Sample records for air water solid

  1. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  2. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less

  3. Interpreting contact angle results under air, water and oil for the same surfaces

    NASA Astrophysics Data System (ADS)

    Ozkan, Orkun; Yildirim Erbil, H.

    2017-06-01

    Under-water and under-oil superhydropobicity and superhydrophilicity have gained significant attention over the last few years. In this study, contact angles on five flat surfaces (polypropylene, poly(methyl methacrylate), polycarbonate, TEFLON-FEP and glass slide) were measured in water drop-in-air, air bubble-under-water, oil drop-in-air, air bubble-under-oil, oil drop-under-water and water drop-under-oil conditions. Heptane, octane, nonane, decane, dodecane, and hexadecane hydrocarbons were used as oils. Immiscible water/oil pairs were previously mutually saturated to provide thermodynamical equilibrium conditions and their surface and interfacial tensions were determined experimentally. These pairs were used in the two-liquid contact angle measurements. Surface free energies of the solid surfaces in air were determined independently by using the van Oss-Good method, using the contact angle results of pure water, ethylene glycol, formamide, methylene iodide and α-bromonaphalene. In addition, Zisman’s ‘critical surface tension’ values were also determined for comparison. In theory, the summation of contact angle results in a complementary case would give a total of 180° for ideal surfaces. However, it was determined that there are large deviations from this rule in practical cases and these deviations depend on surface free energies of solids. Three complementary cases of (water-in-air with air bubble-under-water); (oil-in-air with air bubble-under-oil); and (oil-under-water with water-under-oil) were investigated in particular to determine the deviations from ideality. A novel approach, named ‘complementary hysteresis’ [γ WA(cosθ 1  -  cosθ 2) and γ OW(cosθ 6  -  cosθ 5)] was developed where γ WA and γ OW represent the interfacial tensions of water/air and oil/water, and θ 1, θ 2, θ 5, and θ 6 were the contact angles of water/air, air bubble/water, oil/water and water/oil respectively. It was experimentally determined that

  4. Predictive model to describe water migration in cellular solid foods during storage.

    PubMed

    Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J

    2011-11-01

    Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.

  5. Solid Waste, Air Pollution and Health

    ERIC Educational Resources Information Center

    Kupchik, George J.; Franz, Gerald J.

    1976-01-01

    This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)

  6. Habitable Planets with Dynamic System of Global Air-Liquid-Solid Planet and Life

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Kato, T.

    2017-11-01

    Habitable zone is dynamic three phase states (air-liquid-solid), which will be obtained in water-planet with volatile exchanges. Water and carbon-bearing grains at older extraterrestrial stones suggest that there are no global ocean water system.

  7. Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles.

    PubMed

    Kawashima, Hisato; Paven, Maxime; Mayama, Hiroyuki; Butt, Hans-Jürgen; Nakamura, Yoshinobu; Fujii, Syuji

    2017-09-27

    Remotely controlling the movement of small objects is desirable, especially for the transportation and selection of materials. Transfer of objects between liquid and solid surfaces and triggering their release would allow for development of novel material transportation technology. Here, we describe the remote transport of a material from a water film surface to a solid surface using quasispherical liquid marbles (LMs). A light-induced Marangoni flow or an air stream is used to propel the LMs on water. As the LMs approach the rim of the water film, gravity forces them to slide down the water rim and roll onto the solid surface. Through this method, LMs can be efficiently moved on water and placed on a solid surface. The materials encapsulated within LMs can be released at a specific time by an external stimulus. We analyzed the velocity, acceleration, and force of the LMs on the liquid and solid surfaces. On water, the sliding friction due to the drag force resists the movement of the LMs. On a solid surface, the rolling distance is affected by the surface roughness of the LMs.

  8. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant.

    PubMed Central

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-01-01

    To study the structure-function relationship of pulmonary surfactant under conditions close to nature, molecular films of a model system consisting of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, and surfactant-associated protein C were prepared at the air-water interface of air bubbles about the size of human alveoli (diameter of 100 microm). The high mechanical stability as well as the absence of substantial film flow, inherent to small air bubbles, allowed for scanning force microscopy (SFM) directly at the air-water interface. The SFM topographical structure was correlated to the local distribution of fluorescent-labeled dipalmitoylphosphatidylcholine, as revealed from fluorescence light microscopy of the same bubbles. Although SFM has proven before to be exceptionally well suited to probe the structure of molecular films of pulmonary surfactant, the films so far had to be transferred onto a solid support from the air-water interface of a film balance, where they had been formed. This made them prone to artifacts imposed by the transfer. Moreover, the supported monolayers disallowed the direct observation of the structural dynamics associated with expansion and compression of the films as upon breathing. The current findings are compared in this respect to our earlier findings from films, transferred onto a solid support. PMID:11751334

  9. Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air.

    PubMed

    Llompart, M; Li, K; Fingas, M

    1998-10-16

    In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes.

  10. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  11. A comparison study of exploding a Cu wire in air, water, and solid powders

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  12. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  13. Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

    PubMed

    Hackett, S L; van Asselen, B; Wolthaus, J W H; Kok, J G M; Woodings, S J; Lagendijk, J J W; Raaymakers, B W

    2016-07-01

    A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute response of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. The responses of the three waterproof chambers measured on the MR-linac were 0.7%-1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on the MR-linac and less than 0.3% in

  14. Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, S. L., E-mail: S.S.Hackett@umcutrecht.nl

    Purpose: A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute responsemore » of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. Methods: Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. Results: The responses of the three waterproof chambers measured on the MR-linac were 0.7%–1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on

  15. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2017-02-01

    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface

  17. Solid-water detoxifying reagents for chemical and biological agents

    DOEpatents

    Hoffman, Dennis M [Livermore, CA; Chiu, Ing Lap [Castro Valley, CA

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  18. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  19. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  20. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  1. Drop impact on a solid surface at reduced air pressure

    NASA Astrophysics Data System (ADS)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  2. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  3. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  4. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  5. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  6. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation

    PubMed Central

    Gingerich, Daniel B.; Behrer, A. Patrick; Azevedo, Inês L.

    2017-01-01

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts. PMID:28167772

  7. Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California

    USGS Publications Warehouse

    Lamb, Charles E.

    1980-01-01

    The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)

  8. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    PubMed

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2015-03-15

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better

  9. EPA evaluates air, water controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairley, P.

    1996-06-05

    Water and air pollution controls make significant contribution to the economy`s health, according to two EPA reports. Clean water provides billions of dollars in benefits to US industries, says a recently released study; and the agency`s draft report on the benefits of air pollution identifiesmore » $$20 in medical costs avoided for every dollar spent on pollution controls. The Clean Water Industry Coalition (CWIC) says the water report reaffirms the need to {open_quotes}modernize{close_quotes} the Clean Water Act (CWA), but EPA administrator Carol Browner says a CWA {open_quotes}rollback{close_quotes} supported by CWIC and passed by House Republicans last May would have jeopardized industries that depend on clean water by weakening effluent standards. Browner denies that the benefits of clean water as identified by the EPA report would have protected water standards from the bill`s cost-benefit requirements. A draft EPA report on clean air leaked by the American Lung Association estimates that tailpipe and smokestack controls for air pollution saved 79,000 lives and resulted in 15 million fewer respiratory illnesses in 1990 alone. The report assesses the costs and benefits of the Clean Air Act from 1970 to 1990. The cost of federal, state, and local regulations were estimated at $$436 billion over the 20-year span, whereas direct benefits of reduced pollution totaled $6.8 trillion.« less

  10. Air sparging: Air-water mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Braida, Washington J.; Ong, Say Kee

    1998-12-01

    Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.

  11. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  12. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  13. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  14. SUB-PPB QUANTITATION AND CONFIRMATION OF PERCHLORATE IN DRINKING WATERS CONTAINING HIGH TOTAL DISSOLVED SOLIDS USING ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  15. New mud system produces solids-free, reusable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water,more » or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.« less

  16. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  17. Air Entrapment for Liquid Drops Impacting a Solid Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tan, Peng; Xu, Lei

    2012-11-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high. Hong Kong GRF grant CUHK404211 and direct grant 2060418.

  18. Indoor air pollution from unprocessed solid fuels in developing countries.

    PubMed

    Kaplan, Charlotte

    2010-01-01

    Approximately half of the world's population relies on biomass (primarily wood and agricultural residues) or coal fuels (collectively termed solid fuels) for heating, lighting, and cooking. The incomplete combustion of such materials releases byproducts with well-known adverse health effects, hence increasing the risk of many diseases and death. Among these conditions are acute respiratory infections, chronic obstructive pulmonary disease, heart disease, stroke, lung cancer, cataracts and blindness, tuberculosis, asthma, and adverse pregnancy outcomes. The International Agency for Research on Cancer has classified the indoor combustion of coal emissions as Group 1, a known carcinogen to humans. Indoor air pollution exposure is greatest in individuals who live in rural developing countries. Interventions have been limited and show only mixed results. To reduce the morbidity and mortality from indoor air pollution, countermeasures have to be developed that are practical, efficient, sustainable, and economical with involvement from the government, the commercial sector, and individuals. This review focuses on the contribution of solid fuels to indoor air pollution.

  19. Modeling the impact of solid noise barriers on near road air quality

    EPA Science Inventory

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutan...

  20. Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.

    PubMed

    Onaizi, Sagheer A; Nasser, M S; Al-Lagtah, Nasir M A

    2016-05-01

    Surfactin, a sustainable and environmentally friendly surface active agent, is used as a model to study the adsorption of biosurfactants at hydrophobic and hydrophilic solid-liquid interfaces as well as the air-liquid interface. Surfactin adsorption was monitored as a function of time and concentration using surface plasmon resonance (SPR) technique in the case of the solid-liquid interfaces or the drop shape analysis (DSA) technique in the case of the air-liquid interface. The results obtained in this study showed that surfactin adsorption at the "hard" hydrophobic (functionalized with octadecanethiol) solid-liquid and the "soft" air-liquid interface were 1.12 ± 0.01 mg m(-2) (area per molecule of 157 ± 2 Å(2)) and 1.11 ± 0.05 mg m(-2) (area per molecule of 159 ± 7 Å(2)), respectively, demonstrating the negligible effect of the interface "hardness" on surfactin adsorption. The adsorption of surfactin at the hydrophilic (functionalized with β-mercaptoethanol) solid-liquid interface was about threefold lower than its adsorption at the hydrophobic-liquid interfaces, revealing the importance of hydrophobic interaction in surfactin adsorption process. The affinity constant of surfactin for the investigated interfaces follows the following order: air > octadecanethiol > β-mercaptoethanol. Biosurfactants, such as surfactin, are expected to replace the conventional fossil-based surfactants in several applications, and therefore the current study is a contribution towards the fundamental understanding of biosurfactant behavior, on a molecular level, at hydrophobic and hydrophilic solid-liquid interfaces in addition to the air-liquid interface. Such understanding might aid further optimization of the utilization of surfactin in a number of industrial applications such as enhanced oil recovery, bioremediation, and detergency.

  1. Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL

  2. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  3. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  4. Spontaneously Combustible Solids -- A Literature Search

    DTIC Science & Technology

    1975-05-01

    Wasahizeon, D.* C. It. K(EY WORDS (Continue on reviers side It necesary and Identify by block number) Pyrophoric Materials Hazardous Materials...and Identify by block number) Existing information on spontaneously combustible solids including pyrophoric - air hazardous materials and water... pyrophoric -air hazardous and water reactive materials. All available hazard classification systems and test methods releting to spontaneous combustion have

  5. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  6. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  7. Dosimetry for 131Cs and 125I seeds in solid water phantom using radiochromic EBT film.

    PubMed

    Chiu-Tsao, Sou-Tung; Napoli, John J; Davis, Stephen D; Hanley, Joseph; Rivard, Mark J

    2014-09-01

    To measure the 2D dose distributions with submillimeter resolution for (131)Cs (model CS-1 Rev2) and (125)I (model 6711) seeds in a Solid Water phantom using radiochromic EBT film for radial distances from 0.06cm to 5cm. To determine the TG-43 dosimetry parameters in water by applying Solid Water to liquid water correction factors generated from Monte Carlo simulations. Each film piece was positioned horizontally above and in close contact with a (131)Cs or (125)I seed oriented horizontally in a machined groove at the center of a Solid Water phantom, one film at a time. A total of 74 and 50 films were exposed to the (131)Cs and (125)I seeds, respectively. Different film sizes were utilized to gather data in different distance ranges. The exposure time varied according to the seed air-kerma strength and film size in order to deliver doses in the range covered by the film calibration curve. Small films were exposed for shorter times to assess the near field, while larger films were exposed for longer times in order to assess the far field. For calibration, films were exposed to either 40kV (M40) or 50kV (M50) x-rays in air at 100.0cm SSD with doses ranging from 0.2Gy to 40Gy. All experimental, calibration and background films were scanned at a 0.02cmpixel resolution using a CCD camera-based microdensitometer with a green light source. Data acquisition and scanner uniformity correction were achieved with Microd3 software. Data analysis was performed using ImageJ, FV, IDL and Excel software packages. 2D dose distributions were based on the calibration curve established for 50kV x-rays. The Solid Water to liquid water medium correction was calculated using the MCNP5 Monte Carlo code. Subsequently, the TG-43 dosimetry parameters in liquid water medium were determined. Values for the dose-rate constants using EBT film were 1.069±0.036 and 0.923±0.031cGyU(-1)h(-1) for (131)Cs and (125)I seed, respectively. The corresponding values determined using the Monte Carlo method

  8. Hydrologic implications of solid-water disposal

    USGS Publications Warehouse

    Schneider, William Joseph

    1970-01-01

    Site selection for disposal of solid wastes must be based on adequate water-resources information if pollutional potential is to be minimized. This will require regional as well as localized data on the water resources of the area. Only through such an approach can adequate protection be afforded to the environment in general and the water resources in particular.

  9. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  10. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    PubMed

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  11. THE PRESENCE OF ARSENIC IN DRINKING WATER DISTRIBUTION SOLIDS

    EPA Science Inventory

    The objective of this presentation was to determine whether solids found in drinking water distribution systems contain arsenic. Distribution system pipes and solids removed during hydrant flushing were collected from the distribution system of eight water utilities that had mea...

  12. Water-mediated solid-state transformation of a polymorphic drug during aqueous-based drug-layer coating of pellets.

    PubMed

    Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-11-01

    During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  14. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2002-05-01

    Water is perhaps the most important and most pervasive chemical on our planet. The influence of water permeates virtually all areas of biochemical, chemical and physical importance, and is especially evident in phenomena occurring at the interfaces of solid surfaces. Since 1987, when Thiel and Madey (TM) published their review titled "The Interaction of Water with Solid Surfaces: Fundamental Aspects" in Surface Science Reports, there has been considerable progress made in further understanding the fundamental interactions of water with solid surfaces. In the decade and a half, the increased capability of surface scientists to probe at the molecular-level has resultedmore » in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. This progress in understanding the properties of water on solid surfaces is evident both in areas for which surface science methodology has traditionally been strong (catalysis and electronic materials) and also in new areas not traditionally studied by surface scientists, such as electrochemistry, photoconversion, mineralogy, adhesion, sensors, atmospheric chemistry, and tribology. Researchers in all these fields grapple with very basic questions regarding the interactions of water with solid surfaces, such as how is water adsorbed, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated, and how do coadsorbates influence these properties of water. The attention paid to these and other fundamental questions in the past decade and a half has been immense. In this review, experimental studies published since the TM review are assimilated with those covered by TM to provide a current picture of the fundamental interactions of water with solid surfaces.« less

  15. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  16. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is listed...

  17. Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

    NASA Technical Reports Server (NTRS)

    Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.; hide

    2007-01-01

    Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.

  18. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

    PubMed

    McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J

    2017-12-19

    The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

  19. Practical water production from desert air

    PubMed Central

    Kalmutzki, Markus J.; Kapustin, Eugene A.

    2018-01-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)–801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point. PMID:29888332

  20. Practical water production from desert air.

    PubMed

    Fathieh, Farhad; Kalmutzki, Markus J; Kapustin, Eugene A; Waller, Peter J; Yang, Jingjing; Yaghi, Omar M

    2018-06-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)-801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point.

  1. Tuning Interfacial Properties and Processes by Controlling the Rheology and Structure of Poly( N-isopropylacrylamide) Particles at Air/Water Interfaces.

    PubMed

    Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro

    2018-06-05

    By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.

  2. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  3. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    PubMed Central

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  4. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  5. SU-D-209-01: Can Fluoroscopic Air-Kerma Rates Be Reliably Measured with Solid-State Meters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, C; Thai, L; Wagner, L

    Purpose: Ionization chambers remain the standard for calibration of air-kerma rate measuring devices. Despite their strong energy-dependent response, solid state radiation detectors are increasingly used, primarily due to their efficiency in making standardized measurements. To test the reliability of these devices in measuring air-kerma rates, we compared ion chambers measurements with solid-state measurements for various mobile fluoroscopes operated at different beam qualities and air-kerma rates. Methods: Six mobile fluoroscopes (GE OEC models 9800 and 9900) were used to generate test beams. Using various field sizes and dose rate controls, copper attenuators and a lead attenuator were placed at the imagemore » receptor in varying combinations to generate a range of air-kerma rates. Air-kerma rates at 30 centimeters from the image receptors were measured using two 6-cm{sup 3} ion chambers with electrometers (Radcal, models 1015 and 9015) and two with solid state detectors (Unfors Xi and Raysafe X2). No error messages occurred during measurements. However, about two months later, one solid-state device stopped working and was replaced by the manufacturer. Two out of six mobile fluoroscopic units were retested with the replacement unit. Results: Generally, solid state and ionization chambers agreed favorably well, with two exceptions. Before replacement of the detector, the Xi meter when set in the “RF High” mode deviated from ion chamber readings by factors of 2 and 10 with no message indicating error in measurement. When set in the “RF Low” mode, readings were within −4% to +3%. The replacement Xi detector displayed messages alerting the user when settings were not compatible with air-kerma rates. Conclusion: Air-kerma rates can be measured favorably well using solid-state devices, but users must be aware of the possibility that readings can be grossly in error with no discernible indication for the deviation.« less

  6. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  7. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  8. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  9. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  10. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    NASA Astrophysics Data System (ADS)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  11. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  12. Water content dependence of trapped air in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.

  13. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  14. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  15. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    PubMed

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  16. Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato.

    PubMed

    Acevedo, Nuria C; Schebor, Carolina; Buera, Pilar

    2008-06-01

    Non-enzymatic browning (NEB) development was studied in dehydrated potato at 70°C. It was related to the macroscopic and molecular properties and to water-solid interactions over a wide range of water activities. Time resolved (1)H NMR, thermal transitions and water sorption isotherms were evaluated. Although non-enzymatic browning could be detected in the glassy state; colour development was higher in the supercooled state. The reaction rate increased up to a water content of 26g/100g of solids (aw=0.84) and then decreased at higher water contents, concomitantly with the increase of water proton mobility. The joint analyses of NEB kinetics, water sorption isotherm and proton relaxation behaviour made it evident that the point at which the reaction rate decreased, after a maximum value, could be related to the appearance of highly mobile water. The results obtained in this work indicate that the prediction of chemical reaction kinetics can be performed through the integrated analysis of water sorption, water and solids mobility and the physical state of the matrix. Copyright © 2007 Elsevier Ltd. All rights reserved.

  17. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  18. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  19. Epidemiological evidence that indoor air pollution from cooking with solid fuels accelerates skin aging in Chinese women.

