Science.gov

Sample records for air water vapor

  1. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  2. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  3. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  4. Characteristics of Water Vapor Under Partially Cloudy Conditions: Observations by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Fishbein, E.

    2003-12-01

    The variability and quality of tropical water vapor derived from the Atmospheric Infrared Sounder (AIRS) are characterized. Profiles of water vapor, temperature and surface characteristics (states) are derived from coincident Advance Microwave Sounding Unit (AMSU) and 3x3 sets of AIRS footprints. States are obtained under partially cloudy conditions by estimating the radiances emitted from the clear portions of the AIRS footprints. This procedure, referred to as cloud clearing, amplifies the measurement noise, and the amplification increases with cloud amount and uniformity. Cumulus and stratus cloud amount are related to the water vapor saturation, and noise amplification and water vapor amount may be partially correlated. The correlations between the uncertainty of retrieved water vapor, cloudiness and noise amplification are characterized. Retrieved water vapor is generally good when the amplification is less than three. Water vapor profiles are compared with correlative data, such as radiosondes and numerical weather center analyses and are in relatively good agreement in the lower troposphere

  5. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  6. Comparison of Upper Tropospheric Water Vapor from AIRS and Cryogenic Frostpoint Hygrometers

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Vomel, Holger

    2004-01-01

    Upper tropospheric water vapor (UTWV) from the Atmospheric Infrared Sounder (AIRS) experiment on NASA's Aqua spacecraft has the potential of addressing several important climate questions. The specified AIRS system measurement uncertainty for water vapor is 20 percent absolute averaged over 2 km layers. Cryogenic frostpoint hygrometers (CFH) are balloon-borne water vapor sensors responsive from the surface into the lower stratosphere. Several dozen coincident, collocated CFH profiles have been obtained for AlRS validation. The combination of CFH sensitivity and sample size offers a statistically compelling picture of AIRS UTWV measurement capability. We present a comparison between CFH observations and AlRS retrievals. We focus on the altitude range from the middle troposphere up to heights at the limits of AlRS sensitivity to water vapor, believed to be around 100-1 50 hPa.

  7. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  8. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  9. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  10. Rate of water equilibration in vapor-diffusion crystallization: dependence on the residual pressure of air in the vapor space.

    PubMed

    DeTitta, G T; Luft, J R

    1995-09-01

    The kinetics of water equilibration in vapor-diffusion crystallization experiments are sensitive to the residual pressure of air in the vapor chamber. Experiments with sitting droplets of 10%(w/v) PEG, allowed to equilibrate with reservoirs of 20%(w/v) PEG, were conducted at pressures ranging from 80 to 760 mm Hg. Equilibrations were interrupted after one, four, five and seven days to assess their progress. Even down to the lowest pressures examined it was found that a decrease in pressure leads to an increase in the rate of equilibration. The residual pressure of air in the vapor chamber can be varied to tailor the time course of equilibration in macromolecular crystal growth experiments.

  11. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  12. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE PAGES

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  13. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  14. Toward a Merged Temperature and Water vapor Record from AIRS/AMSU and CrIMSS

    NASA Astrophysics Data System (ADS)

    Fetzer, E. J.; Manning, E. M.; Fishbein, E.; Lambrigtsen, B.; Pagano, T. S.

    2015-12-01

    The Atmospheric Infrared Sounder / Advanced Microwave Sounding Unit (AIRS/AMSU) suite on Aqua and the Cross-track Infrared and Microwave Sounding Suite (CrIMSS) on Suomi-NPP provide multi-year records of retrieved atmospheric temperature and water vapor. Similar spectral coverage, similar orbits, and a three-year record for comparison help simplify the merging of retrieved products from AIRS/AMSU and CrIMSS. Challenges include different satellite altitudes, differences in spectral response, regular but infrequent space/time overlaps that will alias natural variability, different retrieval algorithm approaches, and varying states of algorithm development. We describe first efforts to create a merged temperature and water vapor record based on currently available products from both observing systems.

  15. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  16. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  17. Deuterium excess reveals diurnal sources of water vapor in forest air.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R

    2011-01-01

    An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ(2)H(v) and δ(18)O(v)) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ(2)H(v) and δ(18)O(v), with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2-6‰ for δ(18)O and 20-40‰ for δ(2)H at night. Using a box model, we simulated H(2)O isotope fluxes and showed that the low to high δ(2)H(v) and δ(18)O(v) profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation

  18. Deuterium excess reveals diurnal sources of water vapor in forest air.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R

    2011-01-01

    An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ(2)H(v) and δ(18)O(v)) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ(2)H(v) and δ(18)O(v), with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2-6‰ for δ(18)O and 20-40‰ for δ(2)H at night. Using a box model, we simulated H(2)O isotope fluxes and showed that the low to high δ(2)H(v) and δ(18)O(v) profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation

  19. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    SciTech Connect

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; Davis, B.

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  20. Nanosecond Glow and Spark Discharges in Ambient Air and in Water Vapor

    NASA Astrophysics Data System (ADS)

    Laux, Christophe; Rusterholtz, Diane; Sainct, Florent; Xu, Da; Lacoste, Deanna; Stancu, Gabi; Pai, David

    2013-09-01

    Nanosecond repetitively pulsed (NRP) discharges are one of the most energy efficient ways to produce active species in atmospheric pressure gases. In both air and water vapor, three discharge regimes can be obtained: 1) corona, with light emission just around the anode, 2) glow, corresponding to a diffuse nonequilibrium plasma, and 3) spark, characterized by higher temperatures and higher active species densities. The glow regime was initially obtained in air preheated at 2000 K. Based on a model defining the transition between glow and spark, we recently succeeded in obtaining a stable glow in ambient air at 300 K, using a judicious combination of electrode geometry, pulse duration, pulse frequency, and applied voltage. We will present these results and describe the characteristics of the discharge obtained in room air. The spark regime was also studied. NRP sparks induce ultrafast gas heating (about 1000 K in 20 ns) and high oxygen dissociation (up to 50% dissociation of O2) . This phenomenon can be explained by a two-step process involving the excitation of molecular nitrogen followed by exothermic dissociative quenching of molecular oxygen. The characteristics of NRP discharges in water vapor will also be discussed. This work is supported by the ANR PREPA program (grant number ANR-09-BLAN-0043).

  1. Conversion of air mixture with ethanol and water vapors in nonequilibrium gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Shchedrin, A. I.; Levko, D. S.; Chernyak, V. Ya.; Yukhimenko, V. V.; Naumov, V. V.

    2009-05-01

    In search for an alternative fuel for internal combustion engines, we have studied the possibility of obtaining molecular hydrogen via the conversion of air mixture with ethanol and water vapors in a new plasma reactor. It is shown that, in agreement with experimental data, the H2 concentration is a linear function of the discharge current and decreases with increasing gas flow rate in the interelectrode gap. It is established that the proposed approach provides higher molecular hydrogen concentrations as compared to those achieved with other methods.

  2. Carbon monoxide and water vapor contamination of compressed breathing air for firefighters and divers.

    PubMed

    Austin, C C; Ecobichon, D J; Dussault, G; Tirado, C

    1997-12-12

    Compressed breathing air, used in self-contained breathing apparatus (SCBA) by firefighters and other categories of workers as well as by recreational and commercial divers, is prepared with the aid of high-pressure compressors operating in the range of 5000 psig. There have been reports of unexplained deaths of SCUBA divers and anecdotal accounts of decreased time to exhaustion in firefighters using SCBAs. Compressed breathing air has been found to contain elevated levels of carbon monoxide (CO) and water vapor that are consistent with carboxyhemoglobin (COHb) poisoning and freezing of the user's regulator on the breathing apparatus. The Coburn-Forster-Kane equation (CFK equation) was used to estimate COHb levels at rest and at maximum exercise when exposed to different levels of CO in contaminated breathing air. The results demonstrated that, at maximum exercise, the COHb ranged from 6.0 to 17% with the use of 1 to 4 SCBA cylinders contaminated by 250 ppm CO. Standard operating procedures have been developed at the Montreal Fire Department to minimize the risk of compressed breathing air contamination. Results of the quality analysis/quality control program indicate that implementation of these procedures has improved the quality of the compressed breathing air. Recommendations are made for improvement of the air testing procedures mandated by the Canadian CAN3 180.1-M85 Standard on Compressed Breathing Air and Systems.

  3. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  4. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  5. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; Heymsfield, Gerry; Anderson, Bruce

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  6. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor

    NASA Astrophysics Data System (ADS)

    Fukuhara, D.; Namba, S.; Kozue, K.; Yamasaki, T.; Takiyama, K.

    2013-02-01

    Microhollow cathode discharge (MHCD) plasmas were generated in gas mixtures containing water vapor at pressures of up to 100 kPa of He or 20 kPa of air. The cathode diameter was 1.0 mm with a length of 2.0 mm. The electrical characteristics showed an abnormal glow mode. Spectroscopic measurements were carried out to examine the plasma and radicals. An analysis of the spectral profile of Hα at 656.3 nm enabled a derivation of the electron densities, namely 2×1014 cm-3 (at 10 kPa) and 6×1014 cm-3 (at 4 kPa) for the helium and air atmospheres, respectively, in the negative glow region. By comparing the observed OH radical spectra with those calculated by the simulation code LIFBASE, the gas temperature was deduced to be 900 K for 4 kPa of He at a discharge current of 50 mA.

  7. The Vertical Structure of Water Vapor in Mid-latitude as Seen by AIRS, AMSU and ECMWF

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Fetzer, E.; Hearty, T.; Kahn, B.

    2006-12-01

    The vertical structure of water vapor in mid-latitudes is controlled by Rossby wave activity, especially vertical transport in frontal systems. We compare the vertical structure of water vapor across frontal systems as measured by the Atmospheric Infrared Sounder (AIRS) and the Microwave Humidity Sounder for Brazil (HSB) with fields predicted by the European Center for Medium Range Forecasting (ECMWF) global system and relate these differences to modeling, vertical resolution and sampling errors.

  8. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  9. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  10. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  11. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  12. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  13. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  14. Water vapor and air transport through ponds with floating aquatic plants.

    PubMed

    Kirzhner, F; Zimmels, Y

    2006-08-01

    The purpose of this paper is to estimate the evaporation rate in the purification of wastewater by aquatic plants with aeration. Evaporation of surface water is important in dewatering processes. In particular, this is true in arid climates, where evaporation rates are high. Aeration is known to enhance the wastewater purification process, but it increases concurrently the water evaporation rates. Evaporation and evapotranspiration rates were tested under field and laboratory conditions. Batch experiments were performed to study the levels of evaporation and evapotranspiration in free-water-surface, aquatic-plant systems. The experiments verified that, in these systems, the rate of evaporation increased as a result of aeration in the presence and absence of the aquatic plants. The evaporation rates resulting from aeration were found to be significant in the water balance governing the purification process. A preliminary model for description of the effect of rising air bubbles on the transport of water vapors was formulated. It is shown that aeration may account for a significant part of water losses that include surface evaporation. PMID:17059143

  15. Short-term, seasonal and interannual variability of the vertical distribution of water vapor observed by AIRS

    NASA Technical Reports Server (NTRS)

    Olsen, E. T.; Granger, S. L.; Fetzer, E. J.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) consists of a suite of instruments on board the Aqua spacecraft which retrieve atmospheric parameters over the globe at radiosonde quality on a daily basis in non-precipitating fields of view with less than 80% cloud cover. Although quantitative global measurements of water vapor have been available since the 1980's, the vertical resolution of these measurements was very coarse. AIRS provides global coverage amounting to 324,000 precipitable water vapor profiles with spatial resolution at nadir of 45 km and a vertical resolution in the troposphere of 2 km.

  16. Research on the fluorescence emission from water vapor induced by femtosecond filamentation in air

    NASA Astrophysics Data System (ADS)

    Li, He; Jiang, Yuanfei; Li, Shuchang; Chen, Anmin; Li, Suyu; Jin, Mingxing

    2016-10-01

    Our experiments show that initial energy and humidity strongly influences the water vapor fluorescence induced by ultrashort intense femtosecond laser pulses. It is found that the fluorescence signal can be enhanced by both increasing the humidity in the case of fixed energy and increasing the pulse energy in the case of fixed humidity. In addition, water vapor fluorescence emission in the linear polarization is stronger than that in the circular polarization due to the higher dissociation efficiency of linearly polarized pulses. The mechanism of water vapor fluorescence emission during femtosecond filamentation is discussed based on the analysis of these phenomena.

  17. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    SciTech Connect

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, M.; Baker, R.W.

    1997-09-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined with a carbon adsorption off-gas treatment system. This paper describes the development and performance of a hybrid process that combines air stripping with membrane organic-vapor separation to recover VOCs from the stripper off-gas. A number of prototype systems have been constructed and evaluated. The optimum system appears to be a tray stripper fitted with a high-pressure compression-condensation membrane separation unit. Such a system can remove 95 to 99% of the VOCs present in contaminated water; the removed VOCs are recovered as a liquid condensate. The economics of the technology are competitive with alternative processes, particularly for streams containing more than 500 ppm VOC and having flow rates less than 10 to 30 gal/min.

  18. Usefulness of AIRS-Derived OLR, Temperature, Water vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.; Iredell, L. F.; NASA/Gsfc Sounder Research Team

    2010-12-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 - February 2010) CERES-observed negative trend in OLR of ~-0.1 W/m2/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondance can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by El-Niño-La Niña cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assesments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial “trends” of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate

  19. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of

  20. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau.

    PubMed

    Fu, Rong; Hu, Yuanlong; Wright, Jonathon S; Jiang, Jonathan H; Dickinson, Robert E; Chen, Mingxuan; Filipiak, Mark; Read, William G; Waters, Joe W; Wu, Dong L

    2006-04-11

    During boreal summer, much of the water vapor and CO entering the global tropical stratosphere is transported over the Asian monsoon/Tibetan Plateau (TP) region. Studies have suggested that most of this transport is carried out either by tropical convection over the South Asian monsoon region or by extratropical convection over southern China. By using measurements from the newly available National Aeronautics and Space Administration Aura Microwave Limb Sounder, along with observations from the Aqua and Tropical Rainfall-Measuring Mission satellites, we establish that the TP provides the main pathway for cross-tropopause transport in this region. Tropospheric moist convection driven by elevated surface heating over the TP is deeper and detrains more water vapor, CO, and ice at the tropopause than over the monsoon area. Warmer tropopause temperatures and slower-falling, smaller cirrus cloud particles in less saturated ambient air at the tropopause also allow more water vapor to travel into the lower stratosphere over the TP, effectively short-circuiting the slower ascent of water vapor across the cold tropical tropopause over the monsoon area. Air that is high in water vapor and CO over the Asian monsoon/TP region enters the lower stratosphere primarily over the TP, and it is then transported toward the Asian monsoon area and disperses into the large-scale upward motion of the global stratospheric circulation. Thus, hydration of the global stratosphere could be especially sensitive to changes of convection over the TP.

  1. Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Unocic, Kinga A; Lance, Michael J; Santella, Michael L; Yamamoto, Yukinori; Walker, Larry R

    2011-01-01

    A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from {approx}600-900 C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to {approx}800 C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800-1000 C, with post oxidation characterization of the 900 C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.

  2. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  3. Effect of supplementation of water vapor to the environmental characteristics of the combustion of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Iovleva, O. V.

    2014-11-01

    To improve the efficiency of combustion of fuel gas and air can be used additive steam. The article presents the results of an experimental study of the influence of water vapor on the combustion of propane-butane mixture with air. Combustion mixture produced in a modified Bunsen burner. Studies carried change of steam temperature of 180 to 260 degrees Celsius, and the change of the specific volume steam in the composition of the fuel mixture. Influence steam on combustion was estimated by the change of temperature of heating the quartz tube. It has been established that the increase of the steam temperature and increasing the specific volume of the heated vapor in the composition of the gaseous fuel increases the temperature of combustion.

  4. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  5. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  6. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino

  7. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  8. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  9. A Physical Experiment to determine the Impact of Atmospheric Condensation of Water Vapor on Surface Air Movement

    NASA Astrophysics Data System (ADS)

    Bunyard, P. P.; Nechev, P.

    2013-12-01

    A physical experiment, in which atmospheric air is enclosed in two interconnecting 4.8-metre high insulated PVC columns, consistently gives results showing that the condensation of water vapor, precipitated by means of refrigeration coils, gives rise to detectable air movements, with air speeds of up to 0.1 m/s. Once the compressor, sited well away from the two columns, is shut down, heavy drops of precipitated water are obtained which funnel into a flask for collection and measurement. The results in kg.m-2 (mm) from the 20 m3 volume of enclosed air accord well (>90%) with the physical calculations based on water vapor as an ideal gas. Air flow, resulting from the highly localized condensation, is measured through the movement of light-weight gauzes and an anemometer. It has a circulation time of some two minutes, such that both columns show cooling and a significant reduction in specific humidity from 0.01 to 0.005 (kg water vapor to kg dry air, r) with a drop in relative humidity of up to 40 per cent. Air flow is minimal during the control, non-refrigeration period of the experiment but becomes substantial within a minute of the compressor being switched on. The negative partial pressure change peaks at as much as 0.4 Pa/s during the first 30 minutes but reduces to approx. 0.08 Pa/s during the latter part of the 110 minute- long experiment. Airflow displays an inverse relationship to the partial pressure change, initially rising rapidly and then reducing before returning to zero once refrigeration has been switched off. Inverse correlations of up to 0.8 or higher between the partial pressure reduction and the airflow are obtained routinely. Semi-aquatic vegetation from the nearby marshland enhances precipitation, suggesting that evapotranspiration adds significantly to humidity. Without vegetation the condensation rate is 0.06 to 0.07 millimol.m-3.s-1 on average compared with 0.11 when vegetation is present. Cooling, by some 2°C, combined with a reduction in

  10. Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis

    NASA Astrophysics Data System (ADS)

    Hearty, Thomas J.; Savtchenko, Andrey; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-03-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be ± 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  11. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  12. Regional Comparison and Study of Water Vapor as Measured by AIRS and GPS, Using ECMWF Surface Parameters

    NASA Astrophysics Data System (ADS)

    Moore, A. W.; Granger, S. L.; Fishbein, E. F.; Fetzer, E. J.; Owen, S. E.; Webb, F. H.; Fielding, E. J.

    2008-12-01

    We compare tropospheric precipitable water vapor (PWV) measurements from the Atmospheric InfraRed Sounder (AIRS) satellite instrument to those from ground Global Positioning System (GPS) stations on a regional basis, with a mind toward mitigation of atmospheric effects in regional Interferometric Synthetic Aperture Radar (InSAR) studies. AIRS offers superior vertical atmospheric profiles from twice daily passes, whereas GPS-derived PWV estimates are available at high temporal resolution, typically 5 minute intervals. These complementary qualities suggest potential synergistic use in InSAR correction products. Computing GPS PWV from the Zenith Wet Delay (ZWD) estimated in Precise Point Positioning (PPP) analysis requires concurrently measured surface pressure and temperature at the GPS station. We turn to the European Center for Medium-Range Weather Forecasting (ECMWF) model for surface pressure estimates, since dense regional GPS networks do not always feature meteorological equipment co-located with the GPS stations. ECMWF pressures are given at a stated elevation that in the presence of orography may significantly differ from the elevation of a GPS station within the ECMWF grid square; we therefore account for this elevation difference in calculating a GPS station pressure based on the ECMWF surface pressure. We will present results of such regional studies, including the correlation between GPS and AIRS PWV estimates, biases, and dependence on the amount of water vapor in the atmosphere and other parameters. In one study in Southern California, we find the difference between AIRS and GPS PWV estimates calculated with corrected ECMWF pressures is independent of elevation. GPS PWV estimates are slightly drier than AIRS estimates in the relatively dry southern California atmosphere in winter and spring, consistent with previous continental-scale studies.

  13. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. PMID:26257361

  14. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.

  15. Mechanisms regulating tropical tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Minschwaner, K.

    2005-12-01

    We have analyzed tropical water vapor measurements made in the mid and upper troposphere by the Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. We compare the water vapor measurements to a simple trajectory simulation of water vapor, and show reasonable agreement. We conclude, in agreement with previous work, that the large-scale circulation is primarily responsible for the distribution of water vapor. By interpreting disagreements between AIRS and the model as being caused by processes not represented in the model, such as detailed microphysics, we can begin to get some idea of where in the atmosphere these missing processes are important.

  16. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Lee, Jae N.

    2015-01-01

    Additional changes in Version-6.19 include all previous updates made to the q(p) retrieval since Version-6: Modified Neural-Net q0(p) guess above the tropopause Linearly tapers the neural net guess to match climatology at 70 mb, not at the top of the atmosphereChanged the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 24 functions used in T(p) retrieval step. These modifications resulted in improved water vapor profiles in Version-6.19 compared to Version-6.Version-6.19 is tested for all of August 2013 and August 2014, as well for select other days. Before finalized and operational in 2016, the V-6.19 can be acquired upon request for limited time intervals.

  17. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort.

    PubMed

    Chen, Te-Hung; Chen, Wan-Ping; Wang, Mao-Jiun J

    2014-01-01

    The function of cleanroom clothing is to protect the product from contamination by people, and to dissipate electrostatic discharge. People in the cleanroom work environment often complain about the discomforts associated with the wearing of cleanroom clothing. The purpose of this study is to investigate the effect of air permeability and water vapor permeability of cleanroom clothing on the subject's physiological and subjective responses. Five male and five female subjects participated in this study. The experimental goal was to simulate the operator's regular tasks in a semiconductor manufacturing cleanroom. Each subject completed three treatment combinations with three different cleanroom clothing types. A three-factor experiment was designed (significance level p = 0.05). The independent variables included gender, cleanroom clothing, and duration. The dependent measures included heart rate, core temperature, skin temperature, micro-climate relative humidity, micro-climate temperature, and subjective responses. A total of 40 min was involved for each treatment condition. The results indicate that skin temperature, micro-climate temperature and micro-climate relative humidity were lower while wearing cleanroom clothing with high air permeability and high water vapor permeability. The significant gender difference was found in skin temperature. As the task time increased, the micro-climate temperature also increased but the micro-climate relative humidity decreased at first and then increased. In addition, the physiological responses showed significant positive correlations with the subjective perception of clothing comfort. The findings of this study may provide useful information for cleanroom clothing design and selection.

  18. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact.

  19. Using continuous measurements of near-surface atmospheric water vapor isotopes to document snow-air interactions

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Masson-Delmotte, Valerie; Hirabayashi, Motohiro; Winkler, Renato; Satow, Kazuhide; Prie, Frederic; Bayou, Nicolas; Brun, Eric; Cuffey, Kurt; Dahl-Jensen, Dorthe; Dumont, Marie; Guillevic, Myriam; Kipfstuhl, Sepp; Landais, Amaelle; Popp, Trevor; Risi, Camille; Steffen, Konrad; Stenni, Barbara; Sveinbjornsdottir, Arny

    2014-05-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm from the surface has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We observe a clear diurnal cycle in both the value and gradient of the isotopic composition of the water vapor above the snow surface. The diurnal amplitude in δD is found to be ~15‰. The diurnal isotopic composition follows the absolute humidity cycle. This indicates a large flux of vapor from the snow surface to the atmosphere during the daily warming and reverse flux during the daily cooling. The isotopic measurements of the flux of water vapor above the snow give new insights into the post depositional processes of the isotopic composition of the snow. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow

  20. Studies of air, water, and ethanol vapor atmospheric pressure plasmas for antimicrobial applications.

    PubMed

    Ferrell, James R; Bogovich, Erinn R; Lee, Nicholas R; Gray, Robert L; Pappas, Daphne D

    2015-06-25

    The generation of air-based plasmas under atmospheric plasma conditions was studied to assess their antimicrobial efficacy against commonly found pathogenic bacteria. The mixture of initial gases supplied to the plasma was found to be critical for the formation of bactericidal actives. The optimal gas ratio for bactericidal effect was determined to be 99% nitrogen and 1% oxygen, which led to a 99.999% reduction of a pathogenic strain of Escherichia coli on stainless steel surfaces. The experimental substrate, soil load on the substrate, flow rate of the gases, and addition of ethanol vapor all were found to affect antimicrobial efficacy of studied plasmas. Optical emission spectroscopy was used to identify the species that were present in the plasma bulk phase for multiple concentrations of nitrogen and oxygen ratios. The collected spectra indicate a unique series of bands present in the ultraviolet region of the electromagnetic spectrum that can be attributed to nitric oxide species known to be highly antimicrobial. This intense spectral profile dramatically changes as the concentration of nitrogen decreases.

  1. Studies of air, water, and ethanol vapor atmospheric pressure plasmas for antimicrobial applications.

    PubMed

    Ferrell, James R; Bogovich, Erinn R; Lee, Nicholas R; Gray, Robert L; Pappas, Daphne D

    2015-01-01

    The generation of air-based plasmas under atmospheric plasma conditions was studied to assess their antimicrobial efficacy against commonly found pathogenic bacteria. The mixture of initial gases supplied to the plasma was found to be critical for the formation of bactericidal actives. The optimal gas ratio for bactericidal effect was determined to be 99% nitrogen and 1% oxygen, which led to a 99.999% reduction of a pathogenic strain of Escherichia coli on stainless steel surfaces. The experimental substrate, soil load on the substrate, flow rate of the gases, and addition of ethanol vapor all were found to affect antimicrobial efficacy of studied plasmas. Optical emission spectroscopy was used to identify the species that were present in the plasma bulk phase for multiple concentrations of nitrogen and oxygen ratios. The collected spectra indicate a unique series of bands present in the ultraviolet region of the electromagnetic spectrum that can be attributed to nitric oxide species known to be highly antimicrobial. This intense spectral profile dramatically changes as the concentration of nitrogen decreases. PMID:25810273

  2. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Molnar, G. I.; Iredell, L. F.; Sounder Research Team

    2010-12-01

    Joel Susskind, Gyula Molnar, and Lena Iredell NASA GSFC Sounder Research Team Abstract This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 - February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Niña in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5°N - 20°S latitude extending eastward from 150°W - 30°E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Niño, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as well as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover

  3. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  4. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  5. A passive integrative sampler for mercury vapor in air and neutral mercury species in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.

    2000-01-01

    A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended

  6. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  7. Effects of air temperature and water vapor pressure deficit on storage of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae).

    PubMed

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2012-10-01

    To determine the optimum air temperature and water vapor pressure deficit (VPD) for the storage of the predatory mite, Neoseiulus californicus, 3-day-old mated females were stored at air temperatures of 0, 5, 10, or 15 °C and VPDs of 0.1, 0.3, or 0.5 kPa for 10, 20, or 30 days. At 10 °C and 0.1 kPa, 83 % of females survived after 30 days of storage; this percentage was the highest among all conditions. VPDs of 0.3 and 0.5 kPa regardless of air temperature, and an air temperature of 0 °C regardless of VPD were detrimental to the survival of the females during storage. Since the highest survival was observed at 10 °C and 0.1 kPa, the effect of the storage duration on the post-storage quality of the stored females and their progeny was investigated at 25 °C to evaluate the effectiveness of the storage condition. The oviposition ability of the stored females, hatchability, and sex ratio of their progeny were not affected even when the storage duration was extended to 30 days. Although a slight decrease in the survival during the immature stages of progeny was observed when the storage duration was ≥20 days, the population growth of N. californicus may not be affected when individuals stored in these conditions are applied to greenhouses and agricultural fields. The results indicate that mated N. californicus females can be stored at 10 °C and 0.1 kPa VPD for at least 30 days.

  8. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-11-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn2O4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn2O4 particles in air and water vapor atmospheres as model reactions; LiMn2O4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO3 precursor impregnated with LiOH, LiMn2O4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled.

  9. Water vaporization on Ceres

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Feldman, Paul D.

    1992-01-01

    A search is presently conducted for OH generated by the photodissociation of atmospheric water vapor in long-exposure IUE spectra of the region around Ceres. A statistically significant detection of OH is noted in an exposure off the northern limb of Ceres after perihelion. The amount of OH is consistent with a polar cap that might be replenished during winter by subsurface percolation, but which dissipates in summer.

  10. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  11. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    NASA Technical Reports Server (NTRS)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  12. Aerosol and Water Vapor Raman Lidar System at CEILAP, Buenos Aires, Argentina. Case Study: November 07, 2006.

    NASA Astrophysics Data System (ADS)

    Otero, Lidia Ana; Ristori, Pablo Roberto; Quel, Eduardo Jaime

    2008-04-01

    A multiwavelength backscatter LIDAR (Light Detection And Ranging) was developed and operates at Centro de Investigaciones en Láseres y Aplicaciones, CEILAP (CITEFA-CONICET), (34.5 S and 58.5 W) to study the atmospheric properties such as the aerosol optical parameters, the boundary layer evolution, and the water vapor vertical distribution. The emission system is based on a Nd:YAG laser emitting at the fundamental, second and third harmonic wavelengths. The reception unit was upgraded to collect the atmospheric elastic and nitrogen Raman backscatters from the second and third harmonic wavelength and the water vapor Raman backscatter from the third harmonic wavelength. The information from all these channels give us enough information to derive the vertical distribution of the total to molecular backscatter, the backscatter to extinction ratio (lidar ratio) and the Ångström coefficient. In addition, water vapor mixing ratio profile is also measured by using the Raman water vapor and nitrogen channels (408 and 387 nm).

