Science.gov

Sample records for air water land

  1. Linking Air, Land, and Water Pollution for Effective Environmental Management

    EPA Science Inventory

    Since the passage of the National Environmental Policy Act in 1970, the U.S. Environmental Protection Agency, other federal agencies, and the states have made substantial progress in improving the Nation’s air and water quality. Traditionally, the air, land, and water pollution ...

  2. AIR LAND WATER ANALYSIS SYSTEM (ALEAS): A MULTI-MEDIA MODEL FOR TOXIC SUBSTANCES

    EPA Science Inventory

    The Air Land Water Analysis System (ALWAS) is a multi-media environmental model for describing the atmospheric dispersion of toxicants, the surface runoff of deposited toxicants, and the subsequent fate of these materials in surface water bodies. ALWAS dipicts the spatial and tem...

  3. Young Scientists Explore Air, Land, and Water Life. Book 3 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on familiar animals that are found in the air, on land, and in the water. A duckling named Little Mac Mallard introduces…

  4. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  5. Pollution: A Selected Bibliography of U.S. Government Publications on Air, Water, and Land Pollution 1965-1970.

    ERIC Educational Resources Information Center

    Kiraldi, Louis, Comp.; Burk, Janet L., Comp.

    Materials on environmental pollution published by the various offices of the federal government are presented in this select bibliography. Limited in scope to publications on air, water, and land pollution, the document is designed to serve teachers and researchers working in the field of environmental problems who wish reference to public…

  6. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  7. A Systems Approach to the Estimation of Ecosystem and Human Health Stressors in Air, Land and Water

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Dennis, R. L.; Bash, J. O.

    2013-12-01

    Nitrogen (N) and sulfur oxides (SOx) in air, land and water media are parts of tightly coupled geophysical systems resulting in multiple routes for human and ecosystem exposure. For instance, excess forms of total reactive N in water can lead to harmful algal blooms, with the depletion of oxygen and adverse impacts to aquatic ecosystem productivity in coastal estuaries. Acidic deposition can result in lost forest productivity for terrestrial ecosystem and impacts to trout and other fishery resources in inland waters. Human pulmonary health can be impaired when N and SOx in the atmosphere lead to the generation of ozone and particulate matter (PM). Atmospheric N deposition can also contribute to eutrophication of drinking water sources. The U.S. Environmental Protection Agency (USEPA) Office of Research and Development (ORD) has embarked on the development of a multi-media 'one environment' systems approach to these issues to help develop management decisions that create win-win policies. The purpose of this project is to develop a 'one environment' set of models that can inform protection of ecosystems and human health in both the current state and under future climate scenarios. The research framework focuses on three interrelated themes; coupling air quality with land use and agricultural land management, connecting the hydrosphere (i.e., coupling meteorology and hydrology) and linking the air/land/hydrosphere with ecosystem models and benefits models. We will present an overall modeling framework and then move to the presentation of on-going research results related to direct linkage of air quality with land use and agricultural land management. A modeling interface system has been developed that facilitates the simulation of field-scale agricultural land management decisions over a gridded domain at multiple grid resolutions for the Contiguous United States (CONUS) using a modified version of the USDA EPIC (Environmental Policy Integrated Climate) model. EPIC

  8. Numerical Investigation of the Consequences of Land Impacts, Water Impacts, or Air Bursts of Asteroids

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; Dearborn, D. S.; Miller, P. L.

    2015-12-01

    The annual probability of an asteroid impact is low, but over time, such catastrophic events are inevitable. Interest in assessing the impact consequences has led us to develop a physics-based framework to seamlessly simulate the event from entry to impact, including air and water shock propagation and wave generation. The non-linear effects are simulated using the hydrodynamics code GEODYN. As effects propagate outward, they become a wave source for the linear-elastic-wave propagation code, WPP/WWP. The GEODYN-WPP/WWP coupling is based on the structured adaptive-mesh-refinement infrastructure, SAMRAI, and has been used in FEMA table-top exercises conducted in 2013 and 2014, and more recently, the 2015 Planetary Defense Conference exercise. Results from these simulations provide an estimate of onshore effects and can inform more sophisticated inundation models. The capabilities of this methodology are illustrated by providing results for different impact locations, and an exploration of asteroid size on the waves arriving at the shoreline of area cities. We constructed the maximum and minimum envelops of water-wave heights given the size of the asteroid and the location of the impact along the risk corridor. Such profiles can inform emergency response and disaster-mitigation efforts, and may be used for design of maritime protection or assessment of risk to shoreline structures of interest. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675390-DRAFT.

  9. Investigation of environmental indices from the Earth Resources Technology Satellite. [environmental trends in land use water quality, and air quality in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Greeley, R. S. (Principal Investigator); Ward, E. A.; Elliott, J. C.; Friedman, E. J.; Riley, E. L.; Stryker, S.

    1974-01-01

    The author has identified the following significant results. Land use change, water quality, and air quality indices have been calculated from analysis of ERTS-1 multispectral scanning imagery and computer compatible tapes. Specifications have been developed and discussed for an ERTS-1 environmental monitoring system which help to serve the information needs of environmental managers at the Federal, state, regional, and local level. General conclusions of the investigation are that ERTS-1 data is very useful in land use mapping and updating to 10-15 categories, and can provide an overall measure of air and water turbidity; however, more and better ground truth and possibly additional spacecraft sensors will be required if specific air and water pollutants are to be quantified from satellite data.

  10. From air to land: understanding water resources through plant-based multidisciplinary research.

    PubMed

    Silva, Lucas C R

    2015-07-01

    Current global challenges require solutions that cannot be delivered by any one field alone. New developments in the analysis and interpretation of plant-derived climatic records bridge traditional disciplines, advancing understanding of phenomena of great ecological and societal significance, specifically, those related to changes in the terrestrial water cycle. PMID:26152736

  11. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    with weak wind. In the same night temperature gradients up to 30 K m-1 were determined above the meadow. The water was up to 13 K warmer than the air in this night resulting in a sharp and strong temperature decrease at the water surface and a moderate decrease with gradients up to -9 K m-1 in the air above. The plexiglass rings caused some obvious artefacts and affected data was removed and replaced by linear interpolation. According to the uncertainty estimation performed to date, conduction between fabric and fiber increased fiber temperatures by approximately 0.005 K at 2 m height on a sunny day with weak wind. This effect was deemed negligible as it reflected less than 1 % of the total heating compared to that in the air. The maximum absolute error was approximately 0.9 K at 2 m height on the same day. Ongoing work will demonstrate potential benefits of the enhanced-resolution profiles by quantitatively comparing measured and interpolated temperature profiles with varying resolution (as well as sensible heat fluxes computed according to flux-gradient-similarity).

  12. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  13. Global land and water grabbing

    PubMed Central

    Rulli, Maria Cristina; Saviori, Antonio; D’Odorico, Paolo

    2013-01-01

    Societal pressure on the global land and freshwater resources is increasing as a result of the rising food demand by the growing human population, dietary changes, and the enhancement of biofuel production induced by the rising oil prices and recent changes in United States and European Union bioethanol policies. Many countries and corporations have started to acquire relatively inexpensive and productive agricultural land located in foreign countries, as evidenced by the dramatic increase in the number of transnational land deals between 2005 and 2009. Often known as “land grabbing,” this phenomenon is associated with an appropriation of freshwater resources that has never been assessed before. Here we gather land-grabbing data from multiple sources and use a hydrological model to determine the associated rates of freshwater grabbing. We find that land and water grabbing are occurring at alarming rates in all continents except Antarctica. The per capita volume of grabbed water often exceeds the water requirements for a balanced diet and would be sufficient to improve food security and abate malnourishment in the grabbed countries. It is found that about 0.31 × 1012 m3⋅y−1 of green water (i.e., rainwater) and up to 0.14 × 1012 m3⋅y−1 of blue water (i.e., irrigation water) are appropriated globally for crop and livestock production in 47 × 106 ha of grabbed land worldwide (i.e., in 90% of the reported global grabbed land). PMID:23284174

  14. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  15. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  16. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  17. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  18. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  19. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    NASA Astrophysics Data System (ADS)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  20. Land use information and air quality planning

    USGS Publications Warehouse

    Reed, Wallace E.; Lewis, John E.

    1975-01-01

    The pilot national land use information system developed by the U.S. Geological Survey in the Central Atlantic Regional Ecological Test Site project has provided an improved technique for estimating emissions, diffusion, and impact patterns of sulfur dioxide (SO2) and particulate matter. Implementation of plans to control air quality requires land use information, which, until this time, has been inadequate. The pilot system, however, provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for the 1971-72 winter (Dec.-Jan.-Feb.) and the annual 1972 period, and for a future annual period 1985. This emission information is used as input to the Air Quality Display Model of the Environmental Protection Agency to obtain diffusion and impact patterns for the three periods previously mentioned. The results are: (1) During the 1971-72 winter, estimated S02 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels; (2) future annual levels of SO2, estimated by anticipated residential development and point-source changes, are not expected to cause serious deterioration of the region's present air quality; and (3) for the 1971-72 winter and annual 1972 period the diffusion results showed that both primary and secondary standards for particulate matter are regularly exceeded in central Norfolk and Portsmouth. In addition, on the basis of current control programs, the 1985 levels of particulate matter are expected to exceed the presently established secondary air quality standards through central Norfolk and Portsmouth and in certain areas of Virginia Beach.

  1. Research of autonomous landing control of unmanned combat air vehicle

    NASA Astrophysics Data System (ADS)

    Li, Shaoyan; Chen, Zongji

    2003-09-01

    This paper is to present a robust controller design method for developing autonomous landing systems of Unmanned Combat Air Vehicle (UCAV). We first analyze the characteristic of autonomous landing of UCAV, and put forward its landing performance specifications. Structure singular value μ| synthesis is used to develop autonomous landing systems to accurately follow the pre-designed ideal landing track or online generated optimal landing track. The robust performance of system is analyzed. The simulation results demonstrate that the designed autonomous landing system satisfies the performance requirements of autonomous landing of UCAV when there are uncertainties of UCAV aircraft model, measurement noises and exogenous disturbances.

  2. Air cushion landing gear applications study

    NASA Technical Reports Server (NTRS)

    Earl, T. D.

    1979-01-01

    A series of air cushion landing gear (ACLG) applications was studied and potential benefits analyzed in order to identify the most attractive of these. The selected applications are new integrated designs (not retrofits) and employ a modified design approach with improved characteristics and performance. To aid the study, a survey of potential users was made. Applications were evaluated in the light of comments received. A technology scenario is developed, with discussion of problem areas, current technology level and future needs. Feasible development timetables are suggested. It is concluded that near-term development of small-size ACLG trunks, exploration of flight effects and braking are key items. The most attractive applications are amphibious with very large cargo aircraft and small general aviation having the greatest potential.

  3. Turbulent flow over an interactive alternating land-water surface

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  4. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  5. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  6. Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air

    USGS Publications Warehouse

    Lopes, T.J.; Bender, D.A.

    1998-01-01

    Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

  7. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  8. Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air land ocean interactions and human activities

    NASA Astrophysics Data System (ADS)

    Poulos, S. E.; Chronis, G. Th; Collins, M. B.; Lykousis, V.

    2000-04-01

    zone ecosystem. Thus, the construction of dams along the routes of the main rivers has reduced dramatically the water/sediment fluxes; this caused, for example, retreat of the deltaic coastlines and seawater intrusion into the groundwater aquifers. Similarly, pollution and/or eutrophication of the nearshore marine environment have resulted from the inputs of industrial wastes, urban untreated sewage, and agricultural activities on the coastal plains. This effect is demonstrated by high levels of pollutants, nutrients, and by the increased concentrations of non-residual trace-metals within the surficial sediments. Finally, climatic changes associated with a potential rise in sea level (i.e. 30-50 cm) will threaten a substantial part of the low-lying lands of Thermaikos Gulf. Thus, systematic and thorough monitoring is needed in order to protect the coastal ecosystem; this will ensure its sustainable development and successful management, in relation to present and future socio-economic activities and climatic changes.

  9. STS-66 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main landing gear is on the ground and the nose gear is about to touch down as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.

  10. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  11. STS-67 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavour, after completing a mission of almost 17 days duration in space, touches down on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995. In this photo the nose gear is still in the air as the orbiter touches down.

  12. The water footprint of land grabbing

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2013-12-01

    increasing global demand for food, fibers, and biofuels has made investments in agriculture a priority for some governments and corporations eager to expand their agricultural production while securing good profits. Here we calculate the water appropriation associated with land deals at different negotiation and implementation stages. Using estimates of actual and potential evapotranspiration for the crops planted in the acquired land, we calculate the green and blue water appropriated by land investors under a variety of irrigation scenarios. We also determine the grey water footprint as the amount of water required to dilute to allowable standards the pollution resulting from fertilizer applications. We found that about 380 × 109 m3 yr-1 of rainwater is appropriated with the 43 million ha of reported contract area acquired by agri-investors (>240 × 109 m3 yr-1 in the 29 million ha of foreign acquisitions only). This water would be sufficient to feed ≈ 300-390 million people.

  13. Landing performance of an air cushion landing system installed on a 1/10-scale dynamic model on the C-8 Buffalo airplane

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.

    1973-01-01

    An experimental study was conducted to evaluate the landing behavior of a 1/10-scale dynamic model of the C-8 Buffalo airplane equipped with an air-cushion landing system (ACLS) on a variety of surfaces including both calm and rough water and a smooth hard surface. Taxi runs were made on the hard surface over several obstacles. Landings were made with the model at various pitch and roll attitudes and vertical velocities and at one nominal horizontal velocity. Data from the landings include time histories of the trunk and air-cushion pressures and accelerations at selected locations on the model.

  14. Crew Exploration Vehicle (CEV) Water Landing Simulation

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.

    2007-01-01

    Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.

  15. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  16. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  17. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  18. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  19. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  20. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  1. Studies of some unconventional systems for solving various landing problems. [air cushion landing system

    NASA Technical Reports Server (NTRS)

    Leland, T. J.; Mcgehee, J. R.; Dreher, R. C.

    1981-01-01

    Solutions to various landing problems were obtained through unconventional systems. The first, of these is the air cushion landing system, where efforts were concentrated on development of adequate braking and steering systems and an improved understanding of scaling laws and behavior. The second was concentrated on use of a wire brush skid as a drag producing device, which was shown to have good friction coefficients and reasonable wear rates at ground bearing pressures up to 689 kPa and forward speeds up to 80 km/hr. The third showed great promise in an active control landing gear where significant load reductions were possible during landing impact and subsequent rollout.

  2. Water dynamics under changing land cover

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Zhang, Y. Q.; Zhang, L.

    2015-06-01

    Most of the forested headwater catchments are an important source of water supply in many parts of the world. A prime example is southeast Australia where forests supply major river systems and towns and cities with water. It is critical for an informed and adaptive water resource management to understand changes in streamflow caused by vegetation changes in these headwater forest catchments. Natural disturbances such as bushfires and anthropogenic activities like forestation, deforestation, or logging alter vegetation, evapotranspiration and soil water status, and may affect water supplies. Although catchment water yield is mainly controlled by climatic conditions, but it is also strongly influenced by land cover changes because of natural disturbances and anthropogenic activities. It is necessary to accurately estimate streamflow in water supply catchments subjected to dramatic land surface changes. This paper summarises the methods commonly used to investigate the impacts of land cover change on water resources, and provides some examples of impacts of afforestation/deforestation and bushfire on water resources in two southeast Australian catchments.

  3. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  4. STS-67 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The drag chute is fully deployed in this view of the Space Shuttle Endeavour as it completes a mission of almost 17 days duration in space on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995.

  5. STS-66 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The drag chute is fully deployed as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.

  6. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Eligible coal lands and water. 874.12 Section 874.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible...

  7. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible coal lands and water. 874.12 Section 874.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible...

  8. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible coal lands and water. 874.12 Section 874.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible...

  9. STS-4 landing at Edwards Air Foce Base, California

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 landing at Edwards Air Foce Base, California. Actor Roy Rogers with Astronauts Jerry L. Ross, left, and Guy S. Gardner at Edwards for the STS-4 landing on July 1, 1982. Also present (behind Gardner at extreme right) was former Astronaut Edwin E. Aldrin, Jr. (33226); President Ronald Reagan and First Lady Nancy Reagan meet Astronauts Thomas K. Mattingly, II., right, and Henry W. Hartsfield, Jr., after the landing of the Columbia at Edwards (33227,33230); Space Shuttle Columbia, followed by two T-38 chase planes, touches down on Edwards Air Force Base's Runway 22 to complete mission. In this view, one chase plane appears to be directly above and behind the Columbia, whose nose wheels have not yet touched ground. The other plane appears to be further up front (33228); The rear wheels of the Columbia touch down on the Edwards AFB runway. There are no chase planes in sight in this photo (33229).

  10. Clean air land mine: Continuous monitoring

    SciTech Connect

    White, J.P. ); Mitnick, S.A. )

    1992-12-01

    When the Clean Air Act Amendments were enacted, many observers expected the new law to usher in a futuristic system of environmental control cum economic incentives. This has yet to materialize. However, the legislation has brought in an entirely different new environmental order-rigid emissions accounting, down to each operating hour. In many respects, EPA regulation of fossil plant operations is coming more to resemble the Nuclear Regulatory Commission regulatory model for nuclear plant operations, where regulation of process and procedure is at least as important as substance. The final continuous emission monitoring (CEM) rules, which were enacted as part of the Acid Rain Program, are perhaps the best evidence of this evolution. There can be no denying that the CEM rules are a prosecutor's dream. Not only must the industry comply with the law, but it must go to heroic efforts to make affirmative proof of compliance. The final CEM rules are a serious matter requiring the immediate attention of the electric utility industry.

  11. Land use and land cover information and air-quality planning

    USGS Publications Warehouse

    Reed, W.E.; Lewis, J.E.

    1978-01-01

    The land use and land cover information developed by the U.S. Geological Survey in the Central Atlantic Regional Ecological Test Site project has been proven useful when used in an improved technique for estimating emissions, diffusion, and impact patterns of sulfur dioxide (S02) and particulate matter. Implementation of plans to control air quality requires land use and land cover information, which, until this time, has been inadequate. The land use and land cover data were used in updating information on the sources of point and area emissions of S02 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for the 1971-72 winter (Dec.-Jan.-Feb.) and the annual 1972 period, and for a future annual period-1985. This emission information is used as input to the Air Quality Display Model of the Environmental Protection Agency to obtain diffusion and impact patterns for the three periods previously mentioned. The results are: (1) During the 1971-72 winter, estimated S02 amounts over an area with southwest-northeast axis in the central section of Norfolk exceeded both primary and secondary levels, (2) future annual levels of S02, estimated by anticipated residential development and point-source changes, are not expected to cause serious deterioration of the region's present air quality, and (3) for the 1971-72 winter, and annual 1972, period the diffusion results showed that both primary and secondary standards for particulate matter are regularly exceeded in central Norfolk and Portsmouth. In addition, on the basis of current control programs, the 1985 levels of particulate matter are expected to exceed the presently established secondary air-quality standards through central Norfolk and Portsmouth and in certain areas of Virginia Beach. Land use and land cover information can be used to estimate emissions for inputs to diffusion models and to interpret the implications of diffusion patterns for: (1) Implementing various control strategies, (2

  12. Land, carbon and water footprints in Taiwan

    SciTech Connect

    Lee, Yung-Jaan

    2015-09-15

    The consumer responsibility approach uses footprints as indicators of the total direct and indirect effects of a product or consumption activity. This study used a time-series analysis of three environmental pressures to quantify the total environmental pressures caused by consumption in Taiwan: land footprint, carbon footprint, and water footprint. Land footprint is the pressure from appropriation of biologically productive land and water area. Carbon footprint is the pressure from greenhouse gas emissions. Water footprint is the pressure from freshwater consumption. Conventional carbon footprint is the total CO{sub 2} emitted by a certain activity or the CO{sub 2} accumulation during a product life cycle. This definition cannot be used to convert CO{sub 2} emissions into land units. This study responds to the needs of “CO{sub 2} land” in the footprint family by applying the carbon footprint concept used by GFN. The analytical results showed that consumption by the average Taiwan citizen in 2000 required appropriation of 5.39 gha (hectares of land with global-average biological productivity) and 3.63 gha in 2011 in terms of land footprint. The average Taiwan citizen had a carbon footprint of 3.95 gha in 2000 and 5.94 gha in 2011. These results indicate that separately analyzing the land and carbon footprints enables their trends to be compared and appropriate policies and strategies for different sectors to be proposed accordingly. The average Taiwan citizen had a blue water footprint of 801 m{sup 3} in 2000 and 784 m{sup 3} in 2011. By comparison, their respective global averages were 1.23 gha, 2.36 gha and 163 m{sup 3} blue water in 2011, respectively. Overall, Taiwan revealed higher environmental pressures compared to the rest of the world, demonstrating that Taiwan has become a high footprint state and has appropriated environmental resources from other countries. That is, through its imports of products with embodied pressures and its exports, Taiwan has

  13. Preliminary results from dynamic model tests of an air cushion landing system.

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.; Vohinger, D. S.

    1973-01-01

    Experimental study of the behavior of an air cushion landing system on 1:10 and 1:4-scale dynamic models of the CC-115 aircraft over a range of initial impact, on a smooth hard surface of fiberglass-coated plywood, on calm water, and on rough water with waves 5 ft high and 100 ft crest-to-crest wide. The performance was satisfactory with the 1:10 scale model on hard surfaces and calm water and was less certain, requiring more tests, on rough water, while substantial pitching oscillations were observed in tests on the 1:4 scale model.

  14. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  15. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  16. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  17. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  18. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  19. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  20. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible coal lands and water. 874.12 Section... water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or... Federal government, or as a result of bond forfeiture. Bond forfeiture will render lands or...

  1. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Eligible coal lands and water. 874.12 Section... water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or... Federal government, or as a result of bond forfeiture. Bond forfeiture will render lands or...

  2. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  3. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  4. Dynamic heave-pitch analysis of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Captain, K. M.; Boghani, A. B.; Wormley, D. N.

    1975-01-01

    A program to develop analytical tools for evaluating the dynamic performance of Air Cushion Landing Systems (ACLS) is described. The heave (vertical) motion of the ACLS was analyzed, and the analysis was extended to cover coupled heave-pitch motions. The mathematical models developed are based on a fundamental analysis of the body dynamics and fluid mechanics of the aircraft-cushion-runway interaction. The air source characteristics, flow losses in the feeding ducts, trunk and cushion, the effects of fluid compressibility, and dynamic trunk deflections, including ground contact are considered. A computer program, based on the heave-pitch analysis, was developed to simulate the dynamic behavior of an ACLS during landing impact and taxi over an irregular runway. The program outputs include ACLS motions, loadings, pressures, and flows as a function of time. To illustrate program use, three basic types of simulations were carried out. The results provide an initial indication of ACLS performance during (1) a static drop, (2) landing impact, and (3) taxi over a runway irregularity.

  5. STS-92 - Landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With its drag parachute deployed to help slow it down, the Space Shuttle Discovery rolls down the runway after landing at Edwards Air Force Base in Southern California at the conclusion of mission STS-92 on October 24, 2000. STS-92 was the 100th mission since the fleet of four Space Shuttles began flying in 1981. (Due to schedule changes, missions are not always launched in the order that was originally planned.) The almost 13-day mission, the 46th Shuttle mission to land at Edwards, was the last construction mission for the International Space Station prior to the first scientists taking up residency in the orbiting space laboratory the following month. The seven-member crew on STS-92 included mission specialists Koichi Wakata, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao, pilot Pam Melroy and mission commander Brian Duffy.

  6. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  7. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  8. Future land-use related water demand in California

    NASA Astrophysics Data System (ADS)

    Wilson, Tamara S.; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-05-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  9. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Water Landing Characteristics of a Reentry Capsule. Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions. [Entire movie available on DVD from CASI as Doc ID 20070030955. Contact help@sti.nasa.gov

  10. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  11. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  12. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  13. Implementation of a canopy air space scheme into the Community Land Model

    NASA Astrophysics Data System (ADS)

    Xu, M.; Hoffman, F. M.

    2015-12-01

    A single-layer Canopy Air Space Scheme (CASS) is implemented into the Community Land Surface Model version 4.5 (CLM4.5) in this study. It considers the canopy storages for heat, water, and trace gases that are generally neglected in the CLM4.5 surface flux calculation algorithm. Moreover, the CASS introduces prognostic equations for the surface variables and eliminates the CLM4.5 Crank-Nicolson iterative solution for computing surface skin temperature, which usually brings residual errors into the model and causes numerical instability. Two off-line simulations (one with the CASS and the other with the origin CLM4.5 scheme) were conducted and their results were compared with the FLUXNET observations. Preliminary results show that compared with the origin CLM4.5 scheme, the CASS has similar or better skills in representing land surface exchanges for heat, water and carbon under several biome types. The implementation of the CASS into the CLM4.5 not only improves the land model skills, but also provides a modeling framework to incorporate more complex canopy processes into the land surface model, such as bi-directional emission schemes for various trace gases and multi-layer canopy energy balance models.

  14. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Performance requirements: Land aircraft operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING...

  15. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin

    NASA Astrophysics Data System (ADS)

    Feng, Huihui; Liu, Yuanbo

    2015-12-01

    Soil moisture is a key variable in hydrological processes. Although the combined effects of multiple climatic factors in different land cover conditions are highly valuable for water resource management, a complete understanding of these effects remains unclear. This study used a cluster analysis approach to investigate the combined effects of precipitation and air temperature, rather than a single factor, in different land covers for an area over the Poyang Lake Basin in China from 2003 to 2009. Specifically, monthly soil moisture was classified into eight clusters according to the change in precipitation and air temperature; the clusters describe a range of climates from the extreme of wet-hot to that of dry-cold. For an individual climate factor, our results showed that the contribution of air temperature to soil moisture is greater than that of precipitation, and the effect of air temperature is more sensitive in different land covers. When considering the combined effects of precipitation and air temperature, soil moisture varies with land cover; however, the variation in a normal climate cluster is greater than in an extreme climate cluster. This indicated that land cover is the dominant factor in soil moisture variation in normal climatic conditions, whereas climate is the dominant factor in extreme conditions. As climate shifts from the wet-hot to the dry-cold cluster, soil moisture decreases for all land covers, with the minimum rate occurring in forest conditions. Meanwhile, soil moisture deficit and saturation are more likely to occur in grassland and forest areas, indicating that forest cover might mitigate drought. The results of this study provide an effective approach to investigate the combined effects of climate factors on soil moisture for various land covers in humid areas. This study also supports the management of water resources in changing climates.

  16. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  17. Freezing water in no-man's land.

    PubMed

    Manka, Alexandra; Pathak, Harshad; Tanimura, Shinobu; Wölk, Judith; Strey, Reinhard; Wyslouzil, Barbara E

    2012-04-01

    We report homogeneous ice nucleation rates between 202 K and 215 K, thereby reducing the measurement gap that previously existed between 203 K and 228 K. These temperatures are significantly below the homogenous freezing limit, T(H)≈ 235 K for bulk water, and well within no-man's land. The ice nucleation rates are determined by characterizing nanodroplets with radii between 3.2 and 5.8 nm produced in a supersonic nozzle using three techniques: (1) pressure trace measurements to determine the properties of the flow as well as the temperature and velocity of the droplets, (2) small angle X-ray scattering (SAXS) to measure the size and number density of the droplets, and (3) Fourier Transform Infrared (FTIR) spectroscopy to follow the liquid to solid phase transition. Assuming that nucleation occurs throughout the droplet volume, the measured ice nucleation rates J(ice,V) are on the order of 10(23) cm(-3) s(-1), and agree well with published values near 203 K. PMID:22354018

  18. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  19. Penguin vision in air and water.