    PubMed

    Li, Miaozhu; Vierkötter, Andrea; Schikowski, Tamara; Hüls, Anke; Ding, Anan; Matsui, Mary S; Deng, Binwei; Ma, Chuan; Ren, Aiguo; Zhang, Juan; Tan, Jingze; Yang, Yajun; Jin, Li; Krutmann, Jean; Li, Zhiwen; Wang, Sijia

    2015-08-01

    Recently, we showed that outdoor air pollution exposure from traffic and industry is associated with an increased risk of skin aging in Caucasian women. In China, indoor air pollution exposure caused by the use of solid fuels like coal is a major health problem and might also increase the risk of skin aging in Chinese women. As cooking with solid fuels is a major source of indoor air pollution exposure in China, we aimed to test if cooking with solid fuels is associated with more pronounced skin aging in Chinese women. We conducted two cross-sectional studies in China to assess the association between cooking with solid fuels and signs of skin aging. In Pingding (in northern China) we assessed N=405 and in Taizhou (in southern China) N=857 women between 30 and 90 years of age. Skin aging was evaluated by the SCINEXA score. Indoor air pollution exposure, sun exposure, smoking and other confounders were assessed by questionnaires. Associations were then tested by linear and logistic regression analyses adjusted for further confounders. The analysis showed that cooking with solid fuels was significantly associated with a 5-8% more severe wrinkle appearance on face and an 74% increased risk of having fine wrinkles on back of hands in both studies combined, independent of age and other influences on skin aging. The present studies thus corroborate our previous finding that air pollution is associated with skin aging and extend it by showing that indoor air pollution might be another risk factor for skin aging. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  1. The influence of roadside solid and vegetation barriers on near-road air quality

    NASA Astrophysics Data System (ADS)

    Ghasemian, Masoud; Amini, Seyedmorteza; Princevac, Marko

    2017-12-01

    The current study evaluates the influence of roadside solid and vegetation barriers on the near-road air quality. Reynolds Averaged Navier-Stokes (RANS) technique coupled with the k - ε realizable turbulence model is utilized to investigate the flow pattern and pollutant concentration. A scalar transport equation is solved for a tracer gas to represent the roadway pollutant emissions. In addition, a broad range of turbulent Schmidt numbers are tested to calibrate the scalar transport equation. Three main scenarios including flat terrain, solid barrier, and vegetative barrier are studied. To validate numerical methodology, predicted pollutant concentration is compared with published wind tunnel data. Results show that the solid barrier induces an updraft motion and lofts the vehicle emission plume. Therefore, the ground-level pollutant concentration decreases compared to the flat terrain. For the vegetation barrier, different sub-scenarios with different vegetation densities ranging from approximately flat terrain to nearly solid barrier are examined. Dense canopies act in a similar manner as a solid barrier and mitigate the pollutant concentration through vertical mixing. On the other hand, the high porosity vegetation barriers reduce the wind speed and lead to a higher pollutant concentration. As the vegetation density increases, i.e. the barrier porosity decreases, the recirculation zone behind the canopy becomes larger and moves toward the canopy. The dense plant canopy with LAD = 3.33m-2m3 can improve the near-road air quality by 10% and high porosity canopy with LAD = 1m-2m3 deteriorates near-road air quality by 15%. The results of this study can be implemented as green infrastructure design strategies by urban planners and forestry organizations.

  2. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  3. Nanometre-thick single-crystalline nanosheets grown at the water-air interface

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Seo, Jung-Hun; Luo, Guangfu; Starr, Matthew B.; Li, Zhaodong; Geng, Dalong; Yin, Xin; Wang, Shaoyang; Fraser, Douglas G.; Morgan, Dane; Ma, Zhenqiang; Wang, Xudong

    2016-01-01

    To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.

  4. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    PubMed

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  6. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    PubMed

    Chaubal, Alisha; Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-04-01

    This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Patients with body mass index (BMI) less than 18 kg/m 2 or more than 30 kg/m 2 , or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation ( P <0.001). The mean pain scores were 5.17, 4.72, and 3.93 on the VAS for air, carbon dioxide, and water insufflation ( P <0.001). The cecal intubation rate or procedure time did not differ significantly between the 3 groups. Water insufflation was superior to air or carbon dioxide for pain tolerance. This was seen in the subgroups with BMI <18 kg/m 2 and the post-surgical group, but not in the group with BMI >30 kg/m 2 .

  7. XTE Solid Motor Installation at Pad 17-A, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This NASA Kennedy Space Center video presents live footage of the installation of the XTE (X-Ray Timing Explorer) Solid Rocket Motor at Launch Pad 17-A. The installation takes place at Cape Canaveral Air Station, Florida.

  8. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  9. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  10. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  11. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    PubMed

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  12. Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solodov, Igor; Busse, Gerd

    2007-12-17

    It is shown that low-frequency elastic vibrations of near-surface planar defects cause high-frequency ultrasonic radiation in surrounding air. The frequency conversion mechanism is concerned with contact nonlinearity of the defect vibrations and provides efficient generation of air-coupled higher-order ultraharmonics, ultrasubharmonics, and combination frequencies. The nonlinear air-coupled ultrasonic emission is applied for location and high-resolution imaging of damage-induced defects in a variety of solid materials.

  13. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  14. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    PubMed Central

    Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-01-01

    Background/Aims This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Methods Patients with body mass index (BMI) less than 18 kg/m2 or more than 30 kg/m2, or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. Results The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation (P<0.001). The mean pain scores were 5.17, 4.72, and 3.93 on the VAS for air, carbon dioxide, and water insufflation (P<0.001). The cecal intubation rate or procedure time did not differ significantly between the 3 groups. Conclusions Water insufflation was superior to air or carbon dioxide for pain tolerance. This was seen in the subgroups with BMI <18 kg/m2 and the post-surgical group, but not in the group with BMI >30 kg/m2. PMID:29743844

  15. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or supplement...

  16. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  17. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    PubMed

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  18. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    PubMed

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  19. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  20. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or wate...

  1. The use of new GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water phantom.

    PubMed

    Chiu-Tsao, Sou-Tung; Medich, David; Munro, John

    2008-08-01

    Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four 125I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a 125I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one 125I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each 125I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U(-1)h(-1) (+/-6.9%) and 1.014 cGy U(-1)h(-1) (+/-6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each other. We found good agreement with the TG43U1S1

  2. Solid-State Water Electrolysis with an Alkaline Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, YJ; Chen, G; Mendoza, AJ

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less

  3. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    PubMed

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  4. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  5. Effect of water temperature and air stream velocity on performance of direct evaporative air cooler for thermal comfort

    NASA Astrophysics Data System (ADS)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra

    2017-01-01

    The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.

  6. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  7. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  8. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  9. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  10. Prospective randomized trial compares suction versus water seal for air leaks.

    PubMed

    Cerfolio, R J; Bass, C; Katholi, C R

    2001-05-01

    Surgeons treat air leaks differently. Our goal was to evaluate whether it is better to place chest tubes on suction or water seal for stopping air leaks after pulmonary surgery. A second goal was to evaluate a new classification system for air leaks that we developed. Patients were prospectively randomized before surgery to receive suction or water seal to their chest tubes on postoperative day (POD) #2. Air leaks were described and quantified daily by a classification system and a leak meter. The air-leak meter scored leaks from 1 (least) to 7 (greatest). The group randomized to water seal stayed on water seal unless a pneumothorax developed. On POD #2, 33 of 140 patients had an air leak. Eighteen patients had been preoperatively randomized to water seal and 15 to suction. Air leaks resolved in 12 (67%) of the water seal patients by the morning of POD #3. All 6 patients whose air leak did not stop had a leak that was 4/7 or greater (p < 0.0001) on the leak meter. Of the 15 patients randomized to suction, only 1 patient's air leak (7%) resolved by the morning of POD #3. The randomization aspect of the trial was ended and statistical analysis showed water seal was superior (p = 0.001). The remaining 14 patients were then placed to water seal and by the morning of POD #4, 13 patients' leaks had stopped. Of the 32 total patients placed to seal, 7 (22%) developed a pneumothorax and 6 of these 7 patients had leaks that were 4/7 or greater (p = 0.001). Placing chest tubes on water seal seems superior to wall suction for stopping air leaks after pulmonary resection. However, water seal does not stop expiratory leaks that are 4/7 or greater. Pneumothorax may occur when chest tubes are placed on seal with leaks this large.

  11. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali

    2005-01-01

    To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.

  12. A comparison of solids collected in sediment traps and automated water samplers

    USGS Publications Warehouse

    Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.

    1996-01-01

    Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.

  13. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  14. Metasurface for Water-to-Air Sound Transmission

    NASA Astrophysics Data System (ADS)

    Bok, Eun; Park, Jong Jin; Choi, Haejin; Han, Chung Kyu; Wright, Oliver B.; Lee, Sam H.

    2018-01-01

    Effective transmission of sound from water to air is crucial for the enhancement of the detection sensitivity of underwater sound. However, only 0.1% of the acoustic energy is naturally transmitted at such a boundary. At audio frequencies, quarter-wave plates or multilayered antireflection coatings are too bulky for practical use for such enhancement. Here we present an acoustic metasurface of a thickness of only ˜λ /100 , where λ is the wavelength in air, consisting of an array of meta-atoms that each contain a set of membranes and an air-filled cavity. We experimentally demonstrate that such a meta-atom increases the transmission of sound at ˜700 Hz by 2 orders of magnitude, allowing about 30% of the incident acoustic power from water to be transmitted into air. Applications include underwater sonic sensing and communication.

  15. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  16. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  17. Solid polymer battery electrolyte and reactive metal-water battery

    DOEpatents

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  18. Efficacy of air/water syringe tip sterilization.

    PubMed

    Inger, M; Bennani, V; Farella, M; Bennani, F; Cannon, R D

    2014-03-01

    Dental procedures involve contact between instruments and the patient's tissues, blood or saliva. This study evaluated the efficacy of the standardized sterilization of non-disposable air/water syringe tips and corrosion and contaminant build-up in these tips. The bacterial contamination of single-use and multiple-use non-disposable air/water syringe tips after routine use and sterilization was compared to that of single-use disposable tips by microbial culturing on PCA and blood agar plates. The effect of flushing the syringe tips prior to sterilization was also measured. The amount of corrosion in single-use and multiple-use non-disposable syringes was measured by SEM and EDS analyses. Non-disposable syringe tips had significantly (p < 0.05) greater bacterial contamination than single-use disposable tips. There were no statistically different levels of contamination between flushed and non-flushed non-disposable syringes or between single-use and multiple-use non-disposable syringes. SEM and EDS analyses showed greater evidence of corrosion and contaminant build-up in multiple-use syringes compared to single-use non-disposable syringes. Sterilization of non-disposable air/water syringes is not completely effective and rinsing, or the number of uses, does not affect the effectiveness of sterilization. There may be a lower risk of cross-infection from the use of disposable air/water syringe tips, instead of non-disposable ones. © 2014 Australian Dental Association.

  19. Modeling the impact of solid noise barriers on near road air ...

    EPA Pesticide Factsheets

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier. Highlights • Developed a dispersion model a

  20. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  1. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    EPA Science Inventory

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most expos...

  2. Final Environmental Assessment. Physical Fitness Center Los Angeles Air Force Base

    DTIC Science & Technology

    2000-10-13

    Coast Air Quality Management District (SCAQMD). 1996. Final 1997 Air Qaulity Management Plan. November. South Coast Air Quality Management District...resources including land use, geology and soils, water resources, biological resources, air quality, noise, traffic and transportation, waste management ...3-8 3.8 Solid and Hazardous Waste Management and Disposal

  3. Determination of total dissolved solids in water analysis

    USGS Publications Warehouse

    Howard, C.S.

    1933-01-01

    The figure for total dissolved solids, based on the weight of the residue on evaporation after heating for 1 hour at 180??C., is reasonably close to the sum of the determined constituents for most natural waters. Waters of the carbonate type that are high in magnesium may give residues that weigh less than the sum. Natural waters of the sulfate type usually give residues that are too high on account of incomplete drying.

  4. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures. Published by Elsevier B.V.

  5. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  6. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  7. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  8. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  9. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  10. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    PubMed

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

    PubMed

    Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei

    2010-03-16

    Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface

  12. The air, carbon, water synergies and trade-offs in China's natural gas industry

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.

    2017-12-01

    Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.

  13. The air bubble entrapped under a drop impacting on a solid surface

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  14. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  15. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  17. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  18. Effects of air vessel on water hammer in high-head pumping station

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  19. Small field depth dose profile of 6 MV photon beam in a simple air-water heterogeneity combination: A comparison between anisotropic analytical algorithm dose estimation with thermoluminescent dosimeter dose measurement.

    PubMed

    Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin

    2017-01-01

    To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.

  20. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    PubMed

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    NASA Astrophysics Data System (ADS)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  2. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  3. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  4. Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie

    2014-11-01

    Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.

  5. Fluoride, Nitrate, and Dissolved-Solids Concentrations in Ground Waters of Washington

    USGS Publications Warehouse

    Lum, W. E.; Turney, Gary L.

    1984-01-01

    This study provides basic data on ground-water quality throughout the State. It is intended for uses in planning and management by agencies and individuals who have responsibility for or interest in, public health and welfare. It also provides a basis for directing future studies of ground-water quality toward areas where ground-water quality problems may already exist. The information presented is a compilation of existing data from numerous sources including: the Washington Departments of Ecology and Social and Health Services, the Environmental Protection Agency, as well as many other local, county, state and federal agencies and private corporations. Only data on fluoride, nitrate, and dissolved-solids concentrations in ground water are presented, as these constituents are among those commonly used to determine the suitability of water for drinking or other purposes. They also reflect both natural and man-imposed effects on water quality and are the most readily available water-quality data for the State of Washington. The percentage of wells with fluoride, nitrate, or dissolved-solids concentrations exceeding U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations were about 1, about 3, and about 3, respectively. Most high concentrations occurred in widely separated wells. Two exceptions were: high concentrations of nitrate and dissolved solids in wells on the Hanford Department of Energy Facility and high concentrations of nitrate in the lower Yakima River basin. (USGS)

  6. Novel water-air circulation quenching process for AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  7. Surface, Water and Air Biocharacterization (SWAB)

    NASA Image and Video Library

    2009-08-18

    ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  8. Integrating air quality, water and climate concerns into China's energy strategy

    NASA Astrophysics Data System (ADS)

    Peng, Wei

    As the world's top carbon emitter, China also suffers from serious air pollution and increasingly severe water stress. My dissertation focuses on a variety of energy strategies in China and examines potential synergies and tradeoffs between air quality, water conservation and carbon mitigation objectives. It includes four analytical chapters. Chapter 2 and 3 examines the air quality and climate implications of a variety policy options in the near term and at the 2030 time horizon, respectively. Based on an integrated assessment using regional air pollution model and epidemiological evidence, I find that improving industrial energy efficiency is the most effective near-term strategy to curb air pollution and carbon emissions, while electrifying end-use sectors (e.g. vehicles and residential stoves) with decarbonized electricity will likely become the favorable co-control strategy in 2030. These two chapters hence provide a scientific basis for policymakers in China to coordinate air pollution and carbon mitigation strategies. Chapter 4 and 5 then examines the role of electricity transmission, as a critical element of the electrification strategy, in the nexus of air pollution, water stress and carbon emissions. Chapter 4 evaluates the potential air quality and climate benefits of long-distance electricity transmission in China in the near term. I find that transmitting a hybrid mix of renewable and coal power can be a cost-effective energy transfer strategy to curb air pollution impacts and carbon emissions, because it not only utilizes zero-carbon renewable resources in the west, but also displaces coal power generation and associated air pollution impacts in highly populated eastern regions. Chapter 5 studies the potential tradeoffs in the transmission system designs to achieve air quality or water conservation benefits from a decarbonized generation system. Since air pollution and water stress are severe in eastern and northern China respectively, I find that an

  9. Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.

    PubMed

    Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-08-10

    Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.

  10. Dissolved-solids transport in surface water of the Muddy Creek Basin, Utah

    USGS Publications Warehouse

    Gerner, Steven J.

    2008-01-01

    Muddy Creek is located in the southeastern part of central Utah and is a tributary of the Dirty Devil River, which, in turn, is a tributary of the Colorado River. Dissolved solids transported from the Muddy Creek Basin may be stored in the lower Dirty Devil River Basin, but are eventually discharged to the Colorado River and impact downstream water users. This study used selected dissolved-solids measurements made by various local, State, and Federal agencies from the 1970s through 2006, and additional dissolved-solids data that were collected by the U.S. Geological Survey during April 2004 through November 2006, to compute dissolved-solids loads, determine the distribution of dissolved-solids concentrations, and identify trends in dissolved-solids concentration in surface water of the Muddy Creek Basin. The dissolved-solids concentration values measured in water samples collected from Muddy Creek during April 2004 through October 2006 ranged from 385 milligrams per liter (mg/L) to 5,950 mg/L. The highest dissolved-solids concentration values measured in the study area were in water samples collected at sites in South Salt Wash (27,000 mg/L) and Salt Wash (4,940 to 6,780 mg/L). The mean annual dissolved-solids load in Muddy Creek for the periods October 1976 to September 1980 and October 2005 to September 2006 was smallest at a site near the headwaters (9,670 tons per year [tons/yr]) and largest at a site at the mouth (68,700 tons/yr). For this period, the mean annual yield of dissolved solids from the Muddy Creek Basin was 44 tons per square mile. During October 2005 to September 2006, direct runoff transported as much as 45 percent of the annual dissolved-solids load at the mouth of Muddy Creek. A storm that occurred during October 5?7, 2006 resulted in a peak streamflow at the mouth of Muddy Creek of 7,150 cubic feet per second (ft3/s) and the transport of an estimated 35,000 tons of dissolved solids, which is about 51 percent of the average annual dissolved-solids

  11. Water Collection from Air Humidity in Bahrain

    NASA Astrophysics Data System (ADS)

    Dahman, Nidal A.; Al Juboori, Khalil J.; BuKamal, Eman A.; Ali, Fatima M.; AlSharooqi, Khadija K.; Al-Banna, Shaima A.

    2017-11-01

    The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  12. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    PubMed

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  14. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  15. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  16. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration.

  17. Modeling the impact of solid noise barriers on near road air quality

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard

    2016-09-01

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.

  18. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  19. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  20. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

  1. Sensing the flux of volatile chemicals through the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackay, D.; Schroeder, W.H.; Ooijen, H. von

    1997-12-31

    There are several situations in which there is a need to assess the direction and magnitude of the flux across the air-water interface. Contaminants may be evaporating or absorbing in wastewater treatment systems in natural lake, river, estuarine and marine systems, and any attempt to compile a mass balance must include this process. In this study the authors review the theory underlying air-water exchange, then describe and discuss a sparging approach by which the direction and magnitude of the flux can be ascertained. The principle of the method is that a known flow rate of air is bubbled through themore » sparger and allowed to equilibrate with the water. The gas exiting the water surface is passed through a sorbent trap and later analyzed. The concentration, and hence the fugacity, of the contaminant in the sparged air can be deduced. In parallel, a similar flow of air from the atmosphere above the water is drawn through another sparger at a similar flow rate for a similar time and the trapped chemical analyzed giving the concentration and fugacity in the air. These data show the direction of air-water exchange (i.e. from high to low fugacity) and with information on the mass transfer coefficients and area, the flux. Successful tests were conducted of the system in a laboratory tank, in Lake Ontario and in Hamilton Harbour. Analyses of the traps showed a large number of peaks on the chromatogram many of which are believed to be of petroleum origin from fuels and vessel exhaust. The system will perform best under conditions where concentrations of specific contaminants are large, as occurs in waste water treatment systems. The approach has the potential to contribute to more accurate assessment of air-water fluxes. It avoids the problems of different analytical methodologies and the effect of sorption in the water column.« less

  2. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    PubMed

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  3. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  4. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  5. Special features of high-speed interaction of supercavitating solids in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, Aleksandr, E-mail: ichan@niipmm.tsu.ru; Afanas’eva, Svetlana, E-mail: s.a.afanasyeva@mail.ru; Burkin, Viktor, E-mail: v.v.burkin@mail.ru

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initialmore » flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.« less

  6. Special features of high-speed interaction of supercavitating solids in water

    NASA Astrophysics Data System (ADS)

    Ishchenko, Aleksandr; Akinshin, Ruslan; Afanas'eva, Svetlana; Borisenkov, Igor; Burkin, Viktor; Diachkovskii, Aleksei; Korolkov, Leonid; Moiseev, Dmitrii; Khabibullin, Marat

    2016-01-01

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.