  13. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  14. An experimental study on resonance of oscillating air/vapor bubbles in water using a two-frequency acoustic apparatus

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.

    2003-05-01

    A two-frequency acoustic apparatus is employed to study the growth behavior of vapor-saturated bubbles driven in a volumetric mode. A unique feature of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower-frequency acoustic wave. It is observed that the growing vapor bubbles exhibit a periodic shape transition between the volumetric and shape modes due to resonant coupling. In order to explain this observation, we performed an experimental investigation on resonant coupling of air bubbles and obtained the following results: First, the induced shape oscillations are actually a mixed mode that contains the volume component, thus, vapor bubbles can grow while they exhibit shape oscillations. Second, the acoustically levitated bubbles are deformed and therefore, degeneracy in resonant frequency is partially removed. As a result, the vapor bubbles exhibit the shape oscillations in both the axisymmetric mode and asymmetric (three-dimensional) modes. Nonlinear effects in addition to the frequency shift and split due to deformation creates overlapping of the coupling ranges for different modes, which leads to the continuous shape oscillations above a certain bubble radius as the bubble grows.

  15. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  16. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  17. Clouds and Water Vapor in the Climate System and Radiative Transfer in Clear Air and Cirrus Clouds in the Tropics

    NASA Technical Reports Server (NTRS)

    Anderson, James G.; DeSouza-Machado, Sergio; Strow, L. Larrabee

    2002-01-01

    Research supported under this grant was aimed at attacking unanswered scientific questions that lie at the intersection of radiation, dynamics, chemistry, and climate. Considerable emphasis was placed on scientific collaboration and the innovative development of instruments required to address these issues. Specific questions include water vapor distribution in the tropical troposphere, atmospheric radiation, thin cirrus clouds, stratosphere-troposphere exchange, and correlative science with satellite observations.

  18. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  19. Biofiltration of solvent vapors from air

    SciTech Connect

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps and flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.

  20. A stratospheric water vapor feedback

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-12-01

    Variations in stratospheric water vapor play a role in the evolution of our climate. We show here that variations in water vapor since 2004 can be traced to tropical tropopause layer (TTL) temperature perturbations from at least three processes: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the troposphere. The connection between stratospheric water vapor and the temperature of the troposphere implies the existence of a stratospheric water vapor feedback. We estimate the feedback in a chemistry-climate model to have a magnitude of +0.3 W/m2/K, which could be a significant contributor to the overall climate sensitivity. About two-thirds of the feedback comes from the extratropical stratosphere below ~16 km (the lowermost stratosphere), with the rest coming from the stratosphere above ~16 km (the overworld).

  1. Ultraviolet fluorescence water vapor instrument for aircraft

    NASA Astrophysics Data System (ADS)

    Stone, E. J.

    1980-05-01

    An ultraviolet-fluorescence instrument for the measurement of stratospheric water vapor concentrations has been developed and flown on balloon-parachute vehicles. The adaptation of the instrument to aircraft is reported, noting that it can be used at all altitudes above 400 mb. The air is ducted at 30 m/s from a heated intake above the roof of the aircraft through an 1.5-in. diameter pipe and the sensitivity of the instrument is 260 counts/s per ppmv of water vapor with a standard deviation plus or minus 15%. The instrument exhibits fast response, good resistance to contamination and direct calibration in use.

  2. Origin of the water vapor responsible for the European extreme rainfalls of August 2002: 1. High-resolution simulations and tracking of air masses

    NASA Astrophysics Data System (ADS)

    Gangoiti, G.; SáEz de CáMara, E.; Alonso, L.; Navazo, M.; Gómez, M. C.; Iza, J.; GarcíA, J. A.; Ilardia, J. L.; MilláN, M. M.

    2011-11-01

    This article investigates an extreme rainfall event occurred over wide areas of central Europe on August 11-13, 2002. By using a synergistic approach that includes regional modeling, air mass tracking, and observational data sets, the importance of moisture accumulation processes in the Western Mediterranean basin (WMB) is acknowledged as an important mechanism responsible for the magnitude of this event. The RAMS-HYPACT modeling system is used to track air masses from potential marine sources of evaporation. MODIS water vapor products, wind profilers and surface rain gauge measurements are used to substantiate our simulations. Results show that most of the precipitation occurring in central Europe during the initiation of the rainfall episode (August 11) came from vapor accumulated over 4 days (August 6-9) within the WMB: the vapor was transported, after the irruption of the Vb cyclone Ilse, through the Italian Peninsula and the Adriatic Sea, into the target area, causing the precipitation episode. On August 12 and 13 the marine sources of evaporation changed to include the north-Atlantic region. The north-African convergence region, the eastern Mediterranean and the Black Sea are revealed to be sources more related to the intense rainfall experienced in eastern Europe. The subsidence-related processes through which pollutants and water vapor can accumulate for several days in the WMB are shown to be very relevant for this event. The quantification of the evaporative sources, responsible for the extreme rainfall events in central Europe, and the relative importance of marine and terrestrial sources within a chosen regional domain are discussed in the companion following article.

  3. Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Keiser, James R; More, Karren Leslie; Fayek, Mostafa; Walker, Larry R; Meisner, Roberta Ann; Anovitz, Lawrence {Larry} M; Wesolowski, David J; Cole, David R

    2012-01-01

    A high-purity Fe-20Cr and commercial type 430 ferritic stainless steel were exposed at 700 and 800 C in dry air and air with 10% water vapor (wet air) and characterized by SEM, XRD, STEM, SIMS, and EPMA. The Fe-20Cr alloy formed a fast growing Fe-rich oxide scale at 700 C in wet air after 24 h exposure, but formed a thin chromia scale at 700 C in dry air and at 800 C in both dry air and wet air. In contrast, thin spinel + chromia base scales with a discontinuous silica subscale were formed on 430 stainless steel under all conditions studied. Extensive void formation was observed at the alloy-oxide interface for the Fe-20Cr in both dry and wet conditions, but not for the 430 stainless steel. The Fe-20Cr alloy was found to exhibit a greater relative extent of subsurface Cr depletion than the 430 stainless steel, despite the former's higher Cr content. Depletion of Cr in the Fe-20Cr after 24 h exposure was also greater at 700 C than 800 C. The relative differences in oxidation behavior are discussed in terms of the coarse alloy grain size of the high-purity Fe-20Cr material, and the effects of Mn, Si, and C on the oxide scale formed on the 430 stainless steel.

  4. Reusability study with organic vapor air-purifying respirator cartridges

    SciTech Connect

    Wood, G.O.; Kissane, R.

    1997-11-01

    The question often arises about the reusability of organic vapor adsorption beds, such as air- purifying respirator cartridges, after periods of storage without use (airflow). The extremes of practice are: (1) use once and discard or (2) reuse multiple times assuming the protection is still afforded. The goal is to develop data and a model to provide guidance to decide when reuse is acceptable. They have studied the loss of protection of a commercial organic vapor cartridge after storage for varying periods of time. Three vapors (ethyl acetate, methylene chloride, and hexane) were individually loaded onto test cartridges using a breathing pump. Extents of loading, times of loading, and vapor concentrations were varied. After selected periods of storage the cartridges were again challenged with the same vapor concentration. The increases in concentration of a vapor in the effluent air (simulated breaths) from a cartridge immediately upon reuse depended on the storage period, the extent of loading during initial use, the volatility of the vapor, and the water vapor adsorbed, but not much on the vapor concentration.

  5. Assessing the Uncertainty of Raman Lidar Independent Water Vapor Calibration Means for Long Term Water Vapor Trend Studies

    NASA Astrophysics Data System (ADS)

    Walker, M. N.; Whiteman, D. N.; Venable, D. D.

    2015-12-01

    The Network for the Detection of Atmospheric Composition Change (NDACC) and GCOS Reference Upper Air Network (GRUAN) both have lidar groups that desire to detect long term water vapor trends using Raman lidars. However, traditional calibration efforts make the lidar water vapor data dependent on water vapor measurements from other instruments. Also the traditional calibration efforts are known to be the largest source of systematic uncertainty to Raman Lidar water vapor data. Recently the lamp mapping technique (LMT) has been introduced as a source of independent calibration for Raman lidar water vapor data. However the systematic uncertainty from the LMT, as it applies to Raman Lidar water vapor data, needs to be investigated. Therefore the purpose of this research is to investigate the uncertainty and stability of the LMT as an independent calibration source and assess its capability to be used to support Raman Lidar long-term water vapor trend studies.

  6. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  7. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  8. Electrical Breakdown in Water Vapor

    SciTech Connect

    Skoro, N.; Maric, D.; Malovic, G.; Petrovic, Z. Lj.; Graham, W. G.

    2011-11-15

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm ({approx}0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  9. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft has been developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on NASA and USAF aircraft. Water vapor measurements were conducted up to 40,000 feet with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 feet.

  10. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1974-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  11. Stomatal Responses to Light and Leaf-Air Water Vapor Pressure Difference Show Similar Kinetics in Sugarcane and Soybean 1

    PubMed Central

    Grantz, David A.; Zeiger, Eduardo

    1986-01-01

    Stomatal responses to light and humidity (vapor pressure difference, VPD) are important determinants of stomatal conductance. Stomatal movements induced by light are the result of a transduction of the light stimulus into modulated ion fluxes in guard cells and concomitant osmotic adjustments and turgor changes. It is generally assumed that this transduction process is a general stomatal property, with different environmental stimuli integrated into guard cell metabolism through their modulation of ion fluxes. In contrast with this notion, the VPD response, which is unique because both its triggering signal and the turgor changes required for aperture modulations involve water molecules, has been considered to be hydropassive and thus independent of guard cell metabolism. We used a kinetic approach to compare the light and VPD responses in order to test the hypothesis that hydropassive changes in guard cell turgor could be faster than the metabolism-dependent light responses. Changes in stomatal conductance in intact leaves of sugarcane and soybean were measured after application of step changes in VPD and in light. In spite of a 5-fold difference in overall rates between the two species, the response rates following light or VPD steps were similar. Although a coincidental kinetic similarity between two mechanistically different responses cannot be ruled out, the data suggest a common mechanism controlling stomatal movements, with the VPD stimulus inducing metabolic modulations of ion fluxes analogous to other stomatal responses. PMID:16664916

  12. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  13. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  14. Condensation of water vapor in the gravitational field

    SciTech Connect

    Gorshkov, V. G.; Makarieva, A. M.; Nefiodov, A. V.

    2012-10-15

    Physical peculiarities of water vapor condensation under conditions of hydrostatic equilibrium are considered. The power of stationary dynamic air fluxes and the vertical temperature distribution caused by condensation on large horizontal scales are estimated.

  15. A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations

    NASA Astrophysics Data System (ADS)

    Roman, Jacola; Knuteson, Robert; August, Thomas; Hultberg, Tim; Ackerman, Steve; Revercomb, Hank

    2016-08-01

    Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long-term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground-based SuomiNet Global Positioning System (GPS) network as truth. Elevation-corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20-40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.

  16. Vertical Water Vapor Distribution at Phoenix

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Lemmon, M. T.

    2016-09-01

    The Phoenix SSI camera data along with radiative transfer modeling are used to retrieve the vertical water vapor profile. Preliminary results indicate that water vapor is often confined near the surface.

  17. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  18. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  19. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  20. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  1. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  2. Review of methods and measurements of selected hydrophobic organic contaminant aqueous solubilities, vapor pressures, and air-water partition coefficients

    SciTech Connect

    Bamford, H.A.; Baker, J.E.; Poster, D.L.

    1998-03-01

    Aqueous solubilities, vapor pressures, and Henry`s law constants for a wide range of organic contaminants of environmental interest are presented. Specifically, a discussion of methods used to measure these physical constants and resulting measurements are provided in an effort to examine the scope of physical constants reported in the scientific literature. Physical constants reviewed include those for 40 PAHs, 14 chlorinated aliphatics, 149 PCBs, 12 chlorinated benzenes, 16 dioxins, 63 furans, and 29 agrochemicals (a total of 323 compounds) and overall a total of 1,605 values are listed.

  3. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  4. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Time-series for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel; Iredell, Lena

    2010-01-01

    The ROBUST nature (biases are not as important as previous GCM-evaluations suggest) of the AIRS-observations-generated ARC-maps and ATs as well as their interrelations suggest that they could be a useful tool to select CGCMs which may be considered the reliable, i.e., to be trusted even for longer-term climate drift/change predictions (even on the regional scale). Get monthly gridded CGCM time-series of atmospheric variables coinciding with the timeframe of the AIRS analyses for at least 5-6 years and do the actual evaluations of ARC-maps and ATs for the coinciding time periods.

  5. Vapor pressure of water nanodroplets.

    PubMed

    Factorovich, Matías H; Molinero, Valeria; Scherlis, Damián A

    2014-03-26

    Classical thermodynamics is assumed to be valid up to a certain length-scale, below which the discontinuous nature of matter becomes manifest. In particular, this must be the case for the description of the vapor pressure based on the Kelvin equation. However, the legitimacy of this equation in the nanoscopic regime can not be simply established, because the determination of the vapor pressure of very small droplets poses a challenge both for experiments and simulations. In this article we make use of a grand canonical screening approach recently proposed to compute the vapor pressures of finite systems from molecular dynamics simulations. This scheme is applied to water droplets, to show that the applicability of the Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where the inhomogeneities in the density of matter occur within spatial lengths of the same order of magnitude as the size of the object. While in principle this appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular descriptions depart from each other.

  6. Venus Balloons using Water Vapor

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Honda, H.; Imamura, T.

    We propose an inflatable balloon using water vapor for the lifting gas, which is liquid in the transportation stage before entry into the high temperature atmosphere. The envelope of the balloon has an outer layer for gas barrier (a high-temperature resistant film) and an inner layer for liquid water keeping. In the descent stage using a parachute, water widely held just inside the balloon envelope can be quickly vaporized by a lot of heat flux from the surrounding high-temperature atmosphere owing to the large surface area of the balloon. As neither gas containers nor heat exchangers are necessary, we can construct a simple, lightweight and small size Venus balloon probe system. Tentative floating altitude is 35 km below the thick clouds in the Venusian atmosphere. Selection of balloon shape and material for balloon envelope are discussed in consideration of the Venusian environment such as high-temperature, high-pressure, and sulfuric acid. Balloon deployment and inflation sequence is numerically simulated. In case of the total floating mass of 10 kg at the altitude of 35 km, the volume and mass of the balloon is 1.5 cubic meters, and 3.5 kg, respectively. The shape of the balloon is chosen to be cylindrical with a small diameter. The mass of li fting gas can be determined as 4.3 kg and the remaining 2.2 kg becomes the payload mass. The mass of the total balloon system is also just 10 kg excluding the entry capsule.

  7. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  8. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  9. Saturn's Stratospheric Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Hesman, Brigette E.; Bjoraker, Gordon L.; Achterberg, Richard K.; Romani, Paul N.; Irwin, Patrick G. J.

    2015-11-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn’s atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn’s main rings (via neutral infall and/or ions transported along magnetic field lines - “Ring Rain”), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn’s stratospheric water.Cassini’s Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn’s equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether “Ring Rain” also contributes to the inventory of water in Saturn’s upper atmosphere.

  10. Saturn's Stratospheric Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  11. Combined air stripper/membrane vapor separation systems. Final report

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  12. Relating A-Train Water Vapor Observations to Cloud Classes from CloudSat

    NASA Astrophysics Data System (ADS)

    Fetzer, E. J.; Kahn, B. H.; Teixeira, J.; Fishbein, E. F.; Wilson, B. D.; Waliser, D. E.

    2008-12-01

    Three of the standard data sets from the NASA A-Train satellite constellation are CloudSat cloud classes, Atmospheric Infrared Sounder (AIRS) moist thermodynamic observations, and Advanced Microwave Sounding Radiometer for EOS (AMSR-E) total precipitable water vapor. We describe AIRS and AMSR-E water vapor observability, and the associated climatologies, conditional on CloudSat cloud classes. Because cloud classes represent unique physical processes, each scene type can be expected to have distinct temperature and water vapor signatures. Understanding the sampling characteristics of the water vapor observations is critical to interpreting them in the context of changing cloud and water vapor regimes.

  13. Development and Validation of a Novel Gas Analyzer for Simultaneous Measurements of Methane, Carbon Dioxide and Water Vapor in Ambient Air at 20 Hz

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Owano, T.; Fellers, R.; Dong, F.; Baer, D.

    2008-12-01

    Methane has increased significantly with human population levels. Pre-1750 ice core data indicates that pre- industrialization levels were about 700 ppbv, while current levels are over 1750 ppbv. In current budget estimates of atmospheric methane, major contributors include both natural (wetlands) and anthropogenic sources (energy, landfills, ruminants, biomass burning, rice agriculture). The strengths of these sources vary spatially and temporally. Estimates of emissions from wetlands are also uncertain due to the extreme variability of these ecosystems. Because methane lifetime is relatively long (8.4 years), atmospheric variations in concentration are small and accuracy in measurement is important for understanding spatial and temporal variability. Atmospheric concentrations of carbon dioxide and methane rose sharply in 2007. Global CO2 climbed by 0.6 percent, or 19 billion tons, in 2007. Methane increased by 27 million tons after nearly a decade with little or no increase. Atmospheric CO2 levels currently stand at 385 ppmv, or about 38 percent higher than pre- industrial levels and the rise in CO2 concentrations has been accelerating since the 1980s when annual increases were around 1.5 ppm per year. Last year the increase was 2.4 ppm. We report on the development, application and independent performance characterization of a novel gas analyzer based on cavity-enhanced laser absorption spectroscopy. The Analyzer provides simultaneous measurements of methane, carbon dioxide and water vapor in ambient air in the field for applications that require high data rates (eddy correlation flux), wide dynamic range (e.g., chamber flux and other applications with concentrations that are ten times typical ambient levels or higher) and highest accuracy (atmospheric monitoring stations). The Analyzer provides continuous measurements at data rates up to 20 Hz and with replicate precision of 1 ppbv for methane (1 second measurement time), 0.2 ppmv for carbon dioxide (1 second

  14. Eyeing the Sky's Water Vapor

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, and many like it, are one way NASA's Phoenix Mars Lander is measuring trace amounts of water vapor in the atmosphere over far-northern Mars. Phoenix's Surface Stereo Imager (SSI) uses solar filters, or filters designed to image the sun, to make these images. The camera is aimed at the sky for long exposures.

    SSI took this image as a test on June 9, 2008, which was the Phoenix mission's 15th Martian day, or sol, since landing, at 5:20 p.m. local solar time. The camera was pointed about 38 degrees above the horizon. The white dots in the sky are detector dark current that will be removed during image processing and analysis.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space

  15. Tropospheric water vapor and climate sensitivity

    SciTech Connect

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1999-06-01

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of

  16. X-ray-induced water vaporization

    SciTech Connect

    Weon, B. M.; Lee, J. S.; Je, J. H.; Fezzaa, K.

    2011-09-15

    We present quantitative evidence for x-ray-induced water vaporization: water is vaporized at a rate of 5.5 pL/s with the 1-A-wavelength x-ray irradiation of {approx}0.1 photons per A{sup 2}; moreover, water vapor is reversibly condensed during pauses in irradiation. This result fundamentally suggests that photoionization induces vaporization. This phenomenon is attributed to surface-tension reduction by ionization and would be universally important in radiological and electrohydrodynamic situations.

  17. The Tropical Water Vapor Feedback Implied by Aqua Observations

    NASA Astrophysics Data System (ADS)

    Minschwaner, K.; Dessler, A. E.; Sawaengphokhai, P. C.; Laight, P. A.

    2006-12-01

    We investigate the climate feedback by water vapor in the middle and upper troposphere of the tropics using data from Earth Observing System instruments on the Aqua satellite. The measured water vapor and sea surface temperatures are obtained from AIRS (Atmospheric Infrared Sounder), and outgoing longwave fluxes from CERES (Clouds and Earth's Radiant Energy System). These data are used to quantify any response in tropical mean water vapor to changes in sea surface temperatures. We focus on the effect of variations in both tropical mean sea surface temperature and on variability confined to regions of active convection. Results are compared to feedback estimates based on previous measurements from UARS MLS, as well as the water vapor feedback predicted by global climate model simulations as part of the IPCC AR4 analysis.

  18. Tower Water-Vapor Mixing Ratio

    SciTech Connect

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  19. Observing the Water Vapor Feedback With GPS Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.

    2015-12-01

    Recent studies show that the distribution of projected climate sensitivity (CS) is highly asymmetric with large tails towards higher temperatures, leaving open an uncomfortably large possibility of CS > 4.5oC. Central to the estimation of CS is the distribution of water vapor in the atmosphere, which directly affects the water vapor feedback and indirectly drives the cloud feedback. Yet, a plethora of studies report large discrepancies between models and observations of the tropical humidity climatology and its vertical distribution. Our preliminary results indicate that the tropical humidity climatology derived from Global Positioning System (GPS) radio occultation (GPSRO) observations are in excellent agreement with NASA's Modern Era Retrospective Analysis for Research and Applications (MERRA). We will present the time series of tropospheric water vapor using GPSRO data sets from 2006 onwards, and will compare our results with different sources such as the European Center for Medium Range Weather Forecasts (ECMWF) and the Atmospheric Infrared Sounder (AIRS). We will carefully quantify the statistical differences among the series to identify and document biases among the data sets. Finally, we will correlate the aforementioned humidity series with surface temperature climatologies in order to estimate the variability of water vapor in response to temperature fluctuations, dq/dTs, which is directly related to the water vapor feedback. Current research indicates that GPSRO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among the different data sets will provide us with an additional constraint on the water vapor feedback. The critical role of the up-coming Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) mission in late 2016, in characterizing the tropical

  20. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  1. Water vapor distribution in protoplanetary disks

    SciTech Connect

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  2. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-04-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  3. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-08-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air due to the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as in the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  4. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  5. Removal of Sarin Aerosol and Vapor by Water Sprays

    SciTech Connect

    Brockmann, John E.

    1998-09-01

    Falling water drops can collect particles and soluble or reactive vapor from the gas through which they fall. Rain is known to remove particles and vapors by the process of rainout. Water sprays can be used to remove radioactive aerosol from the atmosphere of a nuclear reactor containment building. There is a potential for water sprays to be used as a mitigation technique to remove chemical or bio- logical agents from the air. This paper is a quick-look at water spray removal. It is not definitive but rather provides a reasonable basic model for particle and gas removal and presents an example calcu- lation of sarin removal from a BART station. This work ~ a starting point and the results indicate that further modeling and exploration of additional mechanisms for particle and vapor removal may prove beneficial.

  6. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  7. TECHNOLOGY ASSESSMENT OF SOIL VAPOR EXTRACTION AND AIR SPARGING

    EPA Science Inventory

    Air sparging, also called "in situ air stripping and in situ volatilization" injects air into the saturated zone to strip away volatile organic compounds (VOCs) dissolved in groundwater and adsorbed to soil. hese volatile contaminants transfer in a vapor phase to the unsaturated ...

  8. Heterogeneous Nucleation of Naphthalene Vapor on Water Surface

    PubMed

    Smolík; Schwarz

    1997-01-15

    The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces. PMID:9028892

  9. Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water.

    PubMed

    Miyake, Yusaku; Sakoda, Akiyoshi; Yamanashi, Hiroaki; Kaneda, Hirotaka; Suzuki, Motoyuki

    2003-04-01

    Ground water contaminated with trichloroethylene (TCE) used in electronic, electric, dry cleaning and the like industries is often treated by air-stripping. In this treatment process, TCE in its vapor form is stripped from ground water by air stream and sometimes emitted into the atmosphere without any additional treatments. Activated carbon adsorption is one of the practical and useful processes for recovering the TCE vapor from the exhaust air stream. However, adsorption of the TCE vapor from the stripping air stream onto activated carbons is not so simple as that from dry air, since in the exhaust air stream the TCE vapor coexists with water vapor with relatively high concentrations. The understanding of the adsorption characteristics of the TCE vapor to be adsorbed on activated carbon in the water vapor-coexisting system is essential for successfully designing and operating the TCE recovery process. In this work, the adsorption equilibrium relations of the TCE vapor adsorption on activated carbons were elucidated as a function of various relative humidity. Activated carbon fibers (ACFs) were used as model activated carbon. The adsorption equilibrium relations were studied by the column adsorption method. The adsorption isotherms of TCE vapor adsorbed on sample ACFs were successfully correlated by the Dubinin-Radushkevich equation for both cases with and without coexistent water vapor. No effects of coexistent water vapor were found on the limiting adsorption volume. However, the adsorption characteristic energy was significantly reduced by the coexistence of water vapor and its reduction was successfully correlated with the equilibrium amount of water vapor adsorbed under the dynamic condition.

  10. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  11. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  12. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  13. Review of Various Air Sampling Methods for Solvent Vapors.

    ERIC Educational Resources Information Center

    Maykoski, R. T.

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass prescription bottles, and charcoal adsorption tubes. Efficiencies of collection are reported. (Author/RH)

  14. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  15. DISTRIBUTION OF WATER VAPOR IN MOLECULAR CLOUDS

    SciTech Connect

    Melnick, Gary J.; Tolls, Volker; Snell, Ronald L.; Bergin, Edwin A.; Hollenbach, David J.; Kaufman, Michael J.; Li Di; Neufeld, David A. E-mail: vtolls@cfa.harvard.edu E-mail: ebergin@umich.edu E-mail: mkaufman@email.sjsu.edu E-mail: neufeld@pha.jhu.edu

    2011-01-20

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C{sub 2}H, {sup 13}CO J = 5-4, and HCN, and less well with the volume tracer N{sub 2}H{sup +}. Moreover, at total column densities corresponding to A{sub V}< 15 mag, the ratio of H{sub 2}O to C{sup 18}O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large A{sub V}. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations of comparing measured water-vapor column densities with such traditional cloud tracers as {sup 13}CO or C{sup 18}O. These results also support cloud models that incorporate freeze out of molecules as a critical component in determining the depth-dependent abundance of water vapor.

  16. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  17. The isotopic composition of water vapor as a tracer of water balance in the TTL

    NASA Astrophysics Data System (ADS)

    Bolot, Maximilien; Moyer, Elisabeth; Legras, Bernard; Walker, Kaley; Boone, Chris; Bernath, Peter

    2015-04-01

    The relatively small amount of water vapor in the tropical tropopause layer (TTL) region is of disproportionate radiative importance, and projections of changes in TTL water are hampered by poor understanding of its sources and controls. We show here that the profile of the isotopic composition of water vapor can be used to quantify the contribution of various processes to the water budget of the region: convective sources of water, dehydration via in situ cirrus formation and sedimentation, and moistening from mixing with extratropical air. We combine these processes into a simple model for the isotopic ratio of TTL water vapor. By fitting the model parameters to reproduce an averaged tropical profile of water vapor isotopic ratio in the TTL, we can retrieve the convective contribution to TTL water vapor. Using isotopic measurements from the ACE-FTS solar-occultation instrument, we show that convective injection of water vapor must provide a significant contribution to TTL water vapor. That contribution in turn has large radiative effects, because it increases the production of in-situ cirrus over what would be inferred from large-scale uplift alone, by a factor 2-10 over the TTL (15-17.5 km).

  18. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  19. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  20. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in...

  1. Using Regional Validation from SuomiNet, AMSR-e, and NWP Re-analysis to Assess the Precipitable Water Vapor from AIRS and CrIS for Detecting Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Roman, J.; Knuteson, R. O.; Ackerman, S. A.; Revercomb, H. E.; Smith, W.; Weisz, E.

    2012-12-01

    The IPCC 4th Assessment found that changes in extreme events, such as droughts, heat waves, and flooding, has occurred and the frequency of such events is expected to increase. Precipitable Water Vapor (PWV) is defined as the amount of liquid water that would be produced if all of the water vapor in an atmospheric column were condensed. It is a very useful parameter for forecasters to determine atmospheric stability and the probability of convection and severe weather forecast using Numerical Weather Prediction (NWP) models, making it critical for determining the occurrence of extreme events. The AMSR-E sensor on the NASA Aqua platform has produced a long record of PWV over ice-free ocean areas while the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite was the first of a new generation of satellite sensors that provided the capability to retrieve water vapor profiles at high vertical resolution and good absolute accuracy over both ocean and land areas using the same algorithm. The operational follow-on to the AIRS is the Cross-track Infrared Sounder (CrIS) successfully launched on the Suomi NPP satellite on 28 October 2011. The CrIS, along with ATMS, will provide the U.S. component of the joint U.S./European operational weather satellite system. A long record of observations from copies of these sensors is anticipated from this new network of advanced IR sounders. Among other atmospheric observables, the NASA AIRS science team has produced a global dataset of PWV beginning in September 2002 that is approaching ten years in length. This paper investigates the accuracy of satellite retrieved PWV climatology's. Validation data used is from the ground based GPS network (SuomiNet) and the conventional meteorological network as represented in NWP reanalysis products. The purpose of this study is to compare the retrievals of PWV from NASA's AIRS global gridded satellite products to our independent UW satellite retrievals, as well as compare NASA AIRS and

  2. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  3. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  4. Refraction of microwave signals by water vapor

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  5. Detection and Measurement of Charge in Water Vapor

    NASA Astrophysics Data System (ADS)

    Feng, C. L.