    PubMed

    Howland, H C; Sivak, J G

    1984-01-01

    Refractive states measured by retinoscopy and photorefraction indicate that rockhopper (Eudyptes crestatus), Magellanic (Spheniscus magellanicus) and gentoo (Pygoscelis papua) penguins are approximately emmetropic in air and water. Extensive myopia in air, as predicted by early authors, is nonexistent. Photorefractive measurements of refractive state in water indicate that rockhopper, gentoo, Magellanic and king (Aptenodytes patagonica) penguins can accommodate sufficiently to make up for the loss of refractive power of the cornea. Corneas of rockhopper and Megellanic penguins are flattened relative to the overall size of the eye. This feature minimizes the optical effect of submergence. PMID:6534014

  20. Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.

    1960-01-01

    An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg

  1. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%. PMID:26065891

  2. Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.

    PubMed

    Meneses, B M; Reis, R; Vale, M J; Saraiva, R

    2015-09-15

    To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments. PMID:25981942

  3. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  4. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  5. Quenching using air-water mixtures

    SciTech Connect

    Wallis, R.A.; Garwood, R.; Ward, J.; Xia, Q.

    1996-12-31

    With the current trend toward reduced manufacturing cycle time there is considerable interest in minimizing heat treatment related distortion and the residual stresses that are present in components. There is therefore a need to optimize the quenching process for a particular part such that the desired cooling rate, and hence mechanical properties, are obtained while minimizing distortion. This paper describes work aimed at developing a system to provide heat transfer rates between those obtained for oil quenching and fan cooling. Tests are described in which quenching was carried out by spraying water into the stream of air exiting a fan cooling system. Data are also presented for air mist quenching using atomizing nozzles. Comparison of computer predicted cooling rates and residual stress levels in components are presented for oil quenching, fan cooling, fan plus water injection cooling and air-mist cooling.

  6. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  7. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  8. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  9. Diatom (Bacillariophyta) community response to water quality and land use

    USGS Publications Warehouse

    Stewart, Paul M.; Butcher, Jason T.; Gerovac, Paul J.

    1999-01-01

    Aquatic algal communities are sensitive to environmental stresses and are used as indicators of water quality. Diatoms were collected from three streams that drain the Great Marsh at Indiana Dunes National Lakeshore. Diatom communities, water chemistry, and land use were measured at each site to test the hypothesis that differences in land use indirectly affect diatom communities, through changes in water quality. Relationships among these variables were examined by correlation, cluster, and detrended correspondence analysis. Several water chemistry variables were correlated to several land-use categories. Diatom species diversity was most variable in disturbed areas with poorer water quality and was correlated with land use and total alkalinity, total hardness, and specific conductance. Sites within each stream were grouped in terms of their diatom assemblage by both cluster and detrended correspondence analysis with but two exceptions in Dunes Creek. Diatom communities in the three streams responded to land use through its effects on water quality. The results of this study demonstrate the use of diatom assemblages as indicators of water quality, which can be linked to land use in a watershed.

  10. Orion MPCV Water Landing Test at Hydro Impact Basin

    NASA Video Gallery

    This is the third Orion Multi-Purpose Crew Vehicle (MPCV) water landing test conducted at the Hydro Impact Basin at NASA Langley Research Center. This test represented the worst-case scenario for l...

  11. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  12. Changes in Landing Mechanics after Cold-Water Immersion

    ERIC Educational Resources Information Center

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  13. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  14. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  15. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  16. Using water isotopes in the evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Risi, Camille; Ottlé, Catherine; Bastrikov, Vladislav; Valdayskikh, Victor; Cattani, Olivier; Jouzel, Jean; Gribanov, Konstantin; Nekrasova, Olga; Zacharov, Vyacheslav; Ogée, Jérôme; Wingate, Lisa; Raz-Yaseef, Naama

    2013-04-01

    Several studies show that uncertainties in the representation of land surface processes contribute significantly to the spread in projections for the hydrological cycle. Improvements in the evaluation of land surface models would therefore translate into more reliable predictions of future changes. The isotopic composition of water is affected by phase transitions and, for this reason, is a good tracer for the hydrological cycle. Particularly relevant for the assessment of land surface processes is the fact that bare soil evaporation and transpiration bear different isotopic signatures. Water isotopic measurement could thus be employed in the evaluation of the land surface hydrological budget. With this objective, isotopes have been implemented in the most recent version of the land surface model ORCHIDEE. This model has undergone considerable development in the past few years. In particular, a newly discretised (11 layers) hydrology aims at a more realistic representation of the soil water budget. In addition, biogeophysical processes, as, for instance, the dynamics of permafrost and of its interaction with snow and vegetation, have been included. This model version will allow us to better resolve vertical profiles of soil water isotopic composition and to more realistically simulate the land surface hydrological and isotopic budget in a broader range of climate zones. Model results have been evaluated against temperature profiles and isotopes measurements in soil and stem water at sites located in semi-arid (Yatir), temperate (Le Bray) and boreal (Labytnangi) regions. Seasonal cycles are reasonably well reproduced. Furthermore, a sensitivity analysis investigates to what extent water isotopic measurements in soil water can help constrain the representation of land surface processes, with a focus on the partitioning between evaporation and transpiration. In turn, improvements in the description of this partitioning may help reduce the uncertainties in the land

  17. A framework for assessing the impact of land use policy on community exposure to air toxics.

    PubMed

    Willis, Melvin R; Keller, Arturo A

    2007-04-01

    Our research focuses on the linkage between land use planning policy and the spatial pattern of exposure to air toxics emissions. Our objective is to develop a modeling framework for assessment of the community health risk implications of land use policy. The modeling framework is not intended to be a regulatory tool for small-scale land use decisions, but a long-range planning tool to assess the community health risk implications of alternative land use scenarios at a regional or subregional scale. This paper describes the development and application of an air toxic source model for generating aggregate emission factors for industrial and commercial zoning districts as a function of permitted uses. To address the uncertainty of estimating air toxics emission rates for planned general land use or zoning districts, the source model uses an emissions probability mass function that weights each incremental permitted land use activity by the likelihood of occurrence. We thus reduce the uncertainty involved in planning for development with no prior knowledge of the specific industries that may locate within the land use district. These air toxics emission factors can then be used to estimate pollutant atmospheric mass flux from land use zoning districts, which can then be input to air dispersion and human health risk assessment models to simulate the spatial pattern of air toxics exposure risk. The model database was constructed using the California Air Toxics Inventory, 1997 US Economic Census, and land assessment records from several California counties. The database contains information on more than 200 air toxics at the 2-digit Standard Industrial Classification (SIC) level. We present a case study to illustrate application of the model. LUAIRTOX, the interactive spreadsheet model that applies our methodology to the California data, is available at http://www2.bren.ucsb.edu/~mwillis/LUAIRTOX.htm. PMID:16842900

  18. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    NASA Astrophysics Data System (ADS)

    Ji, L.; Senay, G. B.; Verdin, J. P.

    2014-12-01

    There is a high demand for agro-hydrologic models to use gridded surface air temperature data as the model input for estimating regional and global water budget and cycle. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global coverage. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, we compared the daily 0.25° resolution GLDAS air temperature data with two reference datasets: (1) 1-km resolution gridded Daymet data (2002 and 2010) for the Conterminous United States, and (2) global meteorological observations (2000 - 2011) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets including 13,511 weather stations indicates a fairly high accuracy of the GLDAS data for daily maximum temperature [bias is 1.2 C°, root mean square error (RMSE) is 3.9 C°, and R2 is 0.92] and daily minimum temperature (bias is -1.4 C°, RMSE is 5.4 C°, and R2 is 0.82). The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accurate estimates. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. Our evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but cautions should be taken when the data are used in mountainous areas or places with sparse weather stations.

  19. Biogeochemical Transformation Pathways through the Land-water Geosphere

    NASA Astrophysics Data System (ADS)

    Destouni, G.; Asokan, S. M.; Augustsson, A.; Balfors, B.; Bring, A.; Jaramillo, F.; Jarsjo, J.; Johansson, E.; Juston, J.; Levi, L.; Olofsson, B.; Prieto, C.; Quin, A.; Åström, M. E.; Cvetkovic, V.

    2014-12-01

    Water on land undergoes and participates in many biogeochemical exchanges and changes. A bits-and-pieces approach to these may miss essential aspects of change propagation and transformation by land-water through different segments of the Earth system. This paper proposes a conceptualization of the entire land-water geosphere as a scale-free catchment-wise organised system (Figure 1), emphasizing four key new system aspects compared to traditional hydrosphere/water cycle view: i) distinction of coastal divergent in addition to traditional convergent catchments; ii) physical and social-ecological system coupling through four main nodal zones/interfaces (surface, subsurface, coastal, observation); iii) flow-transport pathways as system coupling agents; iv) multiple interactions with the anthroposphere as integral system parts. Utilizing this conceptualization, we identify distinct patterns of direct anthropogenic change in large-scale water and waterborne nutrient fluxes, emerging across different parts of the world. In general, its embedment directly in the anthroposphere/technosphere makes land-water a key geosphere for understanding and monitoring human-driven biogeochemical changes. Further progress in system-level understanding of such changes requires studies of land-water as a continuous yet structured geosphere following the proposed spatiotemporal pathways of change propagation-transformation.

  20. Modeling the relationship between land use and surface water quality.

    PubMed

    Tong, Susanna T Y; Chen, Wenli

    2002-12-01

    It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic

  1. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  2. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  3. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  4. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  5. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  6. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  7. Landing of STS-59 Shuttle Endeavour at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occured at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes.

  8. 75 FR 66125 - Federal Land Managers' Air Quality Related Values Work Group (FLAG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... approach for the Federal Land Managers (FLMs), i.e., National Park Service, U.S. Fish and Wildlife Service... Service, P.O. Box 25287, Denver, Colorado 80225; e-mail: john_bunyak@nps.gov . FOR FURTHER INFORMATION... National Park Service Federal Land Managers' Air Quality Related Values Work Group (FLAG) AGENCY:...

  9. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  10. Relating trends in land surface skin-air temperature difference to soil moisture and evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Veal, K. L.; Taylor, C.; Gallego-Elvira, B.

    2015-12-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited (water-stressed) and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived datasets to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more (e.g. MODIS Terra LST - 2000 to present; Along-Track Scanning Radiometer (ATSR) LST record - 1995 to 2012). As part of the e-stress project these datasets have been used calculate time series of delta T. This paper reports the use of MODIS LST and ESA GlobTemperature ATSR LST with 2m air temperatures from a range of reanalyses to calculate trends in delta T and water-stressed area. We examine the variability of delta T in relation to satellite soil moisture, vegetation and precipitation and model evaporation data.Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux.In conclusion there have been distinct signals in delta T during recent decades and these provide an independent assessment of hydrologically-forced changes in the land surface energy balance which can be used as a metric for the assessment of ESM and global surface flux products.

  11. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  12. Guide to land treatment of municipal waste water in Illinois

    SciTech Connect

    Skelton, L.W.; Hinesly, T.D.; John, S.F.

    1989-01-01

    Waste water is a recyclable commodity. Organic matter, nitrogen, phosphorus, and micronutrients in waste water are generally harmful when discharged to lakes and streams, but these constituents have a positive economic value when applied under properly controlled conditions to vegetated soils. The guide provides an overview of planning for a land-treatment system. It first discusses the potential for land treatment in Illinois, how to modify lagoons for land treatment, economic considerations, health and environmental concerns, regulatory requirements, and public education. It then provides more technical information on land-treatment processes, site and waste-load evaluation, systems for agricultural production, the potential for supplemental irrigation in Illinois, general site management, and system monitoring.

  13. Population momentum and the demand on land and water resources

    PubMed Central

    Fischer, G.; Heilig, G. K.

    1997-01-01

    Future world population growth is fuelled by two components: the demographic momentum, which is built into the age composition of current populations, and changes in reproductive behaviour and mortality of generations yet to come. This paper investigates, by major world regions and countries, what we know about population growth, what can be projected with reasonable certainty, and what is pure speculation. The exposition sets a frame for analysing demographic driving forces that are expected to increase human demand and pressures on land and water resources. These have been contrasted with current resource assessments of regional availability and use of land, in particular with estimates of remaining land with cultivation potential. In establishing a balance between availabilty of land resources and projected needs, the paper distinguishes regions with limited land and water resources and high population pressure from areas with abundant resources and low or moderate demographic demand. Overall, it is estimated that two-thirds of the remaining balance of land with rainfed cultivation potential is currently covered by various forest ecosystems and wetlands. The respective percentages by region vary between 23% in Southern Africa to 89% in South-Eastern Asia. For Latin America and Asia the estimated share of the balance of land with cultivation potential under forest and wetland ecosystems is about 70%, in Africa this is about 60%. If these were to be preserved, the remaining balance of land with some potential for rainfed crop cultivation would amount to some 550 million hectares. The regions which will experience the largest difficulties in meeting future demand for land resources and water, or alternatively have to cope with much increased dependency on external supplies, include foremost Western Asia, South-Central Asia, and Northern Africa. A large stress on resources is to be expected also in many countries of Eastern, Western and Southern Africa

  14. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

  15. SR-71 Tail #844 Landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    With distinctive heat waves trailing behind its engines, NASA Dryden Flight Research Center's SR-71A, tail number 844, lands at the Edwards AFB runway after a 1996 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward

  16. NASA's Orion Spacecraft Undergoes Water Landing Test

    NASA Video Gallery

    On August 25, 2016, the Orion spacecraft underwent a water drop test at the Hydro Impact Basin at NASA's Langley Research Center in Hampton, Virginia. Join host Eric Gillard, of NASA Langley, and g...

  17. Land disposal of water treatment plant sludge -- A feasibility analysis

    SciTech Connect

    Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

    1998-07-01

    In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

  18. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  19. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  20. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  1. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  2. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  3. 14 CFR 399.12 - Negotiation by air carriers for landing rights in foreign countries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Government with foreign governments rather than by direct negotiation between an air carrier and a foreign... rights in foreign countries. 399.12 Section 399.12 Aeronautics and Space OFFICE OF THE SECRETARY... Relating to Operating Authority § 399.12 Negotiation by air carriers for landing rights in...

  4. 14 CFR 399.12 - Negotiation by air carriers for landing rights in foreign countries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Government with foreign governments rather than by direct negotiation between an air carrier and a foreign... rights in foreign countries. 399.12 Section 399.12 Aeronautics and Space OFFICE OF THE SECRETARY... Relating to Operating Authority § 399.12 Negotiation by air carriers for landing rights in...

  5. 78 FR 12041 - Information on Surplus Land at Former Naval Air Station, Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... 16, 2007 (72 FR 7624, FR Doc. E7-2762)). DATES: Effective February 7, 2013, by updating the acreage... Department of the Navy Information on Surplus Land at Former Naval Air Station, Brunswick, ME AGENCY... additional surplus property at the former Naval Air Station (NAS), Brunswick, ME, in accordance with...

  6. Photodetoxification and purification of water and air

    SciTech Connect

    Anderson, M.; Blake, D.M.

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  7. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. PMID:26439669

  8. Global land and water grabbing for food and bioenergy

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.

    2014-12-01

    The increasing demand for food, fibers and biofuels, the consequently escalating prices of agricultural products, and the uncertainty of international food markets have recently drawn the attention of governments and corporations toward investments in productive agricultural land, mostly in developing countries. Since 2000 more than 37 million hectares of arable land have been purchased or leased by foreign investors worldwide. The targeted regions are typically located in areas where crop yields are relatively low because of lack of modern technology. It is expected that in the long run large scale investments in agriculture and the consequent development of commercial farming will bring the technology required to close the existing crop yield gaps. Recently, a number of studies and reports have documented the process of foreign land acquisition, while the associated appropriation of land based resources (e.g., water and crops) has remained poorly investigated. The amount of food this land can produce and the number of people it could feed still needs to be quantified. It is also unclear to what extent the acquired land will be used to for biofuel production and the role played by U.S. and E.U. bioenergy policies as drivers of the ongoing land rush. The environmental impacts of these investments in agriculture require adequate investigation. Here we provide a global quantitative assessment of the rates of water and crop appropriation potentially associated with large scale land acquisitions. We evaluate the associated impacts on the food and energy security of both target and investors' countries, and highlight the societal and environmental implications of the land rush phenomenon.

  9. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  10. Water at the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Smith, Peter Hollingsworth

    The Phoenix mission investigated patterned ground and climate in the northern arctic region of Mars for 5 months starting May 25, 2008. A shallow ice table was uncovered by the robotic arm in a nearby polygon's edge and center at depths of 5-15 cm. In late summer snowfall and frost blanket the surface at night; water ice and vapor constantly interact with the soil. Analysis reveals an alkaline Ph with CaCO 3 , aqueous minerals, and salts making up several wt% of the soil; liquid water is implicated as having been important in creating these components. In combination with the oxidant perchlorate (~1 wt%), an energy source for terrestrial microbes, and a prior epoch of higher temperatures and humidity, this region may have been a habitable zone.

  11. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    PubMed

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life. PMID:24499870

  12. Landing-Time-Controlled Management Of Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard

    1988-01-01

    Conceptual system controls aircraft with old and new guidance equipment. Report begins with overview of concept, then reviews controller-interactive simulations. Describes fuel-conservative-trajectory algorithm, based on equations of motion for controlling landing time. Finally, presents results of piloted simulations.

  13. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or...

  14. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is...

  15. Dispersion of pollutants over land-water-land interface: Study using CALPUFF model

    NASA Astrophysics Data System (ADS)

    Indumati, S.; Oza, R. B.; Mayya, Y. S.; Puranik, V. D.; Kushwaha, H. S.

    The CALMET/CALPUFF modeling system is used to study atmospheric dispersion of pollutant over land-water-land interface. It is shown that the default scheme used by CALMET/CALPUFF to handle inhomogeneous surfaces does not take care of the different turbulence characteristics over such surfaces. An alternative method is suggested to incorporate different turbulent characteristics over inhomogeneous surfaces by using the appropriate atmospheric stability category over different surfaces. The results show that the presence of water body can increase the ground level concentration by a factor of up to 50 for the width of water body varying from 1 km to 5 km. It is also shown that the effect of water body on the ground level concentration decreases as the distance from the water body increases. The present study showed that for land-water interface, the realistic specification of turbulence characteristics over inhomogeneous surfaces significantly changes the estimation of ground level concentration as compared to the default scheme available in the CALMET/CALPUFF modeling system and is expected to give realistic results.

  16. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique

  17. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  19. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  20. Linking land cover and water quality in New York City's water supply watersheds.

    PubMed

    Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A

    2005-08-01

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs. PMID:16418903

  1. Land utilization and water resource inventories over extended test sites

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1972-01-01

    In addition to the work on the corn blight this year, several other analysis tests were completed which resulted in significant findings. These aspects are discussed as follows: (1) field spectral measurements of soil conditions; (2) analysis of extended test site data; this discussion involves three different sets of data analysis sequences; (3) urban land use analysis, for studying water runoff potentials; and (4) thermal data quality study, as an expansion of our water resources studies involving temperature calibration techniques.

  2. A Land-Water Environment for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Describes and details the construction of a land-water environment using an aquarium and variety of terrestrial and aquatic materials and organisms. Suggests activities such as identification of organisms, observation of predator-prey interactions, construction of food webs, and recognition of interdependence of biotic and abiotic factors. (CS)

  3. Monitoring vegetative land cover and water use using satellite imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative land cover and water use are the key indicators required by the Global Bioenergy Partnership (GBEP) for promoting the production and use of modern bioenergy, particularly in the developing world. Since the statistical data and field observations are limited in the developing countries, re...

  4. Integrated Land-Water-Energy assessment using the Foreseer Tool

    NASA Astrophysics Data System (ADS)

    Allwood, Julian; Konadu, Dennis; Mourao, Zenaida; Lupton, Rick; Richards, Keith; Fenner, Richard; Skelton, Sandy; McMahon, Richard

    2016-04-01

    This study presents an integrated energy and resource modelling and visualisation approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for energy system pathways. The Foreseer Tool maps linked energy, water and land resource futures by outputting a set of Sankey diagrams for energy, water and land, showing the flow from basic resource (e.g. coal, surface water, and forested land) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). By 'mapping' resources in this way, policy-makers can more easily understand the competing uses through the identification of the services it delivers (e.g. food production, landscaping, energy), the potential opportunities for improving the management of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper will present a case study of the UK Carbon Plan, and highlights the need for integrated resource planning and policy development.

  5. Land use and water use in the Antelope Valley, California

    USGS Publications Warehouse

    Templin, W.E.; Phillips, S.P.; Cherry, D.E.; DeBortoli, M.L.; Haltom, T.C.; McPherson, K.R.; Mrozek, C.A.

    1995-01-01

    Urban land use and water use in the Antelope Valley, California, have increased greatly since the devel- opment of the valley began in the late 1800's. Ground water always has been a major source of supply in this area because of limited local surface-water resources. Ground-water pumpage reportedly increased from about 29,000 acre-feet in 1919 to about 400,000 acre-feet in the 1950's. Declines in ground-water levels and increased costs of electrical power in the 1970's resulted in a reduction in the quantity of ground-water pumped annually for irrigation uses. Ground-water pumpage was further reduced in the 1970's following the completion of the California Aqueduct, which conveys water from northern California. Total annual reported ground-water pumpage decreased to a low of about 53,200 acre-feet in 1983 and increased again to about 91,700 acre-feet in 1991. Rapid urban development and the 1987-92 drought renewed concern about a possible return to extensive ground-water- storage depletion and increased land subsidence. Water-demand forecasts in 1980 for the Antelope Valley indicated that total annual demand by the year 2020 was expected to be about 250,000 acre- feet per year, with agricultural uses to be about 65 percent of this total demand. In 1990, total demand. In 1993, preliminary forecasts for total demand for 2010 ranged from about 127,000 to 329,000 acre-feet with urban water uses accounting for all but a few percent of the total anticipated demand. This history of forecasts indicates that expectations change with time. Factors that affect water demand change and different forecasting methods are used. Water-conservation options may be adopted to employ best-management practices that would further influence future water demands in the Antelope Valley.

  6. Ice crystallization in water's ``no-man's land''

    NASA Astrophysics Data System (ADS)

    Moore, Emily B.; Molinero, Valeria

    2010-06-01

    The crystallization of water at 180 K is studied through large-scale molecular dynamics simulations with the monatomic water model mW. This temperature is in the middle of water's "no-man's land," where rapid ice crystallization prevents the elucidation of the structure of liquid water and its transformation into ice with state of the art experimental methods. We find that critical ice nuclei (that contain less than ten water molecules) form in a time scale shorter than the time required for the relaxation of the liquid, suggesting that supercooled liquid water cannot be properly equilibrated in this region. We distinguish three stages in the crystallization of water at 180 K: concurrent nucleation and growth of ice, followed by consolidation that decreases the number density of ice nuclei, and finally, slow growth of the crystallites without change in their number density. The kinetics of the transformation along the three stages is well described by a single compacted exponential Avrami equation with n ≈1.7. This work confirms the coexistence of ice and liquid after water is crystallized in "no-man's land": the formation of ice plateaus when there is still 15%-20% of liquid water in the systems, thinly dispersed between ice I crystals with linear dimensions ranging from 3 to 10 nm. We speculate that the nanoscopic size of the crystallites decreases their melting point and slows their evolution toward the thermodynamically most stable fully crystalline state.

  7. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  8. Water governance across competing scales: Coupling land and water management

    NASA Astrophysics Data System (ADS)

    Daniell, Katherine A.; Barreteau, Olivier

    2014-11-01

    Water governance is becoming an increasingly important area of study for hydrologists, as the impacts of human decisions on water flows and their various management scales are recognised. Hydrology has long tackled issues of water flow and quality across basins-from rain to soil and sub-soil, from upstream to downstream, between surface water and groundwater systems, and through interlinked watersheds-with the understanding that these stocks and flows can be modified en-route due to the actions of people, including through organised water management and governance processes. In this setting, one common aim of water governance is to develop management processes and infrastructure systems that can control hydrological variability at different levels of spatial and temporal scales. For example, water storages, distribution systems and drainage networks are developed for long-term seasonal and inter-decadal variability-in the case of large dams and irrigation systems-as well as shorter-term variability, such as flooding events, that may take place over hours (e.g. urban flash floods), days (e.g. catchment-based river flooding) or months (e.g. basin-wide flood-plain inundation events). Particularly when looking at water supply issues, water allocation rules are elaborated and negotiated in order to provide water to people when and where they most need it, rather than when and where it would naturally be available.

  9. Parameterisation for National Scale Modelling of Macronutrient Emissions to Water and Air

    NASA Astrophysics Data System (ADS)

    Trodahl, M.; Jackson, B. M.

    2013-12-01

    Globally, increases in emissions to atmosphere and water associated with the biogeochemical cycling of carbon, nitrogen and phosphorous are concerning. While the sources of these emissions are varied, agricultural and other primary production land uses have been identified as both major contributors to some emissions, and potential sinks. Specifically targeted solutions are being sought to reduce emissions and increase storage in these areas. LUCI (the Land Utilisation and Capability Indicator) is a GIS framework developed to consider the impacts of land use on various ecosystem services in a holistic and spatially explicit manner. It is designed to work at a variety of scales, from sub-field to catchment, using readily available national data that can be supplemented with local knowledge. Current tools available with the framework include flood mitigation, habitat connectivity, erosion and sediment delivery, agricultural productivity, carbon sequestration, and water quality. At present LUCI models emissions of N and P to water using an export coefficient approach linked to land use, land management and soils, and models emissions to air of carbon dioxide only; methane and nitrous oxide are not currently considered. This study aims to refine the representation in LUCI of N and P emissions to water and develop preliminary approaches for representing methane and nitrous oxide emissions to air. The ultimate aim is the provision of a set of model representations and associated parameters that can better represent emissions to air and water and suggest spatially explicit solutions that will not undermine, and may benefit, enterprise and/or community economic assets. The physical processes associated with emissions are being investigated and categorised based on land management, soil and climate regimes for two case study countries - Wales and New Zealand. Preliminary parameters, associated modelled results and potential future refinements are presented and discussed.

  10. Coal conversion siting on coal mined lands: water quality issues

    SciTech Connect

    Triegel, E. K.

    1980-01-01

    The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

  11. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  12. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  13. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  14. Water security, global change and land-atmosphere feedbacks.