  7. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  8. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Method and apparatus for extracting water from air using a desiccant

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  10. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water

  11. Thermodynamics of phenanthrene partition into solid organic matter from water.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong; Tao, Shu

    2005-01-01

    The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids(three soils and a bentonite) from water were investigated. The thermodynamics parameters (deltaH, deltaG degrees, deltaS degrees) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from -7.93 to -17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid (i.e., -18.6 kJ/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2 kJ/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene (i.e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i.e., 18.6 kJ/mol). The standard free energy changes, deltaG degrees, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes, deltaS degrees, show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene, the partition coefficients normalized by organic carbon contents decrease with increasing system temperature (i.e., ln Koc = -0.284 ln S + 9.82 (n = 4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.

  12. Health and Household Air Pollution from Solid Fuel Use: The Needfor Improved Exposure Assessment

    EPA Science Inventory

    Background: Nearly half the world’s population relies on solid fuel combustion to meet basic household energy needs (e.g., cooking and heating). Resulting air pollution exposures are estimated to cause 3% of the global burden of disease. Large variability and a lack of resource...

  13. Rates of urbanisation and the resiliency of air and water quality.

    PubMed

    Duh, Jiunn-Der; Shandas, Vivek; Chang, Heejun; George, Linda A

    2008-08-01

    Global human population and urban development are increasing at unprecedented rates and creating tremendous stress on local, regional, and global air and water quality. However, little is known about how urban areas vary in their capacity to address effectively air and water quality impacts associated to urban development. There exists a need to better understanding the factors that mediate the interactions between urbanisation and variations of environmental quality. By synthesizing literatures on the relationship between urban development and air and water quality, we assess the amount of scholarship for each of these cities, characterize population growth rates in one hundred of the largest global cities, and link growth trends to changes in air and water quality. Our results suggest that, while there is a growing literature linking urbanisation and environmental quality, some regions of the globe are better represented than others, and that these trends are consistent with our characterization of population growth rates. In addition, the comparison between population growth rates and air and water quality suggest that multiple factors affect the environmental quality, and that approaching rates of urbanisation through the lens of 'resiliency' can be an effective integrative concept for studying the capacity of urban areas to respond to rapid rates of change. Based on these results we offer a framework for systematically assessing changes in air and water quality in megacities.

  14. Measurement of isoprene solubility in water, human blood and plasma by multiple headspace extraction gas chromatography coupled with solid phase microextraction.

    PubMed

    Mochalski, Paweł; King, Julian; Kupferthaler, Alexander; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2011-12-01

    The aim of this study was to determine the solubility (liquid-to-air ratios) of isoprene in water, human blood and plasma. To this end, an experimental setup combining multiple headspace extraction, solid phase microextraction and gas chromatography-mass spectrometry was applied. The water:air partition coefficients of isoprene were determined for the temperature range 4.5-37 °C and amounted to 1.171-0.277 (g mL(l)(-1)) (g mL(a)(-1))(-1). On the basis of these data, the enthalpy of volatilization was calculated as 29.46 ± 2.83 kJ mol(-1). The blood:air partition coefficients at 37 °C were determined for ten normal healthy volunteers spread around a median value of 0.95 ± 0.09 (g mL(l)(-1)) (g mL(a)(-1))(-1) and were approximately 16% lower than the plasma:air partition coefficients (1.11 ± 0.2). The applied methodology can be particularly attractive for solubility studies targeting species at very low concentrations in the solution, i.e. when headspace sample enrichment is necessary to provide sufficient measurement sensitivity and reliability. This can be especially helpful if environmental or physiological solute levels have to be considered.

  15. Second-Order Vibrational Lineshapes from the Air/Water Interface.

    PubMed

    Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M

    2018-05-10

    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.

  16. Protein-lipid interactions at the air/water interface.

    PubMed

    Lad, Mitaben D; Birembaut, Fabrice; Frazier, Richard A; Green, Rebecca J

    2005-10-07

    Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

  17. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  19. Coniferyl alcohol reactivity at the air/water interface.

    PubMed

    Cathala, Bernard; Aguié-Béghin, Véronique; Douillard, Roger

    2004-01-01

    In order to investigate the sensitivity of the lignin monomer coupling reactions to the environment physicochemical conditions, coniferyl alcohol (CA) was polymerised at the air/water interface. Characterisation of the interface during the reaction by surface pressure measurement and ellipsometry demonstrates that the reaction occurs near or at the interface. Coupling products were analysed by HPLC and compared to reaction products obtained in the case of polymerisation in solution. Relative proportions of beta-beta and beta-O-4 dehydrodimers were found to increase in air/water interface experiment.

  20. 77 FR 6548 - Environmental Impact Statement for the Implementation of Energy, Water, and Solid Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, TX AGENCY: Department of... associated with the implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These initiatives will work to enhance the energy and water security of Fort Bliss, Texas, which is operationally...

  1. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  2. Characterization of dissolved solids in water resources of agricultural lands near Manila, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos

  3. Definition of Free O-H Groups of Water at the Air-Water Interface.

    PubMed

    Tang, Fujie; Ohto, Tatsuhiko; Hasegawa, Taisuke; Xie, Wen Jun; Xu, Limei; Bonn, Mischa; Nagata, Yuki

    2018-01-09

    Free O-H groups of water are often found at the water-hydrophobic medium interface, e.g. for water contact with hydrophobic protein residues, or at the water-air interface. In surface-specific vibrational spectroscopic studies using sum-frequency generation (SFG) spectroscopy, free O-H groups are experimentally well characterized in the O-H stretch region by a sharp 3700 cm -1 peak. Although these free O-H groups are often defined as the O-H groups which are not hydrogen-bonded to other water molecules, a direct correlation between such non-hydrogen-bonded O-H groups and the 3700 cm -1 SFG response has been lacking. Our data show that commonly used hydrogen bond definitions do not adequately capture the free O-H groups contributing to the 3700 cm -1 peak. We thus formulate a new definition for capturing the subensemble of the surface free O-H groups using the intermolecular distance and the angle formed by the water dimer, through the comparison of the ∼3700 cm -1 SFG response and the responses from the selected free O-H groups at the HOD-air interface. Using these optimized free O-H group definitions, we infer the fraction of interfacial water molecules with free O-H groups of 28%, a vibrational lifetime of the free O-H groups of 1.3 ps, and the angle formed by the free O-H groups and the surface normal of 67° at the water-air interface. We expect that this improved free O-H group definition can be helpful in exploring the structure and dynamics of the interfacial water.

  4. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  5. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    NASA Astrophysics Data System (ADS)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  6. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  7. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  8. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  9. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016

  10. Two and three-dimensional prediffuser combustor studies with air-water mixture

    NASA Technical Reports Server (NTRS)

    Laing, Peter; Ehresman, C. M.; Murthy, S. N. B.

    1993-01-01

    Two- and three-dimensional gas turbine prediffuser-combustor sectors were experimentally studied under a number of mixture and flow conditions in a tunnel operating with a two-phase, air-liquid film-droplet mixture. It is concluded that water vaporization in the combustor causes changes in both local gas temperature and state of vitiation and reduces reaction rates. Substantial accumulation of water and water vapor takes place in pocket over the combustor volume, even when the air-water mixture is steady in time. The accuracy of determining combustor performance changes increases with a better knowledge of the state of the air-water mixture in the primary zone. To establish flame-out conditions it is considered to be necessary to combine the prediction of detailed flowfield and chemical activity with that of flame stability and motion characteristics.

  11. Low-temperature synthesis of LiNi0.5Mn1.5O4 grains using a water vapor-assisted solid-state reaction

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Hirobe, Daiki; Uehara, Kunika; Naito, Makio

    2018-07-01

    LiNi0.5Mn1.5O4 (LNMO) spinel is one of the candidates for the cathodes of high-energy lithium-ion batteries because of its high operating voltage of 4.7 V. However, its use at high voltages leads to the decomposition of common organic electrolytes, resulting in a cycle degradation of the batteries. Although morphological control of LNMO particles involving their size and shape is an effective approach to suppressing electrolyte decomposition, the particle growth relying on diffusion in the solids has limitations of temperature and time. Here, we report the particle growth of LNMO at a low temperature using water vapor. By heating porous Mn2O3 spheres with Li and Ni sources as a precursor, we obtain spherical LNMO particles at 500 °C in both air and water vapor. The growth of primary particles is promoted by water vapor, and consequently, the obtained LNMO cathode exhibits better properties than those observed in air. Water vapor also affects the change of shape of LNMO at higher temperatures, leading to the formation of truncated particles from the spheres. Compared to conventional heating processes, this water vapor-assisted particle growth offers a low-temperature control of particle morphologies, particularly for materials that decompose easily at high temperatures.

  12. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  13. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.

    PubMed

    Quina, Margarida J; Santos, Regina C; Bordado, João C; Quinta-Ferreira, Rosa M

    2008-04-01

    This study is mainly related with the physical and chemical characterization of a solid waste, produced in a municipal solid waste (MSW) incineration process, which is usually referred as air pollution control (APC) residue. The moisture content, loss on ignition (LOI), particle size distribution, density, porosity, specific surface area and morphology were the physical properties addressed here. At the chemical level, total elemental content (TC), total availability (TA) and the leaching behaviour with compliance tests were determined, as well as the acid neutralization capacity (ANC). The main mineralogical crystalline phases were identified, and the thermal behaviour of the APC residues is also shown. The experimental work involves several techniques such as laser diffraction spectrometry, mercury porosimetry, helium pycnometry, gas adsorption, flame atomic absorption spectrometry (FAAS), ion chromatography, scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and simultaneous thermal analysis (STA). The results point out that the APC residues do not comply with regulations in force at the developed countries, and therefore the waste should be considered hazardous. Among the considered heavy metals, lead, zinc and chromium were identified as the most problematic ones, and their total elemental quantities are similar for several samples collected in an industrial plant at different times. Moreover, the high amount of soluble salts (NaCl, KCl, calcium compounds) may constitute a major problem and should be taken into account for all management strategies. The solubility in water is very high (more than 24% for a solid/liquid ratio of 10) and thus the possible utilizations of this residue are very limited, creating difficulties also in the ordinary treatments, such as in solidification/stabilization with binders.

  14. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  15. Underfed stoker boiler for burning bituminous coal and other solid fuel particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcotte, R.P.; Dumont, J.W. Jr.

    1987-10-06

    An automatic stoker boiler is described for space or process heating with steam or hot water. The boiler includes a heat transfer compartment having a water inlet and an outlet for steam or hot water, an exhaust, a combustion chamber, a transverse partition in the chamber, drive and driven shafts below the chamber, sprockets supported by the shaft and an endless belt of the link type trained about the sprockets. There are also means to deliver underfire air upwardly through the upper course. The upper portion has a throat opening adjacent to the second end, heat exchanging passageways extending throughmore » the compartment, means to deliver overfire air into the chamber, means to deliver solid fuel particles to the upper course adjacent to the first end, means in the exhaust operable to induce draft in the upper portion and control means operable to effect the advance of the belt. There are means operable to deliver solid fuel to the upper course in predetermined, proportional increments, means to vary the induced draft by predetermined, proportional increments and means to adjust the underfire air volume by predetermined, proportional increments.« less

  16. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    PubMed

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  17. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    PubMed Central

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  18. Health and Household Air Pollution from Solid Fuel Use: The Need for Improved Exposure Assessment

    PubMed Central

    Peel, Jennifer L.; Balakrishnan, Kalpana; Breysse, Patrick N.; Chillrud, Steven N.; Naeher, Luke P.; Rodes, Charles E.; Vette, Alan F.; Balbus, John M.

    2013-01-01

    Background: Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. Objective: We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure–response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. Data Sources: As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. Synthesis: The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure–response relationships. Conclusions: Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure–response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain. Citation: Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. 2013. Health

  19. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  20. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  1. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  2. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  3. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  4. Indoor air pollution from secondhand tobacco smoke, solid fuels, and kerosene in homes with active tuberculosis disease in South Africa.

    PubMed

    Elf, Jessica L; Eke, Onyinyechi; Rakgokong, Modiehi; Variava, Ebrahim; Baliram, Yudesh; Motlhaoleng, Katlego; Lebina, Limakatso; Shapiro, Adrienne E; Breysse, Patrick N; Golub, Jonathan E; Martinson, Neil

    2017-11-13

    Secondhand tobacco smoke (SHS), use of solid fuels, and kerosene may play an important role in perpetuating the tuberculosis (TB) epidemic. The purpose of this study was to explore the prevalence of household air pollution (HAP) from these sources in homes of someone with TB in a high HIV-prevalence setting. A convenience sample of homes and household members participating in an ongoing active case-finding study in Matlosana district townships surrounding Klerksdorp, South Africa were included. We found a high prevalence of air pollution from SHS, solid fuels, and kerosene among individuals in homes with a case of prevalent active TB disease in Klerksdorp, South Africa. Adults in 40% of homes reported a daily smoker in the home, and 70% of homes had detectable air nicotine. In homes with a history of previous TB (prior to but not including the index case) as compared to those without previous TB, both SHS (83% vs. 65%, respectively) and solid/kerosene fuel use for more than 1 h/day (27% vs. 21%, respectively) were more prevalent. Larger studies are needed to estimate the risk of TB from these types of air pollution in HIV infected individuals and settings with high HIV prevalence.

  5. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs.

    PubMed

    Vo, Chau Le-Ngoc; Park, Chulhun; Lee, Beom-Jin

    2013-11-01

    Over 40% of active pharmaceutical ingredients (API) in development pipelines are poorly water-soluble drugs which limit formulation approaches, clinical application and marketability because of their low dissolution and bioavailability. Solid dispersion has been considered one of the major advancements in overcoming these issues with several successfully marketed products. A number of key references that describe state-of-the-art technologies have been collected in this review, which addresses various pharmaceutical strategies and future visions for the solubilization of poorly water-soluble drugs according to the four generations of solid dispersions. This article reviews critical aspects and recent advances in formulation, preparation and characterization of solid dispersions as well as in-depth pharmaceutical solutions to overcome some problems and issues that limit the development and marketability of solid dispersion products. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  7. Coronary heart disease and household air pollution from use of solid fuel: a systematic review.

    PubMed

    Fatmi, Zafar; Coggon, David

    2016-06-01

    Evidence is emerging that indoor air pollution (IAP) from use of solid fuels for cooking and heating may be an important risk factor for coronary heart disease (CHD). We searched the Ovid Medline, Embase Classic, Embase and Web of Science databases from inception through to June 12, 2015, to identify reports of primary epidemiological research concerning the relationship of CHD to IAP from solid fuel, the likely magnitude of any increase in risk, and potential pathogenic mechanisms. The current balance of epidemiological evidence points to an increased risk of CHD from IAP as a consequence of using solid, and especially biomass, fuels for cooking and heating. Relative risks from long-term exposure could be 2- to 4-fold. The evidence base is still limited, and although an association of CHD with such IAP from solid fuel is consistent with the known hazards from smoking, environmental tobacco smoke and ambient air pollution, and supported by evidence of effects on inflammatory processes, atherosclerosis and blood pressure, it requires confirmation by larger and more robust studies. The completion of two relatively small case-control studies on CHD and IAP from use of biomass fuel demonstrates the feasibility of such research, and is an encouragement to further, larger studies using similar methods. The need for such research is particularly pressing because the incidence of CHD in developing countries is rising, and IAP may interact synergistically with the risk factors that are driving that increase. Furthermore, relatively cheap methods are available to reduce IAP from use of solid fuels, and there are indications from intervention studies that these may impact beneficially on CHD as well as other diseases caused by such pollution. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water.

    PubMed

    Fahlman, A; Schmidt, A; Handrich, Y; Woakes, A J; Butler, P J

    2005-09-01

    We measured oxygen consumption rate (Vo(2)) and body temperatures in 10 king penguins in air and water. Vo(2) was measured during rest and at submaximal and maximal exercise before (fed) and after (fasted) an average fasting duration of 14.4 +/- 2.3 days (mean +/- 1 SD, range 10-19 days) in air and water. Concurrently, we measured subcutaneous temperature and temperature of the upper (heart and liver), middle (stomach) and lower (intestine) abdomen. The mean body mass (M(b)) was 13.8 +/- 1.2 kg in fed and 11.0 +/- 0.6 kg in fasted birds. After fasting, resting Vo(2) was 93% higher in water than in air (air: 86.9 +/- 8.8 ml/min; water: 167.3 +/- 36.7 ml/min, P < 0.01), while there was no difference in resting Vo(2) between air and water in fed animals (air: 117.1 +/- 20.0 ml O(2)/min; water: 114.8 +/- 32.7 ml O(2)/min, P > 0.6). In air, Vo(2) decreased with M(b), while it increased with M(b) in water. Body temperature did not change with fasting in air, whereas in water, there were complex changes in the peripheral body temperatures. These latter changes may, therefore, be indicative of a loss in body insulation and of variations in peripheral perfusion. Four animals were given a single meal after fasting and the temperature changes were partly reversed 24 h after refeeding in all body regions except the subcutaneous, indicating a rapid reversal to a prefasting state where body heat loss is minimal. The data emphasize the importance in considering nutritional status when studying king penguins and that the fasting-related physiological changes diverge in air and water.

  9. Continuous measurement of air-water gas exchange by underwater eddy covariance

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  10. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  11. Specific features of aluminum nanoparticle water and wet air oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  12. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  13. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  14. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  15. Air cooling of disk of a solid integrally cast turbine rotor for an automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1977-01-01

    A thermal analysis is made of surface cooling of a solid, integrally cast turbine rotor disk for an automotive gas turbine engine. Air purge and impingement cooling schemes are considered and compared with an uncooled reference case. Substantial reductions in blade temperature are predicted with each of the cooling schemes studied. It is shown that air cooling can result in a substantial gain in the stress-rupture life of the blade. Alternatively, increases in the turbine inlet temperature are possible.

  16. Evaluation of increases in dissolved solids in ground water, Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, Anthony; Packard, E.M.

    1982-01-01

    Increases in dissolved solids have been monitored in two observation wells near Stovepipe Wells Hotel, Death Valley National Monument, California. One of the hotel 's supply wells delivers water to a reverse-osmosis treatment plant that produces the area 's potable water supply. Should water with increased dissolved solids reach the supply well, the costs of production of potable water will increase. The reverse-osmosis plant supply well is located about 0.4 mile south of one of the wells where increases have been monitored, and 0.8 mile southwest of the well where the most significant increases have been monitored. The direction of local ground-water movement is eastward, which reduces the probability of the supply well being affected. Honey mesquite, a phreatophyte located about 1.5 miles downgradient from the well where the most significant increases have been monitored, might be adversely affected should water with increased dissolved solids extend that far. Available data and data collected during this investigation do not indicate the source of the dissolved-solids increases. Continued ground-water-quality monitoring of existing wells and the installation of additional wells for water-quality monitoring would be necessary before the area affected by the increases, and the source and direction of movement of the water with increased dissolved solids, can be determined. (USGS)

  17. Biodegradability of Chlorophenols in Surface Waters from the Urban Area of Buenos Aires.

    PubMed

    Gallego, A; Laurino Soulé, J; Napolitano, H; Rossi, S L; Vescina, C; Korol, S E

    2018-04-01

    Biodegradability of 2-Chlorophenol (2-CP), 3-Chlorophenol (3-CP), 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP) and 2,4,6 Trichlorophenol (2,4,6-TCP) has been tested in surface waters in the urban area of Buenos Aires. Samples were taken from the La Plata River and from the Reconquista and Matanza-Riachuelo basins, with a total amount of 18 sampling points. Water quality was established measuring chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and both Escherichia coli and Enterococcus counts. Biodegradability was carried out by a respirometric method, using a concentration of 20 mg L -1 of chlorophenol, and the surface water as inoculum. Chlorophenols concentration in the same water samples were simultaneously measured by a solid phase microextraction (SPME) procedure followed by gas chromatography-mass spectrometry (GC-MS). 2,4-DCP was the most degradable compound followed by 2,4,6-TCP, 4-CP, 3-CP and 2-CP. Biodegradability showed no correlation with compound concentration. At most sampling points the concentration was below the detection limit for all congeners. Biodegradability does not correlate even with COD, BOD 5 , or fecal contamination. Biodegradability assays highlighted information about bacterial exposure to contaminants that parameters routinely used for watercourse characterization do not reveal. For this reason, they might be a helpful tool to complete the characterization of a site.

