.

    PubMed

    Majewski, J; Kuhl, T L; Wong, J Y; Smith, G S

    2000-09-01

    Simple mono- and bilayers, built of amphiphilic molecules and prepared at air-liquid or solid-liquid interfaces, can be used as models to study such effects as water penetration, hydrocarbon chain packing, and structural changes due to head group modification. In the paper, we will discuss neutron and X-ray reflectometry and grazing incidence X-ray diffraction techniques used to explore structures of such ultra-thin organic films in different environments. We will illustrate the use of these methods to characterize the morphologies of the following systems: (i) polyethylene glycol-modified distearoylphosphatidylethanolamine monolayers at air-liquid and solid-liquid interfaces; and (ii) assemblies of branched polyethyleneimine polymer and dimyristoylphophatidylcholine lipid at solid-liquid interfaces.

  16. Surface Wave Driven Air-Water Plasmas

    NASA Astrophysics Data System (ADS)

    Tatarova, Elena; Henriques, Julio; Ferreira, Carlos

    2013-09-01

    The performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model has been developed in order to describe in detail the creation and loss processes of active species of interest and to provide a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N +O -->NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and FT-IR spectroscopy. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. The plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  17. Experimental verification of enhanced sound transmission from water to air at low frequencies.

    PubMed

    Calvo, David C; Nicholas, Michael; Orris, Gregory J

    2013-11-01

    Laboratory measurements of enhanced sound transmission from water to air at low frequencies are presented. The pressure at a monitoring hydrophone is found to decrease for shallow source depths in agreement with the classical theory of a monopole source in proximity to a pressure release interface. On the other hand, for source depths below 1/10 of an acoustic wavelength in water, the radiation pattern in the air measured by two microphones becomes progressively omnidirectional in contrast to the classical geometrical acoustics picture in which sound is contained within a cone of 13.4° half angle. The measured directivities agree with wavenumber integration results for a point source over a range of frequencies and source depths. The wider radiation pattern owes itself to the conversion of evanescent waves in the water into propagating waves in the air that fill the angular space outside the cone. A ratio of pressure measurements made using an on-axis microphone and a near-axis hydrophone are also reported and compared with theory. Collectively, these pressure measurements are consistent with the theory of anomalous transparency of the water-air interface in which a large fraction of acoustic power emitted by a shallow source is radiated into the air.

  18. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.

    PubMed

    Giusti, Fabrice; Popot, Jean-Luc; Tribet, Christophe

    2012-07-17

    Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the

  19. Intermolecular forces in spread phospholipid monolayers at oil/water interfaces.

    PubMed

    Mingins, James; Pethica, Brian A

    2004-08-31

    The lateral intermolecular forces between phospholipids are of particular relevance to the behavior of biomembranes, and have been approached via studies of monolayer isotherms at aqueous interfaces, mostly restricted to air/water (A/W) systems. For thermodynamic properties, the oil/water (O/W) interface has major advantages but is experimentally more difficult and less studied. A comprehensive reanalysis of the available thermodynamic data on spread monolayers of phosphatidyl cholines (PC) and phosphatidyl ethanolamines (PE) at O/W interfaces is conducted to identify the secure key features that will underpin further development of molecular models. Relevant recourse is made to isotherms of single-chain molecules and of mixed monolayers to identify the contributions of chain-chain interactions and interionic forces. The emphasis is on the properties of the phase transitions for a range of oil phases. Apparent published discrepancies in thermodynamic properties are resolved and substantial agreement emerges on the main features of these phospholipid monolayer systems. In compression to low areas, the forces between the zwitterions of like phospholipids are repulsive. The molecular model for phospholipid headgroup interactions developed by Stigter et al. accounts well for the virial coefficients in expanded phospholipid O/W monolayers. Inclusion of the changes in configuration and orientation of the zwitterion headgroups on compression, which are indicated by the surface potentials in the phase transition region, and inclusion of the energy of chain demixing from the oil phase will be required for molecular modeling of the phase transitions.