    PubMed

    Dadson, Simon; Acreman, Michael; Harding, Richard

    2013-11-13

    Understanding the competing pressures on water resources requires a detailed knowledge of the future water balance under uncertain environmental change. The need for a robust, scientifically rigorous evidence base for effective policy planning and practice has never been greater. Environmental change includes, but is not limited to, climate change; it also includes land-use and land-cover change, including deforestation for agriculture, and occurs alongside changes in anthropogenic interventions that are used in natural resource management such as the regulation of river flows using dams, which can have impacts that frequently exceed those arising in the natural system. In this paper, we examine the role that land surface models can play in providing a robust scientific basis for making resource management decisions against a background of environmental change. We provide some perspectives on recent developments in modelling in land surface hydrology. Among the range of current land surface and hydrology models, there is a large range of variability, which indicates that the specification and parametrization of several basic processes in the models can be improved. Key areas that require improvement in order to address hydrological applications include (i) the representation of groundwater in models, particularly at the scales relevant to land surface modelling, (ii) the representation of human interventions such as dams and irrigation in the hydrological system, (iii) the quantification and communication of uncertainty, and (iv) improved understanding of the impact on water resources availability of multiple use through treatment, recycling and return flows (and the balance of consumptive and conservative uses). Through a series of examples, we demonstrate that changes in water use could have important reciprocal impacts on climate over a wide area. The effects of water management decisions on climate feedbacks are only beginning to be investigated-they are

  15. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds. PMID:23885409

  16. Land use impact on water quality: valuing forest services in terms of the water supply sector.

    PubMed

    Fiquepron, Julien; Garcia, Serge; Stenger, Anne

    2013-09-15

    The aim of this paper is to quantify the impact of the forest on raw water quality within the framework of other land uses. On the basis of measurements of quality parameters that were identified as being the most problematic (i.e., pesticides and nitrates), we modeled how water quality is influenced by land uses. In order to assess the benefits provided by the forest in terms of improved water quality, we used variations of drinking water prices that were determined by the operating costs of water supply services (WSS). Given the variability of links between forests and water quality, we chose to cover all of France using data observed in each administrative department (France is divided into 95 départements), including a description of WSS and information on land uses. We designed a model that describes the impact of land uses on water quality, as well as the operation of WSS and prices. This bioeconomic model was estimated by the generalized method of moments (GMM) to account for endogeneity and heteroscedasticity issues. We showed that the forest has a positive effect on raw water quality compared to other land uses, with an indirect impact on water prices, making them lower for consumers. PMID:23681358

  17. The water cycle at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Cull, Selby

    2010-01-01

    The water cycle is critically important to understanding Mars system science, especially interactions between water and surface minerals or possible biological systems. In this thesis, the water cycle is examined at the Mars Phoenix landing site (68.22°N, 125.70°W), using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), High-Resolution Imaging Science Experiment (HiRISE), the Phoenix Lander Surface Stereo Imager (SSI), and employing non-linear spectral mixing models. The landing site is covered for part of the year by the seasonal ice cap, a layer of CO2 and H2O ice that is deposited in mid-fall and sublimates in mid-spring. During the mid-summer, H2O ice is deposited on the surface at the Phoenix landing site. CO2 ice forms at the site during fall. The onset date of seasonal ices varies annually, perhaps due to variable levels of atmospheric dust. During fall and winter, the CO2 ice layer thickens and sinters into a slab of ice, ˜30 cm thick. After the spring equinox, the CO2 slab breaks into smaller grains as it sublimates. Long before all of the CO2 ice is gone, H2O ice dominates the near-infrared spectra of the surface. Additional H2O ice is cold-trapped onto the surface of the CO2 ice deposit during this time. Sublimation during the spring is not uniform, and depends on the thermal inertia properties of the surface, including depth of ground ice. All of the seasonal ices have sublimated by mid-spring; however, a few permanent ice deposits remain throughout the summer. These are small water ice deposits on the north-facing slopes of Heimdal Crater and adjacent plateaus, and a small patch of mobile water ices that chases shadows in a small crater near the landing site. During the late spring and early summer, the site is free of surface ice. During this time, the water cycle is dominated by vapor exchange between the subsurface water ice deposits and the atmosphere. Two types of subsurface ice were found at the Phoenix landing site

  18. Influence of Land-sea Breeze on Air Quality Over Taiwan Coastal Environment

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Chiang, C.

    2008-12-01

    Taiwan is is an island nation in western Pacific close to Mainland China. As such Land-sea breeze is a natural processes. Many major cities and industrial developments naturally developed near coastal area. As air quality in urban and industrial centers worsened impact on coastal areas increases. Land-sea breeze naturally plays an important role in transport of pollutants to and from polluted regions to the coastal environment. In this study we analyzed a full year of Taiwan EPA monitored hourly data on O3, NOx, CO, CO2, temperature, wind direction and speed to group and identify time and place with significant land-sea breeze phenomenon. We first compare coastal air quality condition with and without land-sea breeze and then use a 3-D regional-scale transport and chemistry model to provide detailed diagnostic interpretations of the coupling of pollution source regions and coastal areas. From this we can clarify when and how land-sea breeze may play a role in determining coastal air quality. Two different subregions of Taiwan are of interest in this study, Taipei and Kaoshiung environments, in the north and south of Taiwan respectively. Taipei is about 30-50 km away from its impacted coastal area while Kaoshiung is directly at and inland of its coastal shore. For Taipei region daytime upper air pollutants can be transported out to sea and then subside and return to the coastal area at night. But under summer severely polluted condition surface Taipei urban pollutants actually extend beyond the coastal area hence at night the return flow only brings back the same air mass. In contrast, Kaoshiung area is almost always under high pollution status. Its domain of influence always extends far beyond the coastal shore. Therefore, with and without land-sea breeze, coastal pollution remains about the same. We shall present detailed 2-D and 3-D data and station by station analyses in support of these findings.

  19. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  20. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  1. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  2. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  3. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  4. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  5. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  6. Decadal power in land air temperatures: Is it statistically significant?

    NASA Astrophysics Data System (ADS)

    Thejll, Peter A.

    2001-12-01

    The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.

  7. Land subsidence caused by a single water extraction well and rapid water infiltration

    NASA Astrophysics Data System (ADS)

    Martinez-Noguez, I.; Hinkelmann, R.

    2015-11-01

    Nowadays several parts of the world suffer from land subsidence. This setting of the earth surface occurs due to different factors such as earth quakes, mining activities, and gas, oil and water withdrawal. This research presents a numerical study of the influence of land subsidence caused by a single water extraction well and rapid water infiltration into structural soil discontinuities. The numerical simulation of the infiltration was based on a two-phase flow-model for porous media, and for the deformation a Mohr-Coulomb model was used. A two-layered system with a fault zone is presented. First a single water extraction well is simulated producing a cone-shaped (conical) water level depletion, which can cause land subsidence. Land Subsidence can be further increased if a hydrological barrier as a result of a discontinuity, exists. After water extraction a water column is applied on the top boundary for one hours in order to represent a strong storm which produces rapid water infiltration through the discontinuity as well as soil deformation. Both events are analysed and compared in order to characterize deformation of both elements and to get a better understanding of the land subsidence and new fracture formations.

  8. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  9. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  10. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  11. Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...

  12. Development and Evaluation of Land-Use Regression Models Using Modeled Air Quality Concentrations

    EPA Science Inventory

    Abstract Land-use regression (LUR) models have emerged as a preferred methodology for estimating individual exposure to ambient air pollution in epidemiologic studies in absence of subject-specific measurements. Although there is a growing literature focused on LUR evaluation, fu...

  13. Air Conditions Close to the Ground and the Effect on Airplane Landings

    NASA Technical Reports Server (NTRS)

    Thompson, F L; Peck, W C; Beard, A P

    1935-01-01

    This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground.

  14. A Critical Review of the Effect of Air Pollution Control Regulations on Land Use Planning

    ERIC Educational Resources Information Center

    Roberts, John J.; And Others

    1975-01-01

    Although a number of recent federal initiatives explicitly require greater coordination of land use and air quality management, viable working relationships among the planning and regulatory agencies have not been developed. The concept of emission density zoning is endorsed. (Author/BT)

  15. A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.

  16. Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston Metropolitan area: Part II. Air quality simulation results

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Yi; Kim, Soontae; Byun, Daewon W.

    In the companion paper, we showed that MM5 simulation using a satellite-derived high resolution Texas Forest Service (TFS) land use and land cover (LULC) data set (M2), compared to the MM5 results with the default USGS-LULC (M1), improved representation of the complicated features of the atmospheric planetary boundary layer (PBL) in the Houston ship channel (HSC) area, where large industrial emission sources are concentrated. In the present paper, the study is extended to investigate these effects on air quality simulations. Two emission inputs, namely E1 and E2, are prepared with the M1 and M2 meteorology data, respectively, to reflect the differences in the point source plume rise estimates while keeping the biogenic and mobile emissions the same. Air quality simulations were performed with CMAQ using the M1E1 and M2E2 inputs. The simulation results demonstrate the importance of utilizing high resolution LULC data. In the default LULC data, the HSC area was classified as grass land cover, and MM5 predicted confined mixing, resulting in over-prediction of ozone (O 3) precursors, such as NO x (NO plus NO 2), and highly reactive volatile organic compounds (HRVOC) species, including ethylene and propylene, over the HSC area. In the TFS data, the area was classified as the impervious "urban" land use and MM5 predicted enhanced mixing of the precursor species, leading to better agreements with measurements. The high resolution LULC also resolves the location of water body near the HSC more accurately, predicting shallower PBL heights than the default LULC during daytime. With favorable wind conditions, the O 3 precursors were transported from the HSC emission source towards the area, trapping the pollutants in a confined shallow mixing layer that occasionally led to a rapid photochemical production of O 3. The above comparison includes the changes in both meteorological and plume-rise emissions inputs. We performed two additional CMAQ simulations using the same

  17. Impacts of land use and land cover change on water resources and water scarcity in the 20th century: a multi-model multi-forcing analysis

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Wada, Yoshihide; Ward, Philip; Aerts, Jeroen

    2016-04-01

    Socioeconomic developments increasingly put pressure on our global fresh water resources. Over the past century, increasing extents of land were converted into (irrigated) agricultural production areas whilst dams and reservoirs were built to get grip on the timing and availability of fresh water resources. Often targeted to be of use at local, regional, or national levels, such human interventions affect, however, terrestrial water fluxes on larger scales. Although many of these interventions have been studied intensively at global and regional scales, the impact of land use and land cover change has often been omitted, and an assessment on how land conversions impact water resources availability and water scarcity conditions was not executed before, despite its importance in the development of sound integrated river basin water management plans. To address this issue, we evaluate in this contribution how land use and land cover change impact water resources and water scarcity conditions in the 20th century, using a multi-model multi-forcing framework. A novelty of this research is that the impact models applied in this study use the dynamic HYDE 3.1 - MIRCA dataset to cover the historical (1971-2010) changes in land use and land cover. Preliminary results show that more than 60% of the global population, predominantly living in downstream areas, is adversely affected by the impacts of land use and land cover change on water resources and water scarcity conditions. Whilst incoming discharge generally (in 97% of the global land area) tends to decrease due to upstream land conversions, we found at the same time increases in local runoff levels for a significant share (27%) of the global land area. Which effect eventually dominates and whether it causes water scarcity conditions is determined by the dependency of a region to water resources originating in upstream areas, and by the increasing rates with which the (locally generated) stream flow is used to fulfil (non

  18. A research on analysis method of land environment big data storage based on air-earth-life

    NASA Astrophysics Data System (ADS)

    Lu, Yanling; Li, Jingwen

    2015-12-01

    Many problems of land environment in urban development, with the support of 3S technology, the research of land environment evolved into the stage of spatial-temporal scales. This paper combining space, time and attribute features in land environmental change, with elements of "air-earth-life" framework for the study of pattern, researching the analysis method of land environment big data storage due to the limitations of traditional processing method in land environment spatial-temporal data, to reflect the organic couping relationship among the multi-dimensional elements in land environment and provide the theory basis of data storage for implementing big data analysis application platform in land environment.

  19. Determination of Magnitude and Direction of Land Use/ Land Cover Changes in Terkos Water Basin, Istanbul

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, F.; Goksel, C.

    2012-08-01

    Remotely sensed data have huge importance to determine land use/cover changes for sustainable region planning and management. Variety of techniques in order to detect land cover dynamics using remote sensing imagery have been developed, tested and assessed with the results varying according to the change scenario, the information required and the imagery applied. In this study, the modified Change Vector Analysis (mCVA) technique was implemented on SPOT 4 and SPOT 5 multispectral (MS) data to monitor the dynamics of land use/land cover (LULC) change in Terkos Water Basin, İstanbul. mCVA was applied to multi-temporal data to compare the differences in the time-trajectory of the Tasseled Cap (TC) brightness, greenness and wetness for two successive time periods - 2003 and 2007. Gram Schmidt Orthogonalization Technique was used to derive the related TC coefficients for SPOT data. The efficiency of the technique was assessed based on error matrix. The overall accuracy and Kappa statistic was 84.32 % and 0.81, respectively. The results indicated that it is possible to produce accurate change detection maps with the help of mCVA and SPOT 4 &SPOT 5 satellite data.

  20. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  1. Microorganism levels in air near spray irrigation of municipal waste water: The Lubbock Infection Surveillance Study

    SciTech Connect

    Camann, D.E.; Moore, B.E.; Harding, H.J.; Sorber, C.A.

    1988-01-01

    The Lubbock Infection Surveillance Study (LISS) investigated possible adverse effects on human health from slow-rate land application of municipal wastewater. Extensive air sampling was conducted to characterize the irrigation site as a source of infectious microbial aerosols. Spray irrigation of poor-quality waste water received directly from the treatment plant significantly elevated air densities of fecal coliforms, fecal streptococci, mycobacteria, and coliphage above ambient background levels for at least 200 m downwind. Enteroviruses were repeatedly recovered at 44 to 60 m downwind at a higher level (geometric mean = 0.05 pfu/m3) than observed at other waste water aerosol sites in the U.S. and in Israel. Waste water storage in reservoirs reduced downwind air densities of indicator organisms by two orders of magnitude.

  2. 75 FR 142 - Marseilles Land and Water Company; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... Energy Regulatory Commission Marseilles Land and Water Company; Notice Soliciting Scoping Comments... No.: P-13351-000. c. Date filed: December 30, 2008. d. Applicant: Marseilles Land and Water Company... and Vice President, Marseilles Land & Water Company, 4132 S. Rainbow Blvd., 247, Las Vegas, NV...

  3. 75 FR 11154 - Marseilles Land and Water Company; Notice of Application Ready for Environmental Analysis and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Energy Regulatory Commission Marseilles Land and Water Company; Notice of Application Ready for...-13351-000. c. Date filed: December 30, 2008. d. Applicant: Marseilles Land and Water Company. e. Name of... President, Marseilles Land & Water Company, 4132 S. Rainbow Blvd., 247, Las Vegas, NV 89103, (702)...

  4. 75 FR 52010 - Land and Water Conservation Fund Description and Notification, Performance Reports, Agreements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... National Park Service Land and Water Conservation Fund Description and Notification, Performance Reports... copy of the ICR packages free of charge. SUPPLEMENTARY INFORMATION: The Land and Water Conservation... Form Title: Land and Water Conservation Fund Description and Notification Form. OMB Control...

  5. Location of and landing on a source of human body odour by female Culex quinquefasciatus in still and moving air

    PubMed Central

    LACEY, EMERSON S.; CARDÉ, RING T.

    2014-01-01

    The orientation to and landing on a source of human odour by female Culex quinquefasciatus Say (Diptera: Culicidae) is observed in a wind tunnel without an airflow or with a laminar airflow of 0.2 m s-1. Odours from human feet are collected by ‘wearing’ clean glass beads inside a stocking and presenting beads in a Petri dish in a wind tunnel. Mosquitoes are activated by brief exposure to a 1 L min-1 jet of 4% CO2 positioned 10 cm from the release cage. In moving air at 0.2 m s-1, a mean of 3.45 ± 0.49 landings are observed in 10 min trials (5 mosquitoes per trial), whereas 6.50 ± 0.96 landings are recorded in still air. Furthermore, 1.45 ± 0.31mosquitoes are recorded on beads at any one time in moving air (a measure of individuals landing versus one landing multiple times) compared to 3.10 ± 0.31 in still air. Upwind flight to beads in moving air is demonstrated by angular headings of flight immediately prior to landing, whereas approaches to beads in still air are oriented randomly. The mean latency until first landing is 226.7 ± 17.98 s in moving air compared to 122.5 ± 24.18 in still air. Strategies used to locate a prospective host at close range in still air are considered. PMID:26472918

  6. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are

  7. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  8. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  9. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, E.

    2015-12-01

    Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.

  10. LINKING LAND COVER AND WATER QUALITY IN NEW YORK CITY'S WATER SUPPLY WATERSHEDS

    EPA Science Inventory

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented as series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was...

  11. Cardiorespiratory Responses to Stationary Running in Water and on Land

    PubMed Central

    Kruel, Luiz Fernando M.; Beilke, Débora D.; Kanitz, Ana C.; Alberton, Cristine L.; Antunes, Amanda H.; Pantoja, Patrícia D.; da Silva, Eduardo M.; Pinto, Stephanie S.

    2013-01-01

    The aim of the study was to compare maximal and submaximal cardiorespiratory responses between progressive tests on a treadmill on land (TRE), and stationary running on land (SRL) and in water (SRW), while also comparing two methods of determining the second turn point (ST) (ventilatory curve and heart rate deflection point). The study sample consisted of nine active women (23 ± 1.94 years) that performed three maximal protocols in separate days. Heart rate (HR) and oxygen uptake (VO2) were measured in all sessions. The data were analyzed using repeated-measures ANOVA and two-way repeated measures ANOVA with post-hoc Bonferroni test. Greater values of maximal HR (HRmax) and HR at ST (HRST) were observed during exercise performed on TRE and during the SRL, compared to the SRW (p < 0.05). The results for maximal VO2 (VO2max) and VO2 at ST (VO2ST) showed greater and significant values on TRE compared to STL and STW (p < 0.05). Furthermore, the HR and VO2 corresponding to the ST showed similar values between the two methods. Thus, the main conclusion of the present study was that the HR deflection point seems to be a simple and practical alternative method for determining the ST in all protocols analyzed. Key Points The maximal and submaximal (second turn point) oxygen uptake were influenced by the type of exercise, as these responses were similar in both water-based and land-based stationary running protocols and different from those obtained during the treadmill running, that presented greater values compared with both stationary running protocols. The heart rate deflection point can be used for determining the second turn point during stationary running test in aquatic environment. Caution is necessary in the interpretation of the application of the heart rate deflection point in water aerobics exercises because we analyzed only young women performing one water-based exercise. PMID:24149170

  12. Synergistic use of AIRS and MODIS for dust top height retrieval over land

    NASA Astrophysics Data System (ADS)

    Yao, Zhigang; Li, Jun; Zhao, Zengliang

    2015-04-01

    It is nontrivial to extract the dust top height (DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) deep blue (DB) algorithm can be used to infer the aerosol optical depth (AOD) over high-reflective surfaces. The Atmospheric Infrared Sounder (AIRS) can simultaneously obtain the DTH and optical depth information. This study focuses on the synergistic use of AIRS observations and MODIS DB results for improving the DTH by using a stable relationship between the AIRS infrared and MODIS DB AODs. A one-dimensional variational (1DVAR) algorithm is applied to extract the DTH from AIRS. Simulation experiments indicate that when the uncertainty of the dust optical depth decreases from 50% to 20%, the improvement of the DTH retrieval accuracy from AIRS reaches 200 m for most of the assumed dust conditions. For two cases over the Taklimakan Desert, the results are compared against Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. The results confirm that the MODIS DB product could help extract the DTH over land from AIRS.

  13. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  14. Land subsidence in Iran caused by widespread water reservoir overexploitation

    NASA Astrophysics Data System (ADS)

    Motagh, Mahdi; Walter, Thomas R.; Sharifi, Mohammad Ali; Fielding, Eric; Schenk, Andreas; Anderssohn, Jan; Zschau, Jochen

    2008-08-01

    The increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge, particularly in semiarid and arid regions. In Iran, decades of unrestrained groundwater extraction for domestic, agricultural, and industrial use have resulted in a precipitous depletion of this valuable resource. Here we show that the decline in groundwater levels is associated with land-surface deformation on local and regional scales. Combining water-level data with satellite radar observations provides evidence for the prevalence of compacting aquifers in the country. Groundwater level decline is often associated with destruction of the aquifers, which appears to be a common problem in the groundwater basins of central and northeast Iran. Global warming and future climate change will affect arid and semiarid areas in the coming decades, further augmenting hazards associated with groundwater-induced land subsidence.

  15. Water from air: an overlooked source of moisture in arid and semiarid regions.

    PubMed

    McHugh, Theresa A; Morrissey, Ember M; Reed, Sasha C; Hungate, Bruce A; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth's arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption--movement of atmospheric water vapor into soil when soil air is drier than the overlying air--likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding (18)O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  16. Water from air: an overlooked source of moisture in arid and semiarid regions

    PubMed Central

    McHugh, Theresa A.; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  17. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  18. Combined land/sea surface-air-temperature trends, 1949-1972

    SciTech Connect

    Chen, R.S.

    1982-04-01

    A major deficiency in most previous studies of fluctuations in the earth's climate based on air temperature records has been the dearth of data from oceanic areas and the Southern Hemisphere. This study analyzes a unique collection of ship-based observations of surface air temperature assembled by the UK Meteorological Office in parallel with the station-based dataset developed by the National Center for Atmospheric Research from the publications World Weather Records and Monthly Climatic Data for the World. Based on this much more geographically comprehensive database, it is concluded that, during the 24-year period 1949 to 1972, no statistically significant warming or cooling trends were evident in the time series of globally averaged surface air temperature measurements. However, temperature trends did vary latitudinally, with significant cooling in northern extra-tropical latitudes, no trend in equatorial latitudes, and significant but not homogeneous warming in southern extra-tropical latitudes. Time series of air temperatures over land and sea exhibited qualitatively similar behavior over the period 1949 to 1972, indicative of both the comparable quality of the two datasets and the probable lack of significant widespread bias in the land-based measurements due to urban development. The results of this study underscore the need for dense and geographically comprehensive measurements from both land and ocean areas and from both hemispheres in analyzing the global behavior of the earth's climate.

  19. Impact of subjacent rocks at the water and air regime of the depleted peat deposits

    NASA Astrophysics Data System (ADS)

    Rakovich, V. A.

    2009-04-01

    At the depleted peat deposits (after peat extraction), where the residual layer of peat with the thickness of about 0,5 meters is laid at the well water permeable rocks, vegetation typical for dry conditions is developed in case of good drainage conditions; birch trees, willow, alder-trees and buckthorn prevail in this vegetation. Water and air regime is characterized here by good aeration with prevailing of oxidative processes. If water regime is regulated, these depleted peat areas are suitable for agricultural and forest lands; however, necessity of transformation of these depleted lands into forest and agricultural lands must be ecologically and economically justified. If the residual layer of peat with the thickness of 0,05-0,3 m is based at the sapropel or peat sapropel, contrast amphibiotic water and air regime with strong fluctuation of oxidative and restoration process depending on the weather conditions is formed; this regime is formed without artificial increase of the ground waters level. This does not allow bog vegetation or vegetation typical for dry conditions to develop. Thus, within 20 and more years after completion of peat extraction, such areas are not covered by vegetation in spite of favorable agro-chemical qualities of peat layer and favorable for vegetation chemical composition of soil and ground waters. Depleted peat deposits, that are based at the sapropel, are not suitable for agricultural use, because agricultural vegetation requires stable water and air regime with good aeration and oxidative and restoration potential within 400-750 mV. Contrast amphibiotic water and air regime of the depleted peat deposits that are based at sapropel excludes possibility to use them as agricultural lands. Because of this reason, areas with residual peat layer that are based at sapropel are not suitable for forest planting. Due to periodic increase of ground waters level, rot systems of the plants can not penetrate into the required depth, and mechanical

  20. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  1. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are

  2. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  3. OPERA: An Atmospheric Correction for Land and Water

    NASA Astrophysics Data System (ADS)

    Sterckx, Sindy; Knaeps, Els; Adriaensen, Stefan; Reusen, Ils; De Keukelaere, Liesbeth; Hunter, Peter; Giardino, Claudia; Odermatt, Daniel

    2015-12-01

    Atmospheric correction is one of the most important part of the pre-processing of satellite remotely sensed data used to retrieve bio-geophysical paramters. In this paper we present the scene and sensor generic atmospheric correction scheme ‘OPERA’ allowing to correct both land and water areas in the remote sensing image. OPERA can now be used to correct for atmospheric effects in scenes acquired by MERIS, Landsat-8, hyperspectral sensors and will be applicable to Sentinel-3 and Sentinel-2.

  4. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Conditions and Certifications § 1316.5 Clean Air and Water Acts. When so indicated in TVA contract documents... Acts. 1316.5 Section 1316.5 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... Water Acts (a) If performance of this contract would involve the use of facilities which have given...

  5. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Conditions and Certifications § 1316.5 Clean Air and Water Acts. When so indicated in TVA contract documents... Acts. 1316.5 Section 1316.5 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... Water Acts (a) If performance of this contract would involve the use of facilities which have given...

  6. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2014-12-01

    Global mean surface air temperature have risen by 0.74 °C over the last 100 years. However, the definition of mean surface air temperature is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean temperatures (Td1) over land have been taken to be the average of the daily maximum and minimum temperature measurements. All existing principle global temperature analyses over land are primarily based on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean air temperature using hourly air temperature observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5°×5° grids. Therefore, caution should be taken when using mean air temperature datasets based on Td1 to examine spatial patterns of global warming.

  7. Geology and hydrogeology of Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad, Bee and Goliad counties, Texas

    USGS Publications Warehouse

    Snyder, G.L.

    1995-01-01

    Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.

  8. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  9. 30 CFR 875.12 - Eligible lands and water prior to certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible lands and water prior to certification. 875.12 Section 875.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.12 Eligible lands and water prior to...

  10. 78 FR 52561 - Public Land Order No. 7820; Partial Modification, Public Water Reserve No. 107; Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Bureau of Land Management Public Land Order No. 7820; Partial Modification, Public Water Reserve No. 107... waterholes and designated as Public Water Reserve No. 107. This order opens the lands only to exchange under... Management Act of 1976 (43 U.S.C. 1716) and applicable law, Public Law 111-53 (123 Stat. 1982) directs...

  11. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Eligible lands and water after certification. (a) Following certification, eligible noncoal lands,...

  12. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Eligible lands and water after certification. (a) Following certification, eligible noncoal lands,...

  13. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Eligible lands and water after certification. (a) Following certification, eligible noncoal lands,...

  14. 30 CFR 875.12 - Eligible lands and water prior to certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible lands and water prior to certification. 875.12 Section 875.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.12 Eligible lands and water prior to...

  15. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.14 Eligible lands and water after certification....

  16. 30 CFR 875.12 - Eligible lands and water prior to certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible lands and water prior to certification. 875.12 Section 875.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.12 Eligible lands and water prior to...

  17. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.14 Eligible lands and water after certification....

  18. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  19. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  20. An integrated computer modeling environment for regional land use, air quality, and transportation planning

    SciTech Connect

    Hanley, C.J.; Marshall, N.L.

    1997-04-01

    The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menu-driven query system is utilized to review link-based results and regional and area-wide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future projections. 16 refs., 3 figs., 2 tabs.

  1. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    NASA Technical Reports Server (NTRS)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  2. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  3. Remote Mine Detection Technologies for Land and Water Environments

    SciTech Connect

    Hoover, Eddie R.

    1999-05-11

    The detection of mines, both during and after hostilities, is a growing international problem. It limits military operations during wartime and unrecovered mines create tragic consequences for civilians. From a purely humanitarian standpoint an estimated 100 million or more unrecovered mines are located in over 60 countries worldwide. This paper presents an overview of some of the technologies currently being investigated by Sandia National Laboratories for the detection and monitoring of minefields in land and water environments. The three technical areas described in this paper are: 1) the development of new mathematical techniques for combining or fusing the data from multiple sources for enhanced decision-making; 2) an environmental fate and transport (EF&T) analysis approach that is central to improving trace chemical sensing technique; and 3) the investigation of an underwater range imaging device to aid in locating and characterizing mines and other obstacles in coastal waters.

  4. Sustainable Phosphorus Management in Land Applied Reclaimed Water Scenarios

    NASA Astrophysics Data System (ADS)

    Weinkam, G.

    2015-12-01

    Florida leads the nation in wastewater effluent/reclaimed water use, at over 700 million gallons per day, of which 75% is land applied. While these effluent waters are treated to reduce pathogen loads, phosphorus (P) concentrations can still be substantial in long term application scenarios. Currently an estimated 1.5 million kg of P are reintroduced to the landscape yearly (at effluent = 2 mg P/L), compared to only 23,000 kg that would be applied if landscapes were irrigated with ground water (at ground water = 0.03 mg P/L). Research suggests that under long term applications of P systems can reach a state at which they are no longer able to assimilate further loading, potentially resulting in landscapes that are actively leaching and eroding P rich particulate matter to receiving hydrologic systems. This can be especially relevant in Florida given the large proportion of sandy soils that contain, relatively, low physical and chemical ion exchange capacity and high hydraulic conductivity, thus increasing the potential for water quality impairment. Due to increasingly stringent surface water P concentrations allowances, and the many uncertainties regarding the long term fate and transport of P, this research seeks to determine how different soil conditions and reclaimed water loading amounts can alter P leaching profiles in Florida. Field sampling at reclaimed water sprayfield sites are used to determine the relative change in P sequestration potential using soil-phosphorus saturation capacity (SPSC) analyses and potential leaching risk is determined by soil core experimentation. The resulting information improves fundamental understanding of soil-phosphorus transport dynamics and provides insights into alternative techniques for long term environmental sustainability of reclaimed wastewater usage.