    2015-12-01

    Abstract: Positive charge is found in newly formed water vapor. Two detection and two measurement experiments are presented. The detection experiments are simple; their purpose is only to show the existence of charge in water vapor. The first of these experiments places one exposed end of an insulated wire in the vapor space of a flask, which holds boiling water. The other end of this wire is connected to the input high of an electrometer. The input low, in all of the presented experiments, is grounded. The second experiment detects charge by capacitive induction. It uses a beaker with gold leaves gilded on its outside surface. When water boils inside the beaker, the vapor charge is detected by the gold layer without contacting the water or vapor. The two measurement experiments have sensors made of conducting fabric. The fabric is used to cover the opening of a flask, which holds boiling water, to collect the charge in the escaping vapor. These two experiments differ by the number of fabric layers --- four in one and six in the other. The results obtained from these two experiments are essentially the same, within the margin of error, 0.734 & 0.733 nC per gram of vapor. Since the added two layers of the six-layer sensor do not collect more charge than the four-layer sensor, the four-layer sensor must have collected all available charge. The escaping vapor exits into a chamber, which has only a small area opening connecting to the atmosphere. This chamber prevents direct contact between the sensor and the ambient air, which is necessary because air is found to affect the readings from the sensor. Readings taken in the surrounding area in all four experiments show no accumulation of negative charge. These experiments identify a source for the atmospheric electricity in a laboratory environment other than that has been discussed in the literature. However, they also raise the question about the missing negative charge that would be predicted by charge balance or the

  6. A water vapor monitor using differential infrared absorption

    NASA Astrophysics Data System (ADS)

    Burch, D. E.; Goodsell, D. S.

    1981-09-01

    A water vapor monitor was developed with adequate sensitivity and versatility for a variety of applications. Two applications are the continuous monitoring of water in ambient air and the measuring of the mass of water desorbed from aerosol filters. The sample gas may be held static, or flow continuously through the 56 cc sample cell, temperature controlled at 45 C. Infrared energy from a tungsten-iodide bulb passes through a rotating filter wheel and the sample cell to a PbS detector. The infrared beam passes through the sample gas twice to produce a total optical path of 40 cm. The infrared beam passes alternately through two semicircular narrow bandpass filters. Absorption by the water vapor in the sample produces a 30-Hz modulation of the detector signal that is proportional to the water concentration. The maximum concentration that can be measured accurately is approximately 5%.

  7. Blocking of the water-lunar fines reaction by air and water concentration effects

    NASA Technical Reports Server (NTRS)

    Gammage, R. B.; Holmes, H. F.

    1975-01-01

    The elements of air, if adsorbed in conjunction with water vapor or liquid water, are able to impede severely the attack of lunar fines. Thus is explained the stability of lunar fines in moisture laden air, and their small solubility in liquid, aerated water. In the absence of air, liquid water is more effective than water vapor in attacking the grains; the channels formed are wider and the expansion of area is greater.

  8. Possible seasonal variability of mesospheric water vapor

    NASA Technical Reports Server (NTRS)

    Bevilacqua, R. M.; Schwartz, P. R.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz water vapor line in atmospheric emission were made at the Jet Propulsion Laboratory, which have been used to deduce the mesospheric water vapor profile. The measurements were made nearly continuously in the spring and early summer of 1984. The results indicate a temporal increase in the water vapor mixing ratio in the upper mesosphere from April through June. At 75 km, this increase is nearly by a factor of 2. Comparison of the present results with the results of a similar series of measurements made at the Haystack (radio astronomy) Observatory indicate that this temporal increase is part of a seasonal variation.

  9. Validation of AIRS/AMSU-A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N-67°S

    NASA Astrophysics Data System (ADS)

    Diao, Minghui; Jumbam, Loayeh; Sheffield, Justin; Wood, Eric F.; Zondlo, Mark A.

    2013-06-01

    Validation of the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU-A) data set with in situ observations provides useful information on its application to climate and weather studies. However, different space/time averaging windows have been used in past studies, and questions remain on the variation of errors in space, such as between land/ocean and the Northern/Southern Hemispheres. In this study, in situ aircraft measurements of water vapor and temperature are compared with the AIRS/AMSU-A retrievals (Version 5 Level 2) from 87°N to 67°S and from the surface to the upper troposphere and lower stratosphere (UT/LS). By using a smaller comparison window (1 h and 22.5 km) than previous studies, we show that the absolute percentage difference of water vapor (|dH2Operc|) is ~20-60% and the absolute temperature difference (|dTemp|) is ~1.0-2.5 K. The land retrievals show improvements versus Version 4 by ~5% in water vapor concentration and ~0.2 K in temperature at 200-800 mbar. The land (ocean) retrievals are colder and drier (warmer and moister) than the in situ observations in the boundary layer, warmer and drier (warmer and moister) at the UT/LS. No significant differences between hemispheres are noted. Overall, future comparisons are suggested to be done within 4 h and 100 km in order to keep the errors from window sizes within ~10%. To constrain the uncertainties in previous validation results, we show that every 22.5 km (or 1 h) increment in window sizes contributes to ~2% |dH2Operc| and ~0.1 K |dTemp| increases.

  10. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  11. On the regulation of tropical tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Minschwaner, K.

    2006-12-01

    Boundary layer air entering convective events is extremely moist, with mixing ratios of 20-30 g/kg. In the mid and upper troposphere, however, water vapor mixing ratios (H2O) are lower, with values of 0.5-5 g/kg. In this paper, we use a simple model of mid- and upper-tropospheric H2O to investigate the mechanisms by which H2O is removed from air (dehydration). We show that a model with the simplest possible microphysical assumption (instantaneous removal of H2O at 100% RH) reproduces observed H2O fields well. We will discuss the implications of this analysis for the water vapor feedback.

  12. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  13. Eliminating the effect of water vapor in respiratory gas analysis.

    PubMed

    Wong, L G; Westenskow, D R

    1982-01-01

    An apparatus is described that removes water vapor from expired gas samples. By humidifying and cooling the sampled gas, the final water vapor partial pressure becomes independent of initial water content. The system has particular application to oxygen measurements.

  14. Water Vapor in an Unexpected Location

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    The protoplanetary disk around DoAr 44 is fairly ordinary in most ways. But a recent study has found that this disk contains water vapor in its inner regions the first such discovery for a disk of its type.Drying Out DisksDoAr 44 is a transitional disk: a type of protoplanetary disk that has been at least partially cleared of small dust grains in the inner regions of the disk. This process is thought to happen as a result of dynamical interactions with a protoplanet embedded in the disk; the planet clears out a gap as it orbits.A schematic of the differences between a full protoplanetary disk, a pre-transitional disk, and a transitional disk. [Catherine Espaillat] Classical protoplanetary disks surrounding young, low-mass stars often contain water vapor, but transitional disks are typically dry no water vapor is detected from the disk inner regions. This is probably because water vapor is easily dissociated by far-UV radiation from the young, hot star. Once the dust is cleared out from the inner regions of the disk, the water vapor is no longer shielded from the UV radiation, so the disk dries out.Enter the exception: DoAr 44. The disk in this system doesnt have a fully cleared inner region, which labels it pre-transitional. Its composed of an inner ring out to 2 AU, a cleared gap between 2 and 36 AU, and then the outer disk. What makes DoAr 44 unusual, however, is that its the only disk with a large inner gap known to harbor detectable quantities of water vapor. The authors of this study ask a key question: where is this water vapor located?Unusual SystemLed by Colette Salyk (NOAO and Vassar College), the authors examined the system using the Texas Echelon Cross Echelle Spectrograph, a visiting instrument on the Gemini North telescope. They discovered that the water vapor emission originates from about 0.3 AU the inner disk region, where terrestrial-type planets may well be forming.Both dust-shielding and water self-shielding seem to have protected this water

  15. A FGGE water vapor wind data set

    NASA Technical Reports Server (NTRS)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  16. Effect of higher water vapor content on TBC performance

    SciTech Connect

    Pint, Bruce A; Haynes, James A

    2012-01-01

    Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the

  17. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  18. Measurement of Water Vapor in the Lower Troposphere Using LIDAR

    NASA Astrophysics Data System (ADS)

    Mensah, Francis; Instiful, Peter; Thorpe, Arthur

    Water vapor is an important atmospheric variable which plays a key role in air quality, global warming, and climate change. It is known as a highly variable atmospheric constituent. Moreover, water vapor remains one of the most poorly characterized meteorological parameters. For example, water vapor measurements have proven to be difficult below 500 m in the lower troposphere. The overlap which exists between the incident laser beam and the receiver FOV is a factor affecting the lidar observation in the near field range. Because of its particular importance in tropospheric processes and the extraordinary ability of Raman Lidar through the SOLEX systemto sense accurately its high temporal and spatial structure in the atmosphere, we present here some particular details about the use of Raman Lidar SOLEX system to measure water vapor at lower atmosphere at several fixed ranges. A comparison is made between data obtained from the laser system and the ones obtained from calibrated temperature and relative humidity's sensors at the same location. Department of Natural and Physical Sciences.

  19. Vapor Pressure Measurement of Supercooled Water.

    NASA Astrophysics Data System (ADS)

    Fukuta, N.; Gramada, C. M.

    2003-08-01

    A new dewpoint hygrometer was developed for subfreezing temperature application. Vapor pressure of supercooled water was determined by measuring temperatures at the dew-forming surface and the vapor source ice under the flux density balance, and by application of measured vapor pressure over ice from the Smithsonian Meteorological Table.The measured vapor pressure of supercooled water agreed well with the tables above approximately 20°C, but below that temperature, a significant lowering of the pressure was discovered. An empirical equation to best fit the measured data was obtained. At 30°C, the estimated specific latent heat of condensation became slightly higher than the table value by 3.4%, that of fusion considerably lower by as much as 66%, and the specific heat of supercooled water amounted to as much as 3.7 cal g1 °C1.Possible implications of the new results are pointed out. For example, the latent heat associated with cloud glaciation at temperatures colder than 20°C, and especially colder than 30°C, is found to be less than previously thought.

  20. AIRS Water Vapor and Cloud Products Validate and Explain Recent Short Term Decreases in Global and Tropical OLR as Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    A strong equatorial SST cooling occurred from 160E westward to 120W during the period of September 2002 through August 2010, surrounded by a weaker warming ring to the west. This is the result of a transition from a strong El Nino in late 2002 to a strong La Nina in 2008. Late 2009 is characterized by the beginning of another El Nino. Average rates of change (ARC's) in 500mb specific humidity and cloud cover are in phase with those in the Sea surface temperature (SST). In the El Nino and surrounding region causing outgoing longwave radiation (OLR), to decrease significantly near the dateline and increase in the vicinity of Indonesia. Tropical OLR ARC's in these two areas cancel each other to first order. The negative zonal mean tropical OLR ARC from a drop in equatorial OLR in region 1 from 140W to 40E. This results from increasing water vapor and cloud cover in this area during La Nina with the reverse holding during El Nino.

  1. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  2. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  3. Air expansion in a water rocket

    NASA Astrophysics Data System (ADS)

    Romanelli, Alejandro; Bove, Italo; González Madina, Federico

    2013-10-01

    We study the thermodynamics of a water rocket in the thrust phase, taking into account the expansion of the air with water vapor, vapor condensation, and the corresponding latent heat. We set up a simple experimental device with a stationary bottle and verify that the gas expansion in the bottle is well approximated by a polytropic process PVβ = constant, where the parameter β depends on the initial conditions. We find an analytical expression for β that depends only on the thermodynamic initial conditions and is in good agreement with the experimental results.

  4. Development of an Airborne Micropulse Water Vapor DIAL

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  5. Seasonal variability of mesospheric water vapor

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Bevilacqua, R. M.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.

    1985-01-01

    Ground-based spectral line measurements of the 22.2 GHz atmospheric water vapor line in emission were made at the JPL in order to obtain data in a dry climate, and to confirm similar measurements made at the Haystack Observatory. The results obtained from March 1984 to July 1984 and from December 1984 to May 1985, were based on data recorded by a HP9816 microcomputer. The instrument spectrometer was a 64 channel, 62.5 kHz resolution filter bank. Data indicates the existence of a seasonal variation in the abundance of water vapor in the upper mesosphere, with mixing ratios higher in summer than in spring. This is consistent with recent theoretical and observational results. In the area of semiannual oscillation, Haystack data are more consistent than those of JPL, indicating an annual cycle with abundances at maximum in summer and minimum in winter.

  6. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  7. Broad band airborne water vapor radiometry

    NASA Astrophysics Data System (ADS)

    Kuhn, Peter M.

    An infrared radiometer with a pass band of 280 to 520 cm-1 (35.7 to 19.2 µm) is employed on the NASA Ames Research Center U-2 and C-141A aircraft in the measurement of water vapor burden in the upper troposphere and stratosphere. Coincidentally with altitude changes the water vapor mass mixing ratio is also inferred by observing the change in optical depth over a known vertical distance. Data from the December 1980 U-2 Water Vapor Exchange Experiment over the Panama Canal Zone adds to the concept that overshooting cumulonimbus towers “moisten” the lower stratosphere. The average mass mixing ratio in close proximity to or above such towers ranges from 3.5 to 5.0 parts per million above 18 km while the average background mass mixing ratio is only 2.9 parts per million. Generally the lowest background mixing ratios, averaging 2.6 parts per million occurred in the 18 to 21 km layer. For the same levels background Panama mass mixing ratios averaged from 1.0 to 3.0 parts per million higher than in middle latitudes.

  8. ESA DUE GlobVapour water vapor products: Validation

    SciTech Connect

    Schneider, Nadine; Schroeder, Marc; Stengel, Martin; Lindstrot, Ramus; Preusker, Rene; Collaboration: ESA DUE GlobVapour Consortium

    2013-05-10

    The main objective of the European Space Agency (ESA) Data User Element (DUE) GlobVapour project was the development of multi-annual global water vapor data sets. Since water vapour is a key climate variable it is important to have a good understanding of its behavior in the climate system. The ESA DUE GlobVapour project provides water vapor data, including error estimates, based on carefully calibrated and inter-calibrated satellite radiances in response to user requirements for long time series satellite observations. ESA DUE GlobVapour total columnar water vapor (TCWV) products derived from GOME/SCIA/GOME-2 (1996-2008) and SSM/I+MERIS (2003-2008) have been validated for the mentioned period, using satellite-based (AIRS, ATOVS) and ground-based measurements (radiosondes and microwave radiometer). The validation results are discussed in the following. The technical specifications on bias (1 kg/m{sup 2} for SSMI+MERIS and 2 kg/m{sup 2} for GOME/SCIA/GOME-2) are generally met. For more information, documents and data download follow the link: www.globvapour.info.

  9. Cumulus convection and the terrestrial water-vapor distribution

    NASA Technical Reports Server (NTRS)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  10. Transient water vapor at Europa's south pole.

    PubMed

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-01-10

    In November and December 2012, the Hubble Space Telescope (HST) imaged Europa's ultraviolet emissions in the search for vapor plume activity. We report statistically significant coincident surpluses of hydrogen Lyman-α and oxygen OI 130.4-nanometer emissions above the southern hemisphere in December 2012. These emissions were persistently found in the same area over the 7 hours of the observation, suggesting atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of water vapor with line-of-sight column densities of about 10(20) per square meter. Nondetection in November 2012 and in previous HST images from 1999 suggests varying plume activity that might depend on changing surface stresses based on Europa's orbital phases. The plume was present when Europa was near apocenter and was not detected close to its pericenter, in agreement with tidal modeling predictions.

  11. Transient water vapor at Europa's south pole.

    PubMed

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-01-10

    In November and December 2012, the Hubble Space Telescope (HST) imaged Europa's ultraviolet emissions in the search for vapor plume activity. We report statistically significant coincident surpluses of hydrogen Lyman-α and oxygen OI 130.4-nanometer emissions above the southern hemisphere in December 2012. These emissions were persistently found in the same area over the 7 hours of the observation, suggesting atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of water vapor with line-of-sight column densities of about 10(20) per square meter. Nondetection in November 2012 and in previous HST images from 1999 suggests varying plume activity that might depend on changing surface stresses based on Europa's orbital phases. The plume was present when Europa was near apocenter and was not detected close to its pericenter, in agreement with tidal modeling predictions. PMID:24336567

  12. Reaction rate constant for uranium in water and water vapor

    SciTech Connect

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  13. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  14. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  15. Daytime Raman lidar measurements of water vapor during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    1998-04-01

    Because of the importance of water vapor, the ARM program initiated a series of three intensive operating periods (IOPs) at its CART (Cloud And Radiation Testbed) site. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. These IOPs provided an excellent opportunity to compare measurements from other systems with those made by the CART Raman lidar. This paper addresses primarily the daytime water vapor measurements made by the lidar system during the second of these IOPs.

  16. VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS

    SciTech Connect

    Zapp, P.; Hoffman, E.

    2009-11-09

    The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

  17. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  18. New Isotopic Water Analyzer for Hydrological Measurements of Both Liquid Water and Water Vapor

    NASA Astrophysics Data System (ADS)

    Owano, T.; Gupta, M.; Berman, E.; Baer, D.

    2012-04-01

    Measurements of the stable isotope ratios of liquid water allow determination of water flowpaths, residence times in catchments, and groundwater migration. Previously, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of the first Isotopic Water Analyzer that simultaneously quantifies δ2H, δ17O and δ18O in liquid water or in water vapor from different natural water sources (e.g., rain, snow, streams and groundwater). In High-Throughput mode, the IWA can report measurements at the unprecedented rate of over 800 injections per day, which yields more than 140 total unknown and reference samples per day (still with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ2H, δ17O, δ18O) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift despite changes in ambient temperature (over the entire range from 0-45 degrees C). Measurements from recent field studies using the IWA will be presented.

  19. Variations of stratospheric water vapor over the past three decades

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.; Vernier, J.-P.

    2014-11-01

    We examine variations in water vapor in air entering the stratosphere through the tropical tropopause layer (TTL) over the past three decades in satellite data and in a trajectory model. Most of the variance can be explained by three processes that affect the TTL: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the tropical troposphere. When these factors act in phase, significant variations in water entering the stratosphere are possible. We also find that volcanic eruptions, which inject aerosol into the TTL, affect the amount of water entering the stratosphere. While there is clear decadal variability in the data and models, we find little evidence for a long-term trend in water entering the stratosphere through the TTL over the past 3 decades.

  20. Monitoring the water vapor isotopic composition in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Sveinbjornsdottir, A. E.; Steen-Larsen, H.; Jonsson, T.; Johnsen, S. J.

    2011-12-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is found to depend on both the isotopic composition as well as the relative humidity as prescribed by theories for evaporation from an ocean. The site likely represents a major source region for the moisture that later falls as snow on parts of the Greenland Ice Sheet. This leads to

  1. Oxidation of Carbon Fibers in Water Vapor Studied

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  2. Observation System Simulation Experiment (OSSE) using water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    2013-12-01

    Measurements of water vapor isotopes (δ18O and δD) have been drastically increased these years with new technology, i.e., spectroscopic instruments both satellite-onboard and ground-based (in-situ) to improve our understanding of the hydrologic cycle in the atmosphere and land surface. To more efficiently utilize these data, this study first developed a new data assimilation system with Local Transform Ensemble Kalman Filter (LETKF) and Isotope-incorporated Global Spectral Model (IsoGSM). Then an observation system simulation experiment (OSSE) was conducted. This OSSE uses a mock dataset of vapor isotope measurements, namely TES/Aura retrieved δD at mid-troposphere, SCIAMACHY/Envisat retrieved δD at vapor column, and virtual GNIP-like vapor isotope (both δD and δ18O) monitoring network. We used historical retrieval numbers for TES and SCIAMACHY measurements, which are 15,000 and 10,000 data in January 2006. For virtual GNIP-like network, we assumed about 200 sites over the world, and 6-hourly measurement at 2m from surface. The accuracy of the measurements are 10‰ and 100‰ for δ18O and δD, respectively, including the uncertainty associated with representativeness of the data in space and time. Then the OSSE with 20 ensemble member was conducted for January 2006. The results are indeed remarkable. It showed significant improvement in not only vapor isotopic field but also meteorological fields, such as wind speed, temperature, surface pressure and humidity, comparing with a test without any observation. For surface air temperature, the global RMSE has dropped 10%, in which as large as 40-60% decrease is observed in east-southeast Asia area where the observation concentration is relatively higher. Most of the variables showed consistently similar feature. These results clearly show that the vapor isotope measurement definitely help to improve our understanding of hydrologic cycle through constraining with the data assimilation. RMSE of 6-hourly data for 2

  3. Water vapor stable isotope observations from tropical Australia

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Deutscher, Nicholas; Griffith, David; McCabe, Matthew

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  4. MODELING THE EFFECT OF WATER VAPOR ON THE INTERFACIAL BEHAVIOR OF HIGH-TEMPERATURE AIR IN CONTACT WITH Fe20Cr SURFACES

    SciTech Connect

    Chialvo, Ariel A; Brady, Michael P; Keiser, James R; Cole, David R

    2011-01-01

    The purpose of this communication is to provide an atomistic view, via molecular dynamic simulation, of the contrasting interfacial behavior between high temperature dry- and (10-40 vol%) wet-air in contact with stainless steels as represented by Fe20Cr. It was found that H2O preferentially adsorbs and displaces oxygen at the metal/fluid interface. Comparison of these findings with experimental studies reported in the literature is discussed. Keywords: Fe-Cr alloys, metal-fluid interfacial behavior, wet-air, molecular simulation

  5. Oxidation of Ultra High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20v/0 SiC (HS), ZrB2 + 20v/0 SiC (ZS), and ZrB2 + 30v/0 C + 14v/0 SiC (ZCS) have been investigated for use as potential aeropropulsion engine materials. These materials were oxidized in water vapor (90 percent) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 h at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline for comparison. Weight change, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results are compared with tests ran in a stagnant air furnace at temperatures of 1327 C for 100 min, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Low velocity water vapor does not make a significant contribution to the oxidation rates of UHTCs when compared to stagnant air. The parabolic rate constants at 1300 C, range from 0.29 to 16.0 mg(sup 2)cm(sup 4)/h for HS and ZCS, respectively, with ZS results between these two values. Comparison of results for UHTCs tested in the furnace in 90 percent water vapor with HPBR results was difficult due to significant sample loss caused by spallation in the increased velocity of the HPBR. Total recession measurements are also reported for the two test environments.

  6. Water vapor measurements by Raman lidar during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Whiteman, D.N.; Schwemmer, G.K.; Evans, K.D. |; Melfi, S.H.; Goldsmith, J.E.

    1998-04-01

    Water vapor is the most important greenhouse gas in the atmosphere, as it is the most active infrared absorber and emitter of radiation, and it also plays an important role in energy transport and cloud formation. Accurate, high resolution measurements of this variable are critical in order to improve the understanding of these processes and thus their ability to model them. Because of the importance of water vapor, the Department of Energy`s Atmospheric Radiation Measurement (ARM) program initiated a series of three intensive operating periods (IOPs) at its Cloud and Radiation Testbed (CART) site in northern Oklahoma. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. The ARM CART site is the home of several different water vapor measurement systems. These systems include a Raman lidar, a microwave radiometer, a radiosonde launch site, and an instrumented tower. During these IOPs, additional instrumentation was brought to the site to augment the normal measurements in the attempt to characterize the CART instruments and to address the need to improve water vapor measurement capabilities. Some of the instruments brought to the CART site include a scanning Raman lidar system from NASA/GSFC, additional microwave radiometers from NOAA/ETL, a chilled mirror that was flown on a tethersonde and kite system, and dewpoint hygrometer instruments flow on the North Dakota Citation. This paper will focus on the Raman lidar intercomparisons from the second IOP.

  7. Titanium Dioxide Volatility in High Temperature Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  8. Modeling Extremely Deep Convection over North America as a Source of Stratospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Clapp, C.; Smith, J. B.; Anderson, J. G.

    2015-12-01

    We have run the Advanced Research Weather Research and Forecasting Model (ARW) at scales that numerically resolve convection over a broad swath of the north central U.S. Our intentions were to simulate convective events that generated stratospheric water vapor plumes observed during the SEAC4RS mission, to quantify the amount of water vapor injected into the stratosphere by extremely deep convection, and to investigate ARW as a potential tool to forecast multi-decadal trends in extremely deep convection over North America. We have run ARW for five and a half days beginning at 12 UTC on 26 August 2013 on a 3-km horizontal grid with 50 vertical levels. We used MERRA for the initial conditions and boundary conditions because of its skill in reanalysis of water vapor. ARW was able to simulate many of the fundamental features of deep convection over North America, including specific events. We have shown that the convection simulated by ARW bears many of the features of mesoscale convective systems, including the flow of cold air over warm moist air, cold downdrafts and gust fronts, mid-level inflow, and wedges reminiscent of squall lines. The source of water vapor for the convection is low-level eastward transport into the ARW domain. Convection is initiated where local maxima in equivalent potential temperature of surface air form. Convection regularly penetrates to the level of neutral buoyancy of the surface air and can even influence the concentration of water vapor above. A few convective events inject water vapor above the 400 K potential temperature surface. Surprisingly, deep convective events can also desiccate the upper air, even in the stratosphere. There is clear evidence of convection generating ducted internal gravity waves that propagate upstream to trigger more deep convection. We will present a quantification of the amount of water vapor injected into the stratosphere by extremely deep convection, the causes of desiccation, and the mechanisms

  9. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Abstract: Water vapor in the winter arctic stratospheric middleworld (that part of the stratosphere with potential temperatures lower than the tropical tropopause) is important for two reasons: (1) the arctic middleworld is a source of air for the upper troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. The relationship between ozone and CO from aircraft measurements taken during the early, middle and late part of the winter of 1999-2000 show that recent mixing with tropospheric air extends up to ozone values of about 350-450 ppbv. Above that level, the relationship suggests stratospheric air with minimal tropospheric influence. The transition is quite abrupt, particularly in early spring. Trajectory analyses are consistent with these relationships, with a significant drop-off in the percentage of trajectories with tropospheric PV values in their 10-day history as in-situ ozone increases above 400 ppbv. The water distribution is affected by these mixing characteristics, and by cloud formation. Significant cloud formation along trajectories occurs up to ozone values of about 400 ppbv during the early spring, with small, but nonzero probabilities extending to 550 ppbv. Cloud formation in the stratospheric middleworld is minimal during early and midwinter. Also important is the fact that, during early spring 30% of the trajectories near the tropopause (ozone values less than 200 ppbv) have minimum saturation mixing ratios less than 5 ppmv. Such parcels can mix out into the troposphere and could lead to very dry conditions in

  10. Interaction of gases with lunar materials. [surface properties of lunar fines, especially on exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Gammage, R. B.

    1975-01-01

    The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor.

  11. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of

  12. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE PAGES

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; Maloy, Stuart A.; Butt, D.

    2016-03-08

    Molybdenum disilicide (MoSi2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O2 containing atmospheres due to the formation of a passive SiO2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi2 displays more mass gain in water vapor than in air. The oxidationmore » kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO2(OH)2 and Si(OH)4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  13. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  14. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  15. Water vapor sorption hysteresis of ceramic bricks

    NASA Astrophysics Data System (ADS)

    Koronthalyova, Olga

    2016-07-01

    A quantification of the hysteretic effects and their thorough analysis was carried out for three types of ceramic bricks. Water vapor adsorption/desorption isotherms were measured by the standard desiccator method. The desorption measurements were carried out from capillary moisture content as well as from equilibrium moisture content corresponding to the relative humidity of 98 %. For all three tested types of bricks the hysteretic effects were present but their significance differed depending on the particular type of brick. Significant differences were noticed also in desorption curves determined from capillary moisture content and from equilibrium moisture content corresponding to the relative humidity of 98 %. Based on the measured data a possible correlation between pore structure parameters and noticed hysteretic effects as well as relevance of the open pore model are discussed. The obtained adsorption/desorption curves were approximated by an analytical relation.

  16. Vapor Transport Modeling of Continental Water Isotope Gradients

    NASA Astrophysics Data System (ADS)

    Ritch, A. J.; Caves, J. K.; Ibarra, D. E.; Winnick, M. J.; Chamberlain, C. P.