  20. Tomography-based characterization of ice-air interface dynamics of temperature gradient snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Andreoli, Christian; Schneebeli, Martin; Steinfeld, Aldo

    2015-12-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. A functional understanding of this process is essential for many disciplines, from modeling the effects of snow on regional and global climate to assessing avalanche formation. Time-lapse X-ray microtomography was applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Experiments specifically analyzed sublimation and deposition of water vapor on the ice structure. In addition, an analysis of the ice-air interface dynamics was carried out using a macroscopic equivalent model of heat and water vapor transport through a snow layer. The results indicate that sublimation of the ice matrix dominated for flow rates < 10-6 m3 s-1 while during increased mass flow rates the water vapor deposition supplied by the advective flow counteracted sublimation. A flow rate dependence of water vapor deposition at the ice interface was observed, asymptotically approaching an average estimated maximum deposition rate on the whole sample of 1.05 · 10-4 kg m-3 s-1. The growth of microsized whisker-like crystals on larger ice crystals was detected on microscope photographs, leading to an increase of the specific surface area and thus suggest a change of the physical and optical properties of the snow. The estimated values of the curvature effect of the ice crystals and the interface kinetic coefficient are in good agreement with previously published values.

  1. Properties of the seawater-air interface. 2. Rates of surface film formation under steady state conditions

    SciTech Connect

    Dragcevic, D.; Pravdic, V.

    1981-05-01

    The laboratory techniques of dynamic surface tension and of surface electrical potential measurements were used to determine rates of formation and of reorientation of organic surface films at the seawater-air interface. Relaxation times of surface films were determined for three characteristic samples obtained by screen and bottle sampling in the coastal waters of the northern Adriatic area. These data were compared with those for model samples produced by spreading oleic acid and crude oil on or dissolving polyethyleneglycol and sodium dodecyl sulfate in artificial seawater. Relaxation times were in the range of 0.1-1 s for most of the samples. A good representative value for field samples is 0.2 s. The temperature-dependence (the energies of activation) for the surface film relaxation indicates that several processes control material transport toward the seawater-air interface. The findings are interpreted as showing that an almost ever-present organic surface film influences the mechanism and the rate of material transport across the sea-atmosphere boundary.

  2. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  3. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  4. Dynamic Surface Properties of Asphaltenes and Resins at the Oil-Air Interface.

    PubMed

    Bauget, Fabrice; Langevin, Dominique; Lenormand, Roland

    2001-07-15

    Because of the existence of large reserves, the production of heavy oils is presently the object of much interest. Some heavy oil reservoirs show anomalous behavior in primary production, with rates of production better than predicted. In Canada and Venezuela some heavy oils are produced in the form of "bubbly" oil, which is stable for several hours in open vessels. These crude oils are therefore commonly called "foamy oils". Since the presence of bubbles could be responsible for an enhanced rate of production, a better knowledge of the properties of the gas-oil interface is desirable. We have experimentally studied the effect of concentration of asphaltenes and resins on static and dynamic properties of oil-air interfaces and also on bulk viscosity. The experiments include surface tension measurements using the pendant-drop method, surface viscosity by the oscillating-drop method, foamability by continuous gas injection, and film lifetime. All the experiments were performed using resins and asphaltenes in toluene solutions at 20 degrees C. At first asphaltenes enhance foamability and film lifetime. All the experiments performed showed a change in regime for asphaltene concentrations around 10% by weight, possibly due to clustering. At the studied concentrations, the adsorption process at the air-oil interface is not diffusion controlled but rather involves a reorganization of asphaltene molecules in a network structure. The formation of a solid skin is well identified by the increase of the elastic modulus. This elastic modulus is also an important property for foam stability, since a rigid interface limits bubble rupture. The interface rigidity at long times decreases with increases in resin fraction, which could decrease foam stability as well as emulsion stability. Copyright 2001 Academic Press.

  5. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  6. Measurement of the interface tension of smectic membranes in water.

    PubMed

    Harth, Kirsten; Stannarius, Ralf

    2013-05-21

    A simple method is proposed to measure the interfacial tension of a smectic liquid crystal (LC) in freely suspended film geometry in aqueous environment. The method is based upon the evaluation of the deformation of smectic bubbles by the buoyancy of a trapped air volume. The advantages over classical suspended smectic droplet experiments in water are the considerably shorter equilibration times, and most important, the much larger density differences between the fluids. The latter allow a much more accurate force determination. Bulk elastic force contributions can be practically neglected in the thin smectic films. Values for a smectic C mixture of two disubstituted phenylpyrimidines are reported.