  5. Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Hook, Simon J.; Manning, Evan; Lee, Sung-Yung; Fetzer, Eric

    2009-10-01

    Hyperspectral infrared sounders require accurate knowledge of the land surface emissivity (LSE) to retrieve important climate variables such as surface temperature, air temperature, and total water vapor from space. This study provides a method for validating and assessing the Atmospheric Infrared Sounder (AIRS) version 5 LSE product using high-spatial resolution data (90 m) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) which has five bands in the thermal infrared region (8-12 μm, 1250-833 cm-1) and high-spectral resolution laboratory measurements of sand samples collected over the Namib and Kalahari deserts in southern Africa. Results indicate that the mean, absolute daytime LSE difference between AIRS and the laboratory results for six wavelengths in window regions between 3.9 and 11.4 μm (2564-877 cm-1) was 2.3% over the Namib and 0.70% over the Kalahari, while the mean difference with ASTER was 2.3% over the Namib and 2.26% over the Kalahari for four bands between 8 and 12 μm. Systematic modeling and surface dependent AIRS LSE retrieval errors such as large discrepancies between day and nighttime shortwave LSE (up to 15%), unphysical values (LSE >1), and large daytime temporal variations in the shortwave region (up to 30%) are further discussed.

  6. Understanding the Differences Between AIRS, MODIS and ASTER Land Surface Emissivity Products

    NASA Astrophysics Data System (ADS)

    Hook, S.; Hulley, G.

    2008-12-01

    One of the key Earth Science Data Records identified by NASA is Land Surface Temperature and Emissivity (LST&E). LST&E data are key parameters in global climate change studies that involve climate modeling, ice dynamic analyses, surface-atmosphere interactions and land use, land cover change. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite, are strongly dependent on using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions where the variation in emissivity is large, both spatially and spectrally. LST&E standard products are available from spaceborne sensors such as AIRS, MODIS and ASTER at varying spatial, spectral, and temporal resolutions. Although these emissivity products represent the same measure, there are frequently discrepancies between the products associated with different scientific approaches used that need to be better understood. For example, ASTER provides LST&E data with the highest spatial resolution (90 m), compared with AIRS (50 km) and MODIS (1 and 5 km). AIRS has the highest spectral sampling and both AIRS and MODIS acquire data at much higher temporal frequencies (every 2-3 days) compared with ASTER (16 days). In this paper we present validation and intercomparisons of AIRS, MODIS and ASTER gridded emissivity products over North America. MODIS and ASTER data will be upsampled to the AIRS spatial resolution, and then compared to laboratory measured emissivities of in-situ rock/sand samples collected at ten validation sites in the Western USA during 2008. The directional hemispherical reflectance of the in-situ samples are measured in the laboratory using a Nicolet Fourier Transform Interferometer (FTIR), converted to emissivity using Kirchoff's law, and convolving to the appropriate sensor's spectral response functions. We present here some of the first

  7. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  8. Specific features of aluminum nanoparticle water and wet air oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  9. From Fysics to Phorestry: How do I engage diverse audiences in land-air interaction?

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.

    2011-12-01

    The educational component of the CAREER award "A New Direction into Near-Surface Transport for Weak-Wind Conditions in Plant Canopies" (AGS #0955444) calls for an integration of in-classroom teaching and a new field class to provide students from across the disciplines with an opportunity to explore and learn mechanisms of land-air interactions. The charge is clear, but how do I best do this? This contribution presents a concept of how to address the diverse interests and needs with backgrounds ranging from atmospheric science & engineering to botany & forestry by emphasizing the underlying physical principles of light, heat, and water exchange that are of common interest to many scientific disciplines. The idea behind the teaching technique is to let the students escape from their rather passive role in the classroom by providing opportunities for active participation and discovery through a) developing an online syllabus created by the students for the students, b) offering field excursions to expose students to the research activities funded through this award, c) helping small student teams formulate their own research questions, develop their own experimental design, and collect and evaluate measurements in the field class. In addition to discussing the concept and giving some concrete topical examples, a summary of the student feedback received to date will also be included. However, since the award is just about to enter its second year at the time of writing, a major part of this concept still awaits implementation. Seeking input from other awardees and experienced teachers and educators is therefore intended. A secondary objective of this contribution is to describe the many positive impacts on my career that are evident even after the first year by exposing my research and teaching activities to a much broader audience including the Long-Term Ecological Research community at the HJ Andrews experimental forest in Oregon.

  10. Multiregional input-output model for China's farm land and water use.

    PubMed

    Guo, Shan; Shen, Geoffrey Qiping

    2015-01-01

    Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities. PMID:25486067

  11. Rainfall estimation from liquid water content and precipitable water content data over land, ocean and plateau

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Adhikari, A.; Maitra, A.

    2016-01-01

    A simplistic approach has been proposed to estimate annual rainfall amount from cloud liquid water content and precipitable water content utilizing the data pertaining to the period of 1997-2006. The study involves seven land locations over India, seven stations over plateau and seven locations over the Indian Ocean. The wavelet analyses exhibit prominent annual peaks in the global spectra of rainfall, cloud liquid water content and precipitable water content. Power-law relationships are found to exist between the global wavelet peaks of precipitation and those of both the parameters, namely, cloud liquid water content and precipitable water content. Again, a linear relationship exists between global wavelet peaks of rainfall amount and total rainfall amount. The rainfall estimations utilizing cloud liquid water content data exhibit better matching with the measured values than those utilizing precipitable water content data.

  12. Oil Palm expansion over Southeast Asia: land use change and air quality

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.

    2015-12-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, SEA is a rapidly developing region, with increasing urban population, and growing air quality concerns. Thus, SEA represents an ideal case study to examine the impacts of land use change on air quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in SEA using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere processes (dry deposition, biogenic emissions). We show the sensitivity of air quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on air quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.

  13. Land, Water and Society in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Murtha, T.; French, K.; Duffy, C.; Webster, D.

    2013-12-01

    This paper reports the results of our project investigating the long-term spatial and temporal dynamics of land use management, agricultural decision-making and patterns of resource availability in the tropical lowlands of Central America. Overall, our project combines diachronic environmental simulation with historic settlement pattern survey to address a series of long-standing questions about the coupled natural and human (CNH) landscape history in the Central Maya lowlands (at the UNESCO world heritage site of Tikal in the Maya Biosphere Reserve). The paper describes the preliminary results of our project, including changing patterns of land, water, settlement and political history using climate, soil and hydrologic modeling and time series spatial analysis of population and settlement patterns. The critical period of the study, 1000 BC until the present, begins with dispersed settlements accompanied by widespread deforestation and soil erosion. Population size and density grows rapidly for 800 years, while deforestation and erosion rates decline; however, there is striking evidence of political evolution during this period, including the construction of monumental architecture, hieroglyphic monuments detailing wars and alliances, and the construction of a defensive earthwork feature, signaling political territories and possibly delineating natural resource boundaries. Population decline and steady reforestation followed until more recent migration into the region, which has impacted the biosphere ecology. Building on our previous research regionally and comparative research completed in Belize and Mexico, we are modeling sample periods the 3,000-year landscape history of the region, comparing land and water availability to population distributions and what we know about political history. Simulations are generated using historic climate and land use data, primarily relying on the Erosion Productivity Impact Calculator (EPIC) and the Penn State Integrated

  14. Land cover change and water vapour flows: learning from Australia.

    PubMed Central

    Gordon, Line; Dunlop, Michael; Foran, Barney

    2003-01-01

    Australia is faced with large-scale dryland salinization problems, largely as a consequence of the clearing of native vegetation for cropland and grassland. We estimate the change in continental water vapour flow (evapotranspiration) of Australia during the past 200 years. During this period there has been a substantial decrease in woody vegetation and a corresponding increase in croplands and grasslands. The shift in land use has caused a ca. 10% decrease in water vapour flows from the continent. This reduction corresponds to an annual freshwater flow of almost 340 km(3). The society-induced alteration of freshwater flows is estimated at more than 15 times the volume of run-off freshwater that is diverted and actively managed in the Australian society. These substantial water vapour flow alterations were previously not addressed in water management but are now causing serious impacts on the Australian society and local economies. Global and continental freshwater assessments and policy often neglects the interplay between freshwater flows and landscape dynamics. Freshwater issues on both regional and global levels must be rethought and the interplay between terrestrial ecosystems and freshwater better incorporated in freshwater and ecosystem management. PMID:14728792

  15. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials

  16. Managing water services in tropical regions: From land cover proxies to hydrologic fluxes.

    PubMed

    Ponette-González, Alexandra G; Brauman, Kate A; Marín-Spiotta, Erika; Farley, Kathleen A; Weathers, Kathleen C; Young, Kenneth R; Curran, Lisa M

    2015-09-01

    Watershed investment programs frequently use land cover as a proxy for water-based ecosystem services, an approach based on assumed relationships between land cover and hydrologic outcomes. Water flows are rarely quantified, and unanticipated results are common, suggesting land cover alone is not a reliable proxy for water services. We argue that managing key hydrologic fluxes at the site of intervention is more effective than promoting particular land-cover types. Moving beyond land cover proxies to a focus on hydrologic fluxes requires that programs (1) identify the specific water service of interest and associated hydrologic flux; (2) account for structural and ecological characteristics of the relevant land cover; and, (3) determine key mediators of the target hydrologic flux. Using examples from the tropics, we illustrate how this conceptual framework can clarify interventions with a higher probability of delivering desired water services than with land cover as a proxy. PMID:25432319

  17. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  18. Cold water aquifer storage. [air conditioning

    NASA Technical Reports Server (NTRS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  19. Minimizing the water and air impacts of unconventional energy extraction

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  20. Analysis of land and lake surface temperature patterns during the open water and ice growth seasons in the Great Slave Lake region, Canada, from MODIS (2002-2009)

    NASA Astrophysics Data System (ADS)

    Kheyrollah Pour, H.; Duguay, C. R.

    2010-12-01

    It is now well recognized that lakes can have a considerable influence on local and regional weather and climate. Air-water exchanges of heat and moisture have climatological implications for lakes and also the climate in the vicinity of the lakes. Temperature changes in lakes are strongly influenced by changes in seasonal air temperature. Daily temperature variations also affect the temperature of lakes, especially in the surface layers. The most practical way to obtain continuous measurements of surface temperature is by means of satellite remote sensing. In this study, satellite-derived land surface temperature (LST) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Earth Observing System Terra and Aqua satellite platforms are used to analyse land and lake surface temperature patterns during the open water and ice growth seasons (2002-2009) in the Great Slave Lake (GSL) region, Canada. Land and lake temperatures from MODIS are contrasted and compared with near-surface air temperature measurements obtained from two nearby weather stations (Yellowknife and Hay River). Early results show that surface water temperature on GSL is colder than the surrounding land in the first two months of the open water season (June-July). It becomes equivalent to that of land in August and then becomes warmer starting in September until spring thaw. During the winter ice growth season, the lake loses heat by conduction through the upper ice surface due to the gradient from the relatively warmer water below the ice and the colder air above the ice/snow interface. For this period, GSL remains warmer than land until spring break-up. For a few weeks, between the initiation of break-up until the lake becomes free of ice, land is warmer since spring melt proceeds more quickly on land than on GSL. Mean monthly MODIS LST values on GSL (2002-2009) are shown to vary from -21±2 (February) to 10±2 (August).

  1. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  2. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It is operated at an altitude that allows it to reach land in the case of engine failure; (b) It is necessary...

  3. Unocal files for water rights on newly patented oil shale lands

    SciTech Connect

    Not Available

    1987-03-01

    Unocal Corporation received patent title to a large block of oil shale claims in November 1986. Prior to this time the land was owned by the US Bureau of Land Management. Pursuant to a settlement agreement entered into on August 4, 1986 between the US and various claim owners (including Unocal) the US is to withdraw or relinquish its claims to water rights on those lands. Descriptions are given of water springs involved in the water rights application.

  4. Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-06-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  5. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  6. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  7. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  8. Utilizing air purge to reduce water contamination of lube systems

    SciTech Connect

    Sirois, H.J.

    1994-12-31

    Lubrication systems are exposed to contaminants including dirt, process dilutants and water. Water contamination of lubricating oil is commonly experienced by users of machinery such as steam and gas turbines, compressors, pumps, motors, generators and others. Poorly designed or maintained turbomachinery features such as bearing housing seals and shaft packing do not prevent moisture laden air, the primary source of water, from entering the lube system. This paper presents a case history where a mechanical drive steam turbine and boiler feed pump was experiencing severe water contamination of the lube system. Bearing and control system component failures resulted from water induced corrosion. Various systems and approaches for dealing with this contamination are reviewed. Installation of a very simple and cost effective system using low pressure air applied directly to the bearing housing oil seals proved a most effective method for eliminating measurable water contamination of the lubrication system and can be applied to machinery of all types.

  9. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  10. Pacific connections for health, ecosystems and society: new approaches to the land-water-health nexus.

    PubMed

    Parkes, Margot W

    2016-03-01

    Renewed effort to understand the social-ecological context of health is drawing attention to the dynamics of land and water resources and their combined influence on the determinants of health. A new area of research, education and policy is emerging that focuses on the land-water-health nexus: this orientation is applicable from small wetlands through to large-scale watersheds or river basins, and draws attention to the benefits of combined land and water governance, as well as the interrelated implications for health, ecological and societal concerns. Informed by research precedents, imperatives and collaborations emerging in Canada and parts of Oceania, this review profiles three integrative, applied approaches that are bringing attention to the importance the land-water-health nexus within the Pacific Basin: wetlands and watersheds as intersectoral settings to address land-water-health dynamics; tools to integrate health, ecological and societal dynamics at the land-water-health nexus; and indigenous leadership that is linking health and well-being with land and water governance. Emphasis is given to key characteristics of a new generation of inquiry and action at the land-water-health nexus, as well as capacity-building, practice and policy opportunities to address converging environmental, social and health objectives linked to the management and governance of land and water resources. PMID:26953704

  11. Linking water balance of mountain grasslands along altitudinal transects to climate and land-use change

    NASA Astrophysics Data System (ADS)

    Leitinger, Georg; Obojes, Nikolaus; Tasser, Erich; Tappeiner, Ulrike

    2010-05-01

    Changes of the water balance of mountain grasslands with regard to climate and land-use changes are a popular research field since years. Measuring evapotranspiration (EVT) for different land-use types and plant communities at varying sea level helps us to understand the change of water availability in a future environment. Linked with transplantation experiments, this method is promising to cover most forecasted scenarios. Although the mentioned approach is well established, our study is innovative in so far as the field work as well as data analyses was supported by more than 50 pupils from a secondary school for agriculture and food industry. Hence, a huge number of field measurements could be conducted at the same time distributed over a whole alpine valley. In our study site Stubai Valley (300km²), Tyrol, Austria, 13 sites on 4 different altitudinal transects (valley bottom, hillside, and sub-alpine/alpine) ranging from 900m a.s.l. up to 2400m a.s.l. were selected and equipped with weather stations recording air temperature, air humidity, precipitation, solar radiation, and soil water content in different soil depths at 15-minute interval. Additionally, more than 300 small lysimeters have been installed and data on EVT, infiltration, leaf conductivity, and soil wetness was collected on 7 measuring days. The measurements spanned an entire daylight period from sunrise to sunset. Moreover, soil and vegetation analyses on all selected plots complete the enormous data pool. The lysimeters on each plot contained samples of long-stemmed local vegetation (1 cut / 1 uncut), short-stemmed local vegetation (1 cut / 1 uncut), alpine standard vegetation (1), intensive standard vegetation (1 cut / 1 uncut), and water for potential transpiration (1). Each type was replicated three times resulting in a total number of 24 lysimeters per study plot. Results revealed a little increase in EVT rates for the Alpine Standard Vegetation transplanted to lower altitudes and slight

  12. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  13. Effects of wing flexibility and variable air lift upon wing bending moment during landing impacts of a small seaplane

    NASA Technical Reports Server (NTRS)

    Merten, Kenneth F; Beck, Edgar B

    1951-01-01

    A smooth-water-landing investigation was conducted with a small seaplane to obtain experimental wing-bending-moment time histories together with time histories of the various parameters necessary for the prediction of wing bending moments during hydrodynamic forcing functions. The experimental results were compared with calculated results which include inertia-load effects and the effects of air-load variation during impact. The responses of the fundamental mode were calculated with the use of the measured hydrodynamic forcing functions. From these responses, the wing bending moments due to the hydrodynamic load were calculated according to the procedure given in R.M. No. 2221. The comparison of the time histories of the experimental and calculated wing bending moments showed good agreement both in phase relationship of the oscillations and in numerical values.

  14. [Soil condensation water in different habitats in Horqin sandy land: an experimental study].

    PubMed

    Liu, Xin-Ping; He, Yu-Hui; Zhao, Xue-Yong; Li, Yu-Lin; Li, Yu-Qiang; Li, Yan-Qing; Li, Shi-min

    2009-08-01

    Weighing method was adopted to study the formation time and the amount of soil condensation water in four habitats (mobile sandy land, fixed sandy land, farmland, and Mongolian pine forest land) in Horqin Sandy Land in August 2007. The soil condensation water began to form at 20:00-22:00, increased gradually at 22:00-4:00, and began to evaporate after 4:00. In the four habitats, soil condensation water was mainly formed in 0-9 cm layer, and the amount was the greatest in 0-3 cm layer, accounting for 40% of the total. The soil condensation water also formed in 9-30 cm layer, but in very small amount. There was a greater difference in the mean daily amount of soil condensation water in 0-3 cm layer in the four habitats, with the sequence of fixed sandy land > mobile sandy land > farmland > Mongolian pine forest land, which indicated that the habitat with better vegetation condition was not benefit the formation of soil condensation water. The mean daily amount of soil condensation water in 0-30 cm layer was 0.172 mm in fixed sandy land, 0.128 mm in Mongolian pine forest land, 0.120 mm in mobile sandy land, and 0.110 mm in farmland. PMID:19947212

  15. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  16. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  17. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  18. Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina.

    PubMed

    Pilgrim, C M; Mikhailova, E A; Post, C J; Hains, J J

    2014-11-01

    Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (-42.6 % pasture/grassland and -57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the

  19. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  20. Validation and Verification of the Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Kumar, S.; Peters-Lidard, C. D.; Cetola, J.

    2011-12-01

    The importance of operational benchmarking and uncertainty characterization of land surface modeling can be clear upon considering the wide range of performance characteristics of numerical land surface models realizable through various combinations of factors. Such factors might include model physics and numerics, resolution, and forcing datasets used in operational implementation versus those that might have been involved in any prior development benchmarking. Of course, decisions concerning operational implementation may be better informed through more effective benchmarking of performance under various blends of such aforementioned operational factors. To facilitate this and other needs for land analysis activities at the Air Force Weather Agency (AFWA), the Model Evaluation Toolkit (MET) - a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community - and the land information system (LIS) Verification Toolkit (LVT) - developed at the Goddard Space Flight Center (GSFC) - have been adapted to the operational benchmarking needs of AFWA's land characterization activities in order to compare the performance of new land modeling and related activities with that of previous activities as well as observational or analyzed datasets. In this talk, three examples of adaptations of MET and LVT to evaluation of LIS-related operations at AFWA will be presented. One example will include comparisons of new surface rainfall analysis capabilities, towards forcing of AFWA's LIS, with previous capabilities. Comparisons will be relative to retrieval-, model-, and measurement-based precipitation fields. Results generated via MET's grid-stat, neighborhood, wavelet, and object based evaluation (MODE) utilities adapted to AFWA's needs will be discussed. This example will be framed in the context of better informing optimal blends of land surface model (LSM) forcing data sources - namely precipitation data- under

  1. Negev: Land, Water, and Life in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Back, William

    In view of the continuing increased concern about the extreme fragility of deserts and desert margins, Negev provides a timely discussion of land-use practices compatible with the often conflicting goals of preservation and development. The success o f agricultural and hydrologic experiments in the Negev desert of Israel offers hope to the large percentage of the world's population that lives with an unacceptably low quality of life in desert margins. Deserts are the one remaining type of open space that, with proper use, has the potential for alleviating the misery often associated with expanding population.In addition to the science in the book, the author repeatedly reinforces the concept that “western civilization is inextricably bound to the Negev and its environs, from which it has drawn, via its desert-born religions—Judasium, Christianity, and Islam—many of the mores and concepts, and much of the imagery and love of the desert, including man's relation to nature and to ‘God’.” Deserts often are erroneously perceived to be areas of no water: In reality, these are areas in which a little rainfall occurs sporadically and unpredictably over time. This meager water supply can be meticulously garnered to produce nutritious crops and forage.

  2. Effects of urban land expansion on the regional meteorology and air quality of eastern China

    NASA Astrophysics Data System (ADS)

    Tao, W.; Liu, J.; Ban-Weiss, G. A.; Hauglustaine, D. A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S.

    2015-08-01

    Rapid urbanization throughout eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing-response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O3 burden, averaged over all newly urbanized grid cells, consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the responses of pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10 % increase in nearby urban land coverage on average leads to a decrease of approximately 2 % in surface concentrations for CO, EC, and PM2.5, while for O3 an increase of about 1 % is simulated. At 800 hPa, pollutants' concentrations tend to increase even more rapidly with an increase in nearby urban land coverage. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be significantly amplified. IPR analysis reveals the contribution of individual atmospheric processes to pollutants' concentration changes. It indicates that, for primary pollutants, the enhanced sink (source

  3. EVALUATING HETEROGENEITY IN INDOOR AND OUTDOOR AIR POLLUTION USING LAND-USE REGRESSION AND CONSTRAINED FACTOR ANALYSIS

    EPA Science Inventory

    Investigators will explore how land-use regression and source-apportionment techniques can be used to characterize individual-level exposure to both indoor and outdoor air pollution sources. Investigators will utilize health and air monitoring data from an ongoing prospecti...

  4. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  5. Behavior of Water Jet Accompanied with Air Suction

    NASA Astrophysics Data System (ADS)

    Kawakami, Hironobu; Ishido, Tsutomu; Ihara, Akio

    In order to atomize a liquid, the authors have investigated the behavior of air-water jets. In a series of experiments, we have discovered a strange phenomenon that the water jet accompanied with air suction from the free surface has made a periodic radial splash of water drop. The purpose of the present paper is to clear out the origin of this phenomenon and the behavior of water jet accompanied with air suction. The behavior of water jet has been photographed by a digital camera aided with a flashlight and high-speed video camera. Those experiments enable us to find the origin of a periodic radial splash due to a formation of single air bubble at the flow separation region inside the nozzle and due to explosive expansion of the bubble after injected in the free space. In order to analyze the radial splash of water, we have conducted the equation of spherical liquid membrane. The numerical results obtained have been compared with the experimental results and good agreement has been obtained in radial expansion velocity.

  6. Transferring patients with Ebola by land and air: the British military experience.

    PubMed

    Ewington, Ian; Nicol, E; Adam, M; Cox, A T; Green, A D

    2016-06-01

    The Ebola epidemic of 2014/2015 led to a multinational response to control the disease outbreak. Assurance for British aid workers included provision of a robust treatment pathway including repatriation back to the UK. This pathway involved the use of both land and air assets to ensure that patients were transferred quickly, and safely, to a high-level isolation unit in the UK. Following a road move in Sierra Leone, an air transportable isolator (ATI) was used to transport patients for the flight and onward transfer to the Royal Free Hospital. There are several unique factors related to managing a patient with Ebola virus disease during prolonged evacuation, including the provision of care inside an ATI. These points are considered here along with an outline of the evacuation pathway. PMID:27177575

  7. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  8. Effects of urban land expansion on the regional meteorology and air quality of Eastern China

    NASA Astrophysics Data System (ADS)

    Tao, W.; Liu, J.; Ban-Weiss, G. A.; Hauglustaine, D. A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S.

    2015-04-01

    Rapid urbanization throughout Eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing-response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O3 burden averaged over all newly urbanized grid cells consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the response of meteorology and pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10% increase in nearby urban land coverage (NULC) on average leads to a decrease of approximately 2% in surface concentrations for CO, EC, and PM2.5, while for O3 an increase of about 1% is simulated. At 800 hPa, each 10% increase in the square of NULC enhances air pollution concentrations by 5-10%, depending on species. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be amplified. IPR results indicate that, for primary pollutants, the enhanced sink (source) caused by turbulent mixing and vertical advection in the lower (upper) atmosphere could be a key

  9. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  10. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    PubMed

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in

  11. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  12. Solar geoengineering, atmospheric water vapor transport, and land plants

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  13. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  14. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  15. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    SciTech Connect

    Grant, P.R. Jr.

    1981-10-01

    Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologic regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains. Controlled source audio-magnetotelluric (CSAMT) electromagnetic techniques, refraction seismic experiments, and gravity traverses were utilized on the base. These, together with published geohysical information that presents evidence for a shallow magma body beneath the Albuquerque Basin; favorable terrestrial heat flow, water chemistry, and shallow temperature gradient holes on the nearby mesa west of the Rio Grande; interpretation of regional gravity data; and geological data from nearby deep wells tend to confirm structural, stratigraphic, and hydrologic conditions favorable for developing an extensive intermediate to high-temperature hydrothermal regime on portions of Kirtland AFB lands where intensive land use occurs. Two possible exploration and development scenarios are presented. One involves drilling a well to a depth of 3000 to 5000 ft (914 to 1524 m) to test the possibility of encountering higher than normal water temperatures on the basinward side of the faults underlying the travertine deposits. The other is to conduct limited reflection seismograph surveys in defined areas on the base to determine the depth to basement (granite) and thickness of the overyling, unconfined, water filled, relatively unconsolidated sand and gravel aquifer.

  16. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  17. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity

    NASA Astrophysics Data System (ADS)

    Leip, Adrian; Billen, Gilles; Garnier, Josette; Grizzetti, Bruna; Lassaletta, Luis; Reis, Stefan; Simpson, David; Sutton, Mark A.; de Vries, Wim; Weiss, Franz; Westhoek, Henk

    2015-11-01

    Livestock production systems currently occupy around 28% of the land surface of the European Union (equivalent to 65% of the agricultural land). In conjunction with other human activities, livestock production systems affect water, air and soil quality, global climate and biodiversity, altering the biogeochemical cycles of nitrogen, phosphorus and carbon. Here, we quantify the contribution of European livestock production to these major impacts. For each environmental effect, the contribution of livestock is expressed as shares of the emitted compounds and land used, as compared to the whole agricultural sector. The results show that the livestock sector contributes significantly to agricultural environmental impacts. This contribution is 78% for terrestrial biodiversity loss, 80% for soil acidification and air pollution (ammonia and nitrogen oxides emissions), 81% for global warming, and 73% for water pollution (both N and P). The agriculture sector itself is one of the major contributors to these environmental impacts, ranging between 12% for global warming and 59% for N water quality impact. Significant progress in mitigating these environmental impacts in Europe will only be possible through a combination of technological measures reducing livestock emissions, improved food choices and reduced food waste of European citizens.

  18. Determining agricultural land use scenarios in a mesoscale Bavarian watershed for modelling future water quality

    NASA Astrophysics Data System (ADS)

    Mehdi, B. B.; Ludwig, R.; Lehner, B.

    2012-06-01

    Land use scenarios are of primordial importance when implementing a hydrological model for the purpose of determining the future quality of water in a watershed. This paper provides the background for researching potential agricultural land use changes that may take place in a mesoscale watershed, for water quality research, and describes why studying the farm scale is important. An on-going study in Bavaria examining the local drivers of change in land use is described.

  19. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  20. Land, energy and water: the constraints governing ideal U.S. population size.