    2015-12-01

    Stable isotopes have been widely used to reconstruct past climatic conditions and topographic histories of mountain belts. However, many studies do not account for the influences of evapotranspiration and vapor recycling on downstream meteoric water isotopic compositions. Here we present a case study of the modern Sierra Nevada and Basin and Range to illustrate the value of using process-based models across larger spatial scales to reconstruct the conditions driving local- to regional-scale water isotopic compositions. We use a one-dimensional reactive vapor transport model, driven by the National Centers for Environmental Prediction (NCEP) high-resolution North American Regional Reanalysis (NARR) dataset, to simulate the isotopic composition of modern meteoric waters (δ18O and δD) along storm tracks across the Sierra Nevada and Basin and Range. Storm track pathways are generated using NOAA's Air Resources Laboratory's Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In addition, we couple the vapor transport model with a soil moisture model to simulate depth profiles of the oxygen isotopic composition of authigenic carbonate along our storm tracks. We show that, given reasonable estimates of the modern partitioning between evaporation and transpiration, our model output is in agreement with modern isotopic data both from compilations of published meteoric water samples and from newly collected soil carbonate samples along a transect across the northern Sierra Nevada and Basin and Range (~38-42° N). These results demonstrate that our modeling approach can be used to analyze the relative contributions of climate and topography to observed isotopic gradients. Future studies can apply this modeling framework to isotopes preserved in the geologic record to provide a quantitative means of understanding the paleoclimatic influences on spatial isotopic distributions.

  17. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  18. An analysis of the regulation of tropical tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Minschwaner, K.

    2007-05-01

    We use a simple trajectory model to investigate the mechanisms that regulate mid- and upper-tropospheric humidity. Our model advects water passively and contains no microphysics other than the requirement that water vapor is immediately removed so as to prevent the relative humidity from ever exceeding 100%. We demonstrate that our model accurately reproduces H2O measurements made by the Atmospheric Infrared Sounder onboard NASA's Aqua satellite. Our results show that, given the large-scale circulation of the troposphere, detailed microphysics need not be included in order to accurately simulate H2O. We have also identified three preferred regions where air parcels in the mid and upper troposphere experience their final dehydration. The first is in the equatorial upper troposphere and is associated with convective outflow at the top of the tropical Hadley circulation. Final dehydration of air that detrains at potential temperature θ above ˜340 K (˜10 km) predominantly occurs here. The other two regions are found at lower altitudes in the midlatitudes of both hemispheres and are associated with dehydration during isentropic excursions to midlatitudes. Final dehydration of air that detrains at θ below ˜340 K predominantly occurs here. Finally, we analyze the water budget of the dry eastern Pacific subtropics and find that dehydration in both the equatorial upper troposphere and the midlatitudes contribute to the dryness there.

  19. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2014-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  20. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2015-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  1. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  2. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  3. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement.

  4. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    NASA Technical Reports Server (NTRS)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  5. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water vapor analyzer. 868.1975 Section 868.1975 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer....

  6. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water vapor analyzer. 868.1975 Section 868.1975 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer....

  7. Putting Water Vapor Feedback Back On It's Feet (Invited)

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Cai, M.; Stackhouse, P. W.; L'Ecuyer, T. S.

    2009-12-01

    Authors: Stephens, Graeme L., Ming Cai, Paul Stackhouse, and Tristan L'Ecuyer It has been understood for some time that changes to the strength of the greenhouse effect are fundamental to our understanding of global warming. The role of the positive water vapor feedback that occurs through the connections between temperature, water vapor, and emission of infrared radiation has also been equally understood for some time. Recently, debate about the magnitude of this feedback has mostly focused on the role of changes to tiny amounts of water vapor high in the troposphere on atmospheric emission and it's now perceived by many that the water vapor climate feedback is entirely defined by changes to upper tropospheric water vapor through its influence on the outgoing longwave radiation. This talk will demonstrate this isn't entirely correct and will demonstrate the fundamental importance of the downward longwave radiation to the surfaces as the driving force of the water vapor feedback. Our current state of knowledge of the DLR will be reviewed by comparing various data sources that have been used to create global composites of this quantity, including new data from the A-Train. The role of DLR in climate change through the water vapor feedback and it's control of global precipitation is also discussed highlighting it's relation to low level water vapor.

  8. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  9. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10

  10. An Assessment of Stratospheric Water Vapor Using a General Circulation Model. Ph.D. Thesis

    SciTech Connect

    Mote, P.W.

    1994-01-01

    Water vapor not only participates in the radiative balance of the atmosphere and in cloud formation, it also participates in stratospheric chemistry and, due to the strong dependence of saturation on temperature, serves as a tracer for exposure of air to cold temperatures. The application of general circulation models (GCM`s) to stratospheric chemistry and transport both enables and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the CCM2, to enable studies of stratospheric chemistry and tracer transport, including that of water vapor. Simple methane chemistry provides an adequate representation of the upper stratospheric water vapor source in the CCM2. The CCM2`s water vapor distribution and seasonality compare favorably with observations in many respects, and the CCM2 fills gaps in the obsevations, yielding some new insights. For example, southern polar dehydration can affect midlatitude water mixing ratios by a few tenths of a ppmv. The annual cycle of water vapor in the tropical and subtropical lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a very long adjustment time, a factor 2-4 longer than for methane, a common long-lived tracer. In the lower stratosphere, however, two model deficiencies have a profound impact on simulated water vapor. The first is a cold temperature bias in the winter polar stratosphere, a deficiency common to GCM`s. The cold bias produces excessive dehydration in the southern hemisphere. This deficiency can be eliminated fairly simply by setting a minimum vapor pressure. The second deficiency, however, is not so easily remedied. Stratosphere-troposphere exchange in the tropics has a different character from the observed; for example, too little mass flux occurs under low mixing ratio conditions, so that the stratosphere is somewhat too moist.

  11. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  12. A laboratory study examining the impact of linen use on low-air-loss support surface heat and water vapor transmission rates.

    PubMed

    Williamson, Rachel; Lachenbruch, Charlie; VanGilder, Catherine

    2013-08-01

    Layers of linens are frequently placed under patients to manage moisture and/or assist with positioning immobile patients, including persons placed on a therapeutic surface because they are at risk for developing pressure ulcers. Because skin microclimate is believed to affect pressure ulcer risk, some therapeutic surfaces are designed to manage skin temperature and humidity (microclimate management). The purpose of this study was to measure the effects of linens and underpads on a low-air-loss (LAL) surface's ability to disperse heat and evaporate moisture. Underpads and transfer sheet combinations (grouped by three common linen functions: immobility, moisture management, and immobility and moisture management) were tested using the sweating guarded hot plate method, which allows for the measurement of the evaporative capacity (g H2O/m2*hour) and the total rate of heat withdrawal (Watts/m2) associated with nine different linen configurations placed on the support surface. Total heat withdrawal and evaporative capacity of the LAL surface with a fitted sheet only was used for comparison (P <0.05) Compared with fitted sheet only, heat withdrawal was significantly reduced by five of eight combinations, and evaporative moisture reduction was significantly reduced by six of eight linen combinations (P <0.05). All combinations that included plastic-containing underpads significantly reduced the surface's ability to dissipate heat and evaporate moisture, and use of the maximum number of layers (nine) reduced heat withdrawal to the level of a static, nonLAL surface. The results of this study suggest that putting additional linens or underpads on LAL surfaces may adversely affect skin temperature and moisture, thereby reducing the pressure ulcer prevention potential of these surfaces. Additional studies to examine the effect of linens and underpads as well as microclimate management strategies on pressure ulcer risk are needed.

  13. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGES

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  14. Detection of water vapor in Halley's comet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Weaver, H. A.; Larson, H. P.; Williams, M.; Davis, D. S.

    1986-01-01

    Gaseous, neutral H2O was detected in the coma of comet Halley on 22.1 and 24.1 December 1985 Universal Time. Nine spectral lines of the nus band (2.65 micrometers) were found by means of a Fourier transform spectrometer on the NASA-Kuiper Airborne Observatory. The water production rate was about 6 x 10 to the 28th molecules per second on 22.1 December and 1.7 x 10 to the 29th molecules per second on 24.1 December UT. The numbers of spectral lines and their intensities are in accord with nonthermal-equilibrium cometary models. Rotational populations are derived from the observed spectral line intensities and excitation conditions are discussed. The ortho-para ratio was found to be 2.66 + or - 0.13, corresponding to a nuclear-spin temperature of 32 K (+5 K, -2 K), possibly indicating that the observed water vapor originated from a low-temperature ice.

  15. Combined air stripper/membrane vapor separation systems. [Volatile organic compounds

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  16. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  17. New Isotopic Water Analyzer for Hydrological Measurements of both Liquid Water and Water Vapor

    NASA Astrophysics Data System (ADS)

    Owano, T. G.; Gupta, M.; Dong, F.; Baer, D. S.

    2011-12-01

    Measurements of the stable isotope ratios of liquid water (δ2H and δ18O) allow determination of water flowpaths, residence times in catchments, and groundwater migration. In the past, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of a new field-portable Isotopic Water Analyzer (IWA-35EP) that accurately quantifies δ2H and δ18O of different natural water sources (e.g., rain, snow, streams and groundwater) at the unprecedented rate of 1080 injections per day, which yields 180 total unknown and reference samples per day (150 unknown samples per day), or 1 measurement of an unknown sample in less than 10 minutes (with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ18O and δ2H) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift. Measurements from recent field studies using the IWA will be presented.

  18. Using Absolute Humidity and Radiochemical Analyses of Water Vapor Samples to Correct Underestimated Atmospheric Tritium Concentrations

    SciTech Connect

    Eberhart, C.F.

    1999-06-01

    Los Alamos National Laboratory (LANL) emits a wide variety of radioactive air contaminants. An extensive ambient air monitoring network, known as AIRNET, is operated on-site and in surrounding communities to estimate radioactive doses to the public. As part of this monitoring network, water vapor is sampled continuously at more than 50 sites. These water vapor samples are collected every two weeks by absorbing the water vapor in the sampled air with silica gel and then radiochemically analyzing the water for tritium. The data have consistently indicated that LANL emissions cause a small, but measurable impact on local concentrations of tritium. In early 1998, while trying to independently verify the presumed 100% water vapor collection efficiency, the author found that this efficiency was normally lower and reached a minimum of 10 to 20% in the middle of summer. This inefficient collection was discovered by comparing absolute humidity (g/m{sup 3}) calculated from relative humidity and temperature to the amount of water vapor collected by the silica gel per cubic meter of air sampled. Subsequent experiments confirmed that the elevated temperature inside the louvered housing was high enough to reduce the capacity of the silica gel by more than half. In addition, their experiments also demonstrated that, even under optimal conditions, there is not enough silica gel present in the sampling canister to absorb all of the moisture during the higher humidity periods. However, there is a solution to this problem. Ambient tritium concentrations have been recalculated by using the absolute humidity values and the tritium analyses. These recalculated tritium concentrations were two to three times higher than previously reported. Future tritium concentrations will also be determined in the same manner. Finally, the water vapor collection process will be changed by relocating the sampling canister outside the housing to increase collection efficiency and, therefore

  19. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  20. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  1. Relation between Water Vapor Adsorption Isotherms and Dynamic Dehumidification Performances of Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Matsuguma, Shingo; Jin, Wei-Li; Okano, Hiroshi; Teraoka, Yasutake; Hirose, Tsutomu

    Desiccant rotors with different water vapor adsorption properties were fabricated by the synthesis of silica gels inside the honeycomb matrices. Dynamic dehumidification performances of the rotors were measured under different conditions and they were discussed in relation to water vapor adsorption isotherms. At the reactivation air temperatures of 80 and 140 oC, the best dynamic performance was observed with the rotor on which the adsorbed amount of water vapor at lower relative humidity was highest. When the reactivation air temperature was 50 oC, on the other hand, the rotor of which the isotherm exhibited monotonic and nearly linear increase up to higher relative humidity was the most suitable. The normalized changes of absolute humidity and adsorbed amount were defined, and these phenomena were analyzed. When the dependences of both parameters against the relative humidity were similar, the rotor showed the best dehumidification performance.

  2. DSMC simulation of Europa water vapor plumes

    NASA Astrophysics Data System (ADS)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  3. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynGiao N.; Robinson, Raymond C.; Opila, Elizabeth J.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20% SiC (HS), and ZrB2 + 20% SiC (ZC), and ZrB2 + 30% C + 14% SiC (ZCS) have been investigated for use as potential aeropropolsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperature of 1200, 1300, and 1400 C. CVD SiC was also evaluate as a baseline for comparison. Weight change, X-ray diffraction analysis, surface and cross-sectional SEM and EDS were performed. These results are compared with tests conducted in a stagnant air furnace at temperatures of 1327 C for 100 minutes, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Total recession measurements are also reported for the two tests environments.

  4. Continuous Arctic Ocean Water Vapor Isotope Ratio (δ18O and δ2H) Measurements During a Summer Icebreaker Expedition

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Welker, J. M.

    2015-12-01

    Warming in the Arctic is reducing sea ice, which may result in changes to the water cycle through increased atmospheric humidity. Here we present the first continuous record of water vapor isotope ratio (δ18O, δ2H, d-excess) measurements from the sub-Arctic and Arctic Ocean during ship transit through both open water and sea ice. As water vapor isotopes were collected across a spectrum of sea ice conditions, the influence of sea ice and availability of open water moisture sources on Arctic Ocean water vapor isotope values (particularly d-excess) is examined. Isotope values reveal characteristics about water availability at vapor sources, as influenced by presence of sea ice (e.g., ice covered arid or open water humid sources), and air parcel trajectory. Higher d-excess values were generally associated with more northern Arctic, ice covered, and arid vapor sources. Conversely, lower d-excess values were related to more southern, open water, and humid vapor sources. Additionally, water vapor isotopes while sea ice was present were generally characterized by more depleted δ18O and δ2H and higher d-excess values, relative to open water values. These water vapor isotope values also present information about potential shifts in moisture sources in an increasingly ice free Arctic Ocean. Understanding these shifts is important to learning about both modern and past patterns of Arctic atmospheric water movement and distribution.

  5. Adsorption and Desorption of Nitrogen and Water Vapor by clay

    NASA Astrophysics Data System (ADS)

    Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei

    2015-04-01

    Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.

  6. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  7. Regolith water vapor sources on Mars: A historical bibliography

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.; Huguenin, R. L.

    1988-01-01

    The regolith as a potential source and sink of atmospheric water is examined bibliographically. The controversy surrounding Solis Lacus, a region on Mars first identified by R. Huguenin as a possible regolith source of atmospheric water vapor, is reviewed. The publications listed describe the initial debate over the existence of a regolith source of atmospheric water vapor in Solis Lacus. The debate over Solis Lacus has motivated a rigorous examination of several important data sets, and helped define the limits of their interpretation.

  8. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  9. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.

    PubMed

    Rahbeh, M E; Mohtar, R H

    2007-05-01

    The design and operation of air sparging and soil vapor extraction (AS/SVE) remediation systems remains in large an art due to the absence of reliable physically based models that can utilize the limited available field data. In this paper, a numerical model developed for the design and operation of air sparging and soil vapor extractions systems was used to simulate two field case studies. The first-order mass transfer kinetics were incorporated into the model to account for contaminant mass transfer between the water and air (stripping), NAPL and water (dissolution), NAPL and air (volatilization), and water and soil (sorption/desorption), the model also accounted for soil heterogeneity. Benzene, toluene, ethyl benzene and xylenes (BTEX) were the contaminants of concern in both case studies. In the second case study, the model was used to evaluate the effect of pulsed sparging on the removal rate of BTEX compounds. The pulsed sparging operation was approximated assuming uniform contaminant redistribution at the beginning of the shut-off period. The close comparison between the observed and simulated contaminant concentration in the aqueous phase showed that the approximation of the pulsed sparging operation yielded reasonable prediction of the removal process. Field heterogeneity was simulated using Monte Carlo analysis. The model predicted about 80-85% of the contaminant mass was removed by air-water mass transfer, which was similar to the average removal obtained by Monte Carlo analysis. The analysis of the removal/rebound cycles demonstrated that removal rate was controlled by the organic-aqueous distribution coefficient K(oc). Due to the lack of site-specific data, the aerobic first-order biodegradation coefficients (k(bio)) were obtained from a literature survey, therefore, uncertainty analysis of the k(bio) was conducted to evaluate the contribution of the aerobic biodegradation to total contaminant removal. Results of both case studies showed that

  10. SAGE II Version 7.0 Water Vapor Measurements

    NASA Astrophysics Data System (ADS)

    Damadeo, R. P.; Thomason, L.; Zawodny, J. M.

    2012-12-01

    SAGE II water vapor measurements, in versions prior to version 6.2, were deleteriously influenced by a drift in the primary water vapor channel's spectral response (~940 nm). From the exo-atmosphere response of this channel, it was clear that the channel's response had changed rapidly early in the mission and then been steady (or only slowly changed) in the years after 1985. In version 6.2, we used a comparison with HALOE water vapor to estimate the channel's width and center, which was then applied to all data from January 1, 1986 through the end of the mission. This correction was dependent on the water vapor and ozone spectroscopy used in that retrieval. The development of version 7.0 was primarily motivated by a desire to update ozone spectroscopy to what was used in SAGE III version 4. This change was small around the main ozone feature (~600 nm) but was large in the water vapor band. Early assessments of the cross-section change showed that water vapor showed significant ozone-related artifacts and that the position of the water vapor channel needed to be revised. Herein, we show the process followed to infer the new center and width. While this method is similar to that followed in version 6.2, we now use a comparison with SAGE III water vapor as a "standard" with which to refine the position of the SAGE II channel. Initial evaluations of the revised positioning show an excellent agreement with SAGE III water vapor between 15 and 45 km. On the other hand, there is an approximately 10% difference with HALOE water vapor throughout the profile consistent with differences between HALOE water vapor and SAGE III and MLS products. Due to the unknown aspects of the 940-nm channel response drift, we continue to recommend extreme caution in the use of this data for trends. However, as a guide to users of the data, we have estimated how a small, uncorrected drift in the spectral response would influence inferred trends. In addition, we also implemented a change in the

  11. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  12. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  13. Chemical reaction between water vapor and stressed glass

    NASA Technical Reports Server (NTRS)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  14. Electrification in Hurricanes over the Tropical Americas: Implication for Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Chronis, Themis G.; Robertson, Franklin R.; Miller, Timothy L.

    2007-01-01

    hurricanes analyzed in this study showed that lightning activity is negatively correlated with minimum infrared brightness temperature and positively correlated with 100-mb water vapor. An examination of the maxima in water vapor observed over the hurricane not only shows larger magnitudes, but also larger differences between water vapor averages and water vapor maxima over the hurricane as lightning activity increases. Trajectory calculations are performed using the Flextra model in order to investigate the fate of the moister air masses found in the TTL.

  15. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Operating Requirements § 154.1710 Exclusion of air from cargo tank vapor spaces. When a vessel is...

  16. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    NASA Technical Reports Server (NTRS)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  17. Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

    NASA Technical Reports Server (NTRS)

    Wormhoudt, Joda; Shorter, Joanne H.; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Freedman, Andrew; Campbell, Melissa; Chang, Clarence T.; Smith, Frederick D.

    2004-01-01

    The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (COP) from cabin air. Product water vapor measurements from a CDRA test bed at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the COP desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of approx. 40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact. Measured values of total water vapor evolved during a single desorption cycle were as low as 1 mg.

  18. Active Raman sounding of the earth's water vapor field

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Whiteman, David N.; Demoz, Belay B.; Farley, Robert W.; Wessel, John E.

    2005-01-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  19. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed. PMID:16029854

  20. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  1. Venus: new microwave measurements show no atmospheric water vapor.

    PubMed

    Janssen, M A; Hills, R E; Thornton, D D; Welch, W J

    1973-03-01

    Two sets of passive radio observations of Venus-measurements of the spectrum of the disk temperature near the 1-centimeter wavelength, and interferometric measurements of the planetary limb darkening at the 1.35-centimeter water vapor resonance-show no evidence of water vapor in the lower atmosphere of Venus. The upper limit of 2 x 10(-3) for the mixing ratio of water vapor is substantially less than the amounts derived from the Venera space probes (0.5 x 10(-2) to 2.5 x 10(-2)). This amount of water vapor cannot produce dense clouds, and it is doubtful that it may contribute significantly to a greenhouse effect.

  2. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1993-01-01

    Motions deduced in animated water vapor imagery from geostationary satellites can be used to infer wind fields in cloudless regimes. For the past several years, CIMSS has been exploring this potentially important source of global-scale wind information. Recently, METEOSAT-3 data has become routinely available to both the U.S. operational and research community. Compared with the current GOES satellite, the METEOSAT has a superior resolution (5 km vs. 16 km) in its water vapor channel. Preliminary work: at CIMSS has demonstrated that wind sets derived from METEOSAT water vapor imagery can provide important upper-tropospheric wind information in data void areas, and can positively impact numerical model guidance in meteorological applications. Specifically, hurricane track forecasts can be improved. Currently, we are exploring methods to further improve the derivation and quality of the water vapor wind sets.

  3. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  4. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  5. CRISM Observations of Water Vapor and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2008-01-01

    Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.

  6. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  7. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    SciTech Connect

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  8. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  9. Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara

    2016-04-01

    The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity

  10. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  11. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  12. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  13. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  14. Water Vapor-Mediated Volatilization of High-Temperature Materials

    NASA Astrophysics Data System (ADS)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  15. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  16. Details and Consequences of Water Vapor Diffusion In The Pore Space of Snow

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.; Bartelt, P.; Schneebeli, M.; Lehning, M.

    Despite a long history of extensive experimental and theoretical studies on the process of water vapor diffusion in snow, no quantitative explanation for the observed diffu- sion characteristics such as mass-transfer rates and snow density change is available at present. Results of a detailed investigatation of the process are presented. The pro- posed description of water vapor flux in snow now includes thermal diffusion, grav- itation, convective air flow, and volumetric mass-production. The relative importance of the components in the overall mass-transfer is analyzed. Although experimental data of sufficient detail concerning the individual components are not available, the results of our analysis provide an improved understanding of the sources of discrepan- cies in published experimental results. The consequences of the water vapor transport description for heat transfer and metamorphism are also discussed.

  17. Vapor compression distiller and membrane technology for water revitalization

    NASA Technical Reports Server (NTRS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  18. Vapor compression distiller and membrane technology for water revitalization

    NASA Astrophysics Data System (ADS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  19. Vapor compression distiller and membrane technology for water revitalization.

    PubMed

    Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water. PMID:11537274

  20. High temperature oxidation of molybdenum in water vapor environments

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; Sooby, E. S.; Kim, Y.-J.; Cheng, B.; Maloy, S. A.

    2014-05-01

    Molybdenum has recently gained attention as a candidate cladding material for use in light water reactors. Its excellent high temperature mechanical properties and stability under irradiation suggest that it could offer benefits to performance under a wide range of reactor conditions, but little is known about its oxidation behavior in water vapor containing atmospheres. The current study was undertaken to elucidate the oxidation behavior of molybdenum in water vapor environments to 1200 °C in order to provide an initial assessment of its feasibility as a light water reactor cladding. Initial observations indicate that at temperatures below 1000 °C, the kinetics of mass loss in water vapor would not be detrimental to cladding integrity during an off-normal event. Above 1000 °C, degradation is more rapid but remains slower than observed for optimized zirconium cladding alloys. The effect of hydrogen-water vapor and oxygen-water vapor mixtures on material loss was also explored at elevated temperatures. Parts-per-million levels of either hydrogen or oxygen will minimally impact performance, but hydrogen contents in excess of 1000 ppm were observed to limit volatilization at 1000 °C.

  1. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  2. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  3. Improved waste water vapor compression distillation technology. [for Spacelab

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  4. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  5. Electrical, optical, and material characterizations of blue InGaN light emitting diodes submitted to reverse-bias stress in water vapor condition

    SciTech Connect

    Chen, Hsiang Chu, Yu-Cheng; Chen, Yun-Ti; Chen, Chian-You; Shei, Shih-Chang

    2014-09-07

    In this paper, we investigate degradation of InGaN/GaN light emitting diodes (LEDs) under reverse-bias operations in water vapor and dry air. To examine failure origins, electrical characterizations including current-voltage, breakdown current profiles, optical measurement, and multiple material analyses were performed. Our findings indicate that the diffusion of indium atoms in water vapor can expedite degradation. Investigation of reverse-bias stress can help provide insight into the effects of water vapor on LEDs.

  6. Sevoflurane Contamination: Water Accumulation in Sevoflurane Vaporizers Can Allow Bacterial Growth in the Vaporizer.

    PubMed

    Wallace, Arthur W

    2016-06-15

    Sevoflurane vaporizers (GE Tec 7) were difficult to fill with "slow flow" and a need to "burp." Evaluation of the bottle of sevoflurane (AbbVie Ultane) demonstrated a contaminant. Four of the facilities' 13 sevoflurane vaporizers had the contaminant. Unopened sevoflurane bottles did not have evidence of contamination. The contaminant was found to be water at pH 6.0 growing Staphylococcus epidermidis. Gas chromatography revealed the production of multiple metabolites of sevoflurane, including primarily urea and 1,3,5-triazine-2,4,6(1H,3H,5H)-trione (83% and 9.6% of volatiles) in addition to multiple other organic molecules. Sevoflurane contains water that can accumulate in vaporizers allowing bacterial growth.

  7. Stratospheric Water Vapor, Tropical Tropopause Temperatures and Tropical Upwelling

    NASA Astrophysics Data System (ADS)

    Rosenlof, K. H.; Neely, R.; Davis, S. M.; Butler, A. H.; Hurst, D. F.

    2015-12-01

    A body of work has shown that there are trends and variability in stratospheric water vapor closely related to variability in tropical tropopause temperatures, upwelling variations, the quasi-biennial oscillation, volcanic aerosol loading and sea surface temperatures. Prior studies have also shown that stratospheric water vapor has a small but non-negligible effect on global radiative forcing; therefore it is key to understand both trends and long-term variations. In this presentation, we will examine both the relationship between tropical tropopause temperatures and stratospheric water for the time period where we have global lower stratosphere water vapor measurements (primarily since the early 1990s), as well as the relationship between tropical tropopause temperatures and assorted atmospheric indices for the longer time period where we only have temperature measurements. We will present results from climate model runs testing the impact of volcanic aerosol loading on UTLS temperatures, stratospheric water vapor and tropical upwelling. Using our climate model runs, we also isolate the impact of the QBO on tropical upwelling in the lower stratosphere. With WACCM, we found that the tropical tropopause temperature annual cycle amplitude was smaller than observed by ~30% in a case run without QBO nudging; in this presentation we explore the reasons for that and its impact on stratospheric water vapor.

  8. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  9. Persistent disparities in stratospheric water vapor measurements drive large uncertainties in the radiative forcing by lower stratospheric water vapor

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Portmann, R. W.; Voemel, H.; Schiller, C.; Smith, J. B.; Thornberry, T. D.; Rollins, A. W.; Hall, E.; Jordan, A.; Oltmans, S. J.

    2011-12-01

    Lower stratospheric water vapor is a powerful attenuator of outgoing long wave radiation, hence its strong influence on the Earth's radiation budget. The radiative forcing by lower stratospheric water vapor is, however, quite uncertain because of significant disparities in lower stratospheric water vapor measurements by different instruments. Specifically, measurement discrepancies of 0.5 to 2 ppmv H2O (15 to 60%) between several well-established aircraft- and balloon-borne instruments have now persisted for almost two decades. The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) in April 2011 provided not only a fresh opportunity to reexamine and reevaluate these persistent measurement discrepancies, but also to compare water vapor measurements by additional aircraft-based instrumentation. Here we compare the in situ measurements of lower stratospheric water vapor by five different instruments during MACPEX. Three of these instruments (Harvard water, FISH, and NOAA CIMS) were aboard the NASA WB-57 aircraft, while two (CFH and NOAA FPH) were launched on balloons. Substantial efforts were made to coordinate aircraft and balloon measurements in space and time, such that the aircraft would reach maximum altitude en route to the balloon rendezvous point, then both aircraft and balloon would descend together. Lower stratospheric water vapor measurements during MACPEX generally fall into two groups: CFH, NOAA FPH and FISH are in good agreement, while Harvard water and NOAA CIMS agree with each other but are significantly different than the other group. Differences between the two groups range from 0.5 to 1.0 ppmv (15 to 30%), with Harvard and NOAA CIMS mixing ratios consistently higher. Though these differences seem relatively large, they are smaller than some previously observed differences between the FPH/CFH and Harvard water. For example, Harvard stratospheric water vapor measurements during the 1993 CEPEX and 2006 CR-AVE campaigns were 1.5 and 2 ppmv

  10. Radiation Damage to Artemia Cysts:Effects of Water Vapor.

    PubMed

    Snipes, W C; Gordy, W

    1963-10-25

    Water vapor altered the form and greatly increased the rate of decay of the electron-spin resonance pattern of long-lived free radicals obtained upon gamma irradiation of Artemia salina cysts ( brine shrimp eggs). These results, combined with data on radiation survival, indicate that the water vapor protects the cysts from radiation damage, or heals the damage. They also indicate that water protects the cysts from the effect of oxygen by neutralizing the radiation-induced free radicals before they can interact with oxygen to produce irreversible damage. PMID:17748168

  11. Adsorption of radon and water vapor on commercial activated carbons

    SciTech Connect

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-02-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer`s classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation.