  18. A novel small-molecule compound of lithium iodine and 3-hydroxypropionitride as a solid-state electrolyte for lithium–air batteries

    DOE PAGES

    Liu, Fang -Chao; Shadike, Zulipiya; Wang, Xiao -Fang; ...

    2016-06-16

    A novel small-molecule compound of lithium iodine and 3-hydroxypropionitrile (HPN) has been successfully synthesized. Our combined experimental and theoretical studies indicated that LiIHPN is a Li-ion conductor, which is utterly different from the I–-anion conductor of LiI(HPN) 2 reported previously. Solid-state lithium–air batteries based on LiIHPN as the electrolyte exhibit a reversible discharge capacity of more than 2100 mAh g –1 with a cyclic performance over 10 cycles. Lastly, our findings provide a new way to design solid-state electrolytes toward high-performance lithium–air batteries.

  19. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    PubMed

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.

  20. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  1. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  2. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  3. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.

    PubMed

    Lyu, Ying; Brusseau, Mark L; Chen, Wei; Yan, Ni; Fu, Xiaori; Lin, Xueyu

    2018-06-26

    Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.

  5. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  6. Air pollution from household solid fuel combustion in India: an overview of exposure and health related information to inform health research priorities.

    PubMed

    Balakrishnan, Kalpana; Ramaswamy, Padmavathi; Sambandam, Sankar; Thangavel, Gurusamy; Ghosh, Santu; Johnson, Priscilla; Mukhopadhyay, Krishnendu; Venugopal, Vidhya; Thanasekaraan, Vijayalakshmi

    2011-01-01

    Environmental and occupational risk factors contribute to nearly 40% of the national burden of disease in India, with air pollution in the indoor and outdoor environment ranking amongst leading risk factors. It is now recognized that the health burden from air pollution exposures that primarily occur in the rural indoors, from pollutants released during the incomplete combustion of solid fuels in households, may rival or even exceed the burden attributable to urban outdoor exposures. Few environmental epidemiological efforts have been devoted to this setting, however. We provide an overview of important available information on exposures and health effects related to household solid fuel use in India, with a view to inform health research priorities for household air pollution and facilitate being able to address air pollution within an integrated rural-urban framework in the future.

  7. The water-filled versus air-filled status of vessels cut open in air: the 'Scholander assumption' revisited

    Treesearch

    M.T. Tyree; H. Cochard; P. Cruziat

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by continued transpiration, The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut...

  8. High Speed Solid State Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  9. Solid deuterated water in space: detection constraints from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  10. Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes.

    PubMed

    Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip

    2005-07-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.

  11. Influence of Tap Water Quality and Household Water Use Activities on Indoor Air and Internal Dose Levels of Trihalomethanes

    PubMed Central

    Nuckols, John R.; Ashley, David L.; Lyu, Christopher; Gordon, Sydney M.; Hinckley, Alison F.; Singer, Philip

    2005-01-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374

  12. Platform for monitoring water and solid fluxes in mountainous rivers

    NASA Astrophysics Data System (ADS)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  13. Ferry Engine Repower to Provide Benefits for Air and Water

    EPA Pesticide Factsheets

    EPA’s Diesel Emission Reduction Act grant to the Delaware River and Bay Authority is bringing new clean air technology to the Cape May-Lewes Ferry, thereby reducing air pollution emissions and contributing to cleaner water in the Chesapeake Bay.

  14. Representation of solid and nutrient concentrations in irrigation water from tailwater recovery systems by surface water grab samples

    USDA-ARS?s Scientific Manuscript database

    Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...

  15. Ground-water resources of Olmsted Air Force Base, Middletown, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold; Longwill, Stanley Miller

    1961-01-01

    Olmsted Air Force Base is underlain by the Gettysburg shale of Triassic age. The Gettysburg shale at the Air Force Base consists of interbedded red sandstone, siltstone, and shale. The average strike of the strata is N. 43° E., and the strata dip to the northwest at an average angle of 26°. The transmissibility of known aquifers in the warehouse area of the Air Force Base is low. Therefore, wells in the warehouse area have low specific capacities and yield only small supplies of water. Wells on the main base, however, yield relatively large supplies of water because the transmissibilities of the aquifers are relatively high. Pumping tests in the warehouse area and the eastern area of the main base indicated the presence of impermeable boundaries in both areas. Pumping tests in the central and western parts of the main base revealed that the Susquehanna River probably is acting as a source of recharge (forms a recharge boundary) for wells in those areas. Data obtained during this investigation indicate that additional supplies of ground water for Olmsted Air Force Base could best be obtained from the western part of the main base.

  16. Characterization of a water-solid interaction in a partially ordered system.

    PubMed

    Chakravarty, Paroma; Lubach, Joseph W

    2013-11-04

    GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.

  17. Waste Minimization Program. Air Force Plant 4.

    DTIC Science & Technology

    1986-02-01

    incinerator equipped with a secondary combustion chamber and venturi scrubber could serve AFP 4’s needs. As the wastes listed in Table 3-6 contain negligible... scrubber water treatment in the AFP 4eatment. waste treatment system. 2.3 ECONOMICS -Table 2-3 summarizes the projected economics of the recommendations for...control devices. These paint booths are equipped with water curtain air scrubbers which remove solids from the booth exhaust by providing - intimate

  18. Water Resources Investigations at Edwards Air Force Base since 1988

    USGS Publications Warehouse

    Sneed, Michelle; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Edwards Air Force Base (EAFB) in southern California (fig. 1) has relied on ground water to meet its water-supply needs. The extraction of ground water has led to two major problems that can directly affect the mission of EAFB: declining water levels (more than 120 ft since the 1920s) and land subsidence, a gradual downward movement of the land surface (more than 4 ft since the late 1920s). As water levels decline, this valuable resource becomes depleted, thus requiring mitigating measures. Land subsidence has caused cracked (fissured) runways and accelerated erosion on Rogers lakebed. In 1988, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, began investigations of the effects of declining water levels and land subsidence at EAFB and possible mitigation measures, such as the injection of imported surface water into the ground-water system. The cooperative investigations included data collection and analyses, numerical simulations of ground-water flow and land subsidence, and development of a preliminary simulation-optimization model. The results of these investigations indicate that the injection of imported water may help to control land subsidence; however, the potential ground-water-quality impacts are unknown.

  19. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp; Aoyama, Hiroya; Matsuto, Toshihiko

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper,more » dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative

  20. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  1. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  2. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  3. Development of a sensitive methodology for the analysis of chlorobenzenes in air by combination of solid-phase extraction and headspace solid-phase microextraction.

    PubMed

    Barro, Ruth; Ares, Sergio; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2004-08-06

    In this study, a combination of solid-phase extraction (SPE) and solid-phase microextraction (SPME) has been used to determine chlorobenzenes in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). Then, the adsorbent was transferred into a glass vial and SPME was performed. The quantification was carried out using gas chromatography (GC)-electron-capture detection or GC-MS. Several SPME coatings (100 microm poly(dimethylsiloxane) (PDMS), 75 microm Carboxen (CAR)-PDMS, 65 microm PDMS-divinylbenzene (DVB), 65 microm PDMS-DVB and 85 microm polyacrylate (PA) were evaluated, obtaining the highest responses with Carbowax (CW)- PDMS for the most volatile chlorobenzenes, and with PDMS-DVB or CW-DVB fibers for the semivolatile compounds. To optimize some other factors that could affect the SPME step, a factorial design was used. Kinetic studies of the SPME process were also performed. Concerning the SPE step, breakthrough was studied, showing that 2.5 m3 of air could be processed without losses of the most volatile compounds. The performance of the method was evaluated. External calibration, which does not require the complete sampling process, demonstrated to be suitable, obtaining good linearity (R2 > 0.99) for all chlorobenzenes. Recovery studies were performed at two concentration levels (4 and 40 ng/m3), obtaining quantitative recoveries (>80%). Limits of detection at the sub ng/m3 were achieved for all the target compounds.

  4. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    PubMed Central

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  5. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  6. Inactivation of Indigenous Viruses in Raw Sludge by Air Drying

    PubMed Central

    Brashear, David A.; Ward, Richard L.

    1983-01-01

    Air drying of raw sludge caused inactivation of indigenous viruses. A gradual loss of infectivity occurred with the loss of water until the solids content reached about 80%. A more rapid decline of viral infectivity occurred with further dewatering. PMID:6309080

  7. The patterns and implications of diurnal variations in d-excess of plant water, shallow soil water and air moisture

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wang, L.; Xiao, H.; Cheng, G.; Ruan, Y.; Zhou, M.; Wang, F.

    2014-04-01

    Deuterium excess (d-excess) of air moisture is traditionally considered as a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However direct field observations supporting the role of vegetation in d-excess variations is not well documented. In this study, we quantified d-excess of air moisture, leaf and xylem water of multiple dominant species as well as shallow soil water (5 and 10 cm) at hourly interval during three extensive field campaigns at two climatically different locations within the Heihe River Basin. The results showed that with the increase of temperature (T) and decrease of relative humidity (RH), the δD-δ18O plots of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values among different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values (-85.6‰) were found in leaf water. The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after rain event showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found the opposite diurnal variations for dleaf and dmoisture during the sunny day, and for dleaf during the sunny days, and shallow soil water dsoil and dmoisture during the first sunny day after rain event. Significant negative relationships were found between dleaf and dmoisture in all the sites during the sunny day. Our results provide direct evidence that dmoisture of the surface air at continental

  8. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    NASA Astrophysics Data System (ADS)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  9. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation.

    PubMed

    Tomyn, Stefania; Shylin, Sergii I; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O

    2017-01-19

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  10. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    PubMed Central

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364

  11. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production resultsmore » in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.« less

  12. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  13. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    PubMed

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-04

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of axisymmetric and normal air jet plumes and solid plume on cylindrical afterbody pressure distributions at Mach numbers from 1.65 to 2.50

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1982-01-01

    A wind tunnel investigation of the interference effects of axisymmetric nozzle air plumes, a solid plume, and normal air jet plumes on the afterbody pressure distributions and base pressures of a cylindrical afterbody model was conducted at Mach numbers from 1.65 to 2.50. The axisymmetric nozzles, which varied in exit lip Mach number from 1.7 to 2.7, and the normal air jet nozzle were tested at jet pressure ratios from 1 (jet off) to 615. The tests were conducted at an angle of attack of 0 deg and a Reynolds number per meter of 6.56 million. The results of the investigation show that the solid plume induces greater interference effects than those induced by the axisymmetric nozzle plumes at the selected underexpanded design conditions. A thrust coefficient parameter based on nozzle lip conditons was found to correlate the afterbody disturbance distance and the base pressure between the different axisymmetric nozzles. The normal air jet plume and the solid plume induce afterbody disturbance distances similar to those induced by the axisymmetric air plumes when base pressure is held constant.

  15. Defect Engineering toward Atomic Co-Nx -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries.

    PubMed

    Tang, Cheng; Wang, Bin; Wang, Hao-Fan; Zhang, Qiang

    2017-10-01

    Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg -1 , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N x -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm -2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (water quality guidelines for the protection of human health from the consumption of fish. Spatial distributions of

  17. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  18. Estimating the Number of Low-Income Americans Exposed to Household Air Pollution from Burning Solid Fuels

    PubMed Central

    Rogalsky, Derek K.; Mendola, Pauline; Metts, Tricia A.

    2014-01-01

    Background: Exposure to household air pollution (HAP) from inefficient biomass and coal stoves kills nearly 4 million people every year worldwide. HAP is an environmental risk associated with poverty that affects an estimated 3 billion people mostly in low- and middle-income countries. Objectives: Our goal was to estimate the number of low-income Americans exposed to potentially health-damaging concentrations of HAP. Methods: We mapped county-level data for the percentage of households using wood, coal, and/or coke as their primary heating fuel along with percent of the population below the federal poverty level. Using U.S. Census data and the likelihood of fugitive emissions as reported in the literature, we estimated the number of low-income Americans potentially exposed to HAP. Results: Solid fuel is the primary heating source for > 2.5 million U.S. households, or 6.5 million people. The mapping exercise showed several rural areas, primarily in the northern and western regions, that have high levels of solid-fuel use and poverty. We then identified 117 counties with high co-incident poverty and solid-fuel use as high-priority counties for research into potential health risks from HAP. We estimate that between 500,000 and 600,000 low-income people in the United States are likely exposed to HAP from burning solid fuels within their homes. Conclusion: HAP occurs within the United States and should be further investigated for adverse health risks, especially among those living in areas with rural poverty. Citation: Rogalsky DK, Mendola P, Metts TA, Martin WJ II. 2014. Estimating the number of low-income Americans exposed to household air pollution from burning solid fuels. Environ Health Perspect 122:806–810; http://dx.doi.org/10.1289/ehp.1306709 PMID:24833615

  19. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  20. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  1. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  2. ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS: MODELING AND TESTING FOR AIR AND WATER EXPOSURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, D.; James, C.; Cortes-Concepcion, J.

    2010-05-18

    To make commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using these materials. A rigorous set of environmental reactivity tests have been developed based on modified testing procedures codified by the United Nations for the transportation of dangerous goods. Potential hydrogen storage material, 2LiBH4{center_dot}MgH2 and NH3BH3, have been tested using these modified procedures to evaluate the relative risks of these materials coming in contact with the environment in hypothetical accident scenarios. It is apparent that an ignition event will only occur if both a flammable concentration of hydrogen and sufficient thermalmore » energy were available to ignite the hydrogen gas mixture. In order to predict hydride behavior for hypothesized accident scenarios, an idealized finite element model was developed for dispersed hydride from a breached system. Empirical thermodynamic calculations based on precise calorimetric experiments were performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure. Both thermal and compositional predictions were made with identification of potential ignition event scenarios.« less

  3. How changes in top water bother big turning packs of up-going wet air

    NASA Astrophysics Data System (ADS)

    Wood, K.

    2017-12-01

    Big turning packs of up-going wet air form near areas of warm water at the top of big bodies of water. After these turning packs form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning packs usually get less strong. Other things can change how strong a turning pack gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning packs hit land, their rain and winds can hurt people and the stuff they own, especially if the turning pack is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning pack of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning pack myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning packs that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small area bothers a turning pack of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning pack will do before it gets close to land.

  4. Turbulence and wave breaking effects on air-water gas exchange

    PubMed

    Boettcher; Fineberg; Lathrop

    2000-08-28

    We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.

  5. INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...

  6. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  7. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  8. Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease

    PubMed Central

    Chafe, Zoë A.; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank

    2014-01-01

    Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. Methods: We used an energy supply–driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed. Citation: Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR. 2014. Household cooking with solid fuels contributes to

  9. Evaluation of Burning Test Rate Method for Flammable Solids to Increase air-Cargo Safety.

    PubMed

    Lukežič, Marjan; Marinšek, Marjan; Faganeli, Jadran

    2010-03-01

    This paper deals with a standard classification procedure for readily combustible solids and their assignment to the relevant packing groups according to international air-cargo legislation and regulations. The current International Air Transport Association and United Nations Orange Book regulations were used on chemically similar substances: hexamethylenetetramine and Dancook ignition briquettes, which are both assigned into the same Packing Group III. To critically evaluate the degree of hazard both chemicals present, a standard burning test rate as well as thermogravimetry, differential scanning calorimetry and evolved gas analysis measurements were performed. It was shown that relatively small changes in the chemical composition of the material may have essential influence on the package group determination. Taking into account all the facts collected in the experimental work, it was concluded that ignition briquettes will undergo spontaneous combustion if exposed to elevated temperatures and, from this point of view, represent higher risk than hexamethylenetetramine during air transportation. Therefore, ignition briquettes should be classified into Packing Group II.

  10. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    NASA Astrophysics Data System (ADS)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  11. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips

    PubMed Central

    Hu, Haibao; Wen, Jun; Bao, Luyao; Jia, Laibing; Song, Dong; Song, Baowei; Pan, Guang; Scaraggi, Michele; Dini, Daniele; Xue, Qunji; Zhou, Feng

    2017-01-01

    Superhydrophobic surfaces have the potential to reduce the viscous drag of liquids by significantly decreasing friction at a solid-liquid interface due to the formation of air layers between solid walls and interacting liquids. However, the trapped air usually becomes unstable due to the finite nature of the domain over which it forms. We demonstrate for the first time that a large surface energy barrier can be formed to strongly pin the three-phase contact line of air/water/solid by covering the inner rotor of a Taylor-Couette flow apparatus with alternating superhydrophobic and hydrophilic circumferential strips. This prevents the disruption of the air layer, which forms stable and continuous air rings. The drag reduction measured at the inner rotor could be as much as 77.2%. Moreover, the air layers not only significantly reduce the strength of Taylor vortexes but also influence the number and position of the Taylor vortex pairs. This has strong implications in terms of energy efficiency maximization for marine applications and reduction of drag losses in, for example, fluid transport in pipelines and carriers. PMID:28879234

  12. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface.

    PubMed

    Liu, Wei; Li, Shanghao; Wang, Zhuguang; Yan, Elsa C Y; Leblanc, Roger M

    2017-08-01

    Biofilm is an extracellular matrix of bacteria and serves as a protective shield of bacterial communities. It is crucial for microbial growth and one of the leading causes of human chronic infections as well. However, the structures and molecular mechanism of biofilm formation remain largely unknown. Here, we examined a protein, BslA, expressed in the biofilms of Bacillus subtilis. We characterized the Langmuir monolayers of BslA at the air/water interface. Using techniques in surface chemistry and spectroscopy, we found that BslA forms a stable and robust Langmuir monolayer at the air/water interface. Our results show that the BslA Langmuir monolayer underwent two-stage elasticity in the solid state phase upon mechanical compression: one is possibly due to the intermolecular interaction and the other is likely due to both the intermolecular compulsion and the intramolecular distortion. The Langmuir monolayer of BslA shows abrupt changes in rigidities and elasticities at ∼25 mN/m. This surface pressure is close to the one at which BlsA saturates the air/water interface as a self-assembled film without mechanical compression, corresponding to a mean molecular area of ∼700 Å 2 per molecule. Based on the results of surface UV-visible spectroscopy and infrared reflective-absorption spectroscopy, we propose that the BslA Langmuir monolayer carries intermolecular elasticity before ∼25 mN/m and both intermolecular and intramolecular elasticity after ∼25 mN/m. These results provide valuable insights into the understanding of biofilm-associated protein under high mechanical force, shedding light on further investigation of biofilm structure and functionalities.

  13. The patterns and implications of diurnal variations in the d-excess of plant water, shallow soil water and air moisture

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wang, L.; Liu, X.; Xiao, H.; Ruan, Y.; Zhou, M.

    2014-10-01

    Deuterium excess (d-excess) of air moisture is traditionally considered a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However, direct field observations supporting the role of vegetation in d-excess variations are not well documented. In this study, we quantified the d-excess of air moisture, shallow soil water (5 and 10 cm) and plant water (leaf, root and xylem) of multiple dominant species at hourly intervals during three extensive field campaigns at two climatically different locations within the Heihe River basin, northwestern China. The ecosystems at the two locations range from forest to desert. The results showed that with the increase in temperature (T) and the decrease in relative humidity (RH), the δD-δ18O regression lines of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values between different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values were found in leaf water (-85.6‰). The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after a rain event, showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found opposite diurnal variations for dleaf and dmoisture during the sunny days, and for dsoil and dmoisture during the first sunny day after the rain event. The steady-state Craig-Gordon model captured the diurnal variations in dleaf, with small discrepancies in the magnitude. Overall, this

  14. Periodic water- and air-temperature records for Utah streams, 1966-70

    USGS Publications Warehouse

    Whitaker, G.L.