    PubMed

    Pimental, D; Pimental, M

    1990-01-01

    This document examines the constraints that are placed on US prosperity with increasing land, energy, and water usage. The report compares China and America and suggests that, if the US is not careful, our situation is headed toward the lack of prosperity found in China. US population is 246.1 million and we produce 47 times more goods and services (per capita) than the 1.1 billion people of China. This may be due to overpopulation contributing to diminished resources, food, natural forests, and increased erosion of the soil. Most of the resources we are currently using cannot be renewed after the next 100 years. Land area is diminishing, soil is eroding faster than replacement rates, 3 kcal of fossil fuel is expended to produce 1 kcal of food, natural gas is being depleted, oil supplies are limited to a 16 year supply, and groundwater is used faster than it can be replaced. Pollution (air, water, and soil) threatens these natural resources even more. The US must concentrate on the conversion from fossil fuel energy to solar energy, although much land is needed for solar energy systems. We may be able to increase our solar energy output 3-10 without affecting agriculture, and future fusion techniques may alleviate some of the fossil fuel pressures. Livestock manures could be used as fertilizers more often in order to decrease the waste of oil when synthetic fertilizers and pesticides are used. The ideal US population should be maintained at 40-100 million if we want to retain our current standard of living. PMID:12178968

  1. Water, Air, Earth and Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc, which

  2. Water, air, Earth and cosmic radiation.

    PubMed

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc

  3. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  4. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    SciTech Connect

    Not Available

    2014-10-01

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  5. Land conversion to bioenergy production: water budget and sediment output in a semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass based bioenergy production has been considered a feasible alternative of land use for the mixed-grass prairie and marginal croplands in the High Plains. However, little is known of the effect of this land use change on the water cycle and associated sediment output in this water controll...

  6. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  7. Chemical and physical analyses of firn and firn air : from Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kaspers, K. A.

    2004-10-01

    Important information about the past global climate is preserved in the Antarctic ice. This information becomes available from studying ice cores, where the change in the chemical composition of the past atmosphere is stored. Although ice cores can provide valuable information over a large time span for major atmospheric components, to study the industrial period, the last 150 years, detailed measurements, measuring trace gases components of the past atmosphere, are required. In order to make the analyses of atmospheric trace gasses possible, large volumes of past air are needed. Large volumes of air can be taken from firn air. Firn air is the air that is trapped in the porous medium of firn, which is typically the first one hundred meters of an ice core. In this thesis the firn air analyses of Site M in Dronning Maud Land, Antarctica (15°E, 75°S, 3453 m.a.s.l) are described. These firn air analyses were measured with gas chromatography, yielding concentration profiles with depth for a wide variety of trace gases. In the chapters three and four, the firn air analyses are focussed on the non-methane hydrocarbons (NMHCs): ethane, propane and acetylene, and methyl chloride. The NMHCs were studied because very little is known about their long-term and seasonal trend in the atmosphere around Antarctica and Southern Hemisphere in general whereas these NMHCs play an important role in the atmospheric oxidation chemistry. Studying the long-term and seasonal trend for methyl chloride is very interesting because this gas shows a large spatial variability although this is not expected because of its large lifetime. In chapter three measurements are discussed obtaining a 25-year old record of trace gases. Naturally longer records are more valuable, particularly if pre-industrial levels can be recorded. Although one would expect that old firn air could be found at locations high on the Antarctic plateau, with low temperatures, low accumulation rates and low surface pressures

  8. Coping with increasing water and land resources limitation for meeting world's food needs: the role of virtual water and virtual land trade

    NASA Astrophysics Data System (ADS)

    Soriano, Barbara; Garrido, Alberto; Novo, Paula

    2013-04-01

    Increasing pressure to expand agriculture production is giving rise to renewed interest to obtain access to land and water resources in the world. Water footprint evaluations show the importance of green water in global food trade and production. Green water and land are almost inseparable resources. In this work we analyse the role of foreign direct investment and cooperation programmes from developed countries in developing counties, focusing on virtual water trade and associated resources. We develop econometric models with the aim to explain observed trends in virtual water exports from developing countries as explained by the inverse flow of investments and cooperation programmes. We analyse the main 19 emerging food exporters, from Africa, Asia and America, using 15 years of data. Results show that land per capita availability and foreign direct investments explain observed flows of virtual water exports. However, there is no causality with these and flows cooperation investments. Our analysis sheds light on the underlying forces explaining the phenomenon of land grab, which is the appropriation of land access in developing countries by food-importers.

  9. Land use changes and its impacts on air quality and atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Freitas, E. D.; Mazzoli, C. R.; Martins, L. D.; Martins, J. A.; Carvalho, V.; Andrade, M.

    2013-05-01

    Possible modifications on atmospheric patterns and air quality caused by land use changes are discussed in this work. With the increasing interest in alternative energy sources, mainly due to the replacement of fossil fuels, large part of the Brazilian territory is being used for sugar cane cultivation. The resultant modifications in land use and some activities associated to this crop are studied with some detail through numerical modeling of the atmosphere. The same tool was applied to study the effect of surface type and emission sources over urban areas in the neighborhoods of the cultivated areas, in particular those located in the Metropolitan Area of Campinas, inside the state of São Paulo, Brazil. The main focus of this work was to identify some relationship between these two types of land use modification and its influence on the regional atmospheric circulation patterns and air quality over agricultural and urban areas affected by biomass burning and the traditional sources of pollutants, such as industries and vehicles. First, the effect of urban areas was analyzed and it was possible to identify typical patterns associated with urban heat islands, especially over the city of Campinas. In this region, air temperature differences up to 3 K were detected during night time. During the day, due to the atmospheric conditions of the studied period, this effect was not significant. Afterwards, the effect of sugar cane cultivated regions was discussed. The results show that the regions of sugar cane grow can significantly modify the surface energy fluxes, with direct consequences to the standards of local temperature and humidity and over nearby regions. Sensitivity tests were carried out during part of September, 2007, through the substitution of the sugar cane by a generic crop in the model, and show that during the day the cultivated areas can present temperatures up to 0,65 k higher than those in the case of the generic one. Throughout the dispersion module

  10. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    -natural > open; hence, the water temperature range was moderated substantially for the commercial site. Daily mean air temperature was ordered open > semi-natural > commercial; seasonality was less marked for the air than water column, although the range was larger for open and semi-natural than commercial site. Humidity was higher and wind speed markedly lower for the commercial than both the other sites. Net radiation was the dominant heat sink in autumn-winter and major heat source in spring-summer with the magnitude of this flux greater in summer and lower in winter for (in order) open, semi-natural and commercial reaches. Sensible heat was an energy source in autumn-winter and sink in spring-summer, with loss (gain) greater in summer (winter) for (in order) open, semi-natural and commercial reaches. Latent heat was predominantly a sink, with the magnitude and variability higher for open than both forested sites. These findings yield important information on: (1) dynamic heat exchange processes that drive stream temperature under different forest treatments, and (2) extent of influence of riparian land cover on stream thermal response. This research provides a basis to predict stream temperature impact given advocated changes to forest practice, and has potential to inform decision making by land/ water managers.

  11. Water-Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.

    1959-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  12. Emergency Disinfection of Drinking Water

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  13. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air Force. 334.490 Section 334.490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE...

  14. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  15. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  16. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  17. VOLATILIZATION RATES FROM WATER TO INDOOR AIR PHASE II

    EPA Science Inventory

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attemp...

  18. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  19. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  20. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City

    PubMed Central

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼37% of the variations in temperature were explained by the percentage tree cover, while ∼87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment. PMID:25010134

  1. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  2. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  3. Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in

  4. Offshore marine observation of Willow Ptarmigan, including water landings, Kuskokwim Bay, Alaska

    USGS Publications Warehouse

    Zimmerman, C.E.; Hillgruber, N.; Burril, S.E.; St., Peters, M. A.; Wetzel, J.D.

    2005-01-01

    We report an observation of Willow Ptarmigan (Lagopus lagopus) encountered 8 to 17 km from the nearest shoreline on Kuskokwim Bay, Alaska, on 30 August 2003. The ptarmigan were observed flying, landing on our research vessel, and landing and taking off from the water surface. We also report on one other observation of ptarmigan sitting on the water surface and other marine observations of ptarmigan from the North Pacific Pelagic Seabird Database. These observations provide evidence that Willow Ptarmigan are capable of dispersing across large bodies of water and landing and taking off from the water surface.

  5. Water landing characteristics of a model of a winged reentry vehicle

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.

    1972-01-01

    Proposed manned space shuttle vehicles are expected to land on airport runways. In an emergency situation, however, the vehicle may be required to land on water. A 1/10-scale dynamic model of a winged reentry vehicle was investigated to determine the water landing characteristics. Two configurations of the proposed vehicle were studied. Configuration 1 had a 30 deg negative dihedral of the stabilizer-elevon surface whereas configuration 2 had a 30 deg positive dihedral. Results indicate that the maximum normal accelerations for configurations 1 and 2 when landing in calm water were approximately 8g and 6g, respectively, and the maximum longitudinal accelerations were approximately 5g and 3g, respectively. A small hydroflap was needed to obtain satisfactory calm-water landings with configuration 2, whereas configuration 1 gave good landings without a hydroflap. All landings made in rough water resulted in unsatisfactory motions. For landings made in three different wave sizes, both configurations dived. The maximum normal accelerations for configurations 1 and 2 when landing in waves were -10.1g and -18.7g, respectively, and the maximum longitudinal accelerations for both configurations were approximately 13g.

  6. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  7. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Water rights for the purpose of livestock grazing on public lands. 4120.3-9 Section 4120.3-9 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF...

  8. Fully self-contained vision-aided navigation and landing of a micro air vehicle independent from external sensor inputs

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-06-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  9. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  10. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  11. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  12. Assessment of Land and Water Resource Implications of the UK 2050 Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK Carbon Plan presents four low-carbon energy system pathways that achieves 80% GHG emission targets by 2050, stipulated in the UK Climate Change Act (2008). However, some of the energy technologies prescribed under these pathways are land and water intensive; but would the increase demand for land and water under these pathways lead to increased competition and stress on agricultural land, and water resources in the UK? To answer the above question, this study uses an integrated modelling approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for the pathways, based on scenarios of power plant location, and the energy crop yield projections. The outcome is compared with sustainable limits of resource appropriation to assess potential stresses and competition for water and land by other sectors of the economy. The results show the Carbon Plan pathways have low overall impacts on UK water resources, but agricultural land use and food production could be significantly impacted. The impact on agricultural land use is shown to be mainly driven by projections for transport decarbonisation via indigenously sourced biofuels. On the other hand, the impact on water resources is mainly associated with increased inland thermal electricity generation capacity, which would compete with other industrial and public water demands. The results highlight the need for a critical appraisal of UK's long term low-carbon energy system planning, in particular bioenergy sourcing strategy, and the siting of thermal power generation in order to avert potential resource stress and competition.

  13. Land Management, River Restoration and the Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    The influence of catchment land-use on river ecosystems is well established, with negative changes in hydrology, sediment supply and pollutants causing widespread degradation in modified catchments across Europe. The strength of relationship found between different land-use types and impacts on river systems varies from study to study as a result of issues around data quality, scale, study design and the interaction of stressors at multiple scales. Analysis of large-scale datasets can provide important information about the way that catchments pressures affect WFD objectives at a national scale. Comparisons of relationships between land-use and WFD status in different types of catchment within the UK allow an assessment of catchment sensitivity and analysis of the catchment characteristics which influence these relationships. The results suggest prioritising catchments at or near land-use thresholds, or targeting waterbodies with limited land-use pressures but which are failing to achieve GES or GEP. This paper uses UK datasets on land cover and WFD waterbody status to examine how catchment land-use impacts on WFD status and to evaluate opportunities to achieve Good Ecological Status or Good Ecological Potential. Agricultural and urban land-use are shown to have different types of relationship with respect to the likelihood of achieving Good Ecological Status, and with clear threshold effects apparent for urban land-use in the catchment. Broad-scale analysis shows the influence of different sized buffer strips in mitigating the negative effects of different types of land-cover, and reinforces the positive effects of riparian woodland on river ecosystems and their potential under the WFD.

  14. Artificial neural network modeling of the water quality index using land use areas as predictors.

    PubMed

    Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin

    2015-02-01

    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. PMID:25790513

  15. Land-water movement of dissolved organic matter in watersheds: hydroclimatic controls and environmental implications

    NASA Astrophysics Data System (ADS)

    Park, J.; Mitchell, M. J.; Kang, S.; Kim, S.; Lee, J.

    2005-12-01

    Dissolved organic matter (DOM) in soils and surface waters plays a crucial role in transporting carbon, nutrients, and trace toxic contaminants through different watershed compartments. The coupling between hydrology and DOM movement from land to water has been a central theme of many hydro-biogeochemical studies at the watershed level. We compared hydroclimatic controls on the movement of DOM and some trace contaminants in two temperate watersheds having idiosyncratic seasonal patterns of precipitation and runoff. In Arbutus Watershed in the Adirondacks of New York State, stream discharge from December through April represented over 60% of the annual runoff. Stochastic snowmelt events during the winter, triggered by elevated air temperatures, resulted in concurrent increases in the stream water concentrations of DOM, H+, and total dissolved Al. In Hwang-Ryong River Watershed, which is located in the southwestern Korean Peninsula and encompasses forested, rural, and urban landscapes in sequence, frequent heavy rainfalls during the summer monsoon were targeted as a biogeochemical hot event. Preliminary results suggest that spectroscopic properties of DOM, along with concentrations of trace metals, change with an increasing influence of urban wastewater, with different hydroclimatic impacts at upstream and downstream sites. Implications of the coupling between hydrology and biogeochemical transport for watershed environmental quality will be discussed, especially in relation to watershed biogeochemical responses to climatic variability.

  16. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  17. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Manakos, Ioannis; Chatzopoulos-Vouzoglanis, Konstantinos; Petrou, Zisis I.; Filchev, Lachezar; Apostolakis, Antonis

    2015-01-01

    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009-2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009-2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  18. Coupled Soil Water and Heat Transport Near the Land Surface in Arid and Semiarid Regions - Multi-Domain Modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, Binayak; Yang, Zhenlei

    2016-04-01

    Understanding and simulating coupled water and heat transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere, which consequently could enhance the reliability of weather as well as climate forecast. The theory of Philip and de Vries (1957), accounting for water vapor diffusion only, was considered physically incomplete and consequently extended and improved by several researchers by explicitly taking water vapor convection, dispersion or air flow into account. It is generally believed that the soil moisture is usually low in the near surface layer under highly transient field conditions, particularly in arid and semiarid regions, and that accurate characterization of water vapor transport is critical when modeling simultaneous water and heat transport in the shallow field soils. The first objective of this study is thus mainly to test existing coupled water and heat transport theories and to develop reasonable and simplified numerical models using field experimental data collected under semi-arid and arid hydro-climatic conditions. In addition, more complex multi-domain models are developed for ubiquitous heterogeneous terrestrial surfaces such as horizontal textural contrasts or structured heterogeneity including macropores (fractures, cracks, root channels, etc.). This would make coupled water and heat transfer models applicable in such non-homogeneous soils more meaningful and enhance the skill of land-atmosphere interaction models at a larger context.

  19. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  20. Simulated response of water quality in public supply wells to land use change

    USGS Publications Warehouse

    McMahon, P.B.; Burow, K.R.; Kauffman, L.J.; Eberts, S.M.; Böhlke, J.K.; Gurdak, J.J.

    2009-01-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypotheticalland use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and > 1, 000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectivesdm: 10.1029/2007 WR0067 J1. copyright. Published in 2008

  1. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  2. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate.

    PubMed

    Tiwary, A; Williams, I D; Pant, D C; Kishore, V V N

    2015-08-01

    Anaerobic digestion (AD) of putrescible urban waste for energy recovery has seen rapid growth over recent years. In order to ascertain its systems scale sustainability, however, determination of the environmental fate of the large volume of digestate generated during the process is indispensable. This paper evaluates the environmental burdens to air associated with land applied food-based digestate in terms of primary pollutants (ammonia, nitrogen dioxide) and greenhouse gases (methane and nitrous oxide). The assessments have been made in two stages - first, the emissions from surface application of food-based digestate are quantified for the business as usual (BAU). In the next step, environmental burden minimisation potentials for the following three mitigation measures are estimated - mixed waste digestate (MWD), soil-incorporated digestate (SID), and post-methanated digestate (PMD). Overall, the mitigation scenarios demonstrated considerable NH3, CH4 and N2O burden minimisation potentials, with positive implications for both climate change and urban pollution. PMID:25690986

  3. Transformation Pathways through the Land-water Geosphere in Permafrost Regions

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2014-12-01

    Arctic land-water undergoes and participates in multiple climate-driven and other (natural and direct human-driven) environmental exchanges and changes (Figure 1). A bits-and-pieces approach to these may miss essential aspects of change propagation and transformation by land-water across its multiple components (soil water, groundwater, hyporheic water, streams/rivers, wetlands and lakes) and from/to other geospheres (atmosphere and its climate change drivers, cryosphere and its permafrost segment, as well as the anthroposphere/technosphere, geosphere/pedosphere, marine hydrosphere and biosphere). This paper synthesizes results from recent modeling and observational studies of land-water flow and dissolved carbon transport in permafrost regions, departing from a new conceptualization of the land-water geosphere as a scale-free catchment-wise organized system (Figure 1), emphasizing several key new system aspects compared to traditional hydrosphere/water cycle view. Among these new aspects, we particularly investigate here the role of land-water flow and transport pathways as system coupling agents, with focus on their variability and change with varying permafrost conditions and permafrost thaw in a warming climate. Utilizing the conceptualization of land-water as a continuous yet structured geosphere, following the proposed flow-transport pathways of change propagation-transformation, we identify patterns of permafrost-related and other changes in Arctic hydrology.

  4. Acoustic and Doppler radar detection of buried land mines using high-pressure water jets

    NASA Astrophysics Data System (ADS)

    Denier, Robert; Herrick, Thomas J.; Mitchell, O. Robert; Summers, David A.; Saylor, Daniel R.

    1999-08-01

    The goal of the waterjet-based mine location and identification project is to find a way to use waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjets, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground. Currently the ground vibrations are detected with Doppler radar and video camera sensing, while the air vibrations are detected with a directional microphone. Data is collected via a Labview based data acquisition system. This data is then manipulated in Labview to produce the associated power spectrums. These power spectra are fed through various signal processing and recognition routines to determine the probability of there being an object present under the current test location and what that object is likely to be. Our current test area consists of a large X-Y positioning system placed over approximately a five-foot circular test area. The positioning system moves both the waterjet and the sensor package to the test location specified by the Labview control software. Currently we are able to locate buried land mine models at a distance of approximately three inches with a high degree of accuracy.

  5. Estuary Turbulence and Air-Water Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Orton, Philip Mark

    The mixing of constituents between estuarine bottom and surface waters or between estuarine surface waters and the atmosphere are two topics of growing interest, in part due to the potentially important role of estuaries in global carbon budgets. These two types of mixing are typically driven by turbulence, and a research project was developed to improve the scientific understanding of atmospheric and tidal controls on estuary turbulence and airwater exchange processes. Highlights of method development and field research on the Hudson River estuary include several deployments of bottom mounted current profilers to quantify the turbulent kinetic energy (TKE) budget, and construction and deployment of an instrumented catamaran that makes autonomous measurements of air-water CO2 exchange (FCO2), water TKE dissipation at 50 cm depth (epsilon50), and other physical properties just above and below the air-water interface. On the Hudson, wind correlates strongly with epsilon50, but surface water speed and airwater heat flux also have moderate correlations with epsilon50. In partially mixed estuaries such as the Hudson, as well as salt wedge estuaries, baroclinic pressure forcing typically causes spring ebb tides to have much stronger upper water column shear than flood tides. The Hudson data are used to show that this shear leads to local shear instability and stronger near-surface turbulence on spring ebbs. Also, buoyancy budget terms are compared to demonstrate how water-to-air heat fluxes can influence stratification and indirectly influence epsilon50. Looking more closely at the role of wind forcing, it is demonstrated that inland propagation of the sea breeze on warm sunny days leads to arrival in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the air-water CO2 flux by 1-2 orders of magnitude, and drives epsilon50 comparable to spring tide levels in the upper meter of the water

  6. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  7. Can you help create the next generation of Land Surface Air Temperature products?

    NASA Astrophysics Data System (ADS)

    Thorne, Peter; Venema, Victor

    2013-04-01

    The International Surface Temperature Initiative comprises a group of multi-disciplinary researchers constituted in 2010 with the remit of creating a suite of open, transparent Land Surface Air Temperature products suitable for meeting 21st Century science and societal needs and expectations. Since instigation significant progress has been made in the creation of an improved set of 'raw' Land Surface Air Temperature data holdings (to be released in first version in February 2013), constituting in excess of 30,000 stations many going back over a Century, and towards the creation of a rigorous benchmarking framework. What is now requested is that multiple independent groups take up the challenge of creating global and regional products from the databank and submit their algorithms to the benchmarking framework. Key here is to rigorously assess structural uncertainty - it is not sufficient to assume because one group has tackled the problem it is in any meaningful sense mission accomplished. There undoubtedly exist a myriad of issues in the raw data and it is of vital importance to see how sensitive data homogenization is to the set of processing choices independent groups will undertake. This uncertainty will almost certainly be larger at the station or regional level - yet as we move into the 21st Century it is these scales that are of increasing import to end users. It is essential that we serve the right data in the right way with the correct caveats. This can only be achieved if a sufficient number of groups take up the challenge of creating new products from the raw databank. This poster will outline progress to date in the creation of the databank and global benchmarks and outline how investigators and groups can now get involved in creating products from the databank and participate in the benchmarking exercise. Further details upon the Initiative and its aims can be found at www.surfacetemperatures.org and http://surfacetemperatures.blogspot.com/

  8. An Integrated Assessment of Water Scarcity Effects on Energy and Land Use Decisions and Mitigation Policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Kim, S. H.; Liu, L.; Liu, Y.; Calvin, K. V.; Leon, C.; Edmonds, J.; Kyle, P.; Patel, P.; Wise, M. A.; Davies, E. G.

    2015-12-01

    Water is essential for the world's food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide food for an increasing population. We use the Global Change Assessment Model (GCAM), where interactions between population, economic growth, energy, land and water resources interact simultaneously in a dynamically evolving system, to investigate how water scarcity affects energy and land use decisions as well as mitigation policies. In GCAM, competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater sources and desalinated water—across 235 major river basins. Limits to hydrologic systems have significant effects on energy and land use induced emissions via constraints on decisions of their use. We explore these effects and how they evolve under climate change mitigation policies, which can significantly alter land use patterns, both by limiting land use change emissions and by increasing bioenergy production. The study also explores the mitigation scenarios in the context of the shared socioeconomic pathways (SSPs). We find that previous estimates of global water withdrawal projections are overestimated, as our simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. This study highlights the fact that water is a binding factor in agriculture, energy and land use decisions in integrated assessment models (IAMs), and stresses the crucial role of water in regulating agricultural commodities trade and land-use and energy decisions.

  9. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  10. Modeling, simulation & optimization of the landing craft air cushion fleet readiness.

    SciTech Connect

    Engi, Dennis

    2006-10-01

    The Landing Craft Air Cushion is a high-speed, over-the-beach, fully amphibious landing craft capable of carrying a 60-75 ton payload. The LCAC fleet can serve to transport weapons systems, equipment, cargo and personnel from ship to shore and across the beach. This transport system is an integral part of our military arsenal and, as such, its readiness is an important consideration for our national security. Further, the best way to expend financial resources that have been allocated to maintain this fleet is a critical Issue. There is a clear coupling between the measure of Fleet Readiness as defined by the customer for this project and the information that is provided by Sandia's ProOpta methodology. Further, there is a richness in the data that provides even more value to the analyst. This report provides an analytic framework for understanding the connection between Fleet Readiness and the output provided by Sandia's ProOpta software. Further, this report highlights valuable information that can also be made available using the ProOpta output and concepts from basic probability theory. Finally, enabling assumptions along with areas that warrant consideration for further study are identified.

  11. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2014-04-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  12. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  13. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  14. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    ERIC Educational Resources Information Center

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  15. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  16. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  17. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  18. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  19. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  20. 75 FR 37432 - Marseilles Land and Water Company; Marseilles Lock and Dam Project; Notice of Proposed Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... Federal Energy Regulatory Commission Marseilles Land and Water Company; Marseilles Lock and Dam Project... executed programmatic agreement would be incorporated into any order issuance. Marseilles Land and Water... W. Mueller, Vice President, Marseilles Land and Water Company, 4132 S. Rainbow Blvd., 247, Las...

  1. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  2. Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales

    NASA Technical Reports Server (NTRS)

    Jin, Menglin; King, Michael D.

    2005-01-01

    How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.

  3. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  4. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  5. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  6. Air and water pollution control: a benefit-cost assessment

    SciTech Connect

    Freeman, A.M. III

    1982-01-01

    Freeman attempts to assess the net benefits associated with environmental programs dealing with air and water quality. He concludes that stationary controls have been justified, but that mobile sources and water controls, as presently designed and implemented, have had costs greater than benefits to society. The reviewer notes that the book is more than just a compendium of mechanistic, technical detail; there is rather, far more general information on how economists view environmental problems than suggested by the title. An example is the discussions of the various approaches to valuing environmental benefits.

  7. Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water

    PubMed

    Martinez; Full; Koehl

    1998-09-01

    As an animal moves from air to water, its effective weight is substantially reduced by buoyancy while the fluid-dynamic forces (e. g. lift and drag) are increased 800-fold. The changes in the magnitude of these forces are likely to have substantial consequences for locomotion as well as for resistance to being overturned. We began our investigation of aquatic pedestrian locomotion by quantifying the kinematics of crabs at slow speeds where buoyant forces are more important relative to fluid-dynamic forces. At these slow speeds, we used reduced-gravity models of terrestrial locomotion to predict trends in the kinematics of aquatic pedestrian locomotion. Using these models, we expected animals in water to use running gaits even at slow speeds. We hypothesized that aquatic pedestrians would (1) use lower duty factors and longer periods with no ground contact, (2) demonstrate more variable kinematics and (3) adopt wider stances for increased horizontal stability against fluid-dynamic forces than animals moving at the same speed on land. We tested these predictions by measuring the three-dimensional kinematics of intertidal rock crabs (Grapsus tenuicrustatus) locomoting through water and air at the same velocity (9 cm s-1) over a flat substratum. As predicted from reduced-gravity models of running, crabs moving under water showed decreased leg contact times and duty factors relative to locomotion on land. In water, the legs cycled intermittently, fewer legs were in contact with the substratum and leg kinematics were much more variable than on land. The width of the crab's stance was 19 % greater in water than in air, thereby increasing stability against overturning by hydrodynamic forces. Rather than an alternating tetrapod or metachronal wave gait, crabs in water used a novel gait we termed 'underwater punting', characterized by alternating phases of generating thrust against the substratum and gliding through the water. PMID:9716513

  8. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    EPA Science Inventory

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  9. LAND APPLICATION OF WASTEWATER AND STATE WATER LAW: STATE ANALYSES. VOLUME II

    EPA Science Inventory

    This research project was undertaken with the overall objective of analyzing state water rights law in order to determine its possible impact on systems of land application of wastewater. It was determined that most states do not have regulations specifically controlling land app...

  10. LAND APPLICATION OF WASTEWATER AND STATE WATER LAW: AN OVERVIEW (VOLUME I)

    EPA Science Inventory

    This research project was undertaken with the overall objective of analyzing state water rights law in order to determine its possible impact on systems of land application of wastewater. It was determined that most states do not have regulations specifically controlling land app...

  11. Bacterial Swimming at Air/Water and Oil/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Morse, Michael; Huang, Athena; Li, Guanglai; Tang, Jay

    2012-02-01

    The microbes inhabiting the planet over billions of years have adapted to diverse physical environments of water, soil, and interfaces between water and either solid or air. Following recent studies on bacterial swimming and accumulation near solid surfaces, we turn our attention to the behavior of Caulobacter crescentus, a singly flagellated bacterium, at water/air and water/oil interfaces. The latter is motivated by relevance to microbial degradation of crude oil in light of the recent oil spill in the Gulf of Mexico. Our ongoing study suggests that Caulobacter swarmer cells tend to get physically trapped at both water/air and water/oil interfaces, accumulating at the surface to a greater degree than boundary confinement properties like that of solid surfaces would predict. At the water/air interface, swimmers move in tight circles at half the speed of swimmers in the bulk fluid. At the water/oil interface, swimming circles are even tighter with further reduced swimming speed. We report experimental data and present preliminary analysis of the findings based on low Reynolds number hydrodynamics, the known surface tension, and surface viscosity at the interface. The analysis will help determine properties of the bacterium such as their surface charge and hydrophobicity.