  12. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.

    PubMed

    Zhu, Beien; Xu, Zhen; Wang, Chunlei; Gao, Yi

    2016-04-13

    The structures of the metal nanoparticles are crucial for their catalytic activities. How to understand and even control the shape evolution of nanoparticles under reaction condition is a big challenge in heterogeneous catalysis. It has been proved that many reactive gases hold the capability of changing the structures and properties of metal nanoparticles. One interesting question is whether water vapor, such a ubiquitous environment, could induce the shape evolution of metal nanoparticles. So far this question has not received enough attention yet. In this work, we developed a model based on the density functional theory, the Wulff construction, and the Langmuir adsorption isotherm to explore the shape of metal nanoparticle at given temperature and water vapor pressure. By this model, we show clearly that water vapor could notably increase the fraction of (110) facets and decrease that of (111) facets for 3-8 nm Cu nanoparticles, which is perfectly consistent with the experimental observations. Further investigations indicate the water vapor has different effects on the different metal species (Cu, Au, Pt, and Pd). This work not only helps to understand the water vapor effect on the structures of metal nanoparticles but also proposes a simple but effective model to predict the shape of nanoparticles in certain environment.

  13. Accurate predictions for the production of vaporized water

    SciTech Connect

    Morin, E.; Montel, F.

    1995-12-31

    The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.

  14. ASSESSMENT OF VAPOR INTRUSION USING INDOOR AND SUB-SLAB AIR SAMPLING

    EPA Science Inventory

    The objective of this investigation was to develop a method for evaluating vapor intrusion using indoor and sub-slab air measurement and at the same time directly assist EPA’s New England Regional Office in evaluating vapor intrusion in 15 homes and one business near the former R...

  15. Water Vapor Variability Across Spatial Scales: Insights for Theory, Parameterization, and Model Assessment

    NASA Astrophysics Data System (ADS)

    Pressel, Kyle Gregory

    The subject of this dissertation is the scale dependence of water vapor variability as observed by remote sensing and in situ measurements, and predicted by aqua-planet simulation. Global observations of the water vapor field from the Atmospheric Infrared Sounder (AIRS) are used to show that the first order structure function of the water vapor field exhibits power law behavior for scales between 50 km and 500 km throughout much of the troposphere. The power law scaling exponents are shown to vary between the boundary layer and free troposphere, with first order structure function scaling exponents of approximately 1/3 in the boundary layer and less than 1/2 in the free troposphere. Observations from the 396 m level of the WLEF television broadcast tower are used to show that the convective mixed layer layer and nocturnal residual layer exhibit power law behavior of first order structure functions and first order detrended fluctuation functions for scales between 1 km and 100 km. The power law scaling exponents computed from the tower observations of the convective mixed layer are shown to be consistent with the AIRS boundary layer regime exponents, while the exponents computed from the tower observations of the residual layer are shown to be consistent with AIRS free tropospheric regime scaling exponents. Finally, structure functions of the instantaneous water vapor field are computed from aqua-planet simulations performed at T85 and T340 spectral resolutions. Free tropospheric structure function scaling exponents for scales less than 500 km computed from the T340 spectral resolution simulation are shown to agree very well with free tropospheric scaling exponents computed from AIRS. Boundary layer structure function scaling exponents from the T340 spectral resolution are shown to be generally larger than boundary layer scaling exponents from AIRS.

  16. Isotopic Controls of Rainwater and Water Vapor on Mangrove Leaf Water and Lipid Biomarkers

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Hydrogen isotope ratios (2H/1H or δ2H) of sedimentary mangrove lipid biomarkers can be used as a proxy of past salinity and water isotopes. This approach is based on the observation that apparent 2H/1H fractionation between surface water and mangrove lipids increases with surface water salinity in six species of mangroves with different salt management strategies growing at sites spanning a range of relative humidities throughout Australia and Micronesia. In order to more robustly apply mangrove lipid δ2H as a paleoclimate proxy, we investigated the cause of the correlation between apparent 2H fractionation and salinity. We present results from two related experiments that assessed controls on isotopes of mangrove leaf water, the direct source of hydrogen in lipids: (1) Measurements of natural δ2H in precipitation, surface water, and mangrove tissue water from a series of lakes with varying salinity and water isotope composition in Palau, and (2) measurements of mangrove tissue water and treatment water from a controlled simulation in which mangroves were treated with artificial rain of varying isotopic composition. Rainwater 2H/1H fluctuations of 30‰ over a one-month period explain up to 65% of the variance in leaf water δ2H for Bruguiera gymnorhiza mangroves from Palau despite lake water isotope differences among sites of up to 35‰. This indicates that in humid tropical settings, leaf water isotopes are more closely related to those of precipitation and water vapor than to those of lake surface water, explaining the observed change in apparent fractionation in B. gymnorhiza lipids with salinity. The relationship between leaf water and rainwater isotopes may be due to either equilibration of leaf water with water vapor in the nearly saturated air or direct foliar uptake of rain and/or dew. Foliar uptake is an important water source for many plants, but has not been documented in mangroves. We tested the capacity for mangroves to perform this function by

  17. Analysis of the global ISCCP TOVS water vapor climatology

    NASA Technical Reports Server (NTRS)

    Wittmeyer, Ian L.; Vonder Haar, Thomas H.

    1994-01-01

    A climatological examination of the global water vapor field based on a multiyear period of successfull satellite-based observations is presented. Results from the multiyear global ISCCP TIROS Operational Vertical Sounder (TOVS) water vapor dataset as operationally produced by NESDIS and ISCCP are shown. The methods employed for the retrieval of precipitable water content (PWC) utilize infrared measurements collected by the TOVS instrument package flown aboard the NOAA series of operational polar-orbiting satellites. Strengths of this dataset include the nearly global daily coverage, availability for a multiyear period, operational internal quality checks, and its description of important features in the mean state of the atmosphere. Weaknesses of this PWC dataset include that the infrared sensors are unable to collect data in cloudy regions, the retrievals are strongly biased toward a land-based radiosonde first-guess dataset, and the description of high spatial and temporal variability is inadequate. Primary consequences of these factors are seen in the underestimation of ITCZ water vapor maxima, and underestimation of midlatitude water vapor mean and standard deviation values where transient atmospheric phenomena contribute significantly toward time means. A comparison of TOVS analyses to SSM/I data over ocean for the month of July 1988 shows fair agreement in the magnitude and distribution of the monthly mean values, but the TOVS fields exhibit much less temporal and spatial variability on a daily basis in comparison to the SSM/I analyses. The emphasis of this paper is on the presentation and documentation of an early satellite-based water vapor climatology, and description of factors that prevent a more accurate representation of the global water vapor field.

  18. A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST

    SciTech Connect

    Klein, J.; Fowley, M.; Steeper, T.

    2010-12-20

    Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

  19. Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.

    2015-12-01

    We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.

  20. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    NASA Astrophysics Data System (ADS)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  1. Computation of infrared cooling rates in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, M.-D.; Arking, A.

    1980-01-01

    A fast and accurate method is developed for calculating the infrared radiative terms due to water vapor - specifically, the atmospheric cooling rates. The accuracy is achieved by avoiding the constraints of band models and working directly with the absorption coefficient, which is a function of temperature and pressure as well as wavenumber. The method is based on calculation of an equivalent water vapor amount between atmospheric pressure levels and a table look-up procedure. Compared to line-by-line calculations, the present method has errors up to 4% of the maximum cooling rate. The use of a scaling factor, based on the far-wing approximation, limits the applicability of the method to the troposphere and lower stratosphere, where the line wings are responsible for most of the radiative cooling associated with water vapor.

  2. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  3. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  4. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1977-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11-19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature were derived from the flight data and show mixing ratios predominantly between 2 and 4 microg/g with an extreme range of 1-8 microg/g. Measurement precision was estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy was estimated to be about + or - 40% at 19 km. A height-averaged latitudinal cross section of water vapor indicates symmetry of wet and dry zones. This cross section is compared with other aircraft measurements and relates to meridional circulation models.

  5. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1976-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11 km to 19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature are derived from the flight data and show mixing ratios predominantly between 2 and 4 micron gm/gm with an extreme range of 1 to 8 micron gm/gm. Measurement precision is estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy is estimated to be about + or - 40 percent at 19 km. A height-averaged latitudinal cross section of water vapor shows symmetry of wet and dry zones.

  6. The response of stratospheric water vapor to a changing climate: Insights from in situ water vapor measurements

    NASA Astrophysics Data System (ADS)

    Sargent, Maryann Racine

    Stratospheric water vapor plays an important role in the Earth system, both through its role in stratospheric ozone destruction and as a greenhouse gas contributing to radiative forcing of the climate. Highly accurate water vapor measurements are critical to understanding how stratospheric water vapor concentrations will respond to a changing climate. However, the past disagreement among water vapor instruments on the order of 1-2 ppmv hinders understanding of the mechanisms which control stratospheric humidity, and the reliable detection of water vapor trends. In response to these issues, we present a new dual axis water vapor instrument that combines the heritage Harvard Lyman-alpha hygrometer with the newly developed Harvard Herriott Hygrometer (HHH). The Lyman-alpha instrument utilizes ultraviolet photo-fragment fluorescence detection, and its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell; it demonstrated in-flight precision of 0.1 ppmv (1-sec) with accuracy of 5%±0.5 ppmv. We describe these two measurement techniques in detail along with our methodology for calibration and details of the measurement uncertainties. We also examine the recent flight comparison of the two instruments with several other in situ hygrometers during the 2011 MACPEX campaign, in which five independent instruments agreed to within 0.7 ppmv, a significant improvement over past comparisons. Water vapor measurements in combination with simultaneous in situ measurements of O3, CO, CO2, HDO, and HCl are also used to investigate transport in the Tropical Tropopause Layer (TTL). Data from the winter 2006 CR-AVE campaign and the summer 2007 TC4 campaign are analyzed in a one-dimensional mixing model to explore the seasonal importance of transport within the TTL via slow upward ascent, convective injection, and isentropic

  7. Abnormal Vertical Structure of Water Vapor over Taklamakan Desert from COSMIC Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. K.; Liu, X. Y.; Yin, H. T.

    2012-04-01

    Water vapor is an important greenhouse gas. The vertical structure of the water vapor has a great impact on the weather and the climate. The Taklamakan desert is the largest desert in China, surrounded by a series of high mountains. The vertical structures of the water vapor over the Taklamakan desert have rarely been described by former research, due to the lack of conventional observations. This work is the first result of the water vapor vertical structure over the Taklamakan desert and its surroundings (35N-47N, 75E-94E) from the COSMIC occultation observations. Analysis found that a humid layer frequently occurs at the average height of 4800m. An "abnormal profile" was defined if a peak was observed in mid-troposphere in the humidity profile. This "abnormal profile" appeared in 24% of the total profile and appeared much more often inside the desert than outside during the year 2008 to 2010. Based on model analysis, two possible mechanisms were proposed to explain the reason of the formation of the abnormal profile. Through the statistics, 53% of total "abnormal profiles" were due to the transported water vapor topographic uplift effect, the topography of the desert forces the east-blowing wind to climb the surrounding mountains, bringing the low-altitude water vapor to mid-troposphere above the desert. The rest were due to the lack of water content in the air close to the ground. This new discovery and its possible explanations will help us to understand more about the climate of the Taklamakan desert and possibly also other similar regions.

  8. Water vapor measurements in- and outside cirrus with the novel water vapor mass spectrometer AIMS-H2O

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Schlage, Romy; Voigt, Christiane; Jurkat, Tina; Krämer, Martina; Rolf, Christian; Zöger, Martin; Schäfler, Andreas; Dörnbrack, Andreas

    2015-04-01

    Water vapor plays a crucial role for the earth's climate both directly via its radiative properties and indirectly due to its ability to form clouds. However, accurate measurements of especially low water vapor concentrations prevalent in the upper troposphere and lower stratosphere are difficult and exhibit large discrepancies between different instruments and methods. In order to address this issue and to provide a comprehensive water vapor data set necessary to gather a complete picture of cloud formation processes, four state-of-the-art hygrometers including the novel water vapor mass spectrometer AIMS-H2O were deployed on the DLR research aircraft HALO during the ML-Cirrus campaign in March/April 2014 over Europe. Here, we present first water vapor measurements of AIMS-H2O on HALO. The instrument performance is validated by intercomparison with the fluorescence hygrometer FISH and the laser hygrometer SHARC, both also mounted in the aircraft. This intercomparison shows good agreement between the instruments from low stratospheric mixing ratios up to higher H2O concentrations at upper tropospheric conditions. Gathering data from over 24 flight hours, no significant offsets between the instruments were found (mean of relative deviation

  9. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Nieman, Steven J.; Wanzong, Steven

    1994-01-01

    Water vapor imagery from geostationary satellites has been available for over a decade. These data are used extensively by operational analysts and forecasters, mainly in a qualitative mode (Weldon and Holmes 1991). In addition to qualitative applications, motions deduced in animated water vapor imagery can be used to infer wind fields in cloudless regimes, thereby augmenting the information provided by cloud-drift wind vectors. Early attempts at quantifying the data by tracking features in water vapor imagery met with modest success (Stewart et al. 1985; Hayden and Stewart 1987). More recently, automated techniques have been developed and refined, and have resulted in upper-level wind observations comparable in quality to current operational cloud-tracked winds (Laurent 1993). In a recent study by Velden et al. (1993) it was demonstrated that wind sets derived from Meteosat-3 (M-3) water vapor imagery can provide important environmental wind information in data void areas surrounding tropical cyclones, and can positively impact objective track forecasts. M-3 was repositioned to 75W by the European Space Agency in 1992 in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the current GOES-7 (G-7) satellite (positioned near 112W), the M-3 water vapor channel contains a superior horizontal resolution (5 km vs. 16 km ). In this paper, we examine wind sets derived using automated procedures from both GOES-7 and Meteosat-3 full disk water vapor imagery in order to assess this data as a potentially important source of large-scale wind information. As part of a product demonstration wind sets were produced twice a day at CIMSS during a six-week period in March and April (1994). These data sets are assessed in terms of geographic coverage, statistical accuracy, and meteorological impact through preliminary results of numerical model forecast studies.

  10. Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance.

    PubMed

    Wilson, Kevin L; Birks, John W

    2006-10-15

    A water vapor interference in ozone measurements by UV absorption was investigated using four different ozone monitors (TEI models 49 and 49C, Dasibi model 1003-AH, and a 2B Technologies model 202 prototype). In the extreme case of step changes between 0 and 90% relative humidity (RH), a large interference in the range of tens to hundreds of ppbv was found for all instruments tested, with the magnitude and sign depending on the manufacturer and model. Considering that water vapor does not absorb at the wavelength of the Hg lamp (253.7 nm) used in these instruments, another explanation is required. Based on experimental evidence and theoretical considerations, we conclude that the water vapor interference is caused by humidity effects on the transmission of uncollimated UV light through the detection cell. The ozone scrubber acts as a water reservoir, either adding or removing water from the air sample, thereby modulating the detector signal and producing a positive or negative offset. It was found for the 2B Technologies ozone monitor that use of a 1-m length of Nafion tubing just prior to the entrance to the detection cell reduces the water vapor interference to negligible levels (+/- 2 ppbv for step changes between 0 and 90% RH) while quantitatively passing ozone. PMID:17120566

  11. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  12. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  13. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  14. Spectroscopy underlying microwave remote sensing of atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Tretyakov, M. Yu.

    2016-10-01

    The paper presents a spectroscopist's view on the problem of recovery of the atmosphere humidity profile using modern microwave radiometers. Fundamental equations, including the description of their limitations, related to modeling of atmospheric water vapor absorption are given. A review of all reported to date experimental studies aimed at obtaining corresponding numerical parameters is presented. Best estimates of these parameters related to the Voigt (Lorentz, Gross, Van Vleck - Weisskopf and other equivalent) profile based modeling of the 22- and 183-GHz water vapor diagnostic lines and to non-resonance absorption as well as corresponding uncertainties are made on the basis of their comparative analysis.

  15. Role of Deep Convection in Establishing the Isotopic Composition of Water Vapor in the Tropical Transition Layer

    NASA Technical Reports Server (NTRS)

    Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.

    2006-01-01

    The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.

  16. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  17. The dynamics of ice clouds in the TTL as inferred from the isotopic composition of water vapor.

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Moyer, E. J.; Legras, B.

    2014-12-01

    We show that the profile of the isotopic composition of water vapor can be used to quantify the contribution of deep convection to water vapor in the UT/LS region. The contribution of UT/LS cirrus to radiation balance means that the control of moisture to the TTL is of particular importance. The various processes affecting UT/LS water include convective sources of water (injection of convective ice and subsaturated convective air), dehydration via in situ cirrus formation and sedimentation, and moistening from mixing with extratropical air, but none have been quantified with certainty. We show that these processes can be combined into a one-dimensional advection-dilution model for the isotopic ratio of TTL water vapor, with sources and sinks due to convective moistening and in situ cirrus formation, most of whose parameters can be described from observations and reanalysis. This model can then be fit to an averaged tropical profile of water vapor isotopic ratio in the TTL. The result allows us to back out the convective contribution to UT/LS water vapor. That water vapor contributes directly to in-situ cirrus formation because any injection of water vapor into the subsaturated UT/LS must subsequently be removed by in-situ dehydration. Using isotopic profiles from the ACE-FTS solar-occultation instrument and assuming timescales for evaporation and removal by sedimentation, we demonstrate that convective injection of water vapor significantly increases the production of in-situ cirrus over expectations from large-scale uplift alone. We also show that the turnaround point of UT/LS isotopic profiles - the altitude where isotopic composition begins to increase with height - is readily explained as reflecting the bulk isotopic composition in overshooting convection.

  18. Tropical convective onset statistics and establishing causality in the water vapor-precipitation relation

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.; Kuo, Y. H.; Schiro, K. A.; Langenbrunner, B.; Mechoso, C. R.; Sahany, S.; Bernstein, D. N.

    2015-12-01

    Previous work by various authors has pointed to the role of humidity in the lower free troposphere in affecting the onset of deep convection in the tropics. Empirical relations between column water vapor and the onset of precipitation have been inferred to be related to this. Evidence includes deep-convective conditional instability calculations for entraining plumes, in which the lower free-tropospheric environment affects the onset of deep convection due to the impact on buoyancy of turbulent entrainment of dry versus moist air. Tropical Western Pacific in situ observations, and tropical ocean basin satellite retrievals in comparison to climate model diagnostics each indicate that substantial entrainment is required to explain the observed relationship. In situ observations from the GoAmazon field campaign confirm that the basic relationship holds over tropical land much as it does over tropical ocean (although with greater additional sensitivity to boundary layer variations and to freezing processes). The relationship between deep convection and water vapor is, however, a two-way street, with convection moistening the free troposphere. One might thus argue that there has not yet been a smoking gun in terms of establishing the causality of the precipitation-water vapor relationship. Parameter perturbation experiments in the coupled Community Earth System Model show that when the deep convective scheme has low values of entrainment, the set of statistics associated with the transition to deep convection are radically altered, and the observed pickup of precipitation with column water vapor is no longer seen. In addition to cementing the dominant direction of causality in the fast timescale precipitation-column water vapor relationship, the results point to impacts of this mechanism on the climatology. Because at low entrainment the convection can fire before the lower troposphere is moistened, the climatology of water vapor remains lower than observed. These

  19. Line Mixing in Water Vapor and Methane

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Brown, L. R.; Toth, R. A.; Devi, V. Malathy; Benner, Chris

    2006-01-01

    A multispectrum fitting algorithm has been used to identify line mixing and determine mixing parameters for infrared transitions of H2O and CH4 in the 5-9 micrometer region. Line mixing parameters at room temperature were determined for two pairs of transitions in the v2 fundamental band of H2O-16, for self-broadening and for broadening by H2, He, CO2, N2, O2 and air. Line mixing parameters have been determined from air-broadened CH4 spectra, recorded at temperatures between 210 K and 314 K, in selected R-branch manifolds of the v4 band. For both H2O and CH4, the inclusion of line mixing was seen to have a greater effect on the retrieved values of the line shifts than on the retrieved values of other parameters

  20. Supersaturation in the spontaneous formation of nuclei in water vapor

    NASA Technical Reports Server (NTRS)

    Sander, Adolf; Damkohler, Gerhard

    1953-01-01

    According to experience, a certain supersaturation is required for condensation of water vapor in the homogeneous phase; that is, for inception of the condensation, at a prescribed temperature, the water vapor partial pressure must lie above the saturation pressure. The condensation starts on so-called condensation nuclei. Solid or liquid suspended particles may serve as nuclei; these particles may either a priori be present in the gas phase (dust, soot), or may spontaneously be formed from the vapor molecules to be condensed themselves. Only the second case will be considered. Gas ions which facilitate the spontaneous formation of nuclei may be present or absent. The supersaturations necessary for spontaneous nucleus formation are in general considerable higher than those in the presence of suspended particles.

  1. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  2. Variability in Vertical Profiles of Water Vapor Associated with African Aerosol over the Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, C.; Prospero, J. M.

    2007-12-01

    We used four years (2003-2006) of MODIS aerosol optical depth and concurrent AIRS profiled water vapor to explore how the vertical distribution of water vapor may systematically change with outbreaks of African aerosol over the tropical Atlantic Ocean. The first step was to look for a relationship in the Barbados region using in-situ Barbados dust record and the profiled relative humidity from meteorological soundings. We extended the study to the synoptic scale in the West Indies using the MODIS and AIRS products. In the tropical Atlantic, preliminary results indicate that water vapor at 850-1000 hPa is significantly less in July on dusty days than clean days over the northeastern tropical Atlantic [5-25N, 30-20W] where African dust is predominant. In contrast, over the southeastern tropical Atlantic [15S-0, 5W-10E], where African biomass burning smoke prevails, water vapor at 600-1000 hPa is significantly higher in August on smoky days than clean days. Additionally, in January when African mixed aerosol (dust and smoke) is anomalously high over the equatorial eastern tropical Atlantic [5S-5N, 15W-5E], less water vapor is observed at two levels: 925-1000 hPa and 500-600 hPa. It is hypothesized that these results are associated with the non-hygroscopic nature of African dust, the hygroscopic properties of African smoke, and their transport pathways over the tropical Atlantic. These results are useful in the design and diagnostics of model simulations of climate effects of aerosols such as aerosol related precipitation change.

  3. Non-mass-dependent oxygen isotope effect observed in water vapor from Alert, Canada

    NASA Astrophysics Data System (ADS)

    Lin, Ying

    Twenty-seven precipitation samples from Chicago, IL and northwest part of Indiana were collected from 2003 to 2005. Twenty-five water vapor samples were collected at Alert, Canada (82° 30'N, 62° 19'W) from 2002 to 2005 by Lin Huang and her co-workers. Seven ice core samples from Dasuopu glacier, Chinese Himalayas (28° 23' N, 85° 43'W) were drilled by Lonnie G. Thompson and prepared by Mary E. Davis. Sample of Standard Light Antarctic Precipitation (SLAP) is available in the laboratory. Water samples were reacted with bromine pentafluoride to produce oxygen, which were then purified through molecular sieve and measured by Delta E gas source mass spectrometer. A lambda(MDF) = 0.529 +/- 0.003 (2sigma) for water is determined from measurement of local precipitation samples. No significant oxygen isotopic anomaly is found in SLAP and in ice core samples from Dasuopu glacier, Chinese Himalayas. Delta17O(CLP), oxygen isotopic anomaly relative to Chicago local precipitation, of -0.009‰ to 0.167‰ with a mean of 0.076‰ and a 2sigma standard error of 0.016‰ is observed in water vapor from Alert, Canada. About half of these Delta17O(CLP) data exhibit statistically significant excesses. Stacked seasonal trend of Delta17O(CLP) observed at Alert, Canada points to a maximum in late spring when the intrusion of stratospheric air is at its maximum and the height of Arctic tropopause is the lowest. However, no significant oxygen isotopic anomalies are found in ice core samples from Dasuopu and in SLAP. The positive excesses in Delta17O(CLP) seen in tropospheric water vapor at Alert, Canada could be explained by the transfer of positive oxygen isotopic anomalies through O3 → NOx → HOx → H2O chain in the stratosphere, and the subsequent mixing of this anomalous stratospheric water with tropospheric water vapor at Alert, Canada where the tropopause is low and where downward mixing of stratospheric air with tropospheric air takes place. The positive oxygen isotopic

  4. Radiative Forcing at the Surface by Clouds, Aerosols, and Water Vapor Over Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Key, E.; Minnett, P.; Szczodrak, G.; Caniaux, G.; Voss, K.; Bourras, D.

    2007-12-01

    Data from recent campaigns conducted in the tropical Atlantic and Indian Oceans provide thorough testbeds for determining the contribution of clouds, aerosols, and water vapor to surface radiative forcing, with particular focus on areas of extreme SST gradients. Oceanographic cruises conducted during the African Monsoon Multidisciplinary Analysis included sampling monsoon onset in the Gulf of Guinea, which was characterized nearshore by rain and haze, the latter being a combination of water vapor and continental and pollution aerosols. Offshore and nearer to the equatorial cold tongue, the ITCZ was the dominant northern hemisphere cloud feature, while drier, cooler air masses existed south of the equator. The R/V Ronald H. Brown, operating a north-south transect along 23 W, encountered both atmospheric tropical wave conditions as well as dry Saharan Air Layers. In the Indian Ocean, the N/O Le Suroit occupied a point station near a positive SST anomaly to observe the onset of convection associated with the MJO and strong diurnal warming signatures. Combining radiative and turbulent flux data with measured and modeled profiles of the marine and atmospheric boundary layer, the evolution and interaction of the total air-sea column is observed. Particular emphasis is placed on the radiative forcing of clouds, aerosols, and water vapor on the sea surface skin temperature, towards the improvement of current diurnal warming models, which simplify atmospheric radiative effects into a general cloud parameter.

  5. SPARC-IGAC Symposium on Climate-Chemistry Interactions. Climate Feedback by Water Vapor in the Tropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Minschwaner, K.

    2003-01-01

    The strong greenhouse forcing by atmospheric water vapor is expected to play an important role in shaping the direction of any future changes in climate. We present calculations that provide a new perspective on the sensitivity of upper tropospheric water vapor to changes in surface temperature. Equilibrium states of our atmospheric model show unambiguously that as the surface warms, changes in the vertical distribution and temperature of detraining air parcels from tropical convection lead to higher water vapor mixing ratios in the upper troposphere. However, the increase in mixing ratio is not as large as the increase in saturation mixing ratio due to warmer environmental temperatures, so that the relative humidity decreases. Our analysis suggests that models that maintain a fixed relative humidity are likely overestimating the magnitude of the water vapor feedback.

  6. Observation of enhanced water vapor in Asian dust layer and its effect on atmospheric radiative heating rates

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Yoon, Soon-Chang; Jefferson, Anne; Won, Jae-Gwang; Dutton, Ellsworth G.; Ogren, John A.; Anderson, Theodore L.

    2004-09-01

    This study investigates the effect of water vapor associated with mineral dust aerosols on atmospheric radiative heating rates using ground-based lidar, aircraft, radiosonde measurements and a radiation model during Asian dust events in the spring of 2001. We found enhanced levels of water vapor within the dust layer relative to the air above and below the dust layer. The water vapor led to an increase in the net radiative heating rate within the dust layer, changing the heating rate vertical structure. A net cooling was calculated above the dust layer as a result of low aerosol and drier conditions. Our finding suggests that the presence of water vapor within dust layer acts to enhance the temperature of this layer, potentially influencing the static stability of the dust layer. This finding is supported by an increase in the potential temperature at the top and bottom of the dust layer.

  7. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  8. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  9. Water vapor differential absorption lidar development and evaluation

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  10. 5 THE RADIATIVE FORCING DUE TO CLOUDS AND WATER VAPOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter utilizes results from the spaceborne Earth Radiation Budget Experiment (ERBE), launched in 1984 aboard the NOAA-9 (National Oceanic and Atmospheric Agency) satellite, to summarize our understanding of the radiative forcing due to water vapor and clouds. The effect of clouds on the rad...