    1971-01-01

    Since 1967, all Geological Survey hydrographers have been instructed to observe and record the water and air temperatures at times when water-discharge measurements were being made at stream-gaging stations in Utah. The frequency of these observations generally varies from I to 5 weeks, depending upon the magnitude of the stream flow.This report summarizes the periodic water and air temperatures that have been recorded in Utah since that effort began. This information may be of value to individuals or agencies concerned with thermal pollution of streams, or with enforcement of water-quality standards.A compilation of all daily water-temperature records recorded for streams in Utah by the U. S. Geological Survey during the period 1944-68 is contained in Utah Basic-Data Release No. 19.

  15. Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles.

    PubMed

    Tarábková, Hana; Bastl, Zdeněk; Janda, Pavel

    2014-12-09

    Interactions of gaseous (ambient) nanobubbles (10-100 nm diameter) with different hydrophobic materials-Teflon, polystyrene, paraffin, and basal plane highly ordered pyrolytic graphite (HOPG)-are studied by AFM in situ and ex situ. Exactly identical surface locations are examined before and after exposure to ambient gas nanobubbles in deionized water and compared for nanomorphological changes. While freely flooded/immersed surfaces, regularly occupied by nanobubbles, do not exhibit resolvable alterations, significant surface rearrangement is found on whole flooded area after mild pressure drop (10 kPa) applied on the solid-liquid interface. Nanopattern and its characteristic dimension appear to be material specific and solely reflect surface-nanobubble interaction. Mild, nonswelling, noncorrosive conditions (20 °C, deionized water) prevent intervention of chemical reaction and high-energy-demanding processes. Experimental results, in accordance with the presented model, indicate that the mild pressure drop triggers expansion of pinned nanobubbles, imposing local tensile stress on the solid surface. Consequently, nanobubbles should be considered as large-area nanoscale patterning elements.

  16. Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water.

    PubMed

    Ueta, Hirokazu; Watanabe, Naoki; Hama, Tetsuya; Kouchi, Akira

    2016-06-24

    The surface temperature dependence of the ortho-to-para conversion of H_{2} on amorphous solid water is first reported. A combination of photostimulated desorption and resonance-enhanced multiphoton ionization techniques allowed us to sensitively probe the conversion on the surface of amorphous solid water at temperatures of 9.2-16 K. Within a narrow temperature window of 8 K, the conversion time steeply varied from ∼4.1×10^{3} to ∼6.4×10^{2}  s. The observed temperature dependence is discussed in the context of previously suggested models and the energy dissipation process. The two-phonon process most likely dominates the conversion rate at low temperatures.

  17. Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans.

    PubMed

    Marciani, Luca; Hall, Nicholas; Pritchard, Susan E; Cox, Eleanor F; Totman, John J; Lad, Mita; Hoad, Caroline L; Foster, Tim J; Gowland, Penny A; Spiller, Robin C

    2012-07-01

    Separation of solids and liquids within the stomach allows faster gastric emptying of liquids compared with solids, a phenomenon known as sieving. We tested the hypothesis that blending a solid and water meal would abolish sieving, preventing the early rapid decrease in gastric volume and thereby enhancing satiety. We carried out 2 separate studies. Study 1 was a 2-way, crossover, satiety study of 22 healthy volunteers who consumed roasted chicken and vegetables with a glass of water (1008 kJ) or the same blended to a soup. They completed satiety visual analogue scales at intervals for 3 h. Study 2 was a 2-way, crossover, mechanistic study of 18 volunteers who consumed the same meals and underwent an MRI to assess gastric emptying, gallbladder contraction, and small bowel water content (SBWC) at intervals for 3 h. In Study 1, the soup meal was associated with reduced hunger (P = 0.02). In Study 2, the volume of the gastric contents after the soup meal decreased more slowly than after the solid/liquid meal (P = 0.0003). The soup meal caused greater gallbladder contraction (P < 0.04). SBWC showed a biphasic response with an initial "gastric" phase during which SBWC was greater when the solid/liquid meal was consumed (P < 0.001) and a later "small bowel" phase when SBWC was greater when the soup meal was consumed (P < 0.01). Blending the solid/liquid meal to a soup delayed gastric emptying and increased the hormonal response to feeding, which may contribute to enhanced postprandial satiety.

  18. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  19. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  20. Solid-phase microextraction of organophosphate pesticides in source waters for drinking water treatment facilities.

    PubMed

    Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda

    2006-09-01

    The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.

  1. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  2. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  3. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  4. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  5. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  6. Air bells of water spiders are an extended phenotype modified in response to gas composition.

    PubMed

    Schütz, Dolores; Taborsky, Michael; Drapela, Thomas

    2007-10-01

    The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O2, pure CO2, or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO2 treatment than in the O2 treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat.

  7. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  8. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  10. Meteorological phenomena affecting the presence of solid particles suspended in the air during winter

    NASA Astrophysics Data System (ADS)

    Cariñanos, P.; Galán, C.; Alcázar, P.; Dominguez, E.

    Winter is not traditionally considered to be a risky season for people who suffer from pollen allergies. However, increasing numbers of people are showing symptoms in winter. This prompted our investigation into the levels of solid material in the air, and some of the meteorological phenomena that allow their accumulation. This study showed a possible relationship between the phenomenon of thermal inversion, which occurs when very low temperatures, cloudless skies and atmospheric calms coincide, and an increase in the concentration of solid material in the atmosphere. Frequently, this situation is associated with other predictable phenomena such as fog, dew and frost. This may allow a warning system to be derived for urban pollution episodes. The effect caused by parameters such as wind and rainfall was also analysed. Solid material was differentiated into non-biological material from natural and non-natural sources (e.g. soot, dust, sand, diesel exhaust particles, partially burnt residues) and biological material. The latter mainly comprises pollen grains and fungal spores. Owing to its abundance and importance as a causal agent of winter allergies, Cupressaceae pollen was considered separately.

  11. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration.

    PubMed

    Yang, Zhenzhou; Tian, Sicong; Ji, Ru; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2017-10-01

    The present study systemically investigated the effect of a water-washing process on the removal of harmful chlorides, sulfates, and heavy metals in the air pollution control (APC) residue from municipal solid wastes incineration (MSWI), for sake of a better reuse and disposal of this kind of waste. In addition, the kinetic study was conducted to reveal the releasing mechanism of relevant element in the residue. The results show that, over 70wt.% of chlorides and nearly 25wt.% of sulfates in the residue could be removed by water washing. Based on an economical consideration, the optimal operation conditions for water washing of APC residue was at liquid/solid (L/S) ratio of 3mL:1g and extracting time of 5min. As expected, the concentrations of Co, Cr, Fe, Ni, V and Cu in the washing effluent increased with time during the washing process. However, the extracting regime differs among different heavy metals. The concentrations of Ba and Mn increased firstly but declined afterwards, and concentrations of Pb and Zn gradually declined while Cd and As kept constant with the increase of extracting time. It is worth mentioning that the bubbling of CO 2 into the washing effluent is promisingly effective for a further removal of Pb, Cu and Zn. Furthermore, kinetic study of the water washing process reveals that the extracting of heavy metals during water washing follows a second-order model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Oxidation reactions of solid carbonaceous and resinous substances in supercritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koda, S.

    Recent kinetic studies, particularly those by means of shadowgraphy and X-ray radiography, for supercritical water oxidation of solid carbonaceous and resinous substances have revealed the importance of the O{sub 2} mass transfer process over the intrinsic surface reaction at higher temperatures. The mass transfer processes, internal and external one, should be incorporated in designing SCWO processes for solid substances and related processes such as catalytic SCWO. Some model calculation efforts of late are briefly described. Finally, fundamental information required for future development is itemed.

  14. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  15. Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment.

    PubMed

    Zhang, Suling; Yao, Weixuan; Ying, Jianbo; Zhao, Hongting

    2016-06-24

    Zeolitic imidazolate frameworks (ZIFs) consist of metal nodes connected to imidazolate linkers, having both the properties of metal-organic frameworks (MOFs) and inorganic zeolites, such as controllable pore sizes, high porosity and surface areas, as well as exceptional thermal and chemical stability, thereby making them a class of attractive materials for diverse analytical applications. In this study, we reported a facile magnetization process of ZIF-7 (zinc benzimidazolate) for simultaneous magnetic extraction of polycyclic aromatic hydrocarbons (PAHs) by simply mixing ZIF-7 and polydopamine (PDA)-coated Fe3O4 nanoparticles (PDA@Fe3O4) in solutions. Functional groups (-OH and -NH2), provided by PDA as a highly efficient molecular linker, could attract and anchor ZIF-7 through noncovalent adsorption and covalent cross-link interactions, thereby promoting the complete magnetization of ZIFs and enhancing their stability and reusability. The bridging ligand benzimidazolate, could be bonded with PAHs because of its high surface area, large pores, accessible coordinative unsaturated sites (π-complexation), and π-π stacking action. This ZIF-based magnetic solid-phase extraction (SPE), coupled with gas chromatography/tandem mass spectrometry (GC/MS), was further evaluated for analysis of PAHs from rainwater and air samples of particulate matter less than 2.5μm in diameter (PM2.5). The main effective parameters, including ionic strength, solution pH, extraction time, desorption solvent and desorption time, were investigated, respectively. Under optimized conditions, the developed method based on Fe3O4@PDA/ZIF-7 gave detection limits of 0.71-5.79ng/L, and quantification limits of 2.50-19.2ng/L for PAHs, respectively. The relative standard deviations for intra-day and inter-day analyses were in the range of 3.1-9.1% and 6.1-12.7%, respectively. The PAHs founded in PM2.5 were in the range of 0.40-6.79ng/m(3). Good recoveries (>82%) with low relative standard deviations

  16. Field measurements of the spectral response of natural waters

    NASA Technical Reports Server (NTRS)

    Bartolucci, L. A.; Robinson, B. F.; Silva, L. F.

    1977-01-01

    The spectral response (air-water interface reflectance and water-volume scattering) of turbid river water (99 mg/liter suspended solids) and relatively clear lake water (10 mg/liter suspended solids) was measured in situ with a field spectroradiometer. The influence of the river bottom on the spectral response of the water also was determined by using a modified Secchi disc approach. The results indicated that turbid river water had a higher spectral response than clear lake water (about 6 percent) in the red (0.6-0.7 micron) and near-infrared (0.7-0.9 micron) portions of the spectrum. Also, the reflectance characteristics of the river bottom did not influence the spectral response of the turbid river water when the water was deeper than 30 cm

  17. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  18. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  19. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    USDA-ARS?s Scientific Manuscript database

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  20. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  2. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  3. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  4. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  5. Detection of Pollution Caused by Solid Wastes

    NASA Technical Reports Server (NTRS)

    Golueke, Clarence G.

    1971-01-01

    To develop a means of detecting pollution, it s necessary to know something about the source and nature of the pollution. The type of pollution rising from solid wastes differs considerably from hat from liquid wastes or that from gaseous wastes ni its effect on the immediate environment. It may be "defined" by a series of negatives. When solid wastes are discarded on land, the resulting pollution is not land pollution in the sense of air and water pollution. For one thing, the solid wastes do not become a "part" of the land in that the wastes are neither intimately mixed nor homogenized into the land as are liquid and gaseous wastes into their respective media. The waste particles retain not only their chemical identity but also their visible (i.e., physical) characteristics. When buried, for example, the soil is under, above, and around the solids, because the wastes are there as discrete units. Secondly, solid wastes neither diffuse nor are they carried from the place at which they were deposited. In other words they remain stationary, providing of course the disposal site is land and not moving water. In a given area, solid wastes be not distributed uniformly over that area. Even the solid wastes falling into the specification of letter meets these specifications. In contrast liquid and gaseous wastes become intimately mixed, homogenized, and even dissolved in their media. Because solid wastes remain stationary, pollution constituted by their presence is highly localized and heavily concentrated, even to the extent that the pollution could be termed "micro" when compared to the macro-pollution arising from liquid and gasequs wastes.

  6. Sudden Appearance of Water in Flowmeter During Air/Oxygen and Sevoflurane Anaesthesia.

    PubMed

    Kandemir, Tünay; Muslu, Selda; Kandemir, Erbin

    2015-02-01

    Endotracheal intubation was performed, and a water bubbling sound was heard from the anaesthesia device immediately after the release of gases to administer the O2-air-sevoflurane mixture. The flowmeter on the anaesthesia device was then found to be filled with water. The breakdown of the dryer in the medical air compressor system was determined as the source of the problem, since a greasy fluid mixture was released from the air-wall outlets in all rooms. Consequently, the anaesthesia team should keep in mind that problems as seen in the current case might emerge and should be alert.

  7. (Quasi-) 2D aggregation of polystyrene-b-dextran at the air-water interface.

    PubMed

    Bosker, Wouter T E; Cohen Stuart, Martien A; Norde, Willem

    2013-02-26

    Polystyrene-b-dextran (PS-b-Dextran) copolymers can be used to prepare dextran brushes at solid surfaces, applying Langmuir-Blodgett deposition. When recording the interfacial pressure versus area isotherms of a PS-b-Dextran monolayer, time-dependent hysteresis was observed upon compression and expansion. We argue that this is due to (quasi-) 2D aggregation of the copolymer at the air-water surface, with three contributions. First, at large area per molecule, a zero surface pressure is measured; we ascribe this to self-assembly of block copolymers into surface micelles. At intermediate area we identify a second regime ("desorption regime") where aggregation into large patches occurs due to van der Waals attraction between PS blocks. At high surface pressure ("brush regime") we observe hysteretic behavior attributed to H-bonding between dextran chains. When compared to hysteresis of other amphiphilic diblock copolymers (also containing PS, e.g., polystyrene-b-poly(ethylene oxide)) a general criterion can be formulated concerning the extent of hysteresis: when the hydrophobic (PS) block is of equal size as (or bigger than) the hydrophilic block, the hysteresis is maximal. The (quasi-) 2D aggregation of PS-b-Dextran has significant implications for the preparation of dextran brushes at solid surfaces using Langmuir-Blodgett deposition. For each grafting density the monolayer needs to relax, up to several hours, prior to transfer.

  8. Experimentally quantifying anion polarizability at the air/water interface.

    PubMed

    Tong, Yujin; Zhang, Igor Ying; Campen, R Kramer

    2018-04-03

    The adsorption of large, polarizable anions from aqueous solution on the air/water interface controls important atmospheric chemistry and is thought to resemble anion adsorption at hydrophobic interfaces generally. While the favourability of adsorption of such ions is clear, quantifying adsorption thermodynamics has proven challenging because it requires accurate description of the structure of the anion and its solvation shell at the interface. In principle anion polarizability offers a structural window, but to the best of our knowledge there has so far been no experimental technique that allowed its characterization with interfacial specificity. Here, we meet this challenge using interface-specific vibrational spectroscopy of Cl-O vibrations of the [Formula: see text] anion at the air/water interface and report that the interface breaks the symmetry of the anion, the anisotropy of [Formula: see text]'s polarizability tensor is more than two times larger than in bulk water and concentration dependent, and concentration-dependent polarizability changes are consistent with correlated changes in surface tension.

  9. Simulation study of air and water cooled photovoltaic panel using ANSYS

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  10. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    NASA Technical Reports Server (NTRS)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  11. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    PubMed

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  12. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Kuo, C.-C.; Yang, H.-T.; Chiou, C.T.

    2000-01-01

    The influence of a nonionic surfactant (Triton X-100) on the contaminant distribution coefficients in solid-water mixtures was determined for a number of relatively nonpolar compounds (contaminants) on several natural solids. The studied compounds consisted of BTEX (benzene, toluene, ethylbenzene, and p-xylene) and chlorinated pesticides (lindane, ??-BHC, and heptachlor epoxide), which span several orders of magnitude in water solubility (S(W)); the solid samples comprised a bentonite, a peat, and two other soils, which cover a wide range of solid organic matter (SOM) content. The applied surfactant concentrations (X) ranged from below the (nominal) CMC to 2-3 times the CMC. For relatively water-soluble BTEX compounds, the distribution coefficients with surfactant (K*(d)) all exceeded those without surfactant (K(d)); the K*(d)/K(d) ratios increased with increasing S(w) from p-xylene to benzene on each solid at a given X, with increasing X for each compound on a solid, and with decreasing solid SOM content for each compound over the range of X studied. For the less-soluble pesticides, the K*(d)/K(d) ratios exhibited a large increase with X for bentonite, a marginal change (increase or decrease) for a soil of 2.4% SOM, and a moderate-to-large decrease for two soils of 14.8% and 86.4% SOM. These unique observations were rationalized in terms of the properties of the compound, the amount of surfactant sorbed on the solid, the enhanced solubilization of the compound by surfactant in water, and the relative effects of the surfactant when adsorbed on minerals and when partitioned into SOM. (C) 2000 Academic Press.

  14. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  15. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  16. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    NASA Astrophysics Data System (ADS)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  17. Experimental verification of enhanced sound transmission from water to air at low frequencies.

    PubMed

    Calvo, David C; Nicholas, Michael; Orris, Gregory J

    2013-11-01

    Laboratory measurements of enhanced sound transmission from water to air at low frequencies are presented. The pressure at a monitoring hydrophone is found to decrease for shallow source depths in agreement with the classical theory of a monopole source in proximity to a pressure release interface. On the other hand, for source depths below 1/10 of an acoustic wavelength in water, the radiation pattern in the air measured by two microphones becomes progressively omnidirectional in contrast to the classical geometrical acoustics picture in which sound is contained within a cone of 13.4° half angle. The measured directivities agree with wavenumber integration results for a point source over a range of frequencies and source depths. The wider radiation pattern owes itself to the conversion of evanescent waves in the water into propagating waves in the air that fill the angular space outside the cone. A ratio of pressure measurements made using an on-axis microphone and a near-axis hydrophone are also reported and compared with theory. Collectively, these pressure measurements are consistent with the theory of anomalous transparency of the water-air interface in which a large fraction of acoustic power emitted by a shallow source is radiated into the air.

  18. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  19. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry.

    PubMed

    Schoenfeld, Andreas A; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-11-21

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w , have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR ( 60 Co), Eckert und Ziegler BEBIG GmbH CSM-11 ( 137 Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 ( 169 Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 ( 131 Cs), IsoAid Advantage I-125 IAI-125A ( 125 I), and IsoAid Advantage Pd-103 IAPd-103A ( 103 Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192 Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192 Ir, 137 Cs and 60 Co most phantom materials can be regarded as water equivalent, for 169 Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106 Pd, 131 Cs and 125 I, only Plastic Water LR can be classified as water

  20. Metabolic and cardiovascular adjustment to work in air and water at 18, 25, and 33 degrees C.

    PubMed

    McArdle, W D; Magel, J R; Lesmes, G R; Pechar, G S

    1976-01-01

    By use of successive increments of discontinuous work with an arm-leg cycle ergometer the VO2, Q, SV, and HR were studied in six male subjects at rest and during exercise in air and in water at 18, 25, and 33 degrees C. The Q values obtained by CO2 rebreathing were reproducible. VO2 was linearly related to work with the plots for air and 33 degrees C water being similar. However, during work in 25 and 18 degrees C water, the VO2 averaged 9.0% (150 ml) and 25.3% (400 ml) higher, respectively, than values observed in 33 degrees C water, with the largest differences observed in leaner subjects. The plot of HR-VO2 was linear and almost identical during work in air and 33 degrees C water, but shifted significantly to the right in cooler water. VO2 averaged 250-700 ml higher in cold water compared to air and 33 degrees C water at a given mean heart rate. The Q vs. VO2 line was similar during work in air and in water with no effect of water or temperature. At similar levels of VO2, SV was significantly larger (P less than 0.05) in 25 and 18 degrees C water than in air or 33 degrees C water. Consequently, the reduction in heart rate during work in cold water was entirely compensated for by a proportionate increase in the SV of the heart. Q was therefore maintained at similar levels of energy expenditure in air and in 18, 25, and 30 degrees C water.

  1. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  2. Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure.

    PubMed

    Li, Li Jun; Hong, Peng; Jiang, Ze Dong; Yang, Yuan Fan; Du, Xi Ping; Sun, Hao; Wu, Li Ming; Ni, Hui; Chen, Feng

    2018-01-15

    d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  4. Are the measurements of water-filled and air-charged catheters the same in urodynamics?