  12. Tangential stress beneath wind-driven air water interfaces

    NASA Astrophysics Data System (ADS)

    Banner, Michael L.; Peirson, William L.

    1998-06-01

    The detailed structure of the aqueous surface sublayer flow immediately adjacent to the wind-driven air water interface is investigated in a laboratory wind-wave flume using particle image velocimetry (PIV) techniques. The goal is to investigate quantitatively the character of the flow in this crucial, very thin region which is often disrupted by microscale breaking events. In this study, we also examine critically the conclusions of Okuda, Kawai & Toba (1977), who argued that for very short, strongly forced wind-wave conditions, shear stress is the dominant mechanism for transmitting the atmospheric wind stress into the water motion waves and surface drift currents. In strong contrast, other authors have more recently observed very substantial normal stress contributions on the air side. The availability of PIV and associated image technology now permits a timely re-examination of the results of Okuda et al., which have been influential in shaping present perceptions of the physics of this dynamically important region. The PIV technique used in the present study overcomes many of the inherent shortcomings of the hydrogen bubble measurements, and allows reliable determination of the fluid velocity and shear within 200 [mu]m of the instantaneous wind-driven air water interface.

  13. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  14. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  15. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    PubMed

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  16. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process. PMID:19475934

  17. Land use change and its effects on water quality in typical inland lake of arid area in China.

    PubMed

    Cui, Hong; Zhou, Xiaode; Guo, Mengjing; Wei, Wu

    2016-07-01

    Land-use change is very important for determining and assessing the influence of human activity on aquatic environment of rivers and lakes. The present work with Bosten River basin as the subject, analyzes features of dynamic land-use change of the basin from 1993 to 2013, in order to study the influence of land-use pattern change on the basin water quality, according to the land-use/land-cover(LUCC) chart from 2000 to 2013 made by ArcGIS and ENVI. It shows cultivated land, wetland and forestland constitute most of Bosten River basin, taking up over 41.7% of the total; from 1993-2000, LUCC of the basin is relatively small, with an increase of cultivated land, residential-industry land, water wetlands by 15.09%-18.33%,most of which are transformed from forestland, grassland and unused land; from 2000-2013, LUCC of the basin is relatively significant, with a continuing and bigger increase of cultivated land and Residential-industry area, most of which are transformed from water wetlands and unused land. Based on analysis of landuse pattern and water quality index, it can be told that water pollution is positively correlated to cultivated land and residential-industry area and negatively correlated to water and grassland. Also, the influence of land-use pattern change on water quality has been discussed, whose finding can serve as the scientific evidence for land-use optimization and water pollution control. PMID:27498508

  18. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  19. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  20. AirSWOT: An Airborne Platform for Surface Water Monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  1. Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland

    EPA Science Inventory

    The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolit...

  2. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau

    PubMed Central

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land. PMID:27243772

  3. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    PubMed

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land. PMID:27243772

  4. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  5. Aquifer-System Compaction and Land Subsidence: Measurements, Analyses, and Simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.

    2000-01-01

    Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick

  6. Remote sensing of effects of land use practices on water quality

    NASA Technical Reports Server (NTRS)

    Graves, D. H.; Colthrap, G. B.

    1977-01-01

    An intensive study was conducted to determine the utility of manual densitometry and color additive viewing of aircraft and LANDSAT transparencies for monitoring land use and land use change. The relationship between land use and selected water quality parameters was also evaluated. Six watersheds located in the Cumberland Plateau region of eastern Kentucky comprised the study area for the project. Land uses present within the study area were reclaimed surface mining and forestry. Fertilization of one of the forested watersheds also occurred during the study period.

  7. Airborne Multispectral LIDAR Data for Land-Cover Classification and Land/water Mapping Using Different Spectral Indexes

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P. E.

    2016-06-01

    Airborne Light Detection And Ranging (LiDAR) data is widely used in remote sensing applications, such as topographic and landwater mapping. Recently, airborne multispectral LiDAR sensors, which acquire data at different wavelengths, are available, thus allows recording a diversity of intensity values from different land features. In this study, three normalized difference feature indexes (NDFI), for vegetation, water, and built-up area mapping, were evaluated. The NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-MIR were calculated using data collected at three wavelengths; green: 532 nm, near-infrared (NIR): 1064 nm, and mid-infrared (MIR): 1550 nm by the world's first airborne multispectral LiDAR sensor "Optech Titan". The Jenks natural breaks optimization method was used to determine the threshold values for each NDFI, in order to cluster the 3D point data into two classes (water and land or vegetation and built-up area). Two sites at Scarborough, Ontario, Canada were tested to evaluate the performance of the NDFIs for land-water, vegetation, and built-up area mapping. The use of the three NDFIs succeeded to discriminate vegetation from built-up areas with an overall accuracy of 92.51%. Based on the classification results, it is suggested to use NDFIG-MIR and NDFINIR-MIR for vegetation and built-up areas extraction, respectively. The clustering results show that the direct use of NDFIs for land-water mapping has low performance. Therefore, the clustered classes, based on the NDFIs, are constrained by the recorded number of returns from different wavelengths, thus the overall accuracy is improved to 96.98%.

  8. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.

    2007-01-01

    Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

  9. Drinking Water Contaminants -- Standards and Regulations

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  10. New findings and setting the research agenda for soil and water conservation for sustainable land management

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  11. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  12. LAND USE ACTIVITIES AND WESTERN LAKE SUPERIOR WATER QUALITY

    EPA Science Inventory

    Geographic Information Systems (GlS), computer systems which can analyze mapped information, can help reduce nonpoint source pollution in the Lake Superior basin by providing researchers and managers with a tool for predicting the consequences of land use change. n an EPA-funded ...

  13. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  14. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    NASA Astrophysics Data System (ADS)

    Friedman, Irving; Harris, Joyce M.; Smith, George I.; Johnson, Craig A.

    2002-10-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (δD) and oxygen-18 (δ18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  15. The effects of sewer infrastructure on water quality: implications for land use studies.

    NASA Astrophysics Data System (ADS)

    Vrebos, Dirk; Staes, Jan; Meire, Patrick

    2010-05-01

    The European Water Framework Directive requires a good ecological status of the European water bodies and the necessary measures to obtain this have to be implemented. The water quality of a river is the result of complex anthropogenic systems (buildings, waste water treatment infrastructure, regulations, etc.) and biogeochemical and eco-hydrological interactions. It is therefore essential to obtain more insight in the factors that determine the water quality in a river. Research into the relation between land use and water quality is necessary. Human activities have a huge impact on the flow regimes and associated water quality of river systems. Effects of land use bound activities on water quality are often investigated, but these studies generally ignore the hydrological complexity of a human influenced catchment. Infrastructure like sewer systems and wastewater treatment plants (WWTP) can displace huge quantities of polluted water. The transfers change flow paths, displace water between catchments and change the residence time of the system. If we want to correctly understand the effect of land use distribution on water quality we have to take these sewer systems into account. In this study we analyse the relation between land use and water quality in the Nete catchment (Belgium) and investigate the impact of the sewage infrastructure on this relation. The Nete catchment (1.673 km²) is a mosaic of semi natural, agricultural and urbanized areas and the land use is very fragmented. For the moment 74% of the households within the catchment are connected to a WWTP. The discharges from these WWTP's compose 15% of the total discharge of the Nete. Based on a runoff model the surface of upstream land use was calculated for 378 points. These data were then corrected for the impact of WWTP's. Using sewage infrastructure plans, urban areas connected to a WWTP were added to the upstream land use of the WWTP's water receiving stream. In order to understand the effect of

  16. 78 FR 37713 - Safety Zone; Chicago Air and Water Show; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Chicago Air and Water Show; Lake Michigan; Chicago, IL... enforce the safety zone on Lake Michigan near Chicago, Illinois for the Chicago Air and Water Show. This... Chicago Air and Water Show. During the aforementioned periods, the Coast Guard will enforce...

  17. 78 FR 37710 - Safety Zone; Milwaukee Air and Water Show; Lake Michigan; Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Milwaukee Air and Water Show; Lake Michigan; Milwaukee... will enforce the safety zone on Lake Michigan in Milwaukee, Wisconsin for the Milwaukee Air and Water... 2013 Milwaukee Air and Water Show. During the aforementioned periods, the Coast Guard will...

  18. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or...

  19. Air/water oxydesulfurization of coal: laboratory investigation

    SciTech Connect

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

    1980-08-01

    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  20. Impact Forces of Plyometric Exercises Performed on Land and in Water

    PubMed Central

    Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki

    2011-01-01

    Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022

  1. Sea Breeze Forcing of Estuary Turbulence and Air-Water Exchanges

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; McGillis, W. R.; Zappa, C. J.

    2010-12-01

    The sea breeze is often a dominant meteorological feature at the coastline, but little is known about its estuarine impacts. It arises on sunny days with weak synoptic weather forcing, due to O(100 km) scale atmospheric pressure differences that develop as a result of the different solar absorption properties of sea and land. Here, measurements at an anchored catamaran and meteorological stations along the Hudson River and New York Bay estuarine system are used to illustrate some basic characteristics and impacts of the feature. The sea breeze propagates inland, arriving in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the water-to-air CO2 flux by 1-2 orders of magnitude, and drives turbulence comparable to spring tide levels in the upper meter of the water column, where most primary productivity occurs in this highly turbid system. Modeling and observational studies often use remotely-measured winds with quadratic parameterizations to compute air-water fluxes (e.g. momentum, CO2), and this leads to a factor of two flux error on sea breeze days during the study. We conclude with a survey of how common these features are in the Hudson as well as other estuaries.

  2. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-01

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry. PMID:27509207

  3. Integrated modelling and the impacts of water management on land use

    NASA Astrophysics Data System (ADS)

    Dorner, W.; Spachinger, K.; Metzka, R.

    2008-11-01

    River systems and the quantity and quality of water depend on the catchment, its structure and land use. In central Europe especially land is a scarce resource. This causes conflicts between different types of land use, but also with the interests of flood protection, nature conservation and the protection of water resources and water bodies in the flood plain and on a catchment scale. ILUP - Integrated Land Use Planning and River Basin Management was a project, funded by the European Union, to address the problems of conflicting interests within a catchment. It addressed the problems of conflicting land use from a hydrological perspective and with regard to the resulting problems of water management. Two test river basins, Vils and Rott, both with a catchment size of about 1000 square kilometres, were considered for the German part of the project. Objective of the project was to identify means of managing land use with regard to water management objectives and adapt planning strategies and methodologies of water management authorities to the new needs of catchment management and planning. Catchment models were derived to simulate hydrological processes, assess the safety of dams and improve the control strategy of detention reservoirs with regard to land use in the lower system. Hydrodynamic models provided the basis to assess flood prone areas, evaluate flood protection measures and analyze the impacts of river training and discharge on morphology. Erosion and transport models were used to assess the impacts of land use on water quality. Maps were compiled from model results to provide a basis for decision making. In test areas new ways of planning and implementation of measures were tested. As a result of model scenarios in combination with the socio economic situation in the catchment new methods of land management and land use management were derived and implemented in model areas. The results of the project show that new ways of managing land use in river

  4. Development of an integrated data base for land use and water quality planning

    NASA Technical Reports Server (NTRS)

    Adams, J.; Vanschayk, C.; Istvan, L. B.

    1977-01-01

    To help understand the role played by different land resources in water quality management a computer based data system was created. The Land Resource Information System (LRIS) allows data to be readily retrieved or statistically analyzed for a variety of purposes. It is specifically formatted to perform coordination of water quality data with logy, etc. New understanding of the region gained through the use of LRIS has gone well beyond the initial purpose of assessing water quality conditions. The land use and natural features information has provided a well defined starting point for a systematic evaluation of proposed land uses, transportation, housing, and other public investments. It has laid the foundation for a comprehensive and integrated approach to many different planning and investment programs presently underway.

  5. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure.

    PubMed

    Meador, Michael R; Goldstein, Robert M

    2003-04-01

    Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs-total nitrogen and suspended sediment and basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams. PMID:12677296

  6. Assessing water quality at large geographic scales: Relations among land use, water physicochemistry, riparian condition, and fish community structure

    USGS Publications Warehouse

    Meador, M.R.; Goldstein, R.M.

    2003-01-01

    Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs-total nitrogen and suspended sediment and basin-wide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.

  7. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  8. Land Surface Water and Energy Flux Evaluation from the North American Regional Reanalysis (NARR) and Land Data Assimilation Systems (LDAS) for Water Resources Applications

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Dong, J.; Houser, P.; Cosgrove, B.; Peters-Lidard, C.; Kumar, S.

    2006-05-01

    The primary objective of our study is to evaluate surface water and energy balance for water resources applications through study of a selected range of modeling and data assimilation systems associated with NASA and NOAA. Specifically, the combined analysis of North American Regional Reanalysis (NARR) data, North American Land Data Assimilation System (NLDAS), and Land Information System (LIS) data versus in- situ measurements provides a unique look at the water and energy flux estimation from different modeling and data system approaches. For reference we used Coordinated Enhanced Observing Periods (CEOP 3&4) data measured at a half-hour frequency from October 2002 to December 2004 in the US Southern Great Plains. Comparison shows that large biases are found on partitioning sensible heat and latent heat fluxes in most models during spring and summer season in 2003. Possible factors, such as model forcing, land cover classifications and model physics, affecting the energy fluxes are further investigated at a spatial high resolution through NASA LIS. It was found that the model forcing data, land cover classifications and model physics had significant influences on the energy flux estimation. This study will suggest the optimal forcing data and modeling for future operational predictions.

  9. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  10. Descriptive Epidemiology of Musculoskeletal Injuries in Naval Special Warfare Sea, Air, and Land Operators.

    PubMed

    Lovalekar, Mita; Abt, John P; Sell, Timothy C; Wood, Dallas E; Lephart, Scott M

    2016-01-01

    The purpose of this analysis was to describe medical chart reviewed musculoskeletal injuries among Naval Special Warfare Sea, Air, and Land Operators. 210 Operators volunteered (age: 28.1 ± 6.0 years, height: 1.8 ± 0.1 m, weight: 85.4 ± 9.3 kg). Musculoskeletal injury data were extracted from subjects' medical charts, and injuries that occurred during 1 year were described. Anatomic location of injury, cause of injury, activity when injury occurred, and injury type were described. The frequency of injuries was 0.025 per Operator per month. Most injuries involved the upper extremity (38.1% of injuries). Frequent anatomic sublocations for injuries were the shoulder (23.8%) and lumbopelvic region of the spine (12.7%). Lifting was the cause of 7.9% of injuries. Subjects were participating in training when 38.1% of injuries occurred and recreational activity/sports when 12.7% of injuries occurred. Frequent injury types were strain (20.6%), pain/spasm/ache (19.0%), fracture (11.1%), and sprain (11.1%). The results of this analysis underscore the need to investigate the risk factors, especially of upper extremity and physical activity related injuries, in this population of Operators. There is a scope for development of a focused, customized injury prevention program, targeting the unique injury profile of this population. PMID:26741478

  11. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. PMID:26530819

  12. Autumn daily characteristics of land surface heat and water exchange over the Loess Plateau mesa in China

    NASA Astrophysics Data System (ADS)

    Wen, Jun; Wei, Zhigang; Lü, Shihua; Chen, Shiqiang; Ao, Yinhuan; Liang, Ling

    2007-03-01

    The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface energy and water exchange over the Chinese Loess Plateau mesa region are evaluated by using data collected during the Loess Plateau land-atmosphere interaction pilot experiment (LOPEX04), which was conducted from 25 August to 12 September 2004 near Pingliang city, Gansu Province of China. The experiment was carried out in a region with a typical landscape of the Chinese Loess Plateau, known as “loess mesa”. The experiment’s field land utilizations were cornfield and fallow farmland, with the fallow field later used for rotating winter wheat. The autumn daily characteristics of heat and water exchange evidently differed between the mesa cornfield and fallow, and the imbalance term of the surface energy was large. This is discussed in terms of sampling errors in the flux observations-footprint; energy storage terms of soil and vegetation layers; contribution from air advections; and low and high frequency loss of turbulent fluxes and instruments bias. Comparison of energy components between the mesa cornfield and the lowland cornfield did not reveal any obvious difference. Inadequacies of the field observation equipment and experimental design emerged during the study, and some new research topics have emerged from this pilot experiment for future investigation.

  13. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  14. Air-water partitioning of 222Rn and its dependence on water temperature and salinity.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Lieberman, Eric; Burnett, William C

    2012-04-01

    Radon is useful as a tracer of certain geophysical processes in marine and aquatic environments. Recent applications include detection of groundwater discharges into surface waters and assessment of air/sea gas piston velocities. Much of the research performed in the past decade has relied on continuous measurements made in the field using a radon stripping unit connected to a radon-in-air detection system. This approach assumes that chemical equilibrium is attained between the water and gas phases and that the resulting air activity can be multiplied by a partition coefficient to obtain the corresponding radon-in-water activity. We report here the results of a series of laboratory experiments that describes the dependence of the partition coefficient upon both water temperature and salinity. Our results show that the temperature dependence for freshwater closely matches results that were previously available. The salinity effect, however, has largely been ignored and our results show that this can result in an overestimation of radon concentrations, especially in cooler, more saline waters. Related overestimates in typical situations range between 10 (warmer less saline waters) and 20% (cooler, more saline waters). PMID:22385122

  15. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir.

    PubMed

    Yang, Huicai; Wang, Guoqiang; Wang, Lijing; Zheng, Binghui

    2016-06-01

    The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was

  16. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally

  17. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  18. Land Use Patterns and Fecal Contamination of Coastal Waters in Western Puerto Rico

    NASA Technical Reports Server (NTRS)

    Norat, Jose

    1994-01-01

    The Department of Environmental Health of the Graduate School of Public Health of the Medical Sciences Campus, University of Puerto Rico (UPR-RCM) conducted this research project on how different patterns of land use affect the microbiological quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Coastal shellfish growing areas, stream and ocean bathing beaches, and pristine marine sites in the Bay are affected by the discharge of the three study rivers. Satellite imagery was used to study watershed land uses which serve as point and nonpoint sources of pathogens affecting stream and coastal water users. The study rivers drain watersheds of different size and type of human activity (including different human waste treatment and disposal facilities). Land use and land cover in the study watersheds were interpreted, classified and mapped using remotely sensed images from NASA's Landsat Thematic Mapper (TM). This study found there is a significant relationship between watershed land cover and microbiological water quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Land covers in the Guanajibo, Anasco, and Yaguez watersheds were classified into forested areas, pastures, agricultural zones and urban areas so as to determine relative contributions to fecal water contamination. The land cover classification was made processing TM images with IDRISI and ERDAS software.

  19. Nano- and microstructure of air/oil/water interfaces.

    PubMed

    McGillivray, Duncan J; Mata, Jitendra P; White, John W; Zank, Johann

    2009-04-01

    We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions. PMID:19714829

  20. Ecologization of water-land property matters on the territory of the Tom lower course

    NASA Astrophysics Data System (ADS)

    Popov, V. K.; Kozina, M. V.; Levak, Yu Yu; Shvagrukova, E. V.

    2016-03-01

    In the present paper the water-land property complex is considered as a strategic resource of the city development. The formulated question is expounded through the example of water-land property complex usage on the territory of the Tom lower course for land-use planning and developing the systems of water recourses management and land tenure. Consequences of liquid radioactive waste (LRW) landfilling are investigated in terms of arable farming. Also, forming a water budget of the soils spread on the area of the Tomsk underground water supply cone of depression and its role in the development of agricultural industry are studied. The main aspect of the analysis is the incorporation of social, economic, and ecological requirements for the system of life-supporting branches of municipal economy and social services. As far as the system of land tax payments plays an important role in land property complex management, the common issues and tendencies are specified in the paper. These problems are concerned with the inadequate incorporation of an ecological constituent in the methods of cadastral valuation of lands, as well as the situation of the narrow area of its results usage in the Russian Federation. Natural factors (hydrological, territorial, geological (geomorphologic) territory conditions) are combined by the authors into a special group. These factors should be reflected in the results of cadastral valuation. Also, in order to protect the interests of water consumers, it is offered to establish the Water Consumers Association based on the international experience of such countries as Spain and Uzbekistan.

  1. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  2. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States.

    PubMed

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-08-19

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion--that beef production demands about 1 order of magnitude more resources than alternative livestock categories--is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  3. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

    PubMed Central

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-01-01

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  4. Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands.

    PubMed

    Wei, Xinchao; Wei, Honghong; Viadero, Roger C

    2011-02-01

    Abandoned mine land (AML) is one of the legacies of historic mining activities, causing a wide range of environmental problems worldwide. A stream monitoring study was conducted for a period of 7 years to evaluate the water quality trend in a Mid-Appalachian watershed, which was heavily impacted by past coal mining and subsequently reclaimed by reforestation and revegetation. GIS tools and multivariate statistical analyses were applied to characterize land cover, to assess temporal trends of the stream conditions, and to examine the linkages between water quality and land cover. In the entire watershed, 15.8% of the land was designated as AML reclaimed by reforestation (4.9%) and revegetation (10.8%). Statistic analysis revealed sub-watersheds with similar land cover (i.e. percentage of reclaimed AML) had similar water quality and all tested water quality variables were significantly related to land cover. Based on the assessment of water quality, acid mine drainage was still the dominant factor leading to the overall poor water quality (low pH, high sulfate and metals) in the watershed after reclamation was completed more than 20 years ago. Nevertheless, statistically significant improvement trends were observed for the mine drainage-related water quality variables (except pH) in the reclaimed AML watershed. The lack of pH improvement in the watershed might be related to metal precipitation and poor buffering capacity of the impacted streams. Furthermore, water quality improvement was more evident in the sub-watersheds which were heavily impacted by past mining activities and reclaimed by reforestation, indicating good reclamation practice had positive impact on water quality over time. PMID:21167556

  5. Human modification of the atmospheric water cycle through land use change

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Keys, Patrick; Fetzer, Ingo; Savenije, Hubert; Gordon, Line

    2016-04-01

    Human society have radically transformed the land surface of the Earth and through that altered the hydrological cycle in various way. In this research, we quantify and analyse the global changes to terrestrial moisture recycling from anthropogenic driven modifications in land cover and land use. We simulate evaporation and moisture recycling in potential, historical, and current land cover and land use scenarios by coupling a global hydrological model (STEAM) with a moisture tracking scheme (WAM-2layers). Moreover, we investigate where and when rainfall change occurs, assuming that change in moisture recycling translates into change in rainfall. Although changes in the hydrological flows are limited at the global and annual average, the spatial and temporal differences are significant. Propagation of land use change into rainfall change appears non-uniformly distributed. In particular, disappearance of vegetation appears to reduce the dry season length and affect the dry season rainfall more than the average. Thus, land use change in certain regions potentially affects agricultural development in downwind regions by altering the total rainfall as well as the dry season length. This study shows how land resources and water availability are tightly connected also over large distances, and points to the need to study land use change and climate change in conjunction.

  6. Effects of future climate and land cover changes on biogenic emissions and air quality in the US

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Gonzalez Abraham, R.; Arroyo, A.; Lamb, B. K.; Duhl, T.; Wiedinmyer, C.; Guenther, A. B.; Zhang, Y.; Salathe, E. P.

    2009-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetations are highly reactive in the atmosphere and contribute to ozone and secondary organic aerosol formation. Climate change influences vegetation distributions and emissions of BVOCs and thereby affects air quality. As part of a comprehensive investigation of the effects of global change on regional air quality in the US, this study examines the effects of future climate and land cover changes on emissions of BVOCs into the atmosphere and air quality in the US. The mesoscale WRF (Weather Research and Forecasting) model is applied at hemispheric (220 km grid cells) and continental US (36 km grid cells) scales for current (1995-2004) and future (2045-2054) decades to downscale climate results from the ECHAM5 global climate model for IPCC SRES scenario A1B. The MEGAN (Model of Emissions of Gases and Aerosols from Nature) model is driven by WRF meteorological results to predict biogenic emissions of VOCs and NOx. MEGAN accounts for vegetation species distributions and environmental factors such as temperature and light. Current decade vegetation distributions are derived from satellite observations. Future vegetation distributions are predicted from MAPSS (Mapped Atmosphere-Plant-Soil System) and the land cover model of IMAGE 2.0 (Integrated Model to Assess the Global Environment). Future land cover changes include the expansion of croplands so that land management changes can also be examined. The CMAQ (Community Multiscale Air Quality Modeling) chemical transport model is used to simulate O3 and aerosol concentrations using current- and future-decade biogenic emissions but with anthropogenic emissions held constant at current-decade levels. Results showing the changes in US air quality due to climate- and landuse-driven changes in biogenic emissions will be presented. These results are compared to previous simulations derived from the IPCC SRES scenario A1 scenario with the PCM (Parallel Climate Model

  7. Concetration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll after the Final Land-Impact Test

    SciTech Connect

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Kehl, S R; Lindman, T R; Yakuma, S C

    2010-04-22

    Re-entry vehicles on missiles launched from Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An Environmental Assessment (EA) was written at the beginning of the program to assess potential impact of DU and Be, the major RV materials of interest from a health and environmental perspective, for both ocean and land impacts. The chemical and structural form of Be and DU in RVs is such that they are insoluble in soil water and seawater. Thus, they are not toxic to plant life on the isalnd (no soil to plant uptake.) Similarly, due to their insolubility in sea water there is no uptake of either element by fish, mollusks, shellfish, sea mammals, etc. No increase in either element has been observed in sea life around Illeginnin Island where deposition of DU and Be has occured. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of nearly 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  8. Deformation of a water shell during free fall in air

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-04-01

    The basic regularities of the change in the shape and sizes (the initial volume is 0.05-0.5 L) of a water shell are singled out in its deformation during free fall in air from a height of 3 m. The 3D recording of the basic stages of deformation (flattening of the shell, nucleation, growth, and destruction of bubbles, formation of the droplet cloud) is carried out using high-speed (up to 105 frames per second) Phantom V411 and Phantom Miro M310 video cameras and the program complex Tema Automotive (with the function of continuous tracking). The physical model of destruction of large water bodies is formulated at free fall with the formation of the droplet cloud.

  9. Microrheology Using Optical Tweezers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Levine, Alex; Dennin, Michael

    2010-11-01

    Microrheological techniques have been used successfully to determine mechanical properties of materials important in cellular structure. Also critical to cellular mechanical functions are biological membranes. Many aspects of biological membranes can be modeled using Langmuir monolayers, which are single layers surfactants at the air-water interface. The macroscopic mechanical properties of Langmuir monolayers have been extensively characterized. In contrast to macroscopic measurements, we report on experimental methods for studying the rheological properties of Langmuir monolayers on the micron scale. A water immersion optical tweezers system is used to trap ˜1 micron diameter beads in a monolayer. The passive motion of the trapped beads is recorded at high frequency and the complex shear modulus is calculated. Preliminary microrheological data of a fatty acid monolayer showing dependence on surface pressure will be presented. Experimental obstacles will also be discussed.

  10. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  11. Restoring abandoned agricultural lands in cold desert shrublands: tradeoffs between water availability and invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of abandoned agricultural lands to create sustainable ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or su...

  12. Metrics for Nitrate Contamination of Ground Water at CAFO Land Application Site - Arkansas Dairy Study

    EPA Science Inventory

    Nitrate is the most common chemical contaminant found in ground water. Recent research by U.S. EPA has shown that land application of manure can cause nitrate contamination of ground water above the maximum contaminant levels (MCLs) of 10 mg NO3-N/ L at significant depths. This...