  11. Visualization of Atmospheric Water Vapor Data for SAGE

    NASA Technical Reports Server (NTRS)

    Kung, Mou-Liang; Chu, W. P. (Technical Monitor)

    2000-01-01

    The goal of this project was to develop visualization tools to study the water vapor dynamics using the Stratospheric Aerosol and Gas Experiment 11 (SAGE 11) water vapor data. During the past years, we completed the development of a visualization tool called EZSAGE, and various Gridded Water Vapor plots, tools deployed on the web to provide users with new insight into the water vapor dynamics. Results and experiences from this project, including papers, tutorials and reviews were published on the main Web page. Additional publishing effort has been initiated to package EZSAGE software for CD production and distribution. There have been some major personnel changes since Fall, 1998. Dr. Mou-Liang Kung, a Professor of Computer Science assumed the PI position vacated by Dr. Waldo Rodriguez who was on leave. However, former PI, Dr. Rodriguez continued to serve as a research adviser to this project to assure smooth transition and project completion. Typically in each semester, five student research assistants were hired and trained. Weekly group meetings were held to discuss problems, progress, new research direction, and activity planning. Other small group meetings were also held regularly for different objectives of this project. All student research assistants were required to submit reports for conference submission.

  12. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    EPA Science Inventory

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  13. Oxidation and Volatilization of Silica-Formers in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4

  14. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  15. Scanning Raman lidar measurements of atmospheric water vapor and aerosols

    SciTech Connect

    Ferrare, R.A.; Evans, K.D.; Melfi, S.H.; Whiteman, D.N.

    1995-04-01

    The principal objective of the Department of Energy`s (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and infrared radiation, and indirectly, through their roles in cloud formation and dissipation. Over the past several years, we have been investigating how the scanning Raman lidar developed at the NASA/Goddard Space Flight Center (GSFC) can provide the water vapor and aerosol measurements necessary for such modeling. The lidar system has provided frequent, high resolution profiles of atmospheric water vapor and aerosols in nighttime operations during two recent field experiments. The first experiment was ATMIS-11 (Atmospheric Moisture Intercomparison Study) conducted in July-August 1992, and the second was the Convection and Moisture Experiment (CAMEX) conducted during September-October 1993. We present a brief description of the lidar system and examples of the water vapor and aerosol measurements acquired during these experiments.

  16. Clouds and water vapor in the Northern Hemisphere summertime stratosphere

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.

    2009-02-01

    Cloud top observations from the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) instrument and water vapor measured by the Microwave Limb Sounder (MLS) are used to study the occurrence of clouds in the Northern Hemisphere (NH) summertime lower stratosphere (20°-70°N) and their relation to water vapor. At low latitudes, clouds in the stratosphere tend to occur in regions of intense convection, while at high latitudes, there is little longitudinal preference for the clouds. In general, the 0.1% cloud top occurrence contour tends to be found ˜3 km or 40-50 K of potential temperature above the tropopause. At midlatitudes, the occurrence of clouds above the tropopause is associated with enhanced water vapor, suggesting that clouds are associated with moistening events in the lower stratosphere. In the subtropics, the occurrence of clouds is associated with reduced water vapor, suggesting that clouds are associated with dehydration events. Our results are consistent with hydration or dehydration being determined by the local relative humidity. Low relative humidity allows significant evaporation of lofted cloud ice, which is thought to be the key to moistening events. High relative humidity inhibits evaporation of lofted cloud ice and encourages in situ formation of clouds that are thought to play a role in dehydration.

  17. Advances in Raman Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

  18. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  19. Cassini/CIRS Observations of Water Vapor in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Achterberg, R. K.; Simon-Miller, A. A.; Carlson, R. C.; Jennings, D. E.

    2008-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained numerous spectra of Saturn at varying spectral and spatial resolutions since Saturn Orbit Insertion in 2004. Emission lines due to water vapor in Saturn's stratosphere were first detected using whole-disk observations from the Infrared Space Observatory (Feuchtgruber et al 1997) and subsequently confirmed by the Submillimeter Wave Astronomy Satellite (Rergin et al 2000). CIRS has detected water and the data permit the retrieval of the latitudinal variation of water on Saturn. Emission lines of H2O on Saturn are very weak in the CIRS data. Thus. large spectral averages as well as improvements in calibration are necessary to detect water vapor. Zonally averaged nadir spectra were produced every 10 degrees of latitude. Stratospheric temperatures in the 0.5 - 5.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304 cm(exp -1). The origin of water vapor is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of oxygen originates either from the Saturn system (from the rings or perhaps from Enceladus) or from the interplanetary medium. Connerney (1986) proposed a mechanism to transport water from the inner edge of the B-ring along magnetic field lines to specific latitudes (50N and 44S) on Saturn. Prange et al (2006) interpreted a minimum in the abundance of acetylene from ultraviolet spectra near 41S on Saturn as possibly due to an enhanced influx of water. Existing CIRS far-IR spectra are at relatively low spatial resolution, but observations at closer range planned for the extended mission will be able to test the "ring rain" mechanism by searching for localized water vapor enhancement at midlatitudes.

  20. a Study of Gnss Water Vapor Reconstruction Parameters

    NASA Astrophysics Data System (ADS)

    Sá, A. G.; Bento, F.; Crocker, P.; Fernandes, R. M.; Adams, D. K.; Miranda, P. M.

    2013-12-01

    GNSS (Global Navigation Satellite Systems) observations are nowadays a well-established tool to measure the water vapor content in the atmosphere. This gas plays a major role in many processes concerning physics, thermodynamics and dynamics of the atmosphere. The knowledge of the spatial and temporal distribution of water vapor in the lower atmosphere (troposphere) is crucial for accurate quantitative prediction of precipitation and better understanding of many atmospheric processes like deep convective events. Major advantages of the use of GNSS observations are all-weather system, continuous unattended operation, high temporal resolution and an ever-increasing number of stations. The present work focuses on the study of the geometry and dynamics of moist convection, shallow and deep, through the use of 4D images of the atmosphere water vapor field, obtained from high-density GPS networks (i.e. tomographic inversion). For this, the SWART (SEGAL GNSS WAter Vapor ReconsTruction Image Software), a software package for GNSS water vapor reconstruction, has been developed. This package currently consists of four C++ programs. The C++ programs gather the necessary information to calculate the slant delays and to generate a file with the reconstructed image. The output consists in 2D slices of the 3D water vapor image in latitude, longitude or altitude. SWART is based on LOFTT_K (LOgiciel Français de Tomographie Troposphérique version Kalman) (Champollion 2005). We present the results of the comparison with LOFTT_K to validate SWART together with several tests covering diverse grid sizes and different number of receivers for the same water vapor image reconstruction. It is also analyzed the importance of the initial values for the image reconstruction. All these tests were realized with synthetic data, except for the grid area, which is from Marseilles, France. Finally, we present the current status of the analysis being carrying out for a dense network in Belem, Brazil

  1. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote sources of water for precipitation, based on the implementation of passive constituent tracers of water vapor (termed water vapor tracers, WVT) in a general circulation model. In this case, the major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In this approach, each WVT is associated with an evaporative source region, and tracks the water until it precipitates from the atmosphere. By assuming that the regional water is well mixed with water from other sources, the physical processes that act on the WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be computed within the model simulation, and can be validated against the model's prognostic water vapor. Furthermore, estimates of precipitation recycling can be compared with bulk diagnostic approaches. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional tracers, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic 2 regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In

  2. The interaction of the theophylline metastable phase with water vapor

    NASA Astrophysics Data System (ADS)

    Matvienko, A. A.; Boldyrev, V. V.; Sidel'Nikov, A. A.; Chizhik, S. A.

    2008-07-01

    The conditions of hydration of the stable and metastable theophylline phases were determined. Two-phase metastable phase/monohydrate and stable phase/monohydrate equilibrium pressures were measured at 25, 30, and 35°C. The metastable phase began to react with water vapor at lower relative humidities than the stable phase. Processes that occurred with the metastable and stable theophylline phases over various water pressure ranges were considered. The metastable phase exhibited an unusual behavior at 25°C and relative humidity 47%. At constant water vapor pressure and temperature, theophylline was initially hydrated and then lost water and again became anhydrous. Two consecutive processes occurred in the system, the formation of theophylline monohydrate from the metastable phase and its decomposition to the stable phase. The ratio between the rates of these processes determined the content of the monohydrate at the given time moment.

  3. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    SciTech Connect

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.

  4. Diurnal variations in water vapor over Central and South America

    NASA Astrophysics Data System (ADS)

    Meza, Amalia; Mendoza, Luciano; Bianchi, Clara

    2016-07-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 73 GNSS tracking sites (GPS + GLONASS) which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, with different diurnal variations of the integrated total humidity content. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). The numerical tools, Singular Value Decomposition and classical Multidimensional Scaling methods, are used to study these variations, considering the measurements made at each stations, as sample in the analysis. The aim of this investigation is to identify the IWV variability with respect to the local time associated to the different climate regions. In order to improve our analysis, all available weather information, such as radiosondes measurements (which are few), measurements of pressure and temperature and Numerical Weather Models reanalysis data, are used. Reference: Dai, A., K. E. Trenberth, and T. R. Karl, 1999 a: Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate, 12, 2451-2473. Dai, A., F. Giorgi, and K. E. Trenberth, 1999 b: Observed and model simulated precipitation diurnal cycle over the contiguous United States.J. Geophys. Res., 104, 6377-6402. KEYWORDS: water vapor, diurnal cycle, GNSS

  5. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  6. Fixation of nitrogen in the presence of water vapor

    DOEpatents

    Harteck, Paul

    1984-01-01

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  7. Cassini/CIRS Observations of Water Vapor in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon; Achterberg, R. K.; Simon-Miller, A. A.; Jennings, D. E.

    2010-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained numerous spectra of Saturn at varying spectral and spatial resolutions since Saturn Orbit Insertion in 2001. Emission lines due to water vapor in Saturn's stratosphere were first detected using whole-disk observations from the Infrared Space Observatory [1] and subsequently confirmed by the Submillimeter Wave Astronomy Satellite [2], CIRS has detected water and the data permit the retrieval of the latitudinal variation of water on Saturn. Emission lines of H2O on Saturn are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. long integrations at the full 0.5/cm spectral resolution were performed at targeted latitudes on Saturn. High emission angles were chosen to enhance stratospheric emission. Over the course of the prime and extended mission a set of observations has been built up spaced roughly every 10 degrees of latitude. Stratospheric temperatures in the 0.5 - 5.0 mbar range were obtained by inverting spectra of CH4 in the v'4 band centered at 1501/cm. The origin of water vapor is believed to be from the ablation of micrometeorites containing eater ice, followed by photochemistry. This external source of oxygen originates either from the Saturn system (from the rings or perhaps from Enceladus) or from the interplanetary medium. Connerney [3] proposed a mechanism to transport water from the inner edge of the B-ring along magnetic field lines to specific latitudes (50N and 44S) on Saturn. Prange et al [4] interpreted a minimum in the abundance of acetylene from ultraviolet spectra gear 41S on Saturn as possibly due to an enhanced influx of water. We will be able to test the "ring rain" mechanism by searching, for localized water vapor enhancement at mid-latitudes. Our results may be used to constrain photochemical models of Saturn's stratosphere [5].

  8. Adsorption of Water Vapor on a Graphitized Carbon Black.

    PubMed

    Easton; Machin

    2000-11-01

    Absorption isotherms for water vapor on a highly graphitized carbon black, Sterling FT-G (2700), have been determined at 280.15 and 295.15 K. Interparticle capillary condensation with extensive hysteresis is observed but capillary condensation (adsorption) occurs under metastable, supersaturation conditions. Contact angles for water adsorbed on this carbon black are calculated and two models for capillary condensation are discussed. Copyright 2000 Academic Press.

  9. Reaction of LiD with water vapor: thermogravimetric and scanning electron microscopy studies

    SciTech Connect

    Balooch, M; Dinh, L N; LeMay, J D

    2000-09-14

    The kinetics of hydroxide film growth on LiD have been studied by the thermogravimetric method in nitrogen saturated with water vapor and by scanning electron microscopy (SEM) of samples that have been exposed to air with 50% relative humidity. The reaction probability is estimated to be 4 x 10{sup -7} for LiD exposed to ambient air with 50% relative humidity, suggesting that the diffusion through the hydroxide film is not the limiting step on the overall process at high moisture levels. The rate of growth is drastically reduced when the temperature is increased to 60 C.

  10. Use of a novel new irrigation system to observe and model water vapor flow through dry soils

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M.

    2013-12-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapor flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapor pressure of the surrounding air, thus temperature or solute gradients can drive vapor flows. However, in extremely dry soils where water is retained by adsorption rather than capillarity, vapor flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapor pressure in the soil, and hence small differences in water content can initiate vapor pressure gradients. In many field conditions this effect may be negligible compared to vapor flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapor phase. Experiments using this system therefore provide a rare opportunity to observe vapor flows initiating from a subsurface source without significant injection of heat. A model was developed to simulate water flow through the soil in liquid and vapor phase. In this model it was assumed that the two phases were in equilibrium. The equilibrium relationship was defined by a new mathematical expression that was developed to fit experimental data collected to characterize the sorption isotherm of three soils (sand, saline sand and top soil). The osmotic potential of the saline sand was defined as a function of water content using a continuous mathematical expression. The model was then calibrated to fit the data from laboratory experiments, in which the vapor flow into and out of the soil were quantified. The model successfully reproduced experimental observations of the total water flux, relative humidity and water content distribution in three soil types. This suggests that the model, including the proposed

  11. The Influence of Summertime Convection Over Southeast Asia on Water Vapor in the Tropical Stratosphere

    NASA Technical Reports Server (NTRS)

    Wright, J. S.; Fu, R.; Fueglistaler, S.; Liu, Y. S.; Zhang, Y.

    2011-01-01

    The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small 0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity.

  12. Preliminary endurance tests of water vaporizers for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. E.; Macrae, Gregory S.

    1993-01-01

    Three water vaporizers designed for resistojet applications were built and tested for periods up to 500 h and 250 thermal cycles. Two of the vaporizers were not sensitive to orientation with respect to gravity, an indication of likely compatibility with low-gravity environments. Some temperatures and pressures in the third were impacted by orientation, although operation was always stable. The pressure drop across the sand-filled version increased by 147 percent in 38 h and 19 thermal cycles. Bonding of the sand granules in the downstream end of the heat exchanger was the suspected cause of failure of this vaporizer. Pressure drops across the two sintered stainless steel-filled versions were more gradual. One, with a pore size of 60 microns, showed an 80 percent increase in 500 h and 250 thermal cycles and another, with a 10 microns poresize, showed a 29 percent increase in 350 h and 175 thermal cycles. Testing of the latter metal-filled vaporizer was ongoing as of this writing. Oxidation of the porous metal packing materials in these vaporizers, with subsequent deposition of oxide particles within the pores, was believed to have caused the observed increases in pressure drops.

  13. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors.

    PubMed Central

    Oh, Y S; Bartha, R

    1994-01-01

    From contaminated industrial sludge, two stable multistrain microbial enrichments (consortia) that were capable of rapidly utilizing chlorobenzene and o-dichlorobenzene, respectively, were obtained. These consortia were characterized as to their species composition, tolerance range, and activity maxima in order to establish and maintain the required operational parameters during their use in biofilters for the removal of chlorobenzene contaminants from air. The consortia were immobilized on a porous perlite support packed into filter columns. Metered airstreams containing the contaminant vapors were partially humidified and passed through these columns. The vapor concentrations prior to and after biofiltration were measured by gas chromatography. Liquid was circulated concurrently with the air, and the device was operated in the trickling air biofilter mode. The experimental arrangement allowed the independent variation of liquid flow, airflow, and solvent vapor concentrations. Bench-scale trickling air biofilters removed monochlorobenzene, o-dichlorobenzene, and their mixtures at rates of up to 300 g of solvent vapor h(-1) m(-3) filter volume. High liquid recirculation rates and automated pH control were critical for stable filtration performance. When the accumulating NaCl was periodically diluted, the trickling air biofilters continued to remove chlorobenzenes for several months with no loss of activity. The demonstrated high performance and stability of the described trickling air biofilters favor their use in industrial-scale air pollution control. PMID:8085815

  14. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    SciTech Connect

    Kelly, K.K.; Proffitt, M.H. ); Chan, K.R.; Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. ); Wilson, J.C. ); Kley, D. )

    1993-05-20

    The authors report results of total water, and water vapor measurements made in the upper troposphere and stratosphere during the Stratosphere-Troposphere Exchange Project (STEP) Tropical mission over Darwin, Australia. Measurements were made from an ER-2 aircraft by lyman-[alpha] hygrometers. The average lower stratosphere water vapor was 2.4 parts per million by volume (ppmv), at a potential temperature of 375 K. This level is lower than the 3 to 4 ppmv water vapor level typical of the stratosphere.

  15. DIURNAL CYCLE OF PRECIPITABLE WATER VAPOR OVER SPAIN

    SciTech Connect

    Ortiz de Galisteo, J. P.; Cachorro, V. E.; Toledano, C.; Torres, B.; Laulainen, Nels S.; Bennouna, Yasmine; de Frutos, A. M.

    2011-05-20

    Despite the importance of the diurnal cycle of precipitable water vapor (PWV), its knowledge is very limited due to the lack of data with sufficient temporal resolution. Currently, from GPS receivers, PWV can be obtained with high temporal resolution in all weather conditions for all hours of the day. In this study we have calculated the diurnal cycle of PWV for ten GPS stations over Spain. The minimum value is reached approximately at the same time at all the stations, ~0400-0500 UTC, whereas the maximum is reached in the second half of the day, but with a larger dispersion of its occurrence between stations. The amplitude of the cycle ranges between 0.72 mm and 1.78 mm. The highest values are recorded at the stations on the Mediterranean coast, with a doubling of the values of the stations on the Atlantic coast or inland. The amplitude of the PWV cycle, relative to the annual mean value, ranges between 8.8 % on the Mediterranean coast and 3.6 % on the Atlantic coast. Two distinctly different seasonal diurnal cycles have been identified, one in winter and other in summer, with spring and autumn being only transition states. The winter cycle is quite similar at all locations, whereas in summer, local effects are felt strongly, making the diurnal cycle quite different between stations. The amplitude of the summer cycle is 1.69 mm, it is almost double the winter one (0.93 mm). Analogous to the annual cycles, the seasonal cycles of the different stations are more similar during the night and early morning hours than during the afternoon. The observed features of the PWV diurnal cycle are explained in a qualitative way on the basis of the air temperature, the transport of moisture by local winds, and the turbulent vertical mixing.

  16. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  17. Alumina Volatility in Water Vapor at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by a weight loss technique. Sapphire coupons were exposed at temperatures between 1250 and 1500 C, water partial pressures between 0.15 and 0.68 atm in oxygen, total pressure of 1 atm, and flowing gas velocities of 4.4 cm/s. The pressure dependence of sapphire volatility was consistent with AI(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from sapphire and water vapor was determined to be 210 +/- 20 kJ/mol, comparing favorably to other studies. Microstructural examination of tested sapphire coupons revealed surface etching features consistent with a volatilization process.

  18. Portable Cathode-Air Vapor-Feed Electrochemical Medical Oxygen Concentrator (OC)

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Ashwin

    2015-01-01

    Missions on the International Space Station and future space exploration will present significant challenges to crew health care capabilities, particularly in the efficient utilization of onboard oxygen resources. Exploration vehicles will require lightweight, compact, and portable oxygen concentrators that can provide medical-grade oxygen from the ambient cabin air. Current pressure-swing adsorption OCs are heavy and bulky, require significant start-up periods, operate in narrow temperature ranges, and require a liquid water feed. Lynntech, Inc., has developed an electrochemical OC that operates with a cathode-air vapor feed, eliminating the need for a bulky onboard water supply. Lynntech's OC is smaller and lighter than conventional pressure-swing OCs, is capable of instant start-up, and operates over a temperature range of 5-80 C. Accomplished through a unique nanocomposite proton exchange membrane and catalyst technology, the unit delivers 4 standard liters per minute of humidified oxygen at 60 percent concentration. The technology enables both ambient-pressure operating devices for portable applications and pressurized (up to 3,600 psi) OC devices for stationary applications.

  19. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  20. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  1. Atmospheric Precipitable Water and its association with Surface Air Temperatures over Different Climate Regims

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Olsene, E. T.; Granger, S. L.; Kahn, B. H.; Fishbein, E. F.; Chen, L.; Teixeira, J.; Lambrigtsen, B. H.

    2008-12-01

    As a greenhouse gas and a key component in the hydrologic cycle, atmospheric water vapor is very important in the earth's climate system. The relationship between air temperature and water vapor content at the surface and in different layers of the atmosphere have been examined in many studies in trying to better understand the magnitude of water vapor feedback in our climate system. Studies have found large spatial variability and large regional and vertical deviations from the Clapeyron-Clausius relation of constant relative humidity. However, there is an ongoing need to understand the climatology of the relationship between the surface air temperature and total column water vapor, and to examine any potential thresholds associated with sudden changes in this relationship as air temperatures continue to increase. This study uses 5-year total precipitable water vapor records measured by the Atmospheric Infrared Sounders (AIRS) and surface air temperature to examine their relationships at tropical to mid latitude conditions found at 60°S- 60°N for winter and summer seasons. In addition, the relationships will be examined for different climate regimes based on Koppen's system. This will help distinguish the geographical regions and physical processes where different relationships are found. This information will improve our understanding of the regional patterns of water vapor feedback associated with warming climate.

  2. Enhancing our Understanding of the Arctic Atmospheric Hydrological Cycle using Observations from an International Arctic Water Vapor Isotope Network

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Werner, M.

    2014-12-01

    Due to the role of water vapor and clouds in positive feedback mechanisms, water vapor is a key player in the future of Arctic climate. Ecosystems and human societies are vulnerable to climate change through even minor changes in precipitation patterns, including the occurrence of extreme events. It is therefore essential to monitor, understand and model correctly the mechanisms of transport of moisture, at the regional scale. Water isotopes - the relative abundance of heavy and light water in the atmosphere - hold the key to understanding the physical processes influencing future Arctic climate. Water isotope observations in the atmosphere are a modern analog to the Rosetta Stone for understanding the processes involved in evaporation, moisture transport, cloud formation and to track moisture origin. Indeed, technological progress now allows continuous, in situ or remote sensing monitoring of water isotopic composition. In parallel, a growing number of atmospheric circulation models are equipped with the explicit modeling of water stable isotopes, allowing evaluation at the process scale. We present here data obtained through national or bi-national initiatives from stations onboard an icebreaker and land based stations in Greenland, Iceland, Svalbard, and Siberia - together forming an emerging international Arctic water vapor isotope network. Using water tagging and back trajectories we show water vapor of Arctic origin to have a high d-excess fingerprint. This show the potential of using water vapor isotopes as tracer for changes in the Arctic hydrological cycle. Using the network of monitoring stations we quantify using the isotopes advection of air masses and the key processes affecting the water vapor en-route between stations. We have successfully used the obtained atmospheric water vapor isotope observations to benchmark isotope-enabled general circulation models. This comparison allows us to address key processes of the atmospheric hydrological cycle for

  3. Tm:germanate Fiber Laser for Planetary Water Vapor Atmospheric Profiling

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; De Young, Russell

    2009-01-01

    The atmospheric profiling of water vapor is necessary for finding life on Mars and weather on Earth. The design and performance of a water vapor lidar based on a Tm:germanate fiber laser is presented.

  4. Deformation of carbon nanotubes by exposure to water vapor.

    PubMed

    Rossi, Maria Pia; Gogotsi, Yury; Kornev, Konstantin G

    2009-03-01

    The condensation of water inside multiwalled carbon nanotubes has been monitored and controlled using environmental scanning electron microscopy. Undersaturated vapor condenses inside nanotubes and forms nanometer-thick water films. Simultaneously, nanotubes deform and decrease their apparent diameter. When the vapor pressure in the chamber approaches the saturation pressure, we observe the formation of menisci and spontaneous buckling of the nanotubes. We derive a criterion of the buckling instability caused by capillary condensation. Remarkably, the buckling criterion appears to be independent of the meniscus shape. Using our experiments and models, we estimated the circumferential Young's modulus of large-diameter carbon nanotubes with disordered wall structure produced by the chemical vapor deposition method (CVD) to be E(thetatheta) approximately 13-18 MPa. It appears to be at least 2 orders of magnitude lower than the longitudinal modulus of nanotubes produced by arc discharge or catalytic CVD methods. The reported experiments and proposed theory suggest possible applications of "soft" nanotubes as sensors to probe minute concentrations of absorbable gases and vapors.

  5. Use of Oriented Spray Nozzles to Set the Vapor-Air Flow in Rotary Motion in the Superspray Space of the Evaporative Chimney-Type Tower

    NASA Astrophysics Data System (ADS)

    Dobrego, K. V.; Davydenko, V. F.; Koznacheev, I. A.

    2016-01-01

    The present paper considers the problem of upgrading the thermal efficiency of chimney-type evaporative cooling towers due to the rotary motion of the vapor-air flow in the superspray space. To set the vapor-air flow in rotary motion, we propose to use the momentum of the sprayed water. It has been shown that the existing parameters of spray nozzles permit setting up to 30% of the water flow momentum in translatory motion, which is enough for changing considerably the aerodynamics of the vapor-air flow in the superspray space and improving the operation of the cooling tower. The optimal angle of axial inclination of the spray cone has been estimated. Recommendations are given and problems have been posed for engineering realization of the proposed technologies in a chimney-type cooling tower.

  6. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated

  7. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere.

    PubMed

    Lin, Ying; Clayton, Robert N; Huang, Lin; Nakamura, Noboru; Lyons, James R

    2013-09-24

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003-2005 at Alert station, Canada (82°30'N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ(17)O and δ(18)O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003-2005. An oxygen isotopic anomaly of Δ(17)O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ(17)O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930-1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ(17)O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had (17)Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  8. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere

    PubMed Central

    Lin, Ying; Clayton, Robert N.; Huang, Lin; Nakamura, Noboru; Lyons, James R.

    2013-01-01

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003−2005 at Alert station, Canada (82°30′N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ17O and δ18O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003−2005. An oxygen isotopic anomaly of Δ17O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ17O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930−1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ17O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had 17Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  9. Comparing Vertical Distributions of Water Vapor Flux within Two Landfalling Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Rutz, J. J.; Lavers, D. A.

    2015-12-01

    The West Coast of North America is frequently impacted by atmospheric rivers (ARs), regions of intense horizontal water vapor transport that often produce heavy rain, flooding, and landslides when they interact with near-coastal mountains. Recently, studies have shown that ARs penetrate farther inland on many occasions, with indications that the vertical distribution of vapor transport within the ARs may play a key role in this penetration (Alexander et al. 2015; Rutz et al. 2015). We hypothesize that the amount of near-coastal precipitation and the likelihood of AR penetration farther inland may be inversely linked by vertical distributions of vapor fluxes before, during, and after landfall. To explore whether differing vertical distributions of transport explain differing precipitation and penetration outcomes, we compare two landfalling ARs that had very similar spatial extents and rates of vertically integrated (total) vapor transport, but which nonetheless produced very different amounts of precipitation over northern California. The vertical distribution of water vapor flux, specific humidity, and wind speed during these two ARs are examined along several transects using cross-sectional analyses of the Climate Forecast System Reanalysis with a horizontal resolution of ~0.5° (~63 km) and a sigma-pressure hybrid coordinate at 64 vertical levels. In addition, we pursue similar analyses of forecasts from the NCEP Global Ensemble Forecast System GEFS to assess whether numerical weather prediction models accurately represent these distributions. Finally, we calculate backward trajectories from within each AR to examine whether or not the origins of their respective air parcels play a role in the resulting vertical distribution of water vapor flux. The results have major implications for two problems in weather prediction: (1) the near-coastal precipitation associated with landfalling ARs and (2) the likelihood of AR penetration farther inland.

  10. Validation and update of OMI Total Column Water Vapor product

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Gonzalez Abad, Gonzalo; Liu, Xiong; Chance, Kelly

    2016-09-01

    The collection 3 Ozone Monitoring Instrument (OMI) Total Column Water Vapor (TCWV) data generated by the Smithsonian Astrophysical Observatory's (SAO) algorithm version 1.0 and archived at the Aura Validation Data Center (AVDC) are compared with NCAR's ground-based GPS data, AERONET's sun-photometer data, and Remote Sensing System's (RSS) SSMIS data. Results show that the OMI data track the seasonal and interannual variability of TCWV for a wide range of climate regimes. During the period from 2005 to 2009, the mean OMI-GPS over land is -0.3 mm and the mean OMI-AERONET over land is 0 mm. For July 2005, the mean OMI-SSMIS over the ocean is -4.3 mm. The better agreement over land than over the ocean is corroborated by the smaller fitting residuals over land and suggests that liquid water is a key factor for the fitting quality over the ocean in the version 1.0 retrieval algorithm. We find that the influence of liquid water is reduced using a shorter optimized retrieval window of 427.7-465 nm. As a result, the TCWV retrieved with the new algorithm increases significantly over the ocean and only slightly over land. We have also made several updates to the air mass factor (AMF) calculation. The updated version 2.1 retrieval algorithm improves the land/ocean consistency and the overall quality of the OMI TCWV data set. The version 2.1 OMI data largely eliminate the low bias of the version 1.0 OMI data over the ocean and are 1.5 mm higher than RSS's "clear" sky SSMIS data in July 2005. Over the ocean, the mean of version 2.1 OMI-GlobVapour is 1 mm for July 2005 and 0 mm for January 2005. Over land, the version 2.1 OMI data are about 1 mm higher than GlobVapour when TCWV < 15 mm and about 1 mm lower when TCWV > 15 mm.