    PubMed

    Digesu, G Alessandro; Derpapas, Alexandros; Robshaw, Penny; Vijaya, Gopalan; Hendricken, Caroline; Khullar, Vik

    2014-01-01

    The aim of our study was to compare air-charged and water-filled catheters simultaneously in the measurement of the intravesical, abdominal and detrusor pressure during urodynamic investigations. Consecutive women with lower urinary tract symptoms, referred for urodynamics were prospectively studied. Readings of intravesical pressure (p(ves)), abdominal pressure (p(abd)) and detrusor pressure (p(det)), recorded by both the air-charged and water-filled catheters, were displayed simultaneously and compared at the end of filling, on standing, on sitting prior to voiding and at the maximum involuntary detrusor contraction. The signals (pressures) recorded by both types of catheter were compared using the Bland-Altman plot and paired samples t test. Twenty women with a mean age of 49 (range 36-72) were recruited. One patient with normal urodynamics was excluded in view of the poor quality trace. At each of the four comparison points, the air-charged catheters consistently produced higher mean pressures than the water-filled catheters. There were wide variations in the difference between the readings produced by the two types of catheter. Pressures measured using air-charged catheters are not comparable with water-filled catheters and are therefore not interchangeable. Caution must be used when comparing urodynamic parameters using air-charged and water-filled catheters.

  5. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land

    PubMed Central

    Handle, Philip H.; Sciortino, Francesco

    2017-01-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water–water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid–liquid transition that could take place in the no-man’s land, the temperature–pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form. PMID:29133419

  6. Enhanced adsorption of arsenic through the oxidative treatment of reduced aquifer solids.

    PubMed

    Huling, Jenna R; Huling, Scott G; Ludwig, Ralph

    2017-10-15

    Arsenic (As) contamination in drinking water is an epidemic in many areas of the world, especially Eastern Asian countries. Developing affordable and efficient procedures to remove arsenic from drinking water is critical to protect human health. In this study, the oxidation of aquifer solids through the use of sodium permanganate (NaMnO 4 ), hydrogen peroxide (H 2 O 2 ), and exposure to air, enhanced the adsorption of arsenic to the aquifer material resulting in treatment of the water. NaMnO 4 was more effective than H 2 O 2 . NaMnO 4 was tested at different loading rates (0.5, 1.5, 2.4, 3.4, and 4.9 g NaMnO 4 /kg aquifer material), and after 30 days contact time, arsenic removal ([As +3 ] INITIAL  = 610 μg/L) was 77%, 88%, 93%, 95%, 97%, respectively, relative to un-oxidized aquifer material. Arsenic removal increased with increasing contact time (30, 60, 90 days) suggesting removal was not reversible under the conditions of these experiments. Oxidative treatment by exposing the aquifer solids to air for 68 days resulted in >99% removal of Arsenic ([As +3 ] INITIAL  = 550 μg/L). Less arsenic removal (38.2%) was measured in the un-oxidized aquifer material. In-situ oxidation of aquifer materials using NaMnO 4 , or ex-situ oxidation of aquifer materials through exposure to air could be effective in the removal of arsenic in ground water and a potential treatment method to protect human health. Published by Elsevier Ltd.

  7. Indoor air pollution from solid fuel and tuberculosis: a systematic review and meta-analysis.

    PubMed

    Lin, H-H; Suk, C-W; Lo, H-L; Huang, R-Y; Enarson, D A; Chiang, C-Y

    2014-05-01

    To conduct an updated systematic review and meta-analysis on the association between indoor air pollution and tuberculosis (TB). We searched for English or Chinese articles using PubMed and EMBASE up to 28 February 2013. We aimed to identify randomised controlled trials and observational epidemiological studies that reported the association between domestic use of solid fuel and TB. Two reviewers independently extracted the information from included studies and assessed the risk of bias of these studies using pre-defined criteria. The effect sizes of eligible studies were pooled using a random-effects model; the heterogeneity across studies was quantified using I(2) statistics. We identified 15 studies on solid fuel use and active TB and one on solid fuel use and latent tuberculous infection. The summary odds ratios from case-control and cross-sectional studies were respectively 1.17 (95%CI 0.83 - 1.65) and 1.62 (95%CI 0.89 - 2.93), with substantial between-study heterogeneity (I(2) 56.2% and 80.5%, respectively). Subgroup analysis and meta-regression analysis did not identify any study-level factors that could explain the heterogeneity observed. The level of evidence for the association between domestic use of solid fuels and TB was very low. High-quality studies are badly needed to clarify this association and to estimate the magnitude of the problem.

  8. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  10. The Gas-Absorption/Chemical-Reaction Method for Measuring Air-Water Interfacial Area in Natural Porous Media

    NASA Astrophysics Data System (ADS)

    Lyu, Ying; Brusseau, Mark L.; El Ouni, Asma; Araujo, Juliana B.; Su, Xiaosi

    2017-11-01

    The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (Aia). Coefficients of variation for Aia were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (Am) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the Am for the glass beads is 29 (±1) cm-1, compared to 32 (±3), 30 (±2), and 31 (±2) cm-1 determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, Aias of 47 and 44 cm-1 were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.

  11. Quantitatively identifying the roles of interfacial water and solid surface in governing peptide adsorption.

    PubMed

    Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita

    2018-06-11

    Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide

  12. Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation and Air Purification

    DTIC Science & Technology

    2012-06-01

    Eliasson, and M. Hirth, “ Ozone Generation from Oxygen and Air: Discharge Physics and Reaction Mechanisms,” Ozone Sci. and Eng., vol. 10, pp. 367-378...Phase I Final Report: Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation and Air Purification...Contract Number: FA9550-11-C-0087 June 2012 Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation

  13. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface.

    PubMed

    Penna, Matthew J; Mijajlovic, Milan; Biggs, Mark J

    2014-04-09

    Although protein adsorption on solids is of immense relevance, experimental limitations mean there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. By subjecting 240+ molecular dynamics simulations of two peptide/water/solid surface systems to statistical analysis, a generalized molecular level mechanism for peptide adsorption has been identified for uncharged surfaces that interact strongly with the solution phase. This mechanism is composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a slow, stepwise and largely sequential adsorption of its residues, which we term 'statistical zippering'. The adsorption mechanism is dictated by the existence of water layers adjacent to the solid and orientational ordering therein. By extending the solid into the solution by ~8 Å and endowing it with a charged character, the water layers ensure the peptide feels the effect of the solid at a range well beyond the dispersion force that arises from it, thus inducing biased diffusion from afar. The charging of the interface also facilitates anchoring of the peptide near the surface via one of its hydrophilic groups, allowing it time it would otherwise not have to rearrange and lockdown. Finally, the slowness of the lockdown process is dictated by the need for the peptide groups to replace adjacent tightly bound interfacial water.

  15. Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules.

    PubMed

    Devineau, Stéphanie; Inoue, Ken-Ichi; Kusaka, Ryoji; Urashima, Shu-Hei; Nihonyanagi, Satoshi; Baigl, Damien; Tsuneshige, Antonio; Tahara, Tahei

    2017-04-19

    Elucidation of the molecular mechanisms of protein adsorption is of essential importance for further development of biotechnology. Here, we use interface-selective nonlinear vibrational spectroscopy to investigate protein charge at the air/water interface by probing the orientation of interfacial water molecules. We measured the Im χ (2) spectra of hemoglobin, myoglobin, serum albumin and lysozyme at the air/water interface in the CH and OH stretching regions using heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy, and we deduced the isoelectric point of the protein by monitoring the orientational flip-flop of water molecules at the interface. Strikingly, our measurements indicate that the isoelectric point of hemoglobin is significantly lowered (by about one pH unit) at the air/water interface compared to that in the bulk. This can be predominantly attributed to the modifications of the protein structure at the air/water interface. Our results also suggest that a similar mechanism accounts for the modification of myoglobin charge at the air/water interface. This effect has not been reported for other model proteins at interfaces probed by conventional VSFG techniques, and it emphasizes the importance of the structural modifications of proteins at the interface, which can drastically affect their charge profiles in a protein-specific manner. The direct experimental approach using HD-VSFG can unveil the changes of the isoelectric point of adsorbed proteins at various interfaces, which is of major relevance to many biological applications and sheds new light on the effect of interfaces on protein charge.

  16. Statistics of surface divergence and their relation to air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  17. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    PubMed

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, J.; Loock, H.-P., E-mail: hploock@chem.queensu.ca; Cann, N. M., E-mail: ncann@chem.queensu.ca

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atommore » desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H{sub 2}O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H{sub 2}O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.« less

  19. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K.

    PubMed

    Crouse, J; Loock, H-P; Cann, N M

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atom desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H2O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H2O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.

  20. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  1. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  2. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  3. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  4. Investigation of Ground Water Pollution at Air Force Plant Number 4, Fort Worth Texas

    DTIC Science & Technology

    1986-10-01

    Dbtibz~o Ud~mxtm!UCTtq! - INVESTIGATION OF GROUND WATER POLLUTION AT - AIR FORCE PLANT NO. 4 FORT WORTH, TEXAS REPORT TO - UNITED STATES AIR FORCE...performed at the plant : Three pairs of Paluxy monitoring wells weze drilled along the south boundary of the plant to determine if pollutants discovered in...a nonhazardous dye tracer in selected wells. v U, INVESTIGATION OF POLLUTION OF GROUND WATER IN THE PALUXY AQUIFER AT AIR FORCE PLANT NO. 4, FORT

  5. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  6. Dissolved-Solids Load in Henrys Fork Upstream from the Confluence with Antelope Wash, Wyoming, Water Years 1970-2009

    USGS Publications Warehouse

    Foster, Katharine; Kenney, Terry A.

    2010-01-01

    Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.

  7. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS. ACTION... Water Show safety zone on Lake Michigan near Lincoln Park. This action is necessary to accurately reflect the enforcement dates and times for this safety zone due to changes made in this year's air show...

  8. Production and application of O2 enriched air produced by fresh and salt water desorption in chemical plants.

    PubMed

    Galli, F; Previtali, D; Bozzano, G; Bianchi, C L; Manenti, F; Pirola, C

    2018-07-01

    Oxygen enriched air intensifies oxidation processes since smaller reactors reach the same conversion of typical unit operations that employ simple air as reactant. However, the cost to produce pure oxygen or oxygen enriched air with traditional methods, i.e. cryogenic separation or membrane technologies, may be unaffordable. Here, we propose a new continuous technology for gas mixture separation, focusing on the production of oxygen enriched air as a case study. This operation is an absorption-desorption process that takes advantage of the higher oxygen solubility in water compared to nitrogen. In a pressurized solubilisation tank, water absorbs air. Subsequently, reducing pressure desorbs oxygen enriched air. PRO/II 9.3 (Simsci-Scheider Electrics) simulated, optimized, and calculated the capital and operative expenses of this technology. Moreover, we tested for the first time salt water instead of distilled water as appealing possibility for chemical plant near sea and ocean. We varied the inlet water flowrate between 5 and 15 m 3 /h. The optimum operative absortion unit pressure is 15-35 barg. After degassing, water may be recycled. With salt water, the extracted quantity of enriched air decreases compared with the desorption from fresh water (20% less), while the concentration of oxygen is independent from the salt concentration. The cost of enriched air at the optimum condition is 2-3.35 EUR/Nm 3 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Breath-hold times in air compared to breath-hold times during cold water immersions.

    PubMed

    Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert

    2015-02-01

    Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.

  10. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  11. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  12. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.

  13. Modeling of nanosecond pulsed laser processing of polymers in air and water

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon

    2018-07-01

    Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in air. Plasma expansion velocities are much lower in water than in air. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.

  14. Solid-phase microextraction of hydrocarbons from water in a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.

    2016-06-01

    The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.

  15. Experimental investigations on characteristics of stable water electrospray in air without discharge

    NASA Astrophysics Data System (ADS)

    Park, Inyong; Hong, Won Seok; Kim, Sang Bok; Kim, Sang Soo

    2017-06-01

    An experimental study was conducted to resolve previous conflicting results on water electrospray in air at atmospheric pressure. Using a small flow rate relative to that used in previous studies and a small nonmetallic nozzle, we observed stable electrospray of water in air without discharge and distinguished three distinct operating regimes for applied voltage and flow rate. The well-known cone-jet mode was observed and the general scaling law of the generated droplet size in the cone-jet mode was confirmed by direct visualization of the meniscus, jet, and generated droplets. We also observed and analyzed whipping motion in the electrified water jet.

  16. Mercury exchange at the air-water-soil interface: an overview of methods.

    PubMed

    Fang, Fengman; Wang, Qichao; Liu, Ruhai

    2002-06-12

    An attempt is made to assess the present knowledge about the methods of determining mercury (Hg) exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water) are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  17. Air Emissions Damages from Municipal Drinking Water Treatment Under Current and Proposed Regulatory Standards.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2017-09-19

    Water treatment processes present intersectoral and cross-media risk trade-offs that are not presently considered in Safe Drinking Water Act regulatory analyses. This paper develops a method for assessing the air emission implications of common municipal water treatment processes used to comply with recently promulgated and proposed regulatory standards, including concentration limits for, lead and copper, disinfection byproducts, chromium(VI), strontium, and PFOA/PFOS. Life-cycle models of electricity and chemical consumption for individual drinking water unit processes are used to estimate embedded NO x , SO 2 , PM 2.5 , and CO 2 emissions on a cubic meter basis. We estimate air emission damages from currently installed treatment processes at U.S. drinking water facilities to be on the order of $500 million USD annually. Fully complying with six promulgated and proposed rules would increase baseline air emission damages by approximately 50%, with three-quarters of these damages originating from chemical manufacturing. Despite the magnitude of these air emission damages, the net benefit of currently implemented rules remains positive. For some proposed rules, however, the promise of net benefits remains contingent on technology choice.

  18. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  19. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

    PubMed

    Chafe, Zoë A; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank; Smith, Kirk R

    2014-12-01

    Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

  20. New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells.

    PubMed

    Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran; Lu, Yalin

    2018-01-17

    Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu 2 Fe 1.8 Co 0.2 O 7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H 2 (∼3% H 2 O) and 10% H 2 O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

  1. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Role of air-water interfaces on retention of viruses under unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.; van den Berg, H. H. J. L.

    2006-12-01

    We investigated transport of viruses through saturated and unsaturated sand columns. Unsaturated experiments were conducted under conditions of uniform saturation and steady state water flow. The water saturation ranged from 1 to 0.5. Bacteriophages MS2 and ϕX174 were used as surrogates for pathogenic viruses in these studies. Phosphate-buffered solutions with different pH values (7.5, 6.2, 5.5, and 5) were utilized. Virus transport was modeled assuming first-order kinetic adsorption for interactions to the solid-water interface (SWI) and the air-water interface (AWI). Under saturated conditions, virus retention increased as pH decreased, and a one-site kinetic model produced a good fit to the breakthrough curves. Under unsaturated conditions a two-site kinetic model was needed to fit the breakthrough curves satisfactorily. The second site was attributed to the adsorption of phages to the AWI. According to our results, ϕX174 exhibits a high affinity to the AWI at pH values below 6.6 (the isoelectric point of ϕX174). Although it is believed that MS2 is more hydrophobic than ϕX174, MS2 had a lower affinity to the AWI than ϕX174, presumably because of the lower isoelectric point of MS2, which is equal to 3.9. Under unsaturated conditions, viruses captured within the column could be recovered in the column outflow by resaturating and immediately draining the column. Draining columns under saturated conditions, however, did not result in any recovery of viruses. Therefore the recovery can be attributed to the release of viruses adsorbed to the AWI. Our results suggest that electrostatic interactions of viruses with the AWI are much more important than hydrophobicity.

  3. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    PubMed

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  4. Wind and water tunnel testing of a morphing aquatic micro air vehicle

    PubMed Central

    Ortega Ancel, Alejandro; Kovač, Mirko

    2017-01-01

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae. The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive. PMID:28163877

  5. Harvesting Water from Air: Using Anhydrous Salt with Sunlight.

    PubMed

    Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab; Wang, Peng

    2018-05-01

    Atmospheric water is an abundant alternative water resource, equivalent to 6 times the water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting, and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl 2 ), copper sulfate (CuSO 4 ), and magnesium sulfate (MgSO 4 ) distinguish themselves and are further made into bilayer water collection devices, with the top layer being the photothermal layer, while the bottom layer acts as a salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15%) and releasing water under regular and even weakened sunlight (i.e., 0.7 kW/m 2 ). The work shines light on the potential use of anhydrous salt toward producing drinking water in water scarce regions.

  6. Demulsification of water/oil/solid emulsions by hollow-fiber membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirmizi, N.P.; Raghuraman, B.; Wiencek, J.

    1996-05-01

    The demulsification techniques investigated use preferential surface wetting to allow separation of oil and water phases in ultrafiltration and microfiltration membranes. A hydrophobic membrane allows the permeation of an oil phase at almost zero pressure and retains the water phase, even though the molecular weight of the water molecule (18) is much smaller than that of the oil molecule (198 for tetradecane, used in this study). Hydrophobic membranes having pore sizes from 0.02 to 0.2 {micro}m were tested for demulsification of water-in-oil emulsions and water/oil/solid mixtures. The dispersed (aqueous)-phase drop sizes ranged from 1 to 5 {micro}m. High separation rates,more » as well as good permeate quality, were obtained with microfiltration membranes. Water content of permeating oil was 32--830 ppm depending on operating conditions and interfacial properties. For emulsions with high surfactant content, simultaneous operation of a hydrophobic and hydrophilic membrane, or simultaneous membrane separation with electric demulsification was more efficient in obtaining complete phase separation.« less

  7. Oxygen and carbon dioxide sensitivity of ventilation in amphibious crabs, Cardisoma guanhumi, breathing air and water.

    PubMed

    Gannon, Andrew T; Henry, Raymond P

    2004-05-01

    Amphibious crabs, Cardisoma guanhumi, were acclimated to breathing either air or water and exposed to altered levels of oxygen and/or carbon dioxide in the medium. Hypercapnia (22, 36 and 73 torr CO(2)) stimulated a significant hypercapnic ventilatory response (HCVR) in both groups of crabs, with a much greater effect on scaphognathite frequency (Deltaf(SC)=+700%) in air-breathing crabs than water-breathing crabs (Deltaf(SC)=+100%). In contrast, hyperoxia induced significant hypoventilation in both sets of crabs. However, simultaneous hyperoxia and hypercapnia triggered a greater than 10-fold increase in f(SC) in air-breathing crabs but no change in water-breathing crabs. For water-breathing crabs hypoxia simultaneous with hypercapnia triggered the same response as hypoxia alone-bradycardia (-50%), and a significant increase in f(SC) at moderate exposures but not at the more extreme levels. The response of air-breathing crabs to hypoxia concurrent with hypercapnia was proportionally closer to the response to hypercapnia alone than to hypoxia. Thus, C. guanhumi were more sensitive to ambient CO(2) than O(2) when breathing air, characteristic of fully terrestrial species, and more sensitive to ambient O(2) when breathing water, characteristic of fully aquatic species. C. guanhumi possesses both an O(2)- and a CO(2)-based ventilatory drive whether breathing air or water, but the relative importance switches when the respiratory medium is altered.

  8. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  9. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  10. INVESTIGATION OF SEQUENTIAL AND ENZYMATIC EXTRACTION OF ARSENIC FROM DRINKING WATER DISTRIBUTION SOLIDS WITH ICP-MS

    EPA Science Inventory

    A sequential extraction approach was utilized to estimate the distribution of arsenite [As(III)] and arsenate [As(V)] on iron oxide/hydroxide solids obtained from drinking water distribution systems. The arsenic (As) associated with these solids can be segregated into three oper...

  11. Laser-assisted surface modification of Ti-implant in air and water environment

    NASA Astrophysics Data System (ADS)

    Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.

    2018-01-01

    A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.

  12. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    NASA Astrophysics Data System (ADS)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  13. Generalized water-table and water-level data at the US Air Force plant 42 and vicinity, Palmdale, California, March-April, 1997

    USGS Publications Warehouse

    Christensen, Allen H.