  13. Statistical comparisons of ground-water quality underlying different land uses in central Florida

    SciTech Connect

    Rutledge, A.T.; German, E.R. Geological Survey, Altamonte Springs, FL )

    1988-09-01

    Human activities at land surface can affect the quality of water recharging groundwater systems. Because ground water is the principal source of drinking water in many areas, it is necessary to know the relation between land use and ground-water quality. This study is 1 of 7 being made throughout the US as part of the Toxic Waste - Ground-Water Contamination Program of the US Geological Survey. This report documents statistical comparisons of ground-water quality for three test areas in central Florida: (1) a control area where land use is minimal, (2) a citrus-growing area where effects of agriculture may be expected, and (3) a phosphate-mining area where effects of mining activities may be expected. This study addresses water-quality conditions in the surficial aquifer, which consists of sand and shell beds of Pleistocene and Holocene age. The two developed areas are representative of land uses that characterize large areas of Florida, and the control area is representative of near-pristine conditions that exist over a large area, so results of this study may be transferable. The water-quality variables of interest include physical properties, major ions, nutrients, and trace elements.

  14. Metrics for nitrate contamination of ground water at CAFO land application sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of manure from concentrated animal feeding operations (CAFOs) may lead to contamination of ground water with nitrate. CAFOs routinely apply animal manure according to nutrient management plans (NMPs). The objective of this research was to determine if NMPs protect ground water from ...

  15. 78 FR 31521 - Economic and Environmental Principles and Guidelines for Water and Related Land Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Principles and Requirements into agency missions and programs. Per the March 27, 2013 notice, at 78 FR 18562... QUALITY Economic and Environmental Principles and Guidelines for Water and Related Land Resources... Environmental Quality. ACTION: Extension of comment period. SUMMARY: Section 2031 of the Water...

  16. 78 FR 18562 - Economic and Environmental Principles and Guidelines for Water and Related Land Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... QUALITY Economic and Environmental Principles and Guidelines for Water and Related Land Resources... Quality. ACTION: Draft guidelines with request for comments. SUMMARY: Section 2031 of the Water Resources.../initiatives/PandG . FOR FURTHER INFORMATION CONTACT: Catherine Shuman, Council on Environmental Quality...

  17. 78 FR 18562 - Economic and Environmental Principles and Requirements for Water and Related Land Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... QUALITY Economic and Environmental Principles and Requirements for Water and Related Land Resources Implementation Studies; Final AGENCY: Council on Environmental Quality. ACTION: Notice of Availability of Final... Quality at (202) 395-5750. SUPPLEMENTARY INFORMATION: Section 2031 of the Water Resources Development...

  18. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  19. Effects of land use on fresh waters: Agriculture, forestry, mineral exploitation, urbanisation

    SciTech Connect

    Solbe, J.F.

    1986-01-01

    This book offers a broad consideration of the effects of land use on fresh waters above and below ground. Experts address a wide range of issues in relation to the four major uses of land. Taken from an international conference held at the University of Stirling in 1985, coverage includes sewerage and waste-water treatment, long-term contamination of aquifers below cities, mineral exploitation, use of water in food production, wood production and more. Remedies and areas requiring further study are outlined.

  20. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  1. Comparison of two methods for delineating land use near monitoring wells used for assessing quality of shallow ground water

    USGS Publications Warehouse

    Lorenz, D.L.; Goldstein, R.M.; Cowdery, T.K.; Stoner, J.D.

    2003-01-01

    Two methods were compared for delineating land use near shallow monitoring wells. These wells were used to assess the effects of agricultural cropland on the quality of recently recharged ground water in two sand and gravel aquifers located near land surface. The two methods for delineating land use near wells were (1) the sector method, which used potentiometric-surface maps to estimate average flow direction and a ground-water-flow model to estimate maximum length of contributing area to the monitoring well within an upgradient sector; and (2) the circle method, which used a 500- meter radius circle around the well based on a national empirical analysis. Land uses were compiled for 29 wells in each of two surficial aquifers in the Red River of the North Basin within the area defined by each method. Land use near each well was interpreted from orthorectified photographs and site inspection for both delineation methods. Land use near individual wells characterized by each method varied greatly, which can affect the results of statistical correlations between land use and water quality. Land use determined by the circle method related more closely to the land use for each entire study area. Land use determined by the sector method (within 200 meters from the wells) compared more favorably to ground-water quality based on nitrate concentrations. The maximum length of contributing areas to wells estimated in this study may be of value for other studies of unconsolidated sand and gravel aquifers with similar hydrogeological characteristics of permeability, water-table slopes, recharge, and depth to water. The additional effort required for estimating the model delineation of land use and land cover for the sector method must be weighed against the improved confidence in statistical correlation between land use and the quality of shallow ground water. Improved scientific confidence and understanding of relations between land use and quality of ground water may encourage

  2. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  3. Simulation model finned water-air-coil withoutcondensation

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its

  4. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  5. Monitoring multi-decadal satellite earth observation of soil moisture using era-land global land water resources dataset

    NASA Astrophysics Data System (ADS)

    Albergel, Clement; Dorigo, Wouter; Balsamo, Gianpaolo; de Rosnay, Patricia; Muñoz-Sabater, Joaquin; Isaksen, Lars; Brocca, Luca; de Jeu, Richard; Wagner, Wolfgang

    2014-05-01

    It has been widely recognized that soil moisture is one of the main drivers of the water, energy and carbon cycles. It is a crucial variable for Numerical Weather Prediction (NWP) and climate projections because it plays a key role in hydro-meteorological processes. A good representation of soil moisture conditions can help improving the forecasting of precipitation, temperature, droughts and floods. For many applications global or continental scale soil moisture maps are needed. As a consequence, a signi?cant amount of studies have been conducted to obtain such information. For that purpose, land surface modeling, remote sensing techniques or a combination of both through Land Data Assimilation Systems are used. Assessing the quality of these products is required and for instance, the release of a new -long term- harmonized soil moisture product (SM-MW hereafter) from remote sensing within the framework of the European Space Agency's Water Cycle Multi-mission Observation Strategy (WACMOS) and Climate Change Initiative (CCI) projects in 2012 (more information at http://www.esa-soilmoisture-cci.org/) triggered several evaluation activities. The typical validation approach for model and satellite based data products is to compare them to in situ observations. However the evaluation of soil moisture products using ground measurements is not trivial. Even if in the recent years huge efforts were made to make such observations available in contrasting biomes and climate conditions, long term and large scale ground measurements networks are still sparse. Additionally, different networks will present different characteristics (e.g. measurement methods, installation depths and modes, calibration techniques, measurement interval, and temporal and spatial coverage). Finally using in situ measurements, the quality of retrieved soil moisture can be accurately assessed for the locations of the stations. That is why it is of interest to conceive new validation methods

  6. Surfactin at the Water/Air Interface and in Solution.

    PubMed

    Iglesias-Fernández, Javier; Darré, Leonardo; Kohlmeyer, Axel; Thomas, Robert K; Shen, Hsin-Hui; Domene, Carmen

    2015-10-13

    The lipopeptide surfactin produced by certain strains of Bacillus subtillis is a potent biosurfactant with high amphiphilicity and a strong tendency for self-aggregation. Surfactin possesses a number of valuable biological properties such as antiviral, antibacterial, antifungal, and hemolytic activities. Owing to these properties, in addition to the general advantages of biosurfactants over synthetic surfactants, surfactin has potential biotechnological and biomedical applications. Here, the aggregation properties of surfactin in solution together with its behavior at the water/air interface were studied using classical molecular dynamics simulations (MD) at three different pH values. Validation of the MD structural data was performed by comparing neutron reflectivity and volume fraction profiles computed from the simulations with their experimental counterparts. Analysis of the MD trajectories supported conclusions about the distribution, conformations, and interactions of surfactin in solution and at the water-air interface. Considering altogether, the work presented provides atomistic models for the rationalization of some of the structural and dynamic characteristics as well as the modes of action of surfactin at different pH values. PMID:26393968

  7. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  8. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes). PMID:27074929

  9. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  10. Assessment of Economic and Water Quality Impacts of Land Use Change Using a Simple Bioeconomic Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, Gandhi; Srivastava, Puneet; Marzen, Luke; Hite, Diane; Hatch, Upton

    2008-07-01

    The objective of this study is to assess the economic and water quality impact of land use change in a small watershed in the Wiregrass region of Alabama. The study compares changes in water quality and revenue from agricultural and timber production due to changes in land use between years 1992 and 2001. The study was completed in two stages. In the first stage, a biophysical model was used to estimate the effect of land use change on nitrogen and phosphorus runoff and sediment deposition in the main channel; in the second stage, farm enterprise budgeting tools were used to estimate the economic returns for the changes in land use condition. Both biophysical and economic results are discussed, and a case for complex optimization to develop a decision support system is presented.

  11. Assessment of economic and water quality impacts of land use change using a simple bioeconomic model.

    PubMed

    Bhattarai, Gandhi; Srivastava, Puneet; Marzen, Luke; Hite, Diane; Hatch, Upton

    2008-07-01

    The objective of this study is to assess the economic and water quality impact of land use change in a small watershed in the Wiregrass region of Alabama. The study compares changes in water quality and revenue from agricultural and timber production due to changes in land use between years 1992 and 2001. The study was completed in two stages. In the first stage, a biophysical model was used to estimate the effect of land use change on nitrogen and phosphorus runoff and sediment deposition in the main channel; in the second stage, farm enterprise budgeting tools were used to estimate the economic returns for the changes in land use condition. Both biophysical and economic results are discussed, and a case for complex optimization to develop a decision support system is presented. PMID:18363053

  12. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    NASA Technical Reports Server (NTRS)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  13. Hydrologic control on water trade in dry land areas

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2009-12-01

    Water resource (and agriculture) in arid/semi arid areas, especially in developing countries, is increasingly under pressure in the face of global change. While expansion of physical infrastructure such as expansion of irrigation or dam structures can help, many (such as International Monetary Fund) have emphasized introduction of other adaptive mechanisms, such as the use of financial instruments, to smooth out fluctuations in water availability (or agricultural income) caused by (even increasing) erraticity in rainfall patterns. One such mechanism is water trade, where a downstream agent makes a payment to an upstream agent for additional natural flow and if the upstream agent agrees she releases additional flow by changing her landuse pattern. However, such a mechanism is fraught with questions ranging from region to region physical and financial viability of trade in water, role of hydrology in its viability, to the challenges of implementing it in developing countries. Answers to such questions are of utmost importance if water trade is to be considered as a serious coping mechanism. This paper delves on the role that hydrology, specifically hydrologic properties, plays in viability of water trade in a region. We consider water management at basin level, each of the agents (here a ‘representative’ water use, for eg. a farmer) occupies a sub-catchment within a basin and hydrology underlying each such agent is represented by a lumped single linear reservoir model. This allows us to consider non-steady state conditions at monthly scale while calculating prices of water trade securities between contiguous agents based on partial equilibrium modeling. A novel result from this innovative approach is that equilibrium pricing of water trade depends on “effective” hydraulic conductivity of the basin as well as erraticity in rainfall. We implement and present the results for basins in Gujarat and Rajasthan, two semi-arid states in western India that are most

  14. A comparison of synoptic-scale development characteristics for over-water and over-land cases of explosive cyclone development

    NASA Technical Reports Server (NTRS)

    Lupo, Anthony R.; Smith, Phillip J.

    1992-01-01

    The Zwack and Okossi (1986) equation is here demonstrated to be an effective tool for the diagnosis of synoptic-scale cyclone development, and is noted to indicate that cyclonic vorticity advection is the most consistent contributor to the explosive development of a given cyclone. Warm air advection and latent heat release also contributed to explosive development in varying degrees. The adiabatic temperature changes forced by vertical motion opposed the development of both over-water and over-land cyclone development.

  15. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  16. Urban land-use study plan for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Squillace, P.J.; Price, C.V.

    1996-01-01

    This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.

  17. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    NASA Astrophysics Data System (ADS)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong

  18. Land use, water and Mediterranean landscapes: modelling long-term dynamics of complex socio-ecological systems.

    PubMed

    Barton, C Michael; Ullah, Isaac I; Bergin, Sean

    2010-11-28

    The evolution of Mediterranean landscapes during the Holocene has been increasingly governed by the complex interactions of water and human land use. Different land-use practices change the amount of water flowing across the surface and infiltrating the soil, and change water's ability to move surface sediments. Conversely, water amplifies the impacts of human land use and extends the ecological footprint of human activities far beyond the borders of towns and fields. Advances in computational modelling offer new tools to study the complex feedbacks between land use, land cover, topography and surface water. The Mediterranean Landscape Dynamics project (MedLand) is building a modelling laboratory where experiments can be carried out on the long-term impacts of agropastoral land use, and whose results can be tested against the archaeological record. These computational experiments are providing new insights into the socio-ecological consequences of human decisions at varying temporal and spatial scales. PMID:20956371

  19. Coupled hydrologic and land use change models for decision making on land and water resources in the Upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Yalew, Seleshi; van der Zaag, Pieter; Mul, Marloes; Uhlenbrook, Stefan; Teferi, Ermias; van Griensven, Ann; van der Kwast, Johannes

    2013-04-01

    Hydrology of a basin, alongside climate change, is well documented to impact and to be impacted by land use/land cover change processes. The need to understand the impacts of hydrology on land use change and vice- versa cannot be overstated especially in basins such as the Upper Blue Nile in Ethiopia, where the vast majority of farmers depend on rain-fed agriculture. A slight fluctuation in rainy seasons or an increase or decrease in magnitude of precipitation can easily trigger drought or flooding. On the other hand, ever growing population and emerging economic development, among others, is likely to continually alter land use/land cover change, thereby affecting hydrological processes. With the intention of identifying and analyzing interactions and future scenarios of the hydrology and land use/land cover, we carried out a case study on a meso-scale catchment, in the Upper Blue Nile basin. A land use model using SITE (SImulation of Terrestrial Environments) was built for analyzing land use trends from aerial land cover photographs of 1957 and simulate until 2009 based on socio-economic as well as biophysical factors. Major land use drivers in the catchment were identified and used as input to the land use model. Separate land use maps were produced using Landsat images of 1972, 1986, 1994 and 2009 for historical calibration of the land use model. By the same token, a hydrological model for the same catchment was built using the SWAT (Soil and Water Assessment Tool) model. After calibration of the two independent models, they were loosely coupled for analyzing the changes in either of the models and impacts on the other. Among other details, the coupled model performed better in identifying limiting factors from both the hydrology as well as from the land use perspectives. For instance, the simulation of the uncoupled land use model alone (without inputs from SWAT on the water budget of each land use parcel) continually considered a land use type such as a wet

  20. Contemporary changes of water resources, water and land use in Central Asia based on observations and modeling.

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Prousevitch, A.; Sokolik, I. N.; Lammers, R. B.

    2015-12-01

    Water is a key agent in Central Asia ultimately determining human well-being, food security, and economic development. There are complex interplays among the natural and anthropogenic drivers effecting the regional hydrological processes and water availability. Analysis of the data combined from regional censuses and remote sensing shows a decline in areas of arable and irrigated lands and a significant decrease in availability of arable and irrigated lands per capita across all Central Asian countries since the middle of 1990thas the result of post-Soviet transformation processes. This change could lead to considerable deterioration in food security and human system sustainability. The change of political situation in the region has also resulted in the escalated problems of water demand between countries in international river basins. We applied the University of New Hampshire - Water Balance Model - Transport from Anthropogenic and Natural Systems (WBM-TrANS) to understand the consequences of changes in climate, water and land use on regional hydrological processes and water availability. The model accounts for sub-pixel land cover types, glacier and snow-pack accumulation/melt across sub-pixel elevation bands, anthropogenic water use (e.g. domestic and industrial consumption, and irrigation for most of existing crop types), hydro-infrastructure for inter-basin water transfer and reservoir/dam regulations. A suite of historical climate re-analysis and temporal extrapolation of MIRCA-2000 crop structure datasets has been used in WBM-TrANS for this project. A preliminary analysis of the model simulations over the last 30 years has shown significant spatial and temporal changes in hydrology and water availability for crops and human across the region due to climatic and anthropogenic causes. We found that regional water availability is mostly impacted by changes in extents and efficiency of crop filed irrigation, especially in highly arid areas of Central Asia

  1. Land surface water cycles observed with satellite sensors

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Njoku, E. G.; Brakenridge, G. R.; Kim, Y.

    2005-01-01

    Acceleration of the global water cycle may lead to increased global precipitation, faster evaporation and a consequent exacerbation of hydrologic extreme. In the U.S. national assessment of the potential consequences of climate variability and change, two GCMs (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S. particularly during winter (Felzer and Heard, 1999). Increased precipitation potentially has important impacts on agricultural and water use in the southeast U.S. (Hatch et al., 1999) and in the central Great Plains (Nielsen, 1997). A hurricane model predicts a 40% precipitation increase for severe hurricanes affecting southeastern Florida, which provokes substantially greater flooding that could negate most of the benefits of present water-management practices in this basin (Gutowski et al., 1994). Thus, it is important to observe the hydroclimate on a continuous longterm basis to address the question of increased precipitation in the enhanced water cycle.

  2. WATERSHED-BASED LAND USE AND WATER QUALITY COMPARISON

    EPA Science Inventory

    Environmental managers have observed an apparent cause and effect relationship between the presence of individual onsite wastewater treatment systems and impaired water quality . At present many unpopulated areas in coastal Mississippi are experiencing strong development pressur...

  3. Arctic terrestrial water storage changes from GRACE satellite estimates and a land surface hydrology model

    NASA Astrophysics Data System (ADS)

    Su, F.; Alsdorf, D.; Shumb, C.; Lettenmaier, D.

    2008-12-01

    Continental water storage plays a key role in the global hydrological cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided a basis for estimating spatial and temporal variations of terrestrial water storage over areas order of 105 km2. These estimates show strong interseasonal and interannual variations in terrestrial water storage at high latitudes, which are attributable at least in part to the important role of snow water storage on the seasonal water cycle. Evaluation of the accuracy of the GRACE terrestrial water storage is complicated by the absence of direct observations of terrestrial water storage. Land surface hydrology models, forced with observations, provide an opportunity for evaluating GRACE estimates regionally and globally. In this study, the Variable Infiltration Capacity (VIC) land surface hydrology model, which calculates the land surface water and energy balance, is used to evaluate the GRACE over the pan-Arctic region. The VIC model is driven by ECMWF analysis fields, which have been shown to give comparable hydrologic results to gridded observations at high latitudes, and are available in near-real time. The VIC runs cover the GRACE period 2002-2007. The VIC calculated total terrestrial water storage changes over major Arctic river basins are compared with GRACE estimates. Storage components simulated by VIC including snow, soil moisture, lake/wetland storage, and stream storage changes are segregated from the VIC simulations, and the contributions of each of these components to seasonal and interannual variations in GRACE terrestrial water storage are analyzed.

  4. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000-2010

    NASA Astrophysics Data System (ADS)

    Deng, Xiangzheng; Shi, Qingling; Zhang, Qian; Shi, Chenchen; Yin, Fang

    It is well known that there are huge land use and land cover changes (LUCC) all over the world in recent decades, and plenty of ensuing effect appeared on the energy and water balance. This study aims to analyze the impacts of land use and land cover changes on the energy and water balance in the Heihe River Basin of China during 2000-2010, and four key study sites with representative hydrological stations and dramatic LUCC in the past decades were selected to illustrate the responses of the energy and water balance to LUCC. First, LUCC of the Heihe River Basin from 2000 to 2010 was analyzed based on the interpretation of remote sensing images. Then a series of indicators of the energy and water balances were simulated with the Weather Research and Forecasting (WRF) model and corresponding land use and land cover data. Thereafter the impacts of LUCC on the surface energy and water balance were detected and analyzed. The spatial-temporal variance of the impacts of LUCC on energy and water balance in a typical arid inland river basin was specifically presented in following analysis. The results show that different land use/cover conversions result in various energy balances. During this process, the most significant impacts on surface energy balance occurred when grassland was converted to barren or sparsely vegetated land. As for water balance, the impact is measured with variations of precipitation, runoff and evapotranspiration induced by LUCC, which were also remarkable, although seasonal trends of the effects are similar among various land use/cover conversions during 2000-2010. At last, policy suggestions, e.g., shifting the water balance by LUCC to improve the water management, are given to conclude this study.

  5. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  6. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  7. Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    A simple model of large-scale land (continental) water and energy balances is presented. The model is an extension of an earlier scheme with a record of successful application in climate modeling. The most important changes from the original model include 1) introduction of non-water-stressed stomatal control of transpiration, in order to correct a tendency toward excessive evaporation: 2) conversion from globally constant parameters (with the exception of vegetation-dependent snow-free surface albedo) to more complete vegetation and soil dependence of all parameters, in order to provide more realistic representation of geographic variations in water and energy balances and to enable model-based investigations of land-cover change; 3) introduction of soil sensible heat storage and transport, in order to move toward realistic diurnal-cycle modeling; 4) a groundwater (saturated-zone) storage reservoir, in order to provide more realistic temporal variability of runoff; and 5) a rudimentary runoff-routing scheme for delivery of runoff to the ocean, in order to provide realistic freshwater forcing of the ocean general circulation model component of a global climate model. The new model is tested with forcing from the International Satellite Land Surface Climatology Project Initiative I global dataset and a recently produced observation-based water-balance dataset for major river basins of the world. Model performance is evaluated by comparing computed and observed runoff ratios from many major river basins of the world. Special attention is given to distinguishing between two components of the apparent runoff ratio error: the part due to intrinsic model error and the part due to errors in the assumed precipitation forcing. The pattern of discrepancies between modeled and observed runoff ratios is consistent with results from a companion study of precipitation estimation errors. The new model is tuned by adjustment of a globally constant scale factor for non-water

  8. The impact of land use changes on water pathways, soil formation and soil functioning

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; Ameijeiras-Mariño, Yolanda; Minella, Jean P. G.; Vanderborght, Jan; Govers, Gerard

    2015-04-01

    The major role played by the hydrology in controlling biogeochemical fluxes at various scales has been highlighted in several studies (e.g. Van Gaelen et al., 2014; Jiang et al., 2010). Numerous studies have highlighted different factors controlling water fluxes at the hillslope or catchment scale, such as physico-chemical soil characteristics and structure (Uhlenbrook et al., 2008) and soil thickness (Buttle et al., 2004). Given the potential important impact of land use changes on water fluxes (Özturk et al., 2013), it is surprising that relatively few studies investigated the impacts of those changes. This does not only imply that the consequences of land use change on hydrological and biogeochemical pathways and fluxes are still difficult to predict but also that we lack critical information on how such changes may feed back to soil processes. Therefore, it remains impossible to assess to what extent land use conversions may affect biogeochemical processes in soils and/or soil production through weathering. The overall objective of this research project is therefore to investigate how land use change affects water and biogeochemical fluxes and how these changes may, on their turn, affect soil and landscape development on the long term. In order to achieve this objective it is necessary to not only assess the effect of land use on fluxes leaving the catchment, but also on how land use change affects water pathways and water chemistry within the catchment. This requires the combined use of a wide range of classical and novel techniques. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. Soil sampling, stream discharge monitoring and sampling, pore water sampling, groundwater monitoring and sampling, and geophysical techniques (Time Domain Reflectometry and Electro Magnetic Induction) are combined to yield information on water and solute movement at the plot, slope and catchment

  9. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  10. Remote sensing of land use and water quality relationships - Wisconsin shore, Lake Michigan

    NASA Technical Reports Server (NTRS)

    Haugen, R. K.; Marlar, T. L.

    1976-01-01

    This investigation assessed the utility of remote sensing techniques in the study of land use-water quality relationships in an east central Wisconsin test area. The following types of aerial imagery were evaluated: high altitude (60,000 ft) color, color infrared, multispectral black and white, and thermal; low altitude (less than 5000 ft) color infrared, multispectral black and white, thermal, and passive microwave. A non-imaging hand-held four-band radiometer was evaluated for utility in providing data on suspended sediment concentrations. Land use analysis includes the development of mapping and quantification methods to obtain baseline data for comparison to water quality variables. Suspended sediment loads in streams, determined from water samples, were related to land use differences and soil types in three major watersheds. A multiple correlation coefficient R of 0.85 was obtained for the relationship between the 0.6-0.7 micrometer incident and reflected radiation data from the hand-held radiometer and concurrent ground measurements of suspended solids in streams. Applications of the methods and baseline data developed in this investigation include: mapping and quantification of land use; input to watershed runoff models; estimation of effects of land use changes on stream sedimentation; and remote sensing of suspended sediment content of streams. High altitude color infrared imagery was found to be the most acceptable remote sensing technique for the mapping and measurement of land use types.

  11. The aesthetics of water and land: a promising concept for managing scarce water resources under climate change.

    PubMed

    Tielbörger, Katja; Fleischer, Aliza; Menzel, Lucas; Metz, Johannes; Sternberg, Marcelo

    2010-11-28

    The eastern Mediterranean faces a severe water crisis: water supply decreases due to climate change, while demand increases due to rapid population growth. The GLOWA Jordan River project generates science-based management strategies for maximizing water productivity under global climate change. We use a novel definition of water productivity as the full range of services provided by landscapes per unit blue (surface) and green (in plants and soil) water. Our combined results from climatological, ecological, economic and hydrological studies suggest that, in Israel, certain landscapes provide high returns as ecosystem services for little input of additional blue water. Specifically, cultural services such as recreation may by far exceed that of food production. Interestingly, some highly valued landscapes (e.g. rangeland) appear resistant to climate change, making them an ideal candidate for adaptive land management. Vice versa, expanding irrigated agriculture is unlikely to be sustainable under global climate change. We advocate the inclusion of a large range of ecosystem services into integrated land and water resources management. The focus on cultural services and integration of irrigation demand will lead to entirely different but productive water and land allocation schemes that may be suitable for withstanding the problems caused by climate change. PMID:20956374

  12. Hanford Federal Facility state of Washington leased land

    SciTech Connect

    Not Available

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

  13. Cost analysis of water and sediment diversions to optimize land building in the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Kenney, Melissa A.; Hobbs, Benjamin F.; Mohrig, David; Huang, Hongtai; Nittrouer, Jeffrey A.; Kim, Wonsuck; Parker, Gary

    2013-06-01

    Land loss in the Mississippi River delta caused by subsidence and erosion has resulted in habitat loss and increased exposure of settled areas to storm surge risks. There is debate over the most cost-efficient and geomorphologically feasible projects to build land by river diversions, namely, whether a larger number of small, or a lesser number of large, engineered diversions provide the most efficient outcomes. This study uses an optimization framework to identify portfolios of diversions that are efficient for three general restoration objectives: maximize land built, minimize cost, and minimize water diverted. The framework links the following models: (1) a hydraulic water and sediment diversion model that, for a given structural design for a diversion, estimates the volume of water and sediment diverted; (2) a geomorphological land-building model that estimates the amount of land built over a time period, given the volume of water and sediment; and (3) a statistical model of investment cost as a function of diversion depth and width. An efficient portfolio is found by optimizing one objective subject to constraints on achievement of the other two; then by permuting those constraints, we find distinct portfolios that represent trade-offs among the objectives. Although the analysis explores generic relationships among size, cost, and land building (and thus does not consider specific project proposals or locations), the results demonstrate that large-scale land building (>200 km2) programs that operate over a time span of 50 years require deep diversions because of the enhanced efficiency of sand extraction per unit water. This conclusion applies whether or not there are significant scale economies or diseconomies associated with wider and deeper diversions.

  14. Twenty-first Century Challenges in Water Resources - A Land-Atmosphere Interaction Perspective

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Dirmeyer, P.; Lawrence, D. M.