  11. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  12. In Situ Water Vapor and Ozone Measurements in Lhasa and Kunming during the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Pan, L.; Bian, J.; Paulik, L.; Voemel, H.; Lu, D.; Chen, H.

    2012-12-01

    The Asian summer monsoon (ASM) anticyclone circulation system is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. The observational evidence, however, is largely based on satellite retrievals. We report the first coincident in situ measurements of water vapor and ozone within the ASM anticyclone. The combined water vapor and ozonesondes were launched from Kunming, China in August 2009 and Lhasa, China in August 2010. Total of 11 and 12 sondes were launched in Kunming and Lhasa, respectively. We present the key characteristics of these measurements, and provide a comparison to similar measurements from Alajuela, Costa Rica, an equatorial tropical location, during the Tropical Composition, Cloud and Climate Coupling (TC4) campaign in July and August of 2007. Results show that the ASM anticyclone region has higher water vapor and lower ozone concentrations in the upper troposphere and lower stratosphere than the TC4 observations. The results also show that the cold point tropopause in the ASM region has a higher average height and potential temperature. The in situ observations therefore support the satellite-based conclusions that the ASM is an effective transport pathway for water vapor to enter stratosphere. The data also show that the vertical structures of the region in and around the anticyclone are different: while the estimated level of main convective outflow is higher in Lhasa (~13 km, or 358 K) than in Kunming (~11.5 km, 354 K), the Kunming measurements, owing to its position of near the edge of the anticyclone, show influence of extreme convective events in air masses transported from remote western Pacific.

  13. Simulations of Water Vapor in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Nebuda, Sharon; Verter, Frances; Rood, Richard B.

    1999-01-01

    A detailed study of the water vapor budget in the upper troposphere and lower stratosphere of the "Finite Volume CCM3" (FVCCM3) model is presented. The model is based on a combination of a finite-volume dynamical core (developed by Lin and Rood) and the physical package from Version 3 of the Community Climate Model (CCM3, developed at NCAR). The model was used with a horizontal resolution of 2 by 2.5 degrees and 55 levels, with the upper boundary at 0.0lhPa and a vertical resolution of about 1.2km near the tropopause. Most results presented are from a 17-year simulation performed for the Atmospheric Model Intercomparison Project. It is shown that the model simulates a realistic thermal structure in the tropical tropopause region and that water vapor distributions are in qualitative accord with observations (which are uncertain). The longitudinal structure of the tropical atmosphere is slightly too asymmetric, compared to reasonable estimates of the truth. The processes leading to the horizontal and vertical transport of water vapor in the tropopause region are analyzed in detail. Special attention is given to the realism of horizontal transport events (the ability of the model to retain sharply defined features) and to the role of localized vertical motions in transporting air (and water vapor) between the troposphere and stratosphere. It is shown that the vertical transport of water vapor in the tropical lower stratosphere occurs at about the same rate as that observed, while in many other models this vertical transport is too fast.

  14. Climatic effects of atmospheric water vapor distribution through volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.

    2011-12-01

    Volcanic eruptions play an important role in changing the water vapor distribution of the atmosphere. In comparison with the emission of carbon dioxide released during the consumption of fossil fuel, water vapor's role in climate change has been grossly underestimated. Studies made of modern volcanic eruptions, including satellite images and meteorological records, have revealed climatic effects in different parts of the globe through the migration of volcanic clouds, depending mainly on their timing, location, Volcanic Explosivity Index (VEI) and composition. The climatic effects of volcanic eruptions include: (1) Reduction in solar heating because of the particulates discharged. (2) Interference with the 'normal' atmospheric circulation and/or oceanic circulation. (3) The ash particles and aerosols provide condensation nuclei for water. (4) The transfer from the troposphere into the stratosphere of water vapor which act as a greenhouse gas more important than carbon dioxide. (5) Variability in regional rainfall including the occurrence of droughts, floods, landslides salinization and crop failures. (6) Anomalous regional wind and rain storms. (7) Acid rain. Selected volcanic eruptions will be used as examples to illustrate the different climatic effects.

  15. Simulation of stratospheric water vapor and trends using three reanalyses

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2012-07-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is extended to the 1979-2010 period. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses with HALOE, MLS, and balloon observations. The CFSR based simulation produces a wetter stratosphere than MERRA, and ERAi produces a drier stratosphere than MERRA. We find that ERAi 100 hPa temperatures are cold biased compared to Singapore sondes and MERRA, which explains the ERAi result, and the CFSR grid does not resolve the cold point tropopause, which explains its relatively higher water vapor concentration. The pattern of dehydration locations is also different among the three reanalyses. ERAi dehydration pattern stretches across the Pacific while CFSR and MERRA concentrate dehydration activity in the West Pacific. CSFR and ERAi also show less dehydration activity in the West Pacific Southern Hemisphere than MERRA. The trajectory models' lower northern high latitude stratosphere tends to be dry because too little methane-derived water descends from the middle stratosphere. Using the MLS tropical tape recorder signal, we find that MERRA vertical ascent is 15% too weak while ERAi is 30% too strong. The trajectory model reproduces the observed reduction in the amplitude of the 100-hPa annual cycle in zonal mean water vapor as it propagates to middle latitudes. Finally, consistent with the observations, the models show less than 0.2 ppm decade-1 trend in water vapor both at mid-latitudes and in the tropics.

  16. Simulation of stratospheric water vapor and trends using three reanalyses

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2012-03-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is extended to the 1979-2010 period. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses with HALOE, MLS, and balloon observations. The CFSR based simulation produces a wetter stratosphere than MERRA, and ERAi produces a drier stratosphere than MERRA. We find that ERAi temperatures are cold biased compared to Singapore sondes and MERRA, which explains the ERAi result, and the CFSR grid does not resolve the cold point tropopause, which explains its relatively higher water vapor concentration. The pattern of dehydration locations is also different among the three reanalyses. ERAi dehydration pattern stretches across the Pacific while CFSR and MERRA are concentrate dehydration activity in the West Pacific. CSFR and ERAi also show less dehydration activity in the West Pacific Southern Hemisphere than MERRA. The models' lower stratospheres tend to be dry at high northern latitudes because of too little methane-derived water appears to be descending from the middle stratosphere. Using the tropical tape recorder signal, we find that MERRA vertical ascent is 15% too weak while ERAi is 30% too strong. The models tend to reproduce the observed weakening of the 100-hPa annual cycle in zonal mean water vapor as it propagates to middle latitudes. Finally, consistent with the observations, the models show less than 0.2 ppm decade-1 trends in water vapor both at mid-latitudes and in the tropics.

  17. Revisiting Uvis Observations of the Enceladus Water Vapor Plume

    NASA Astrophysics Data System (ADS)

    Portyankina, G.

    2014-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini spacecraft observed occultations of several stars and the Sun by the water vapor plume and separate jets emitting from the southern pole of Enceladus [Hansen et al., 2006 and 2011]. During the solar occultation separate collimated gas jets were detected inside the background plume. These observations provide data about water vapor column densities along the line of sight of the UVIS instrument. Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) are used to model the plume of Enceladus including an option to add multiple jet sources to the general background plume. The models account for molecular collisions, gravitational and Coriolis forces. Jet sources can differ in production rate and velocity distribution of the water molecules emitted. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along Tiger stripes [Porco et al. 2014]. We applied the spatial distribution of the sources observed by ISS in our models. The output of the models are the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densitioes derived from UVIS observations provide constraints on the physical characteristics of the plume and jets.

  18. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  19. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  20. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  1. Water from air: an overlooked source of moisture in arid and semiarid regions.

    PubMed

    McHugh, Theresa A; Morrissey, Ember M; Reed, Sasha C; Hungate, Bruce A; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth's arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption--movement of atmospheric water vapor into soil when soil air is drier than the overlying air--likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding (18)O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  2. Water from air: an overlooked source of moisture in arid and semiarid regions

    PubMed Central

    McHugh, Theresa A.; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  3. Temperature changes in rheumatoid hand treated with nitrogen vapors and cold air.

    PubMed

    Korman, Paweł; Straburzyńska-Lupa, Anna; Romanowski, Wojciech; Trafarski, Andrzej

    2012-10-01

    The aim of the study was the thermovisual comparison of mean temperature of hand surface changes after local cryotherapy with vapors of nitrogen (-160°C) and cold air (-30°C). Forty-seven patients with rheumatoid arthritis (39 women and 8 men; average age 56.2 ± 10.5 years) were included in the study. They had the application of topic cryotherapy using nitrogen vapors or cold air on one hand. Main outcome measure was surface temperature of dorsal sides of the cooled and contralateral hands. Thermal images of both hands were taken before and up to 3 h after the treatment. One minute after application, nitrogen vapors induced decrease in surface skin temperature of the cooled hand from 28.9 ± 1.8°C to 17.9 ± 2.2°C, P < 0.05, whereas cold air from 29.4 ± 2.4°C to 23.1 ± 2.2°C, P < 0.05. However, significantly lower temperature was obtained with vapors of nitrogen (P < 0.05). Just after the treatment, a rapid rewarming occurred and hands reached baseline temperature in 15 min in both applications and they did not differ till the end of the procedure. Both nitrogen vapors and cold air induce similar temperature changes in hands with the exclusion of temperature obtained 1 min after the treatment. Changes in non-cooled hands indicate contralateral reaction.

  4. Fatigue crack growth in 7475-T651 aluminum alloy plate in hard vacuum and water vapor. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1981-01-01

    Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.

  5. Coherent anti-Stokes Raman spectroscopy - Spectra of water vapor in flames

    NASA Technical Reports Server (NTRS)

    Hall, R. J.; Shirley, J. A.; Eckbreth, A. C.

    1979-01-01

    The results of experimental measurements of the coherent anti-Stokes Raman spectra of water vapor in flames are reported. A pulsed, frequency-doubled neodymium laser was used to supply the pump beam and to pump a dye laser to provide a broadband Stokes beam at 6600 A. Spectra were obtained in the postflame region of a premixed methane-air flame in the Raman frequency shift region of the symmetric stretch mode (3651.7 kaysers) at an approximate temperature of 1675 K. A theoretical calculation of the coherent anti-Stokes Raman spectrum of water vapor at this temperature was made, taking into account only isotropic Q-branch transitions, and using the energy level data of Floud et al. (1976). The theoretical prediction is shown essentially to reproduce all qualitative features of the experimental spectrum, and to exhibit a strong temperature dependence.

  6. Water-vapor climate feedback inferred from climate fluctuations, 2003-2008

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Zhang, Z.; Yang, P.

    2008-10-01

    Between 2003 and 2008, the global-average surface temperature of the Earth varied by 0.6°C. We analyze here the response of tropospheric water vapor to these variations. Height-resolved measurements of specific humidity (q) and relative humidity (RH) are obtained from NASA's satellite-borne Atmospheric Infrared Sounder (AIRS). Over most of the troposphere, q increased with increasing global-average surface temperature, although some regions showed the opposite response. RH increased in some regions and decreased in others, with the global average remaining nearly constant at most altitudes. The water-vapor feedback implied by these observations is strongly positive, with an average magnitude of λ q = 2.04 W/m2/K, similar to that simulated by climate models. The magnitude is similar to that obtained if the atmosphere maintained constant RH everywhere.

  7. A nonisothermal emissivity and absorptivity formulation for water vapor

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  8. Self-deactivation of water vapor - Role of the dimer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    A phenomenological multiple-relaxation theory of the deactivation rate constant for the nu-2 (1 - 0) bending mode of water vapor is presented which incorporates the role not only of the excited monomer but also of the bound molecular complex, in particular the dimer. The deactivation takes place by means of three parallel processes: (1) collisional deexcitation of the excited monomer, (2) a two-step reaction involving association and spontaneous redissociation of an H2O collision complex, and (3) spontaneous dissociation of the stably bound H2O dimer. Oxygen, but not nitrogen or argon, serves as an effective chaperon for the formation of the activated complex. This observation explains the impurity dependence of the self-deactivation rate constant of water vapor. Analysis of an ultrasonic absorption peak based on the third process yields values for the standard entropy and enthalpy of dissociation of the stably bound H2O dimer.

  9. An automated dynamic water vapor permeation test method

    NASA Astrophysics Data System (ADS)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  10. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  11. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  12. Water vapor analysis with use of sunphotometry and radiosoundings

    NASA Astrophysics Data System (ADS)

    Pakszys, Paulina; Zielinski, Tymon; Petelski, Tomek; Makuch, Przemyslaw; Strzalkowska, Agata; Markuszewski, Piotr; Kowalczyk, Jakub

    2014-05-01

    Information about vertically integrated content of water vapor in the atmosphere and type, composition and concentration of aerosols is relevant in many types of atmospheric studies. Such information is required to understand mechanisms of global climate and its further modeling (Smirnov et al., 2000). This work is devoted to the description of a basic technique of analysis and comparing the derivation of Columnar Water Vapor (CWV) from different instruments, such as a radiosonde and a sunphotometer. The measurements were carried out using Microtops II Ozone Monitor & Sunphotometer during the cruises onboard the R/V Oceania (13 cruises) and from one cruise onboard of the SY TASK in the southern Baltic Sea. Measurements were collected for the NASA program Maritime Aerosol Network. Data collected with the DiGICORA III Radiosonde (RS92) come from the webpage of the University of Wyoming, Department of Atmospheric Science. The first instrument, sunphotometer, allows us to collect data on days that are cloud-free. The Microtops II is capable of measuring the total ozone column, total precipitable water vapor and aerosol optical depth at 1020 nm (Morys et al. 2001; Ichoku et al., 2002). Each of these parameters is automatically derived. Data collected by Microtops have been processed with the pre- and post-field calibration and automatic cloud clearing. Precipitable water vapor in the column was derived from the 936nm channel. Detailed data description is available on the AERONET webpage. In radiousoundings the total precipitable water is the water that occurs in a vertical column of a unit cross-sectional area between any two specified levels, commonly expressed as from the earth's surface to the 'top' of the atmosphere. The Integrated Precipitable Water Vapor (IPWV) is the height of liquid water that would result from the condensation of all water vapor in a column. The study of one cruise (29 March - 20 April) shows that 241 Microtops measurements were made, each of

  13. Air-Based Remediation Workshop - Section 2 Soil Vapor Extraction

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sties," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  14. Phoenix Water Vapor Measurements using the SSI Camera

    NASA Astrophysics Data System (ADS)

    Tamppari, Leslie; Lemmon, Mark T.

    2016-10-01

    The Phoenix and Mars Reconnaissance Orbiter (MRO) spacecraft participated together in an observation campaign that was a coordinated effort to study the Martian atmosphere. These coordinated observations were designed to provide near-simultaneous observations of the same column of atmosphere over the Phoenix lander. Seasonal coverage was obtained at Ls=5-10° resolution and diurnal coverage was obtained as often as possible and with as many times of day as possible. One key aspect of this observation set was the means to compare the amount of water measured in the whole column (via the MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) and the Phoenix Surface Stereo Imager (SSI) with that measured at the surface (via the Phoenix Thermal and Electrical Conductivity probe (TECP; Zent et al., 2008) which contained a humidity sensor). This comparison, along with the Phoenix LIDAR observations of the depth to which aerosols are mixed (Whiteway et al., 2008, 2009), provides clues to the water vapor mixing ratio profile. Tamppari et al. (2009) showed that examination of a subset of these coordinated observations indicate that the water vapor is not well mixed in the atmosphere up to a cloud condensation height at the Phoenix location during northern summer, and results indicated that a large amount of water must be confined to the lowest 0.5-1 km. This is contrary to the typical assumption that water vapor is "well-mixed."Following a similar approach to Titov et al. (2000), we use the Phoenix SSI camera [Lemmon et al., 2008] filters to detect water vapor: LA = 930.7 nm (broad), R4 = 935.5 nm (narrow), and R5 = 935.7 nm (narrow). We developed a hybrid DISORT-spherical model (DISORT model, Stamnes et al. 1988) to model the expected absorption due to a prescribed water vapor content and profile, to search for matches to the observations. Improvements to the model have been made and recent analysis using this model and comparisons to

  15. Analysis based on the diffusion model for saturation silica gel with water vapor at conservation units steam circuit TPP

    NASA Astrophysics Data System (ADS)

    Goldaev, Sergey; Khushvaktov, Alisher

    2015-01-01

    A quantitative analysis of the diffusion model dehumidifying air in the steam circuit of TPP, with a layer of silica gel. Showed that such an approximation, supplemented the experimental value of the coefficient of free diffusion identified by the developed method gives reliable values for the concentration of water vapor absorption over time.

  16. Adsorption/Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    To clarify the operating and design concept of desiccant rotor, which is a most important component of an adsorptive desiccant cooling process, adsorption / desorption behavior of water vapor in a desiccant rotor has been investigated by means of computer simulation. Mass transfer coefficient in the mathematical model could be related to cycle time by applying the penetration theory. Considering this relationship, influences of the rotation speed of the desiccant rotor, process / regeneration air velocity and their velocity ratio were investigated. It was found that the optimum rotation speed tended to disappear when the regeneration air temperature was low and its humidity was considerably small compared to the process inlet air, since the product air condition approached to regeneration air condition as the rotation speed increased. Decrease of the dehumidifying performance was observed at higher air velocity and the corresponding higher rotation speed since the adsorbent rotor was not fully regenerated due to shorter regeneration time and shorter residence time of process / regeneration air in the adsorbent rotor prevented the mass transfer between air and adsorbent. It was also found that the dehumidifying performance was not improved even though the adsorbent was fully regenerated by higher regeneration air velocity as the sensible heat transferred from the regeneration zone via adsorbent itself increased and disturbed adsorption.

  17. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    NASA Astrophysics Data System (ADS)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-04-01

    The AquaVIT-1 Intercomparison of Atmospheric Water Vapor Measurement Techniques was conducted at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, either by extracting air into instrument flow systems, locating instruments inside the chamber, or sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. These results indicate that the core instruments, in general, have intrinsic skill to determine unknown water vapor mixing ratios with an accuracy of at least ±20%. The implication for atmospheric measurements is

  18. Study of the 10 micron continuum of water vapor

    NASA Technical Reports Server (NTRS)

    Arefyev, V. N.; Dianov-Klokov, V. I.; Ivanov, V. M.; Sizov, N. I.

    1979-01-01

    Radiation attenuation by atmospheric water vapor is considered. A formula based on laboratory data is recommended for approximating continuous absorption in the spectra region in question. Data of full scale measurements and laboratory experiments are compared. It was concluded that only molecular absorption need be taken into account under clear atmospheric conditions during the warm part of the year, while in winter or in cloudy conditions, the effect of aerosol can be significant.

  19. Surface potential of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  20. Water vapor variance measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Evans, K.; Melfi, S. H.; Ferrare, R.; Whiteman, D.

    1992-01-01

    Because of the importance of atmospheric water vapor variance, we have analyzed data from the NASA/Goddard Raman lidar to obtain temporal scales of water vapor mixing ratio as a function of altitude over observation periods extending to 12 hours. The ground-based lidar measures water vapor mixing ration from near the earth's surface to an altitude of 9-10 km. Moisture profiles are acquired once every minute with 75 m vertical resolution. Data at each 75 meter altitude level can be displayed as a function of time from the beginning to the end of an observation period. These time sequences have been spectrally analyzed using a fast Fourier transform technique. An example of such a temporal spectrum obtained between 00:22 and 10:29 UT on December 6, 1991 is shown in the figure. The curve shown on the figure represents the spectral average of data from 11 height levels centered on an altitude of 1 km (1 plus or minus .375 km). The spectra shows a decrease in energy density with frequency which generally follows a -5/3 power law over the spectral interval 3x10 (exp -5) to 4x10 (exp -3) Hz. The flattening of the spectrum for frequencies greater than 6x10 (exp -3) Hz is most likely a measure of instrumental noise. Spectra like that shown in the figure are calculated for other altitudes and show changes in spectral features with height. Spectral analysis versus height have been performed for several observation periods which demonstrate changes in water vapor mixing ratio spectral character from one observation period to the next. The combination of these temporal spectra with independent measurements of winds aloft provide an opportunity to infer spatial scales of moisture variance.

  1. Extratropical influence of upper tropospheric water vapor on Greenhouse warming

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Hu, Hua

    1997-01-01

    Despite its small quantity, the importance of upper tropospheric water vapor is its ability to trap the longwave radiation emitted from the Earth's surface, namely the greenhouse effect. The greenhouse effect is defined quantitatively as the difference between the longwave flux emitted by the Earth's surface and the outgoing longwave radiation (OLR) flux emitted from the top of the atmosphere (TOA) (Raval and Ramanathan 1989).

  2. Impact of Air Filter Material on Metal Oxide Semiconductor (MOS) Device Characteristics in HF Vapor Environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Wen; Lou, Jen-Chung; Yeh, Ching-Fa; Hsieh, Chih-Ming; Lin, Shiuan-Jeng; Kusumi, Toshio

    2004-05-01

    Airborne molecular contamination (AMC) is becoming increasingly important as devices are scaled down to the nanometer generation. Optimum ultra low penetration air (ULPA) filter technology can eliminate AMC. In a cleanroom, however, the acid vapor generated from the cleaning process may degrade the ULPA filter, releasing AMC to the air and the surface of wafers, degrading the electrical characteristics of devices. This work proposes the new PTFE ULPA filter, which is resistant to acid vapor corrosion, to solve this problem. Experimental results demonstrate that the PTFE ULPA filter can effectively eliminate the AMC and provide a very clean cleanroom environment.

  3. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  4. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    SciTech Connect

    Schlaepfer, D.; Borel, C.C.; Keller, J.

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  5. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  6. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure. PMID:25265908

  7. Calibration of Atmospherically Induced Delay Fluctuations Due to Water Vapor

    NASA Technical Reports Server (NTRS)

    Resch, George; Jacobs, Christopher; Keihm, Steve; Lanyi, Gabor; Naudet, Charles; Riley, Abraham; Rosenberger, Hans; Tanner, Alan

    2000-01-01

    We have completed a new generation of water vapor radiometers (WVR), the A- series, in order to support radio science experiments with the Cassini spacecraft. These new instruments sense three frequencies in the vicinity of the 22 GHz emission line of atmospheric water vapor within a 1 degree beamwidth from a clear aperture antenna that is co-pointed with the radio telescope down to 10 degree elevation. The radiometer electronics features almost an order of magnitude improvement in temperature stability compared with earlier WVR designs. For many radio science experiments, the error budget is likely to be dominated by path delay fluctuations due to variable atmospheric water vapor along the line-of-sight to the spacecraft. In order to demonstrate the performance of these new WVRs we are attempting to calibrate the delay fluctuations as seen by a radio interferometer operating over a 21 km baseline with a WVR near each antenna. The characteristics of these new WVRs will be described and the results of our preliminary analysis will be presented indicating an accuracy of 0.2 to 0.5 mm in tracking path delay fluctuations over time scales of 10 to 10,000 seconds.

  8. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  9. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  10. Surface tension of water in the presence of perfluorocarbon vapors.

    PubMed

    Chernyshev, Vasiliy S; Skliar, Mikhail

    2014-03-28

    Fluorocarbons are highly hydrophobic, biocompatible compounds with a variety of medical applications. Despite significant interest, the study of interfacial properties of fluorocarbons in aqueous systems has received limited attention. In this study, we investigate the influence of perfluoropentane and perfluorohexane vapors on the surface tension of water at room temperature. The results show a substantial decrease in the surface tension of water in the presence of perfluorocarbon vapors. In the investigated range of partial pressures up to the saturation value, a linear correlation between the surface tension and the partial pressure was found. This suggests that an adsorbed perfluorocarbon layer is formed on the surface of water. For comparison, the effect of the perfluorocarbon vapor on the surface tension of methanol was also investigated and a similar dependence was observed. Our results indicate that the stability and dynamic transitions of fluorocarbon colloids, which may be dispersed under physiological conditions as microdroplets, bubbles, or their combination, are likely affected by the composition of liquid and gas phases.

  11. Combustion of a single magnesium particle in water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ya; Xia, Zhi-Xun; Zhang, Wei-Hua; Huang, Xu; Hu, Jian-Xin

    2015-09-01

    The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified. Project supported by the National Natural Science Foundation of China (Grant No. 51406231).

  12. Water vapor, water-ice clouds, and dust in the North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Michael D.; Bass, Deborah S.; Hale, Amy S.

    2006-01-01

    The behavior of water vapor, water-ice and dust in the Martian atmosphere is important for understanding the overall Martian climate system, which is characterized by three main cycles: water, including water-ice, dust, and CO2. Understanding these cycles will lend insight into the behavior of the atmospheric dynamics, the atmosphere's ability to transport dust, water-ice, and vapor to different parts of the planet, and how that ability changes as a function of dust and water-ice loading.

  13. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data

    SciTech Connect

    Bo-Cai Gao; Goetz, A.F.H. )

    1990-03-20

    High spatial resolution column atmospheric water vapor amounts were derived from spectral data collected by the airborne visible-infrared imaging spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14-{mu}m and 0.94-{mu}m water vapor band absorption regions using an atmospheric model, a narrow-band spectral model, and a nonlinear least squares fitting technique. The derivation makes use of the facts that (1) the reflectances of many ground targets vary approximately linearly with wavelength in the 0.94- and 1.14-{mu}m water vapor band absorption regions, (2) the scattered radiation near 1 {mu}m is small compared with the directly reflected radiation when the atmospheric aerosol concentrations are low, and (3) the scattered radiation in the lower part of the atmosphere is subjected to the water vapor absorption. Based on the analyses of an AVIRIS data set that was acquired within an hour of radiosonde launch, it appears that the accuracy approaches the precision. The derived column water vapor amounts are independent of the absolute surface reflectances. It now appears feasible to derive high spatial resolution column water vapor amounts over land areas from satellite altitude with the proposed high resolution imaging spectrometer (HIRIS). Curve fitting of spectra near 1 {mu}m from areas covered with vegetation, using an atmospheric model and a simplified vegetation reflectance model, indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously because the band centers of liquid water in vegetation and the atmospheric water vapor are offset by approximately 0.05 {mu}m.

  14. Venus: implications from microwave spectroscopy of the atmospheric content of water vapor.

    PubMed

    Pollack, J B; Wood, A T

    1968-09-13

    From comparison of theoretical and observed microwave brightness temperatures of Venus at 1.35 centimeters, the center of a water-vapor line, we obtain an upper limit of 0.8 percent for the water-vapor mixing ratio in the lower atmosphere. This limit is consistent with the amount of water vapor detected by Venera 4, the existence of aqueous ice clouds, and a greenhouse effect caused by water vapor and carbon dioxide. The computed spectra suggest that a sensitive procedure for detection of water vapor is examination of the wavelength region between I and 1.4 centimeters.

  15. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  16. Transport of Water Vapor and Ozone to the Northern Sacramento Valley Boundary Layer

    NASA Astrophysics Data System (ADS)

    Conley, S. A.; Faloona, I. C.; Cooper, O. R.

    2011-12-01

    Ground based studies of atmospheric composition typically suffer from incomplete constraints on the influence of vertical transport on the surface air. While horizontal transport can be explored by multiple surface stations, and chemical processing by the judicious addition of surface measurements, vertical transport is often controlled by the entrainment flux of compounds at the opposite interface: between the atmospheric boundary layer (ABL) and the lower free troposphere (FT.) This entrainment flux is most significantly determined by the difference in concentration between the two layers, a gradient that is nearly always out of reach of traditional measurement techniques, or subject to very sporadic investigation by aircraft. In this work we examine the extent to which surface layer air in the Sacramento valley originated from higher altitudes. Given a strong vertical gradient of ozone and water vapor, the extent to which free tropospheric air is mixed down into the PBL will impact the surface layer mixing ratios of both compounds. Here we use sonde, surface, and radar wind profiler data from several Calnex sites in the Northern Sacramento Valley to estimate the advection and temporal change of water vapor and ozone in the ABL. Performing an ABL water budget analysis with estimates of evapotranspiration from the CIMIS (California Irrigation Management Information System) network, provides the vertical flux of water vapor at the top of the boundary layer and yields an average entrainment velocity for the region. Using the entrainment velocity so derived with the ozone vertical gradient measured during Calnex, we are able to solve for the net photochemical production in a region that frequently exceeds EPA standards. We work towards combining continuous measurements of ozone from an upwind mountain site in Mendocino County (Cahto Peak) along with periodic sampling of ozone profiles in the valley and offshore by aircraft to build a comprehensive picture of the

  17. FIELD TEST OF AIR SPARGING COUPLED WITH SOIL VAPOR EXTRACTION

    EPA Science Inventory

    A controlled field study was designed and conducted to assess the performance of air sparging for remediation of petroleum fuel and solvent contamination in a shallow (3-m deep) groundwater aquifer. Sparging was performed in an insolation test cell (5 m by 3 m by 8-m deep). A soi...