    1999-01-01

    The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.

  14. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    NASA Astrophysics Data System (ADS)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  15. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    PubMed

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  16. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    PubMed

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.

  17. 75 FR 11560 - Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air... for the Defendant's violations of the Clean Water Act, 33 U.S.C. 1251 et seq., and the Clean Air Act... including the installation of water effluent controls, the rerouting of air emissions through control...

  18. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan.

    PubMed

    Tandon, Kshitij; Yang, Shan-Hua; Wan, Min-Tao; Yang, Chia-Chin; Baatar, Bayanmunkh; Chiu, Chih-Yu; Tsai, Jeng-Wei; Liu, Wen-Cheng; Tang, Sen-Lin

    2018-04-21

    Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes-located 21 km apart and with disparate trophic characteristics-and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.

  19. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  20. Pre-service primary school teachers’ abilities in explaining water and air pollution scientifically

    NASA Astrophysics Data System (ADS)

    Lukmannudin; Sopandi, W.; Sujana, A.; Sukardi, R.

    2018-05-01

    The purpose of this study is to determine the ability of pre-service primary school teachers (PSPST) in explaining the phenomenon of water and air pollution scientifically. The research method used descriptive method of analysis with qualitative approach. The respondents were PSPTP at 4th semester. This study used a four-tier instrument diagnostic test. The number of subjects was 84 PSPTP at Universitas Pendidikan Indonesia, Kampus Daerah Sumedang. The results demonstrate the ability of PSPST in explaining water and air pollution scientifically. The results show that only 6% of PSPST who are able to explain the phenomenon of water pollution and only 4% of PSPST who are able to explain the phenomenon of air pollution. The fact should be attention for PSPST because these understanding are crucial in the process of learning activities in the classroom.

  1. Simulation Engine for Fluid Solid Interaction Problems and its Application to the Modelling of Air Blast Hazards in Block Cave Mining.

    NASA Astrophysics Data System (ADS)

    Galindo Torres, S. A.; Scheuermann, A.; Ruest, M.

    2016-12-01

    Air blasts that may occur in a block caving mining operation represent a significant hazard for personnel as well as to mining infrastructure. Uncontrolled caving of a large volume of broken rock into a mine void causes compression of the air within, forcing it to flow at high velocities into connecting tunnels such as extraction points beneath the cave or observation points intersecting the cave. This high velocity flow of air can cause injury to personnel and significant damage to equipment. In this presentation, we introduce a simulation engine for the air blast problem. The solid material is modelled using the Discrete Element Method (DEM) and the fluid (air) is modelled using the Lattice Boltzmann Method (LBM). The combined DEM-LBM approach has been introduced by our group at the University of Queensland[1]. LBM allows us to introduce an appropriate equation of state for the air that simulates compressibility as a function of the speed of sound. Validation examples are presented to justify the use of this tool for an air blasting situation. A section view of one simulation is provided in Fig 1. An investigation into the risk of developing air pockets as a function of fragment size distribution is also conducted and described. The fragment size distribution can be assessed during mining and the risk of air pockets forming (and consequently of air blast occurring) can be deduced and mitigation measures put in place. The effect of other key variables that can be determined from geotechnical investigations, such as fracture frequency, are also systematically explored. It is expected that the results of this study can elucidate key features of the air blasting phenomenon in order to formulate safer mining protocols. references 1. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.

  2. Health risk assessment of air emissions from a municipal solid waste incineration plant--a case study.

    PubMed

    Cangialosi, Federico; Intini, Gianluca; Liberti, Lorenzo; Notarnicola, Michele; Stellacci, Paolo

    2008-01-01

    A health risk assessment of long-term emissions of carcinogenic and non-carcinogenic air pollutants has been carried out for the municipal solid waste incinerator (MSWI) of the city of Taranto, Italy. Ground level air concentrations and soil deposition of carcinogenic (Polychlorinated Dibenzo-p-Dioxins/Furans and Cd) and non-carcinogenic (Pb and Hg) pollutants have been estimated using a well documented atmospheric dispersion model. Health risk values for air inhalation, dermal contact, soil and food ingestion have been calculated based on a combination of these concentrations and a matrix of environmental exposure factors. Exposure of the surrounding population has been addressed for different release scenarios based on four pollutants, four exposure pathways and two receptor groups (children and adults). Spatial risk distribution and cancer excess cases projected from plant emissions have been compared with background mortality records. Estimated results based on the MSWI emissions show: (1) individual risks well below maximum acceptable levels, (2) very small incremental cancer risk compared with background level.

  3. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    PubMed

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  4. Contribution of solid fuel, gas combustion, or tobacco smoke to indoor air pollutant concentrations in Irish and Scottish homes.

    PubMed

    Semple, S; Garden, C; Coggins, M; Galea, K S; Whelan, P; Cowie, H; Sánchez-Jiménez, A; Thorne, P S; Hurley, J F; Ayres, J G

    2012-06-01

      There are limited data describing pollutant levels inside homes that burn solid fuel within developed country settings with most studies describing test conditions or the effect of interventions. This study recruited homes in Ireland and Scotland where open combustion processes take place. Open combustion was classified as coal, peat, or wood fuel burning, use of a gas cooker or stove, or where there is at least one resident smoker. Twenty-four-hour data on airborne concentrations of particulate matter<2.5 μm in size (PM2.5), carbon monoxide (CO), endotoxin in inhalable dust and carbon dioxide (CO2), together with 2-3 week averaged concentrations of nitrogen dioxide (NO2) were collected in 100 houses during the winter and spring of 2009-2010. The geometric mean of the 24-h time-weighted-average (TWA) PM2.5 concentration was highest in homes with resident smokers (99 μg/m3--much higher than the WHO 24-h guidance value of 25 μg/m3). Lower geometric mean 24-h TWA levels were found in homes that burned coal (7 μg/m3) or wood (6 μg/m3) and in homes with gas cookers (7 μg/m3). In peat-burning homes, the average 24-h PM2.5 level recorded was 11 μg/m3. Airborne endotoxin, CO, CO2, and NO2 concentrations were generally within indoor air quality guidance levels. Little is known about indoor air quality (IAQ) in homes that burn solid or fossil-derived fuels in economically developed countries. Recent legislative changes have moved to improve IAQ at work and in enclosed public places, but there remains a real need to begin the process of quantifying the health burden that arises from indoor air pollution within domestic environments. This study demonstrates that homes in Scotland and Ireland that burn solid fuels or gas for heating and cooking have concentrations of air pollutants generally within guideline levels. Homes where combustion of cigarettes takes place have much poorer air quality. © 2011 John Wiley & Sons A/S.

  5. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  6. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Camera flash heating of a three-layer solid composite: An approximate solution

    NASA Astrophysics Data System (ADS)

    Jibrin, Sani; Moksin, Mohd Maarof; Husin, Mohd Shahril; Zakaria, Azmi; Hassan, Jumiah; Talib, Zainal Abidin

    2014-03-01

    Camera flash heating and the subsequent thermal wave propagation in a solid composite material is studied using the Laplace transform technique. Full-field rear surface temperature for a single-layer, two-layer and three-layer solid composites are obtained directly from the Laplace transform conversion tables as opposed to the tedious inversion process by integral transform method. This is achieved by first expressing the hyperbolic-transcendental equation in terms of negative exponentials of square root of s/α and expanded same in a series by the binomial theorem. Electrophoretic deposition (EPD) and dip coating processes were used to prepare three-layer solid composites consisting ZnO/Cu/ZnO and starch/Al/starch respectively. About 0.5ml of deionized water enclosed within an air-tight aluminium container serves as the third three layer sample (AL/water/AL). Thermal diffusivity experiments were carried out on all the three samples prepared. Using Scaled Levenberg-Marquardt algorithm, the approximate temperature curve for the three-layer solid composite is fitted with the corresponding experimental result. The agreement between the theoretical curve and the experimental data as well as that between the obtained thermal diffusivity values for the ZnO, aluminium and deionized water in this work and similar ones found in literature is found to be very good.

  8. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    USGS Publications Warehouse

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  9. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples

  10. Volatilization Rates from Water to Indoor Air Phase II

    EPA Science Inventory

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attemp...

  11. LOW-LEVEL DETERMINATION OF PERCHLORATE IN DRINKING WATER USING ION CHROMATOGRAPHY MASS SPECTROMETRY

    EPA Science Inventory

    Perchlorate is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag inflators, and i...

  12. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  13. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  14. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...

  15. Effects of water nanodroplets on skin moisture and viscoelasticity during air-conditioning.

    PubMed

    Ohno, Hideo; Nishimura, Naoki; Yamada, Kuniyuki; Shimizu, Yuuki; Iwase, Satoshi; Sugenoya, Junichi; Sato, Motohiko

    2013-11-01

    In air-conditioned rooms, dry air exacerbates some skin diseases, for example, senile xerosis, atopic dermatitis, and surface roughness. Humidifiers are used to improve air dryness, which often induces excess humidity and thermal discomfort. To address this issue, we investigated the effects of water nanodroplets (mist) on skin hydration, which may increase skin hydration by penetrating into the interstitial spaces between corneocytes of the stratum corneum (SC) without increasing air humidity. We examined biophysical parameters, including skin conductance and transepidermal water loss (TEWL), and biomechanical parameters of skin distension/retraction before and after suction at the forehead, lateral canthus, and cheek, with or without mist, in a testing environment (24°C, 35% relative humidity) for 120 min. In the group without mist, TEWL values significantly decreased at all the sites after 1 h compared with the initial values. However, in the presence of mist, TEWL values were maintained at the initial values through the test, yielding significant differences vs. the group without mist. There were no significant differences between mist and mist-free groups in terms of skin conductance. Skin distension was significantly increased in the group with mist compared with that in the group without mist at the forehead and cheek, suggesting a softening effect of mist. Skin deformation of the face was improved by mist, suggesting hydration of the SC by mist. The change in TEWL was influenced by mist, suggesting supply of water to the skin, particularly the SC, by mist. These data indicated that a mist of water nanodroplets played an important role in softening skin in an air-conditioned room without increasing excess humidity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China.

    PubMed

    Gao, X; Yu, Q; Gu, Q; Chen, Y; Ding, K; Zhu, J; Chen, L

    2009-06-01

    In this study, we are trying to investigate the indoor air pollution and to estimate the residents' pollution exposure reduction of energy altering in rural Tibet. Daily PM(2.5) monitoring was conducted in indoor microenvironments like kitchen, living-room, bedroom, and yard in rural Tibet from December 2006 to March 2007. For kitchen air pollution, impact of two fuel types, methane and solid biomass fuels (SBFs), were compared. Questionnaire survey on the domestic energy pattern and residents' daily activity pattern was performed in Zha-nang County. Daily average PM(2.5) concentrations in kitchen, living-room, bedroom, and yard were 134.91 microg/m(3) (mean, n = 45, 95%CI 84.02, 185.80), 103.61 microg/m(3) (mean, n = 21, 95%CI 85.77, 121.45), 76.13 microg/m(3) (mean, n = 18, 95%CI 57.22, 95.04), and 78.33 microg/m(3) (mean, n = 34, 95%CI 60.00, 96.65) respectively. Using SBFs in kitchen resulted in higher indoor pollution than using methane. PM(2.5) concentrations in kitchen with dung cake, fuel wood and methane use were 117.41 microg/m(3) (mean, n = 18, 95%CI 71.03, 163.79), 271.11 microg/m(3) (mean, n = 12, 95%CI 104.74, 437.48), and 46.96 microg/m(3) (mean, n = 15, 95%CI 28.10, 65.82) respectively. Family income has significant influence on cooking energy choice, while the lack of commercial energy supply affects the energy choice for heating more. The effects of two countermeasures to improve indoor air quality were estimated in this research. One is to replace SBFs by clean energy like methane, the other is to separate the cooking place from other rooms and by applying these countermeasures, residents' exposure to particulate matters would reduce by 25-50% (methane) or 20-30% (separation) compared to the present situation. Indoor air pollution caused by solid biomass fuels is one of the most important burdens of disease in the developing countries, which attracts the attention of environment and public health researchers, as well as policy makers. This paper

  17. Progression towards optimization of viscosity of highly concentrated carbonaceous solid-water slurries by incorporating and modifying surface chemistry parameters with and without additives

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amrita

    Carbonaceous solid-water slurries (CSWS) are concentrated suspensions of coal, petcoke bitumen, pitch etc. in water which are used as feedstock for gasifiers. The high solid loading (60-75 wt.%) in the slurry increases CSWS viscosity. For easier handling and pumping of these highly loaded mixtures, low viscosities are desirable. Depending on the nature of the carbonaceous solid, solids loading in the slurry and the particle size distribution, viscosity of a slurry can vary significantly. Ability to accurately predict the viscosity of a slurry will provide a better control over the design of slurry transport system and for viscosity optimization. The existing viscosity prediction models were originally developed for hard-sphere suspensions and therefore do not take into account surface chemistry. As a result, the viscosity predictions using these models for CSWS are not very accurate. Additives are commonly added to decrease viscosity of the CSWS by altering the surface chemistry. Since additives are specific to CSWS, selection of appropriate additives is crucial. The goal of this research was to aid in optimization of CSWS viscosity through improved prediction and selection of appropriate additive. To incorporate effect of surface chemistry in the models predicting suspension viscosity, the effect of the different interfacial interactions caused by different surface chemistries has to be accounted for. Slurries of five carbonaceous solids with varying O/C ratio (to represent different surface chemistry parameters) were used for the study. To determine the interparticle interactions of the carbonaceous solids in water, interfacial energies were calculated on the basis of surface chemistries, characterized by contact angles and zeta potential measurements. The carbonaceous solid particles in the slurries were assumed to be spherical. Polar interaction energy (hydrophobic/hydrophilic interaction energy), which was observed to be 5-6 orders of magnitude higher than the

  18. Modified sedimentation-dispersion model for solids in a three-phase slurry column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.N.; Ruether, J.A.; Shah, Y.T.

    1986-03-01

    Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less

  19. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and...

  20. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  1. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    NASA Astrophysics Data System (ADS)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  2. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  3. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  4. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Occurrence and Spatial and Temporal Variations of Disinfection By-Products in the Water and Air of Two Indoor Swimming Pools

    PubMed Central

    Catto, Cyril; Sabrina, Simard; Ginette, Charest-Tardif; Manuel, Rodriguez; Robert, Tardif

    2012-01-01

    In order to improve disinfection by-product (DBP) exposure assessment, this study was designed to document both water and air levels of these chemical contaminants in two indoor swimming pools and to analyze their within-day and day-to-day variations in both of them. Intensive sampling was carried out during two one-week campaigns to measure trihalomethanes (THMs) and chloramines (CAMs) in water and air, and haloacetic acids (HAAs) in water several times daily. Water samples were systematically collected at three locations in each pool and air samples were collected at various heights around the pool and in other rooms (e.g., changing room) in the buildings. In addition, the ability of various models to predict air concentrations from water was tested using this database. No clear trends, but actual variations of contamination levels, appeared for both water and air according to the sampling locations and times. Likewise, the available models resulted in realistic but imprecise estimates of air contamination levels from water. This study supports the recommendation that suitable minimal air and water sampling should be carried out in swimming pools to assess exposure to DBPs. PMID:23066383

  6. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    PubMed

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  7. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  8. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  9. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  10. Photochemical influences on the air-water exchange of mercury

    NASA Astrophysics Data System (ADS)

    Vette, Alan Frederic

    The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission

  11. Determination of nitrate esters in water samples Comparison of efficiency of solid-phase extraction and solid-phase microextraction.

    PubMed

    Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel

    2007-12-07

    This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.

  12. Comparison between Synthesized Lead Particles and Lead Solids Formed on Surfaces in Real Drinking Water Distribution Systems

    EPA Science Inventory

    The objective of this work is to compare the properties of lead solids formed during bench-scale precipitation experiments to solids found on lead pipe removed from real drinking water distribution systems and metal coupons used in pilot scale corrosion testing. Specifically, so...

  13. Subcritical-Water Extraction of Organics from Solid Matrices

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  14. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  15. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  16. Neutron Scattering Analysis of Water's Glass Transition and Micropore Collapse in Amorphous Solid Water.

    PubMed

    Hill, Catherine R; Mitterdorfer, Christian; Youngs, Tristan G A; Bowron, Daniel T; Fraser, Helen J; Loerting, Thomas

    2016-05-27

    The question of the nature of water's glass transition has continued to be disputed over many years. Here we use slow heating scans (0.4  K min^{-1}) of compact amorphous solid water deposited at 77 K and an analysis of the accompanying changes in the small-angle neutron scattering signal, to study mesoscale changes in the ice network topology. From the data we infer the onset of rotational diffusion at 115 K, a sudden switchover from nondiffusive motion and enthalpy relaxation of the network at <121  K to diffusive motion across sample grains and sudden pore collapse at >121  K, in excellent agreement with the glass transition onset deduced from heat capacity and dielectric measurements. This indicates that water's glass transition is linked with long-range transport of water molecules on the time scale of minutes and, thus, clarifies its nature. Furthermore, the slow heating rates combined with the high crystallization resistance of the amorphous sample allow us to identify the glass transition end point at 136 K, which is well separated from the crystallization onset at 144 K-in contrast to all earlier experiments in the field.

  17. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  18. Hydration of polar and nonpolar molecules at the surface of amorphous solid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souda, Ryutaro

    2004-10-15

    On the basis of time-of-flight secondary ion mass spectrometry, properties of amorphous solid water above the glass transition temperature (136 K) and the hydration of polar (HCOOH,C{sub 3}H{sub 7}OH) and nonpolar (C{sub 6}H{sub 14},C{sub 6}F{sub 14}) molecules on the D{sub 2}O-ice surface have been investigated. No evidence was obtained for the irreversible transition of the amorphous solid water into the crystalline phase: the self-diffusion of water molecules occurs above 140 K irrespective of the preparation temperatures of the water-ice film ranging from 15 K to 165 K, whereas the morphology of the film changes drastically at 165 K due tomore » the evolution of liquidlike water. It is also demonstrated that the change in conformation of the hydrated HCOOH molecule, as well as the occurrence of hydrophilic/hydrophobic hydration of the C{sub 3}H{sub 7}OH molecule, can be analyzed successfully from the temperature evolutions of the secondary-ion intensities. These polar molecules basically stay on the surface and tend to quench the morphological change of the water film due to the reduction of surface tension. The nonpolar C{sub 6}H{sub 14} and C{sub 6}F{sub 14} molecules readily dissolve in the D{sub 2}O layer below 100 K and dehydration of the incorporated molecules occurs at 165 K concomitantly with the evolution of the liquidlike water. It is thus concluded that the hydrophobic hydration of nonpolar molecules is intimately related to the properties of water films.« less

  19. Observation of the water cycle from space with the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Chahine, M. T.; Waliser, D. E.; Fetzer, E. J.; Olsen, E. T.