    2012-12-01

    Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models show skill in simulating the 20th century observed warming rate (0.08 K/decade, global average). In the 21st century, the projected warming rate is significantly higher. For example, the 21st century global average temperature trend is four times higher in the 4.5 watts/m2 Representative Concentration Pathway (RCP 4.5), and nine times higher in 8.5 watts/m2 Representative Concentration Pathway (RCP 8.5), compared to the 20th century simulated temperature trend. In this study, we have investigated changes in land-atmosphere interactions, which have important consequences for fresh water availability in the 21st century. A multi-model analysis of results from 16 CMIP5 climate models that have detailed land surface schemes has been examined. A correlation between changes in annual evapotranspiration and temperature (a surrogate for available energy) or changes in precipitation (a surrogate for water availability) among different climate simulations; a total of 103 climate realizations is used as metric to study land-atmosphere interactions. We found that in the highest emission scenario (RCP 8.5), the earth system could potentially see a major change during the 21st century, where much of the land surface will transition to a predominantly water-limited system, i.e., despite increases in precipitation the land surface transitions to a drier state (water-limited). Details of the transition from water and energy limited systems in the 20th century to only water limited systems in the 21st century is presented. Results from the intermediate emissions scenario (RCP4.5) will be also discussed. These results have important consequences for fresh water availability, such as decreased water availability for ground water recharge and runoff.

  15. Integrated Land Surface Water State Indicators for Climate Assessment

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; McDonald, K. C.; Steiner, N.; Azarderakhsh, M.; Schroeder, R.

    2014-12-01

    Accurate characterization of seasonal freeze/thaw transition timing coupled with accompanying characterization of snowpack water content, surface inundation, and radiation balance give the potential for an unambiguous indication of climate change. Earth remote sensing data sources have demonstrated utility for determining these surface and radiation balance state variables. NASA's Climate Indicators Team seeks to develop and test potential climate indicators that employ NASA capabilities to support the National Climate Assessemnt and are useful to decision makers. We present development of a set of climate indicators built upon remote sensing measures of surface water state variables: Landscape freeze/thaw (FT), Snow Water Equivalent (SWE), Surface inundation fraction (Fw), and radiative flux. Indicators based on and derived from these parameters may be assembled from integrated remote sensing datasets and provide key information in assessment of climate state. Combined, these state variables provide unique insight into linkages and feedbacks in terrestrial energy, water and carbon cycles and allow examination to the response of the integrated system to climate drivers. Assembled from existing remote sensing datasets, these deliverables will represent the first broad-scale observationally-based, comprehensive measures of surface water state and distribution coupled to atmospheric radiation for use in climate change assessment.

  16. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  17. The Impact of Differing Land Surface Models and Water Isotopic Parameterizations to the Distribution of Water Isotopes in a Coupled Atmosphere-Land Global Climate Model.

    NASA Astrophysics Data System (ADS)

    Nusbaumer, J. M.; Wong, T. E.; Noone, D. C.

    2014-12-01

    Isotope-enabled Global Climate Models (GCMs) are becoming important tools in facilitating the synthesis of disparate isotope proxy data, allowing for uncertainties in proxy-based reconstructions to be tested in a way not possible with inversion methods. They also provide a means to test processes and parameterizations in the GCMs themselves, as new in-situ and remote sensing systems now can measure water isotopes at the spatial and temporal scale needed to validate global models. However, one issue with isotope-enabled GCMs is that much of the past focus and development has been on the atmosphere and ocean, which means other components of the earth system are poorly understood in comparison. Newly developed isotope-enabled GCMs with fully-functional land surface models, along with new observational platforms, allow for one to examine the importance of the land surface on the distribution of water isotopes in the earth system. We report here on experiments using the new NCAR isotope-enabled Community Atmosphere Model version 5 (iCAM5) and the isotope-enabled Community Land Model Version 4 (iCLM4), as well as a growing number of measurements of isotopic ratios in precipitation and water vapor. In particular, iCAM5 is used to simulate the modern isotopic climate coupled to a. a simple bucket model for isotopes, b. iCLM4 with equilibrium fractionation only, and c. fully-fractionating iCLM4. Along with the use of iCLM4, numerous variations in the representation of kinetic fractionation are examined, as well as different parameterizations for the impact of dew and frost on the isotope ratios in the surface water vapor, snow, and soil moisture. Results show that having a fully-functioning land surface model has a large impact on the simulated isotope ratios, and is necessary if one wants to simulate water isotopes in the earth system accurately. Accurately simulating d-excess and O17-excess requires having a kinetic fractionation factor that properly accounts for the

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface. PMID:18290440

  20. Impact of Land-use Dynamics on Water Resources of Upper Kharun Catchment (UKC), India

    NASA Astrophysics Data System (ADS)

    Kumar, N.

    2015-12-01

    Land-use and its spatial pattern and dynamics strongly influence water resources and demand which are the crucial elements to be considered in water management. The core of integrated water resources management consists of coordinating water supply and demand in a given socio-economic-ecological context and guided by a set of objectives (for example: sustainability, equity, impact awareness, stakeholder involvement). Fulfilling the coordinating function requires reliable information on the water balance components today and future developments which are under the strong influence of land-use dynamics. The information needs to be gained by simulation runs based on hydrological modeling tools with high resolution input regarding land-use (and further features of the basin relevant to runoff generation and precipitation). This research combines the Soil and Water Assessment Tool (SWAT) and an advanced procedure for spatio-temporal land-use mapping that considers and integrates the intra annual variation within a single map and hence better represents an area with different level of urbanization and multiple crop rotations. Due to its relevant impact on the water balance special attention is paid to aspects of irrigation. The study reveals that an increasing pumping rate of groundwater for irrigation is the main reason for decreasing the groundwater contribution to streamflow and subsequently a lowering in discharge and water yield. On the other hand, annual surface runoff is increased significantly by an expansion in built up areas over the decades in the respective parts of the study area. On the UKC scale, the impact of land-use change on the water balance until 2021 is small. However, the impact on water resources is clearly visible and significant at sub-catchment level (increase: surface runoff; decrease: percolation; decrease: groundwater contribution to streamflow and increase: actual evapotranspiration), where expanding urban areas and intensification of

  1. Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina).

    PubMed

    Solis, Marina; Mugni, Hernán; Hunt, Lisa; Marrochi, Natalia; Fanelli, Silvia; Bonetto, Carlos

    2016-09-01

    Agriculture and livestock may contribute to water quality degradation in adjacent waterbodies and produce changes in the resident invertebrate composition. The objective of the present study was to assess land use effects on the stream invertebrate assemblages in rural areas of the Argentine Pampa. The four sampling events were performed at six sites in four streams of the Pampa plain; two streams were sampled inside a biosphere reserve, and another one was surrounded by extensive livestock fields. The fourth stream was sampled at three sites; the upstream site was adjacent to agricultural plots, the following site was adjacent to an intensive livestock plot and the downstream site was adjacent to extensive breeding cattle plots. Higher pesticide concentrations were found at the site adjacent to agricultural plots and higher nutrient concentrations at the sites adjacent to agricultural and intensive breeding cattle plots. The invertebrate fauna were also different at these sites. Multivariate analysis showed a relationship between nutrient concentrations and taxonomic composition. Amphipoda (Hyalella curvispina) was the dominant group in the reserve and extensive breeding cattle sites, but was not present in the agricultural site. Also, Chironomidae were absent from the agricultural site while present at other sites. Gasteropoda (Biomphalaria peregrina), Zygoptera, and Hirudinea were dominant at the most impacted agricultural and intensive breeding cattle sites. PMID:27581006

  2. Quantifying green water flows for improved Integrated Land and Water Resource Management under the National Water Act of South Africa: A review on hydrological research in South Africa.

    NASA Astrophysics Data System (ADS)

    Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.

    2009-09-01

    The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of

  3. The Public Discourse about Land Use and Water Quality: Themes in Newspapers in the Upper Mississippi River Basin

    ERIC Educational Resources Information Center

    Schmid, Andrea N.; Thompson, Jan R.; Bengston, David N.

    2007-01-01

    Effective educational and management programs to improve water quality will require an improved understanding of public perceptions of the relationship between land use and water quality. We analyzed a large database of newspaper articles in the Upper Mississippi River Basin to assess the public discourse about water quality and land use, and…

  4. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Exercise of water rights... Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United States. This section governs the exercise of water and related rights reserved by the grantor of lands...

  5. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Exercise of water rights... Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United States. This section governs the exercise of water and related rights reserved by the grantor of lands...

  6. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Exercise of water rights... Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United States. This section governs the exercise of water and related rights reserved by the grantor of lands...

  7. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Exercise of water rights... Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United States. This section governs the exercise of water and related rights reserved by the grantor of lands...

  8. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Exercise of water rights... Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United States. This section governs the exercise of water and related rights reserved by the grantor of lands...

  9. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.

    PubMed

    Viau, Emily J; Goodwin, Kelly D; Yamahara, Kevan M; Layton, Blythe A; Sassoubre, Lauren M; Burns, Siobhán L; Tong, Hsin-I; Wong, Simon H C; Lu, Yuanan; Boehm, Alexandria B

    2011-05-01

    This work aimed to understand the distribution of five bacterial pathogens in O'ahu coastal streams and relate their presence to microbial indicator concentrations, land cover of the surrounding watersheds, and physical-chemical measures of stream water quality. Twenty-two streams were sampled four times (in December and March, before sunrise and at high noon) to capture seasonal and time of day variation. Salmonella, Campylobacter, Staphylococcus aureus, Vibrio vulnificus, and V. parahaemolyticus were widespread -12 of 22 O'ahu streams had all five pathogens. All stream waters also had detectable concentrations of four fecal indicators and total vibrio with log mean ± standard deviation densities of 2.2 ± 0.8 enterococci, 2.7 ± 0.7 Escherichia coli, 1.1 ± 0.7 Clostridium perfringens, 1.2 ± 0.8 F(+) coliphages, and 3.6 ± 0.7 total vibrio per 100 ml. Bivariate associations between pathogens and indicators showed enterococci positively associated with the greatest number of bacterial pathogens. Higher concentrations of enterococci and higher incidence of Campylobacter were found in stream waters collected before sunrise, suggesting these organisms are sensitive to sunlight. Multivariate regression models of microbes as a function of land cover and physical-chemical water quality showed positive associations between Salmonella and agricultural and forested land covers, and between S. aureus and urban and agricultural land covers; these results suggested that sources specific to those land covers may contribute these pathogens to streams. Further, significant associations between some microbial targets and physical-chemical stream water quality (i.e., temperature, nutrients, turbidity) suggested that organism persistence may be affected by stream characteristics. Results implicate streams as a source of pathogens to coastal waters. Future work is recommended to determine infectious risks of recreational waterborne illness related to O'ahu stream exposures and to

  10. Effects of increased CO2 on land water balance from 1850 to 1989

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Dong, Wenjie; Yuan, Wenping; Chou, Jieming; Zhang, Yong; Li, Juan

    2013-02-01

    Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year-2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year-2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice-snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.

  11. Water Footprints of Cellulosic Bioenergy Crops: Implications for Production on Marginal Lands

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Bhardwaj, A. K.; Basso, B.; Abraha, M. G.; Robertson, G. P.

    2014-12-01

    Water availability often limits crop production, even in relatively humid climates, and crops vary in their water demand and water use efficiency. Crop production for biofuel (ethanol or biodiesel) offers an alternative to fossil energy sources but requires large amounts of land, and is therefore a more viable option if such crops could be produced on marginal lands that often have soils of poor water-holding capacity. The selection of an appropriate crop requires information on its water demand, water use efficiency, and drought tolerance, but such information is incompletely available for the suite of cellulosic biofuel crops currently under consideration. This study analyzed soil moisture profiles (time-domain reflectometry) to estimate evapotranspiration and water use efficiency of three leading candidate crops for cellulosic bioenergy production (switchgrass, Miscanthus, and maize) grown in a relatively humid climate (Midwestern United States) over four years (2010-13). These field observations of water use by these annual and perennial crops reveal their water use efficiency for biomass and biofuel production. Total growing season water use was remarkably consistent among crops and across years of varying soil water availability, including very favorable precipitation years as well as a drought year (2012). Water use efficiency was more variable and, for maize, depends on whether the maize serves for both grain and cellulosic biofuel production.

  12. [Characteristics of Caragana microphylla sap flow and water consumption under different weather conditions on Horqin sandy land of northeast China].

    PubMed

    Yue, Guang-Yang; Zhao, Ha-Lin; Zhang, Tong-Hui; Yun, Jian-Ying; Niu, Li; He, Yu-Hui

    2007-10-01

    Employing heat balance Dynamax packaged sap flow measuring system and automatic weather recording system, the sap flow of artificial Caragana microphylla community on Horqin sandy land of northeast China was monitored consecutively in 2006, and the photosynthetically effective radiation, air temperature, relative humidity and wind velocity were measured synchronously. According to the manual records of weather conditions, four most representative weather conditions were gathered up to analyze the relationships of C. microphylla sap flow and its single branch water consumption with test meteorological factors. The results showed that under high air temperature and intense radiation on sunny days, the diurnal variation of C. microphylla sap flow appeared a broad peak curve, so as to adapt the circumstance of drought and water shortage via lower transpiration. The diurnal variations of sap flow and its dominant affecting factors differed with weather conditions, and photosynthetically effective radiation was always the dominant factor affecting the sap flow. The variation of the sap flow was the result of comprehensive effects of multi-meteorological factors, and the overall variation trend of water consumption of single branch was declined in the order of sunny days > cloudy days > windy days > rainy days, with the mean value being 459, 310, 281 and 193 mg x d(-1), respectively. PMID:18163294

  13. Microscopic dynamics of nanoparticle monolayers at air-water interface.

    PubMed

    Bhattacharya, R; Basu, J K

    2013-04-15

    We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (Π) and isothermal compression modulus (ϵ) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Φ∼0.82. We observe non-monotonic variation in both ϵ and the dynamic heterogeneity, characterized by the dynamical susceptibility χ4 with Φ, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. PMID:23411354

  14. Entrapment of ciliates at the water-air interface.

    PubMed

    Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2013-01-01

    The importance of water-air interfaces (WAI) on microorganism activities has been recognized by many researchers. In this paper, we report a novel phenomenon: the entrapment of ciliates Tetrahymena at the WAI. We first characterized the behavior of cells at the interface and showed that the cells' swimming velocity was considerably reduced at the WAI. To verify the possible causes of the entrapment, we investigated the effects of positive chemotaxis for oxygen, negative geotaxis and surface properties. Even though the taxes were still effective, the entrapment phenomenon was not dependent on the physiological conditions, but was instead affected by the physical properties at the interface. This knowledge is useful for a better understanding of the physiology of microorganisms at interfaces in nature and in industry. PMID:24130692

  15. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  16. Frontier Lecture in Hydrological Science: Land Use and the Changing Nature of World Water Resources

    NASA Astrophysics Data System (ADS)

    Foley, J. A.

    2005-12-01

    Historically, land use has mainly been considered a local environmental issue, but it is fast becoming a force of global significance. Worldwide changes to forests and farmlands, coastlines and waterways are being driven by the need to provide food, fiber, fresh water, and shelter to more than six billion people. Such changes in land use - including a significant expansion of global croplands, pastures, plantations, and urban areas in recent decades - have also been accompanied by large increases in global energy, freshwater, and fertilizer consumption. All together, these changes in land use practices have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of terrestrial hydrological systems and aquatic ecosystems to maintain clean, reliable freshwater resources, and their accompanying ecosystem services. We now face the challenge of managing "trade-offs" between meeting immediate human needs and maintaining the capacity of watersheds and aquatic ecosystems to provide goods and services in the long term. In this presentation, I will discuss the impacts of land use and land cover change on the state of global water resources. In particular, this talk will explore linkages among changing land cover, regional climate patterns, surface hydrological processes, the hydrology of large rivers, and the continued flow of ecosystem goods and services from the large watersheds of the world.

  17. Hydrologic and water-quality impacts of agricultural land use changes incurred from bioenergy policies

    NASA Astrophysics Data System (ADS)

    Lin, Zhulu; Anar, Mohammad J.; Zheng, Haochi

    2015-06-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin, an international river basin shared by the US and Canada. The influence of the land use change on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%.

  18. Exploring the interactions between water and sediment fluxes, plant growth, and land surface form through modeling

    NASA Astrophysics Data System (ADS)

    Flores Cervantes, J. H.; Bras, R. L.

    2006-12-01

    In a numerical model we explore the interactions between water fluxes, sediment fluxes, and plant growth, on a simulated land surface, and how these interactions shape the land surface in time. We hypothesize that the form of the land surface and the distribution of plants in space depends on the studied interactions. Our numerical model combines elements of an existing "landscape evolution model" where the land surface properties are assumed homogeneous, with: i) a model of soil thickness where a dynamic soil moisture is simulated; and ii) a model of vegetation growth and death as a function of soil moisture. Vegetation cover affects the land surface properties such as the critical shear stress and infiltration capacity. In the resulting model the land surface properties are spatially (and temporally) variable. Seasonality, runon, and the effects of differences in solar radiation in hillslopes with different inclination and orientation (with respect to the geographic north) in the evaporation and transpiration processes, are among the new elements incorporated into the new model. We compare this numerical model to field observations at a location in the Sevilleta Long Term Ecological Research (LTER) Site, NM, where opposing hillslopes, one facing north and the other facing south, are clearly different. The south facing slope has a scarcer vegetation and signs of more fluvial erosion than the north facing slope, which receives less solar radiation and thus is likely to experience less water losses due to evaporation.

  19. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  20. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  1. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  2. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  3. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  4. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  5. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... Violating Facilities” published pursuant to 40 CFR 15.20. By acceptance of a cooperative agreement in...

  6. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  7. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... Violating Facilities” published pursuant to 40 CFR 15.20. By acceptance of a cooperative agreement in...

  8. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... Violating Facilities” published pursuant to 40 CFR 15.20. By acceptance of a cooperative agreement in...

  9. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  10. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  11. Relay cropping for improved air and water quality.

    PubMed

    Schepers, James S; Francis, Dennis D; Shanahan, John F

    2005-01-01

    Using plants to extract excess nitrate from soil is important in protecting against eutrophication of standing water, hypoxic conditions in lakes and oceans, or elevated nitrate concentrations in domestic water supplies Global climate change issues have raised new concerns about nitrogen (N) management as it relates to crop production even though there may not be an immediate threat to water quality. Carbon dioxide (CO2) emissions are frequently considered the primary cause of global climate change, but under anaerobic conditions, animals can contribute by expelling methane (CH4) as do soil microbes. In terms of the potential for global climate change, CH4 is approximately 25 times more harmful than CO2. This differential effect is minuscule compared to when nitrous oxide (N2O) is released into the atmosphere because it is approximately 300 times more harmful than CO2. N2O losses from soil have been positively correlated with residual N (nitrate, NO3-) concentrations in soil. It stands to reason that phytoremediation via nitrate scavenger crops is one approach to help protect air quality, as well as soil and water quality. Winter wheat was inserted into a seed corn/soybean rotation to utilize soil nitrate and thereby reduce the potential for nitrate leaching and N2O emissions. The net effect of the 2001-2003 relay cropping sequence was to produce three crops in two years, scavenge 130 kg N/ha from the root zone, produce an extra 2 Mg residue/ha, and increase producer profitability by approximately 250 dollars/ha. PMID:15948582

  12. Common Pool Water Markets and their Role in Facilitating Land Use Change in Drying Climates

    NASA Astrophysics Data System (ADS)

    Teasley, R. L.; Milke, M.; Raffensperger, J. F.; Zargar, M.

    2010-12-01

    Concern is growing worldwide that climate change will lead to drier climates in many regions and in turn diminish water resources. To protect these limited resources, users may need to shift water use to more economically productive areas. However, changing the land use associated with water permits can be quite difficult, because water is not easily traded. Water markets have been well researched as a method for trading water between users, but these markets can often be difficult and costly requiring one-to-one trades between buyers and sellers. In contrast to a one-to-one market, a common pool market can reduce the transaction costs associated with trading water. In this research, a common pool market is applied to an example groundwater system set up in GWM2000 with ten users and various environmental constraints. The users represent three types of the largest groundwater users in the Canterbury region of New Zealand: agricultural, dairy and livestock. The response matrix from GWM2000 is used to develop constraints in the market model along with user bids. Bids are calculated from economic and water use data for Canterbury, New Zealand. Varying spatial distributions of water users by type are evaluated for the effect on the market under drying conditions. These conditions are simulated from climate change scenarios produced by the National Institute of Water and Atmospheric Research in New Zealand. The results demonstrate potential land use changes falls under drying conditions. As water availability falls, the price for additional water increases, particularly near environmental constraints, driving the land and water towards more efficient uses.

  13. Effects of dry-land vs. in-water specific strength training on professional male water polo players' performance.

    PubMed

    de Villarreal, Eduardo Sáez; Suarez-Arrones, Luis; Requena, Bernardo; Haff, G Gregory; Ramos-Veliz, Rafael

    2014-11-01

    We compared the effects of 6-week dry-land and in-water specific strength training combined with a water polo (WP) program on 7 sport-specific performance parameters. Nineteen professional players were randomly assigned to 2 groups: in-water strength group (WSG) (in-water training only) and dry-land strength group (LSG). The program included 3 weekly strength training sessions and 5 days of WP training per week for 6 weeks during the preseason. Ten-meter T-agility test, 20-m maximal sprint swim, maximal dynamic strength (1 repetition maximum), bench press (BP) and full squat (FS), in-water boost, countermovement jump (CMJ), and WP throwing speed were measured. Significant improvements (p ≤ 0.05) were found in the experimental groups in some variables: CMJ in the LSG and WSG (2.35 cm, 9.07%, effect size [ES] = 0.89; and 2.6 cm, 7.6%, ES = 0.83, respectively), in-water boost increased in the WSG group (4.1 cm; 11.48%; ES = 0.70), and FS and BP increased (p ≤ 0.05) only in the LSG group (12.1 kg; 11.27%; ES = 1.15 and 8.3 kg; 9.55%; ES = 1.30, respectively). There was a decrease of performance in agility test (-0.55 seconds; 5.60%; ES = 0.74). Both dry-land and in-water specific strength training and high-intensity training in these male WP players produced medial to large effects on most WP-specific performance parameters. Therefore, we propose modifications to current training methodology for WP players in preseason to include both the training programs (dry-land and in-water specific strength training and high-intensity training) for athlete preparation in this sport. PMID:24818541

  14. Dynamics of Water Yield From China's Terrestrial Ecosystems in the 20th Century: Impact of Climate Change, Atmospheric Carbon Dioxide, Tropospheric Ozone, and Land- Use

    NASA Astrophysics Data System (ADS)

    Liu, M.; Tian, H.; Zhang, C.; Ren, W.; Liu, J.

    2006-05-01

    The availability of freshwater resources is critical to China's economic development and human's health. Water yield, the runoff from the drainage basin, is one important index of ecosystem service that directly controls the total freshwater availability and rain erosity. The monsoon climate system and the complexity of natural geography in China lead to substantially spatial and temporal variability in water resources. It has been argued that intensively human activity and air pollution have altered the terrestrial water cycle in the last century. However, little is known about the magnitude and historical trend of water yield across China as well as underlying mechanisms. This study used a process-based Dynamic Land Ecosystem Model (DLEM) to address the effects of multiple stressors on water yield nationwide during 1900 to 2000. These multiple stressors include changes in climate, atmospheric CO2 concentration, tropospheric ozone, and land-use (including cropland expansion, cropland abandonment, urbanization, and irrigation). By using optimal fingerprinting statistical techniques and factorial simulation experiments, we determined the relative contribution of these multiple stressors to water yield for the study period. The simulated results were evaluated against river's runoff records and watershed observations. Our simulated results suggest that the land-use change and precipitation appear to be two primary factors controlling water yield in China.

  15. An operative environmental accounting framework for forest land blue water production

    NASA Astrophysics Data System (ADS)

    Beguería, Santiago; Leandri, Marc; Campos, Pablo

    2014-05-01

    We present a conceptual framework for the economic valuation of the water flows occurring in the forest lands. This framework is an extension of the criteria developed in the System of Environmental Economic Accounting-Experimental Ecosystem Accounting (SEEA-EEA) and provides a practical tool for the assessment of national or regional environmental assets. In terms of environmental policy, our accounting framework aims at valuing the contribution of forest lands to fresh water supply, contributing to a more complete valuation of the environmental asset value of forest land. Thanks to a combination of hydrological and economic models, our approach allows organizing hydrological and economic information in a coherent manner, constituting an informed tool to support the design of efficient incentives for forest-owners to manage their land cover towards more water-friendly options. As an example, we apply our hydro-economic model to a real life case study of two reservoirs in Andalusia, Spain, that differ significantly in their use of water. We use available hydrologic and economic data for evaluating the water environmental income at each site. We discuss on the differences found between the two sites and between vegetation types, and we present a sensitivity analysis regarding the main assumptions made in our calculations.

  16. Impacts of climate change and past land use change on the water resources in Pune, India

    NASA Astrophysics Data System (ADS)

    Wagner, P. D.; Kumar, S.; Schneider, K.

    2012-12-01

    Global change affects local and regional water resources and is therefore of major concern in current hydrologic research. Especially in regions with scarce water resources, high climate sensitivity, and/or dynamic socio-economic development, research on developing suitable adaptation and mitigation strategies is needed. In this study, we used the well-established and widely-used hydrologic model SWAT (Soil and Water Assessment Tool) to study the impact of climate change and past land use change on water resources. Our study aims at analyzing the impact of global change on the water balance components in the meso-scale Mula and Mutha Rivers catchment upstream of the city of Pune, India. To analyze climate change impacts regional climate model data based on IPCC emission scenario A1B was used by employing a downscaling method that rearranges historically measured data. The hydrologic model was run with the rearranged scenario weather data and model results were analyzed for the scenario period from 2020 to 2099. Past land use changes between 1989 and 2009 were identified with the help of three multi-temporal land use classifications, which were based on multi-spectral satellite data. Two model runs were performed and compared using the land use classifications of 1989 and 2009. Climate change leads to a slight increase of evapotranspiration. Particularly in the rainy season and in the first months of the dry season higher evapotranspiration can be observed. Towards the end of the scenario period low water storages in the major dams of the catchment at the beginning of the dry season indicate severe impacts on water availability. The impacts of land use changes balance out on the catchment scale and are hence more obvious at the sub-basin scale, where e.g., urbanization results in increased runoff and decreased evapotranspiration.

  17. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  18. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  19. Land Subsidence by Over-pumping in Huairou Water Emergency Source

    NASA Astrophysics Data System (ADS)

    Wang, S.; Gong, H.; Du, Z.; Gu, Z.

    2011-12-01

    Beijing is serious lack of water resource for years of drought and the development of socio-economic. Per capita water resource in Beijing has been reduced to 100m3, which is far below the internationally accepted alarm level. To ease the pressure of water supply, the government has established four emergency water sources, and Huairou Emergency Water Source which was built in 2003 is the first one. The designed annual extraction volume of Huairou Emergency Water Source is 120 million m3, and daily water supply capacity is 335,000 m3. Since lasting over-pumping, the groundwater level has dropped 25m on average, and the area of groundwater depression cone is expanding to 200km2 or even more, which causes land subsidence. Persistent Scatterers for SAR Interferometry(PSInSAR) is a well-known remote sensing technique with the ability to monitor ground deformations. In this paper, 28 Envisat ASAR images in 2003-2009 are used to monitor the ground deformations by PSInSAR technique. DEM and orbit data are provided by NASA and Delft University respectively. We use StaMPS/MTI to process the data above, and get more than 20,000 PS points in each interference graph. In order to show regional variations in the study area, we use IDW(inverse distance interpolation) algorithm to interpolate PS points, and generate land subsidence trend maps by ArcGIS. The correlation coefficient between predictive value and actual value is 0.91, so maps can nearly stand for the entire trend of land subsidence. The land subsidence trend maps show that:1) the maximum mean velocity of land subsidence is 8mm/a;2) yearly and seasonal land subsidence patterns are different, which related to the level of groundwater and the quantity of rainfall;3)there is a spatial and temporal similarity between land subsidence and the groundwater flow field-as the expanding of groundwater depression cone, the area of land subsidence is increasing, and both changed from SW-NE to NW-SE.

  20. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    NASA Astrophysics Data System (ADS)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.