    2007-12-01

    AIRS is one of six instruments on board the Aqua satellite, part of NASA's Earth Observing System launched in a sun synchronous near polar orbit on May 4, 2002. AIRS and its partner microwave instrument, AMSU A, provide high quality data facilitating studies of the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. The exceptional stability of the AIRS instrument provides a climate record of thermal infrared radiance spectra spanning the 3.74 15.4 mm spectral band with 2378 channels at a nominal resolution of 1/1200. (Chahine et al, in BAMS, July 2006) Accurate knowledge of the vertical distribution of water vapor in the atmosphere is critically important to the determination of the warming the Earth will experience as a result of anthropogenic forcing. Comparison of the AIRS specific humidity product to state of the art climate models has shown most models exhibit a pattern of drier than observed (by 10 25%) in the tropics below 800 hPa and moister than observed (by 25 100%) between 300 and 600 hPa in the extra tropics (Pierce et al, GRL 2006). The AIRS water vapor measurements also reveal tropospheric moisture perturbations that are much larger than those depicted in previous NCAR/NCEP reanalysis and ECMWF analysis datasets, both of which have been widely used as observations to validate models. This suggests that the impact of convection induced downdrafts on the atmospheric boundary layer is significantly underestimated in both ECMWF and NCEP reanalysis (Fu et al., GRL 2006). AIRS data have led to the discovery of significant differences in the lower troposphere moisture and temperature fields during the spatial temporal evolution of the Madden Julian Oscillation (MJO). The anomalous lower troposphere temperature structure is observed in detail by AIRS for the Indian and western Pacific Oceans, while it remains much less well defined in the NCEP temperature fields (Tian et al

  20. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  1. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  2. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  3. Role of air on local water retention behavior in the shallow heterogeneous vadose zone

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-12-01

    In the presence of a subsurface source, air flowing through the unsaturated soil can transport toxic vapor into subsurface structures due to pressure gradients created by, e.g., a pressure drop within the building. Development of dynamic air pathways in the subsurface are largely controlled by the geological heterogeneity and the spatial and temporal distribution of soil moisture. To better understand how these air pathways are developed, it is crucial to know how water is retained in heterogeneous medium at spatial resolutions that are finer than those adopted in typical hydrologic and soil physics applications. Although methods for soil water pressure measurement can be readily found in literature, a technique for measuring “air pressure” in wet soil is not well-established or documented. Hydrophobic porous ceramic cups have been used to measure non-wetting NAPL phase pressure in two-phase systems. However, our preliminary tests using the hydrophobic ceramic cups installed in highly wet soil showed that under conditions of fast drainage of the wetting fluid that is replaced by air, it typically took some time before the cups responded to register the air pressure. Therefore, an attempt was made to develop a more robust method where the time lag is minimized. The tested materials were; 1) ceramic porous cups, 2) sintered stainless steel cups, 3) porous glass discs, and 4) non-woven PTFE fabric. The ceramic cups, sintered stainless steel cups and sintered porous glass discs required hydrophobic treatment, whereas the non-woven PTFE fabric is hydrophobic by itself. To treat the ceramic porous cups, the method proposed by Parker and Lenhard [1988] was adopted. The sintered porous stainless steel cups and porous glass discs were treated by a commercially available water repellant compound. For those four materials, contact angle, water entry pressure, and time lag to respond to an imposed pressure were measured. The best performing material was then tested in a

  4. Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2013-09-03

    This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices.

  5. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  6. 77 FR 44672 - Notice of Lodging of Consent Decree Under the Clean Water and Clean Air Acts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water and Clean Air Acts... a civil penalty of $1,750,000 to resolve its violations of the Clean Air Act and the Clean Water Act... of coke oven gas. Under the Clean Water Act, Plaintiffs allege that Shenango violated the effluent...

  7. Effectiveness of interventions to reduce indoor air pollution and/or improve health in homes using solid fuel in lower and middle income countries: protocol for a systematic review.

    PubMed

    Quansah, Reginald; Ochieng, Caroline A; Semple, Sean; Juvekar, Sanjar; Emina, Jacques; Armah, Frederick Ato; Luginaah, Isaac

    2015-03-04

    Indoor air pollution (IAP) interventions are widely promoted as a means of reducing indoor air pollution/health from solid fuel use; and research addressing impact of these interventions has increased substantially in the past two decades. It is timely and important to understand more about effectiveness of these interventions. We describe the protocol of a systematic review to (i) evaluate effectiveness of IAP interventions to improve indoor air quality and/or health in homes using solid fuel for cooking and/or heating in lower- and middle-income countries, (ii) identify the most effective intervention to improve indoor air quality and/or health, and (iii) identify future research needs. This review will be conducted according to the National Institute for Health and Care Excellence (NICE) guidelines and will be reported following the PRISMA statement. Ovid MEDLINE, Ovid Embase, SCOPUS, and PubMed searches were conducted in September 2013 and updated in November 2014 (and include any further search updates in February 2015). Additional references will be located through searching the references cited by identified studies and through the World Health Organization Global database of household air pollution measurements. We will also search our own archives. Data extraction and risk of bias assessment of all included papers will be conducted independently by five reviewers. The study will provide insights into what interventions are most effective in reducing indoor air pollution and/or adverse health outcomes in homes using solid fuel for cooking or heating in lower- or middle-income countries. The findings from this review will be used to inform future IAP interventions and policy on poverty reduction and health improvement in poor communities who rely on biomass and solid fuels for cooking and heating. The review has been registered with PROSPERO (registration number CRD42014009768 ).

  8. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOEpatents

    Mowry, Curtis D.; Morgan, Catherine H.; Manginell, Ronald P.; Frye-Mason, Gregory C.

    2006-07-18

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  9. Production of heavy water

    DOEpatents

    Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.

    2017-06-06

    Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.

  10. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  11. Atmospheric photochemistry at a fatty acid coated air/water interface

    NASA Astrophysics Data System (ADS)

    George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James

    2017-04-01

    Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could

  12. Solid Lubricants for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  13. Health and household air pollution from solid fuel use: the need for improved exposure assessment.

    PubMed

    Clark, Maggie L; Peel, Jennifer L; Balakrishnan, Kalpana; Breysse, Patrick N; Chillrud, Steven N; Naeher, Luke P; Rodes, Charles E; Vette, Alan F; Balbus, John M

    2013-10-01

    Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure-response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure-response relationships. Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure-response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain.

  14. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied

  15. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  16. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    PubMed

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  17. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  18. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  19. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Water Acts (a) If performance of this contract would involve the use of facilities which have given rise... which gave rise to said conviction. If no such statement is submitted, submission of an offer... facilities which have given rise to a conviction under section 113(c)(1) of the Clean Air Act or section 309...

  20. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Water Acts (a) If performance of this contract would involve the use of facilities which have given rise... which gave rise to said conviction. If no such statement is submitted, submission of an offer... facilities which have given rise to a conviction under section 113(c)(1) of the Clean Air Act or section 309...

  1. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water.

    PubMed

    Marsac, Patrick J; Konno, Hajime; Rumondor, Alfred C F; Taylor, Lynne S

    2008-03-01

    To compare the physical stability of amorphous molecular level solid dispersions of nifedipine and felodipine, in the presence of poly(vinylpyrrolidone) (PVP) and small amounts of moisture. Thin amorphous films of nifedipine and felodipine and amorphous molecular level solid dispersions with PVP were stored at various relative humidities (RH) and the nucleation rate was measured. The amount of water sorbed at each RH was measured using isothermal vapor sorption and glass transition temperatures (Tg) were determined using differential scanning calorimetry. The solubility of each compound in methyl pyrrolidone was measured as a function of water content. Nifedipine crystallizes more easily than felodipine at any given polymer concentration and in the presence of moisture. The glass transition temperatures of each compound, alone and in the presence of PVP, are statistically equivalent at any given water content. The nifedipine systems are significantly more hygroscopic than the corresponding felodipine systems. Variations in the physical stability of the two compounds could not be explained by differences in Tg. However, the relative physical stability is consistent with differences in the degree of supersaturation of each drug in the solid dispersion, treating the polymer and water as a co-solvent system for each drug compound.

  2. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  3. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  4. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  5. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  6. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  7. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  8. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  9. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water.

    PubMed

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-01

    Hydrothermal treatments using subcritical water (HTSW) such as that at 234°C and 3MPa (LT condition) and 295°C and 8MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  11. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  12. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  13. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  14. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  15. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  16. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  17. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, Bradley K.; Bibby, Richard K.; Fish, Craig

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevatedmore » Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with

  18. Fracture toughness of alloy 690 and EN52 welds in air and water

    NASA Astrophysics Data System (ADS)

    Brown, C. M.; Mills, W. J.

    2002-06-01

    The effect of low- and high-temperature water with high hydrogen on the fracture toughness of alloy 690 and its weld, EN52, was characterized using elastic-plastic J IC methodology. While both materials display excellent fracture resistance in air and elevated-temperature (>93 °C) water, a dramatic degradation in toughness is observed in 54 °C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism, where hydrogen is picked up from the water. Comparison of the cracking behavior in low-temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low-temperature embrittlement is on the order of 120 to 160 ppm. Loading-rate studies show that cracking resistance is improved at rates above ˜ 1000 MPa √m/h, because there is insufficient time to produce grain-boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanisms.

  19. Isotopic composition of water vapor near the air-water interface

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Peschiutta, Mirco; Rampazzo, Giancarlo; Stenni, Barbara

    2017-04-01

    Evaporation is a key process in water cycle that links liquid water to the atmosphere. In the last fifty years stable isotopes of hydrogen and oxygen have been intensively used to describe climate processes related to evaporation and precipitation, ranging in different spatial and temporal scales. Evaporation introduces large isotopic effects in the phases involved. The well known Craig-Gordon model (Craig & Gordon, 1965) describes those isotopic effects involving several steps and different processes, moving from the air-water interface to the free atmosphere. However, very few works in literature have tested the vertical behavior of the Craig-Gordon model in natural conditions on both fresh and marine waters. In this work we present the results from four field experiments aimed to describe the vertical variability of δ18O and δD in the first few meters over a large water body (the coastal lagoon of Venice, northern Italy) and to test the Craig-Gordon model in such conditions. Each experiment involved cryotrapping of water vapor at different height over the water surface (0.1m, 2m and 4m) and the sampling of the liquid water at two depth (surface and 0.5m). During the experiments, water vapor was also sampled in the nearest mainland (˜2.5 km from gradient measurements) to determine the isotopic composition of background water vapor. Liquid samples were then analyzed with a Picarro L1102-i and Thermo-Fisher Delta Plus Advantage for water vapor and lagoon water, respectively. The last two experiments have also involved simultaneous measurements of relative humidity using commercially-available humidity probes at each height. This approach was used to determine a reference scale in order to compare observations to modeled estimates. Despite the coarse time resolution due to cryotrapping method (measurements are averaged over 1.5 hours), preliminary results show measurable differences in the isotopic composition of water vapor along the vertical gradient and good

  20. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.

    2013-11-01

    In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.

  1. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes.

    PubMed

    Seesuriyachan, Phisit; Techapun, Charin; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Extracellular polysaccharide (EPS) production by Lactobacillus confusus in liquid and solid state fermentation was carried out using coconut water and sugarcane juice as renewable wastes. High concentrations of EPS of 62 (sugarcane juice) and 18 g/l of coconut water were produced in solid state fermentation when nitrogen sources were reduced 5-fold from the original medium.

  2. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc

  3. Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology

    DTIC Science & Technology

    2003-01-01

    Aqueous Film Forming Foam ( AFFF ) Treatment Using Air-Sparged Hydrocyclone Technology January 2003 Report Documentation Page Form ApprovedOMB No. 0704...2003 to 00-00-2003 4. TITLE AND SUBTITLE Oil/Water Emulsion and Aqueous Film Forming Foam ( AFFF ) Treatment Using Air-Sparged Hydrocyclone Technology...ACRONYMS AFB Air Force Base AFFF Aqueous Film Forming Foam AFRL Air Force Research Laboratory ASH

  4. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  5. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  6. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  7. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  8. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  9. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  10. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture.

    PubMed

    Joshi, Hemant N; Tejwani, Ravindra W; Davidovich, Martha; Sahasrabudhe, Vaishali P; Jemal, Mohammed; Bathala, Mohinder S; Varia, Sailesh A; Serajuddin, Abu T M

    2004-01-09

    Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the

  11. 78 FR 17229 - Notice of Lodging of Proposed Consent Decree Amendment Under the Clean Air Act; the Clean Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Act; the Clean Water Act; the Resource Conservation and Recovery Act; the Missouri Air Conservation Law; the Missouri Clean Water Law and the Missouri Hazardous Waste Management Law On March 14, 2013..., the Missouri Air Conservation Law, the Clean Water Act, the Missouri Clean Water Law, the Resource...

  12. The nature of water: excerpts from Pythagoras, Xenophanes, Heraclitus and Parmenides.

    PubMed

    Bisaccia, Carmela; De Santo, Rosa Maria; Bilancio, Giancarlo; Anastasio, Pietro; Perna, Alessandra; De Santo, Luca Salvatore

    2009-01-01

    Water was a prominent substance with Pythagoras, Xenophanes, Heraclitus and Parmenides, who flourished in the years 530-490 bc. The basic Pythagorean elements were earth and fire, and between them there were 2 intermediate entities (water and air), which were instrumental and indispensable components of specific solids. All things are a blend of different elements. For Xenophanes, "All things that come into being and grow are earth and water," "We all originated from earth and water" and "And in certain caves water drips down."For Heraclitus water is an ambivalent substance: "One cannot bathe in the same river on two occasions." "The sea is the safest and the most polluted water, for fish it is healthy and gives life, for men it is unhealthy and causes death." "Fire experiences the death of earth, air experiences that of fire, water experiences the death of air and the earth that of water." Parmenides was a man who sought the truth through reasoning and was, according to Hegel, the founder of Western philosophy. He built a dualist theory of the cosmos based on heat and cold, fire and earth - the former as a cause, the latter as substrate. The former unified, the latter separated. According to Aristotle, Parmenides considered air and water as mixtures of earth and fire.

  13. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  14. Observation of a new surface mode on a fluid-saturated permeable solid

    NASA Astrophysics Data System (ADS)

    Nagy, Peter B.

    1992-06-01

    Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ``slow'' surface mode predicted by Feng and Johnson.

  15. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  16. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  17. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  18. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  19. Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes.

    PubMed

    Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique; Chen, Wei; Ye, Yifan; Zhu, Junfa; Kostecki, Robert; Persson, Kristin; Guo, Jinghua; Salmeron, Miquel; Chen, Guoying; Doeff, Marca

    2015-08-19

    The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.

  20. Solid Cattle Manure Less Prone to Phosphorus Loss in Tile Drainage Water.

    PubMed

    Wang, Y T; Zhang, T Q; Tan, C S; Qi, Z M; Welacky, T

    2018-03-01

    Forms (e.g., liquid and solid) of manure influence the risk of P loss after land application. The objective of this study was to investigate the effects of P-based application of various forms of cattle manure (liquid, LCM; or solid, SCM) or inorganic P as triple superphosphate (IP) on soil P losses in tile drainage water. A 4-yr field experiment was conducted in a clay loam soil with a corn ( L.)-soybean [ (L.) Merr.] rotation in the Lake Erie basin. Over the 4 yr, the dissolved reactive P (DRP) flow-weighted mean concentration (FWMC) in tile drainage water was greater under SCM fertilization than under either IP or LCM fertilization. Despite its lower value on an annual basis, DRP FWMC rose dramatically immediately after LCM application. However, the differences in DRP FWMC did not result in detectable differences in DRP loads. Regarding particulate P and total P losses during the 4 yr, they were 68 and 47%, respectively, lower in the soils amended with SCM than in those with IP, whereas both values were similar between IP and LCM treatments. Overall, the P contained in solid cattle manure was less prone to P loss after land application. Accordingly, the present results can provide a basis for manure storage and application of best management practices designed to reduce P losses and improve crop growth. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. A correlation between secondary structure and rheological properties of low-density lipoproteins at air/water interfaces.

    PubMed

    Khattari, Ziad

    2017-09-01

    The secondary structure of apolipoprotein B-100 is studied within the bulk phase and at the air/water interface. In these "in viro" experiments, infrared reflection absorption spectroscopy (IRRAS) study was performed at the air/water interface while circular dichroism (CD) was conducted in the bulk phase. In the bulk phase, the conformational structure containing a significant amount of β-structure, whereas varying amount of α-helix, unordered structures, and β-sheet were observed at the air/water interface depending on the low-density lipoprotein (LDL) film interfacial pressure. The present IRRAS results demonstrate the importance of interfacial pressure-induced structural conformations on the apoB-100. A correlation between the secondary structure of the apoB-100 protein and the monomolecular film elasticity at the air/water interface was also established. The orientation of apoB-100 with respect to the LDL film-normal was found to depend on the interfacial pressure exhibited by the monomolecular film. These results may shed light on LDL's pivotal role in the progression of atherosclerotic coronary artery disease as demonstrated previously by clinical trials.

  2. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  3. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  4. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple

  5. Topotactic redox chemistry of NaFeAs in water and air and superconducting behavior with stoichiometry change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, I.; Chung, D. Y.; Claus, H.

    2010-07-13

    We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCl structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr{sub 2}Si{sub 2} structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na{sup +} cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe{sub 2}As{sub 2}. The superconducting transition temperaturemore » moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T{sub c} up to 25 K with contraction of unit cell volume. NaFe{sub 2}As{sub 2}, the air oxidized product, shows T{sub c} of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Moessbauer spectroscopy, pOH and elemental analysis.« less

  6. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  7. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    PubMed

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  8. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    PubMed Central

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  9. Proteins at the air-water interface in a lattice model

    NASA Astrophysics Data System (ADS)

    Zhao, Yani; Cieplak, Marek

    2018-03-01

    We construct a lattice protein version of the hydrophobic-polar model to study the effects of the air-water interface on the protein and on an interfacial layer formed through aggregation of many proteins. The basic unit of the model is a 14-mer that is known to have a unique ground state in three dimensions. The equilibrium and kinetic properties of the systems with and without the interface are studied through a Monte Carlo process. We find that the proteins at high dilution can be pinned and depinned many times from the air-water interface. When pinned, the proteins undergo deformation. The staying time depends on the strength of the coupling to the interface. For dense protein systems, we observe glassy effects. Thus, the lattice model yields results which are similar to those obtained through molecular dynamics in off-lattice models. In addition, we study dynamical effects induced by local temperature gradients in protein films.

  10. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOEpatents

    Zaromb, S.

    1994-06-21

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  11. Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women.

    PubMed

    Agrawal, S; Yamamoto, S

    2015-06-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005-2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39,657 women aged 15-49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26-3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  12. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  13. 78 FR 29124 - Draft Environmental Impact Statement (EIS) for the Implementation of Energy, Water, and Solid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... plant (Alternative 4); construction and operation of a geothermal energy facility (Alternative 5); and... Implementation of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, Texas and New Mexico... proposes to implement Net Zero energy, water and waste initiatives by 2020 at Fort Bliss to meet mandates...

  14. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  15. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    PubMed

    Minick, D James; Anderson, Kim A

    2017-09-01

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.

  16. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  17. Plants + microbes: Innovative food crop systems that also clean air and water

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Wolverton, B. C.

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. It is known that most biogeochemical cycles have a microbial link, and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, have long been established. Wetland plants and soil/media also been extensively researched for their ability to purify wastewaters of all kinds of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and root microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an extraordinary adaptive capacity as long as the starting populations are sufficiently diverse. It is known that tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and machines enclosed. Human waste products carry a plethora of microbes can are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors which operate without the need for human direction. We will

  18. Na(+) and Ca(2+) effect on the hydration and orientation of the phosphate group of DPPC at air-water and air-hydrated silica interfaces.

    PubMed

    Casillas-Ituarte, Nadia N; Chen, Xiangke; Castada, Hardy; Allen, Heather C

    2010-07-29

    Hydration and orientation of the phosphate group of dipalmitoylphosphatidylcholine (DPPC) monolayers in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase in the presence of sodium ions and calcium ions was investigated with vibrational sum frequency generation (SFG) spectroscopy at the air-aqueous interface in conjunction with surface pressure measurements. In the LE phase, both sodium and calcium affect the phosphate group hydration. In the LC phase, however, sodium ions affect the phosphate hydration subtly, while calcium ions cause a marked dehydration. Silica-supported DPPC monolayers prepared by the Langmuir-Blodgett method reveal similar hydration behavior relative to that observed in the corresponding aqueous subphase for the case of water and in the presence of sodium ions. However, in the presence of calcium ions the phosphate group dehydration is greater than that from the corresponding purely aqueous CaCl(2) subphase. The average tilt angles from the surface normal of the PO(2)(-) group of DPPC monolayers on the water surface and on the silica substrate calculated from SFG data are found to be 59 degrees +/- 3 degrees and 72 degrees +/- 5 degrees , respectively. Orientation of the phosphate group is additionally affected by the presence of ions. These findings show that extrapolation of results obtained from model membranes from liquid surfaces to solid supports may not be warranted since there are differences in headgroup organization on the two subphases.

  19. Protein adsorption at the electrified air-water interface: implications on foam stability.

    PubMed

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  20. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.