  18. Water Vapor Profiling From CoSSIR Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Chang, L. A.; Monosmith, B.; Zhang, Z.

    2007-01-01

    Previous millimeter-wave radiometry for water vapor profiling, by either airborne or satellite sensors, has been limited to frequencies less than or equal to 183 GHz. The retrievals are generally limited to an altitude range of 0-10 km. The additional measurements at the frequencies of 380.2 plus or minus 0.8, 380.2 plus or minus 1.8, 380.2 plus or minus 3.3, and 380.2 plus or minus 6.2 GHz provided by the new airborne Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) can extend this profiling capability up to an altitude of about 15 km. Furthermore, the retrievals can be performed over both land and water surfaces in the tropics without much difficulty. These properties are demonstrated by recent CoSSIR measurements on board the NASA WB-57 aircraft during CR-AVE in January 2006. Retrievals of water vapor mixing ratio were performed at eight altitude levels of 1, 3, 5, 7, 9, 11, 13, and 15 km from CoSSIR data sets acquired at observational angles of 0 and 53.4 degrees, and the results were compared with other available measurements from the same aircraft and near-concurrent satellites. A comparison of the variations of mixing ratios retrieved from CoSSIR and those derived from the Meteorological Measurement System (MMS) in the aircraft vicinity, along the path of the transit flight on January 14, 2006, appears to show some connection, although the measurements were referring to different altitudes. A very good agreement was found between the collocated values of total precipitable water derived from the CoSSIR-retrieved water vapor profiles and those estimated from TMI (TRMM Microwave Imager)

  19. An inexpensive and stable LED Sun photometer for measuring the water vapor column over South Texas from 1990 to 2001

    NASA Astrophysics Data System (ADS)

    Mims, Forrest M.

    2002-07-01

    A Sun photometer that uses near-infrared light-emitting diodes (LEDs) as spectrally-selective photodetectors has measured total column water vapor in South Texas since February 1990. The 12 years of solar noon observations to date are correlated with upper air soundings at Del Rio, Texas (r2 = 0.75), and highly correlated with measurements by a Microtops II filter Sun photometer (r2 = 0.94). LEDs are inexpensive and have far better long term stability than the interference filters in conventional Sun photometers. The LED Sun photometer therefore provides an inexpensive, stable and portable means for measuring column water vapor.

  20. Characterization of upper troposphere water vapor measurements during AFWEX using LASE.

    SciTech Connect

    Ferrare, R. A.; Browell, E. V.; Ismail, I.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Bosenberg, J.; Diskin, G.; Goldsmith, J.; Lesht, B.; Podolske, J.; Sachse, G.; Schmidlin, F. J.; Turner, D.; Whitemann, D.

    2002-07-15

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere (UT) water vapor measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. They show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UT water vapor measurements.

  1. Water vapor diffusion into a nanostructured iron oxyhydroxide.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-06-17

    Water diffusion through 0.4 nm × 0.4 nm wide tunnels of synthesized akaganéite (β-FeOOH) nanoparticles was studied by a coupled experimental-molecular modeling approach. A sorption isotherm model obtained from quartz crystal microbalance measurements suggests that the akaganéite bulk can accommodate a maximum of 22.4 mg of water/g (44% bulk site occupancy) when exposed to atmospheres of up to 16 Torr water vapor. Fourier transform infrared spectroscopy also showed that water molecules interact with (hydr)oxo groups on both the akaganéite bulk and surface. Diffusion reactions through the akaganéite bulk were confirmed through important changes in the hydrogen-bonding environment of bulk hydroxyl groups. Molecular dynamics simulations showed that water molecules are localized in cavities that are bound by eight hydroxyl groups, forming short-lived (<0.5 ps) hydrogen bonds with one another. Diffusion coefficients of water are three orders of magnitude lower than they are in liquid water (D = 0.0-11.1 × 10(-12) m(2)·s(-1)), whereas large integral rotational correlation times are 4 to 15 times higher (τr = 8.4-31.8 ps). Moreover, both of these properties are strongly loading-dependent. The simulations of the interface between the water vapor phase and the (010) surface plane of the akaganéite, where tunnel openings are exposed, revealed sluggish rates of incorporation between interfacial water species and their tunnel counterparts. The presence of defects in the synthesized particles are suspected to contribute to different diffusion rates in the laboratory when compared to those observed in pristine crystalline materials, as studied by molecular modeling.

  2. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2003-01-01

    Ultra high temperature ceramics (UHTCs) including HfB2 + SiC (20% by volume), ZrB2 + SiC (20% by volume) and ZrB2 + SiC (14% by volume) + C (30% by volume) have historically been evaluated as reusable thermal protection systems for hypersonic vehicles. This study investigates UHTCs for use as potential combustion and aeropropulsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline comparison. Weight change measurements, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results will be compared with tests ran in static air at temperatures of 1327, 1627, and 1927 C. Oxidation comparisons will also be made to the study by Tripp. A small number of high pressure burner rig (HPBR) results at 1100 and 1300 C will also be discussed. Specific weight changes at all three temperatures along with the SIC results are shown. SiC weight change is negligible at such short duration times. HB2 + SiC (HS) performed the best out of all the tested UHTCS for all exposure temperatures. ZrB2 + Sic (ZS) results indicate a slightly lower oxidation rate than that of ZrBl + SiC + C (ZCS) at 1200 and 1400 C, but a clear distinction can not be made based on the limited number of tested samples. Scanning electron micrographs of the cross-sections of all the UHTCs were evaluated. A representative area for HS is presented at 1400 C for 26 hours which was the composition with the least amount of oxidation. A continuous SiO2 scale is present in the outer most edge of the surface. An image of ZCS is presented at 1400 C for 10 hours, which shows the most degradation of all the compositions studied. Here, the oxide surface is a mixture of ZrSiO4, ZrO2 and SO2.

  3. DEVELOPMENT OF AN AIR-TO-LEAF VAPOR PHASE TRANSFER FACTOR FOR DIOXINS AND FURANS

    EPA Science Inventory

    Results of an experiment in which grass was grown in a greenhouse and outdoors, and in soils of different concentration levels of dioxins and furans, were used in a modeling exercise to derive an air-to-leaf vapor phase transfer factor. The purpose of the experiment was to under...

  4. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... is loaded by maintaining a positive pressure of at least 13.8 kPa gauge (2 psig) by: (1)...

  5. 46 CFR 154.1710 - Exclusion of air from cargo tank vapor spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Exclusion of air from cargo tank vapor spaces. 154.1710 Section 154.1710 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design...

  6. Electrothermal Vaporization Sample Introduction for Spaceflight Water Quality Monitoring via Gas Chromatography-Differential Mobility Spectrometry.

    PubMed

    Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Minton, John M; Macatangay, Ariel V; Dwivedi, Prabha; Fernández, Facundo M

    2015-06-16

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. However, with the construction of the International Space Station (ISS) and the subsequent extension in mission duration up to one year, an enhanced, real-time method for environmental monitoring is necessary. The station air is currently monitored for trace volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (GC-DMS) via the Air Quality Monitor (AQM), while water is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. As mission scenarios extend beyond low Earth orbit, a convergence in analytical instrumentation to analyze both air and water samples is highly desirable. Since the AQM currently provides quantitative, compound-specific information for air samples and many of the targets in air are also common to water, this platform is a logical starting point for developing a multimatrix monitor. Here, we report on the interfacing of an electrothermal vaporization (ETV) sample introduction unit with a ground-based AQM for monitoring target analytes in water. The results show that each of the compounds tested from water have similar GC-DMS parameters as the compounds tested in air. Moreover, the ETV enabled AQM detection of dimethlsilanediol (DMSD), a compound whose analysis had proven challenging using other sample introduction methods. Analysis of authentic ISS water samples using the ETV-AQM showed that DMSD could be successfully quantified, while the concentrations obtained for the other compounds also agreed well with laboratory results.

  7. Inferring water vapor amounts with solar spectral irradiance: Measurements, modeling, and comparisons with in situ water vapor profiles in the upper troposphere lower stratosphere from ATTREX

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.; Thornberry, T. D.; Rollins, D. W.; LeBlanc, S. E.; Bui, T. V.

    2013-12-01

    The Airborne Tropical TRopopause Experiment (ATTREX) flew six science missions on the NASA Global Hawk aircraft from NASA Dryden, California to the Pacific tropics to sample the upper troposphere, lower stratosphere (UTLS) during February and March of 2013. After transit to the tropics, the aircraft performed a series of vertical profiles from the cruising altitude of about 18 km down to 14 km sampling the tropical tropopause layer (TTL). A science focus of ATTREX is to examine water vapor and its transport through the TTL. The extremely cold temperatures found in the TTL act to limit the transport of water vapor from the troposphere to stratosphere, making this region critical to the water vapor budget of the stratosphere. Here we investigate the use of the strong water bands centered at 1400 and 1900 nm in the telluric solar spectrum to infer the small water vapor amounts through the TTL. Measurements of spectral irradiance from the Solar Spectral Flux Radiometer (SSFR) at the top and bottom of the aircraft profiles are used to produce transmission spectra. These are compared with atmospheric radiative transfer calculations of transmission through the layer. The measured water vapor profile from the NOAA water vapor instrument, as well as temperature and pressure, were used in the modeling, providing a rare opportunity to compare water vapor amount inferred from solar transmittance to in situ measurements. Prospects for the use of these bands for determining the total column water vapor amount from the UTLS to the top of the atmosphere from aircraft are also discussed.

  8. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  9. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    NASA Technical Reports Server (NTRS)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  10. Water Vapor and its Isotopic Composition in the Upper Troposphere and Stratosphere

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Sherwood, S. C.

    2003-01-01

    Any theory of water vapor in the tropical tropopause layer (TTL) must explain both the abundance and isotopic composition of water there. We have previously presented a model of the TTL that simulated the abundance of water vapor as well as the details of the vertical profile. That model included the effects of 'overshooting convection', which injects dry air directly into the TTL. Here, we present results for the model after modifying it to include water's stable isotope HDO. The model is capable of accurately simulating the recently observed, nearly uniform HDO depletion (delta D) in the TTL. We find that lofted ice is necessary to accurately simulate the profile of delta D in the TTL, as has been suggested previously. We also find that vertical mixing due to overshooting convection plays an important role in maintaining the observed profile. Finally, any theory of lofted ice requires a complementary source of dry air in the TTL; without that, the TTL will rapidly saturate and the lofted ice will not evaporate.

  11. Air stripping for treatment of produced water

    SciTech Connect

    Fang, C.S.; Lin, J.H.

    1988-05-01

    In a laboratory study, air stripping shows a promising potential for treatment of produced water to meet new government regulations on total organic carbon (TOC). Reservoir hydrocarbons dissolved in water, such as volatile paraffins and aromatics, can be removed by air stripping through interphase mass transfer. However, air stripping cannot remove many chemicals added to crude oil by the operator.

  12. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    NASA Astrophysics Data System (ADS)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  13. Cassini/CIRS Observations of Water Vapor in Titan's Stratosphere

    NASA Astrophysics Data System (ADS)

    Bjoraker, Gordon; Achterberg, R.; Anderson, C.; Samuelson, R.; Carlson, R.; Jennings, D.

    2008-09-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained spectra of Titan during most of the 44 flybys of the Cassini prime mission. Water vapor on Titan was first detected using whole-disk observations from the Infrared Space Observatory (Coustenis et al 1998, Astron. Astrophys. 336, L85-L89). CIRS data permit the retrieval of the latitudinal variation of water on Titan and some limited information on its vertical profile. Emission lines of H2O on Titan are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. Water abundances were retrieved in nadir spectra at 55 South, the Equator, and at 19 North. Limb spectra of the Equator were also modeled to constrain the vertical distribution of water. Stratospheric temperatures in the 0.5 - 4.0 mbar range were obtained by inverting spectra of CH4 in the ν4 band centered at 1304 cm-1. The temperature in the lower stratosphere (4 - 20 mbar) was derived from fitting pure rotation lines of CH4 between 80 and 160 cm-1. The origin of H2O and CO2 is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of water originates either within the Saturn system or from the interplanetary medium. Recently, Horst et al (J. Geophys. Res. 2008, in press) developed a photochemical model of Titan in which there are two external sources of oxygen. Oxygen ions (probably from Enceladus) precipitate into Titan's atmosphere to form CO at very high altitudes (1100 km). Water ice ablation at lower altitudes (700 km) forms H2O and subsequent chemistry produces CO2. CIRS measurements of CO, CO2, and now of H2O will provide valuable constraints to these photochemical models and improve our understanding of oxygen chemistry on Titan.

  14. Cassini/CIRS Observations of Water Vapor in Titan's Stratosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon L.; Achterberg, R. K.; Anderson, C. M.; Samuelson, R. E.; Carlson, R. C.; Jennings, D. E.

    2008-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained spectra of Titan during most of the 44 flybys of the Cassini prime mission. Water vapor on Titan was first detected using whole-disk observations from the Infrared Space Observatory (Coustenis et al 1998, Astron. Astrophys. 336, L85-L89). CIRS data permlt the retrieval of the latitudinal variation of water on Titan and some limited information on its vertical profile. Emission lines of H2O on Titan are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. Water abundances were retrieved in nadir spectra at 55 South, the Equator, and at 19 North. Limb spectra of the Equator were also modeled to constrain the vertical distribution of water. Stratospheric temperatures in the 0.5 - 4.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304/cm. The temperature in the lower stratosphere (4 - 20 mbar) was derived from fitting pure rotation lines of CH4 between 80 and 160/cm. The origin of H2O and CO2 is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of water originates either within the Saturn system or from the interplanetary medium. Recently, Horst et al (J. Geophys. Res. 2008, in press) developed a photochemical model of Titan in which there are two external sources of oxygen. Oxygen ions (probably from Enceladus) precipitate into Titan's atmosphere to form CO at very high altitudes (1100 km). Water ice ablation at lower altitudes (700 km) forms H2O and subsequent chemistry produces CO2. CIRS measurements of CO, CO2, and now of H2O will provide valuable constraints to these photochemical models and - improve our understanding of oxygen chemistry on Titan.

  15. WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau

    SciTech Connect

    Podio, L.; Dougados, C.; Thi, W.-F.; Menard, F.; Pinte, C.; Codella, C.; Cabrit, S.; Nisini, B.; Sandell, G.; Williams, J. P.; Testi, L.; Woitke, P.

    2013-03-20

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.

  16. Numerical Analysis of coupled liquid water, water vapor and heat transport in a sandy loam soil

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Deb, S.; Sharma, P.

    2009-12-01

    Water vapor transport could be significant in arid areas such as southern New Mexico. Temporal soil moisture variations in unsaturated soils due to temperature gradients are characterized by the water vapor transport in the surface soil layer as liquid water movement could be very small especially when surface soil moisture is low. Numerical model Hydrus-1D was applied to investigate non-isothermal liquid and vapor flow closely coupled with the heat transport in a furrow-irrigated onion field located at Leyendecker Plant Science Research Center, Las Cruces. TDR and temperature sensors were installed to continuously monitor diurnal soil moisture and temperature variations in sandy loam onion beds at 5, 10, 20, and 50 cm depths during the entire growing season. Meteorological data were obtained from PSRC weather station. Hydrus-1D simulated soil moisture and temperature favorably contrasted against measured data at different depths. Simulations indicated that both liquid and vapor fluxes contributed to the water transport near surface. Liquid flux dominated the water movement during an irrigation event, while contribution of vapor flux increased with increasing soil drying. Vapor flux decreased from 5 cm to 25 cm depth, indicating that water vapor flux is much higher in the layer near soil surface. Both diffusive and dispersive transports are responsible for the vapor flux in the near-surface dry zone, while convective liquid flux was the main transport mechanism in the near-surface wet lower zone. In near-surface wet zone, diffusive flux decreased and changed from upward to downward flux.

  17. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  18. Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay

    NASA Technical Reports Server (NTRS)

    Elgered, G.; Davis, J. L.; Herring, T. A.; Shapiro, I. I.

    1991-01-01

    An important source of error in VLBI estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. This paper presents and discusses the method of using data from a water vapor radiomete (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data or Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. For the most frequently measured baseline in this study, the use of WVR data yielded a 13 percent smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the 'best' minimum elevationi angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass.

  19. Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors

    NASA Technical Reports Server (NTRS)

    Turner, D. D.; Feltz, W. F.; Ferrare, R. A.

    2000-01-01

    The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

  20. Numerical simulation of supersonic water vapor jet impinging on a flat plate

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Aono, Junya; Shima, Eiji

    2012-11-01

    We investigated supersonic water vapor jet impinging on a flat plate through numerical simulation. This simulation is for estimating heating effect of a reusable sounding rocket during vertical landing. The jet from the rocket bottom is supersonic, M=2 to 3, high temperature, T=2000K, and over-expanded. Atmospheric condition is a stationary standard air. The simulation is base on the full Navier-Stokes equations, and the flow is numerically solved by an unstructured compressible flow solver, in-house code LS-FLOW-RG. In this solver, the transport properties of muti-species gas and mass conservation equations of those species are considered. We employed DDES method as a turbulence model. For verification and validation, we also carried out a simulation under the condition of air, and compared with the experimental data. Agreement between our results and the experimental data are satisfactory. Through this simulation, we calculated the flow under some exit pressure conditions, and discuss the effects of pressure ratio on flow structures, heat transfer and so on. Furthermore, we also investigated diffusion effects of water vapor, and we confirmed that these phenomena are generated by the interaction of atmospheric air and affects the heat transfer to the surrounding environment.

  1. SCIAMACHY Lunar Occultation Water Vapor Retrieval & Validation For The Southern Hemispheric Stratosphere

    NASA Astrophysics Data System (ADS)

    Azam, Faiza; Bramstedt, Klaus; Rozanov, Alexei; Bovensmann, Heinrich; Burrows, John P.

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) onboard the European Space Agency's ENVIronmental SATellite (ENVISAT) observes the earth's atmosphere in nadir, limb and solar/lunar occultation geometry covering the UV to NIR (240nm -2380nm) spectral range. The instrument is dedicated to improve our knowl-edge in atmospheric composition and global atmospheric change serving the needs for climate monitoring. The instrument thereby provides total columns as well as vertical profiles of the climate parameters that are relevant to the ozone chemistry, air pollution and global climate change issues, from the troposphere upto the mesosphere. The water vapor has a longer chemical lifetime in the stratosphere and in the polar region it accounts for the chemistry and dynamics. The amount of water vapor in the polar stratosphere directly influence the ozone depletion by controlling the polar vortex temperatures and the formation temperature of the polar stratospheric clouds. From the lunar transmission spectra measured by SCIAMACHY from 2003 to present, stratospheric number density profiles of water vapor have been retrieved over the high southern latitudes ( 50° S -90° S ). The H2 O profiles are retrieved in the altitude range 17-50 km from the calibrated level-1 data using the spectral window 1350-1420 nm. To access the quality and accuracy of this H2 O prod-uct, the validation has been carried out using the correlative solar occultation spectra measured by other instruments such as the satellite instrument ACE-FTS (Atmospheric Chemistry Ex-periment Fourier Transform Spectrometer) and HALOE (HALogen Occultation Experiment). The lunar occultation water vapor retrieval, optimization and the results of the comparisons are presented here. For the Antarctic region, there is a coverage scarcity of the atmospheric species which play significant role in the chemistry and dynamics associated with the polar vortex and the ozone hole by the

  2. Quantifying Boundary Layer Water Vapor with Near-Infrared and Microwave Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Fishbein, E.; Kalmus, P.; Teixeira, J.

    2015-12-01

    This study investigates the synergy of collocated microwave radiometry and near-infrared imagery to estimate the planetary boundary layer water vapor. Microwave radiometry provides the total column water vapor, while the near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. In combining the two data sets, we apply several flags as well as proximity tests to remove pixels with high clouds and / or intrapixel heterogeneity. Comparisons against radiosondes (MAGIC, VOCALS-REX, etc) and ECMWF reanalysis data demonstrate the robustness of these boundary layer water vapor estimates. It is shown that the measured AMSR-MODIS boundary layer water vapor can be analyzed using sea surface temperature and cloud top pressure information by employing simple equations based on the Clausius-Clapeyron relationship.

  3. Lagrangian transport of water vapor and CFCs in a coupled Chemistry Climate Model

    NASA Astrophysics Data System (ADS)

    Hoppe, Charlotte; Müller, Rolf; Hoffmann, Lars; Konopka, Paul; Plöger, Felix; Grooß, Jens-Uwe

    2013-04-01

    We describe the implementation of a Lagrangian transport core in a chemistry climate model (CCM). Thereby we address the common problem of properly representing trace gas distributions in a classical Eulerian framework with a fixed model grid, particularly in regions with strong trace gas gradients. A prominent example is stratospheric water vapor, which is an important driver of surface climate change on decadal scales. In this case, the transport representation is particularly important in the tropical tropopause layer (TTL), where tropospheric air enters into the stratosphere. We have coupled the Chemical Lagrangian Model of the Stratosphere (CLaMS) with the ECHAM-MESSy Atmospheric Chemistry Model (EMAC). The latter includes the ECHAM5 climate model, and the MESSy interface, which allows for flexible coupling and switching between different submodels. The chemistry transport model CLaMS provides a fully Lagrangian transport representation to calculate constituent transport for an ensemble of air parcels that move along trajectories. To facilitate the calculation of long time-series a simplified chemistry scheme was implemented. Various studies show that the CLaMS model is particularly suited to properly represent dynamics and chemistry in the UT/LS region. The analysis of mean age of stratospheric air gives insight into the different transport characteristics of the Eulerian and the Lagrangian transport schemes. Mean age of air, calculated in both frameworks, is compared regarding the representation of important processes, i.e. descent in the polar vortex, upwelling in the tropical pipe, and isentropic in-mixing in subtropical regions. We also compared the zonal mean distributions and photochemical lifetimes of CFC-11 and CFC-12 with climatologies from different satellite experiments (ACE-FTS, HIRDLS, and MIPAS). CLaMS stratospheric water vapor distributions show remarkable differences compared to the stratospheric water vapor simulated by ECHAM, especially in

  4. Numerical modeling of water-vapor transport during pre-storm and COHMEX

    NASA Technical Reports Server (NTRS)

    Djuric, Dusan

    1986-01-01

    Initial conditions are designed for numerical simulation of mesocale processes in the atmosphere using the Limited Area Mesoscale Prediction System (LAMPS) model. These initial conditions represent an idealized baroclinic wave in which the transport of water vapor can be simulated. The constructed atmosphere has two homogeneous air masses, polar front, polar jet stream and a stratosphere. All these simulate the basic structure of the earth's atmosphere. The hydrostatic and geostrophic balances make it possible to evaluate mutually consistent fields of wind and of the height of isobaric surfaces.

  5. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  6. ACA phase calibration scheme with the ALMA water vapor radiometers

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Morita, Koh-Ichiro; Nikolic, Bojan

    2012-09-01

    In Atacama Large Millimeter/submillimeter Array (ALMA) commissioning and science verification we have conducted a series of experiments of a novel phase calibration scheme for Atacama Compact Array (ACA). In this scheme water vapor radiometers (WVRs) devoted to measurements of tropospheric water vapor content are attached to ACA’s four total-power array (TP Array) antennas surrounding the 7 m dish interferometer array (7 m Array). The excess path length (EPL) due to the water vapor variations aloft is fitted to a simple two-dimensional slope using WVR measurements. Interferometric phase fluctuations for each baseline of the 7 m Array are obtained from differences of EPL inferred from the two-dimensional slope and subtracted from the interferometric phases. In the experiments we used nine ALMA 12-m antennas. Eight of them were closely located in a 70-m square region, forming a compact array like ACA. We supposed the most four outsiders to be the TP Array while the inner 4 antennas were supposed to be the 7 m Array, so that this phase correction scheme (planar-fit) was tested and compared with the WVR phase correction. We estimated residual root-mean-square (RMS) phases for 17- to 41-m baselines after the planar-fit phase correction, and found that this scheme reduces the RMS phase to a 70 - 90 % level. The planar-fit phase correction was proved to be promising for ACA, and how high or low PWV this scheme effectively works in ACA is an important item to be clarified.

  7. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    NASA Astrophysics Data System (ADS)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-09-01

    The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the

  8. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  9. Remote measurements of ozone, water vapor and liquid water content, and vertical profiles of temperature in the lower troposphere

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Gary, B. L.; Shumate, M. S.

    1983-01-01

    Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.

  10. Observations of precipitable water vapor fluctuations in convective boundary layer via microwave interferometry

    SciTech Connect

    Shao, X.M.; Carlos, R.C.; Kirkland, M.W.; Kao, C.J.; Jacobson, A.R.

    1999-07-01

    At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signal (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union

  11. Raman-shifted dye laser for water vapor DIAL measurements.

    PubMed

    Grossmann, B E; Singh, U N; Higdon, N S; Cotnoir, L J; Wilkerson, T D; Browell, E V

    1987-05-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, we have generated narrowband (~0.03-cm(-1)) laser radiation at 720- and 940-nm wavelengths by stimulated Raman scattering (SRS) using the narrow linewidth (~0.02-cm(-1)) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20% and 35% when using a conventional and waveguide Raman cell, respectively. We measured the linewidth of the first Stokes line at high cell pressures and inferred collisional broadening coefficients that agree well with those previously measured in spontaneous Raman scattering.

  12. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  13. Paralinear Oxidation of CVD SiC in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Hann, Raiford E., Jr.

    1997-01-01

    The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.

  14. Interactions of Water Vapor with Oxides at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  15. An alexandrite regenerative amplifier for water vapor and temperature measurements

    NASA Technical Reports Server (NTRS)

    Thro, P.-Y.; Boesenberg, J.; Wulfmeyer, V.

    1992-01-01

    The Differential Absorption Lidar (DIAL) technique is a powerful method for determining meteorological parameters, but it requires high quality of the laser source: high energy, very narrow bandwidth, high wavelength stability, and spectral purity. Although many efforts have been made to improve the lasers in view of these aspects, a satisfactory solution has not been demonstrated up to now. We describe a regenerative amplifier, using a Ti:sapphire laser as master oscillator and an alexandrite laser as slave amplifier, which is expected to meet the requirements for water vapor concentration and temperature measurements.

  16. Mesoscale Modeling of Water Vapor and Dust in Valles Marineris: Atmospheric Influences on Recurring Slope Lineae.

    NASA Astrophysics Data System (ADS)

    Leung, C. W. S.; Rafkin, S. C.; McEwen, A. S.

    2015-12-01

    Extensive recurring slope lineae (RSL) activity has been detected in Valles Marineris on Mars and coincides with regions where water ice fogs appear [1]. The origin of the water driving RSL flow is not well understood, but observational evidence suggests atmospheric processes play a crucial role [2]. Provided the atmospheric vapor concentration is high enough, water ice fogs can form overnight if the surface temperature cools below the condensation temperature. Correlations between dust storms and flow rates suggest that atmospheric dust opacity, and its influence on air temperature, also has a significant effect on RSL activity. We investigate planetary boundary layer processes that govern the hydrological cycle and dust cycle on Mars using a mesoscale atmospheric model to simulate the distribution of water and dust with respect to regional atmospheric circulations. Our simulations in Valles Marineris show a curious temperature structure, where the inside of the canyon appears warmer relative to the plateaus immediately outside. For a well-mixed atmosphere, this temperature structure indicates that when the atmosphere inside the canyon is saturated and fog is present within Valles Marineris, fog and low-lying clouds should also be present on the cooler surrounding plateaus as well. However, images taken with the Mars Express High Resolution Stereo Camera (HRSC) show instances where water ice fog appeared exclusively inside the canyon. These results have important implications for the origin and concentration of water vapor in Valles Marineris, with possible connections to RSL. The potential temperatures from our simulations show a high level of stability inside the canyon produced dynamically by sinking air. However, afternoon updrafts along the canyon walls indicate that over time, water vapor within the chasm would escape along the sides of the canyon. Again, this suggests a local source or mechanism to concentrate water vapor is needed to explain the fog

  17. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils

    NASA Astrophysics Data System (ADS)

    Bittelli, Marco; Ventura, Francesca; Campbell, Gaylon S.; Snyder, Richard L.; Gallegati, Fabia; Pisa, Paola Rossi

    2008-12-01

    SummaryThe quantification of soil evaporation and of soil water content dynamics near the soil surface are critical in the physics of land-surface processes on regional and global scales, in particular in relation to mass and energy fluxes between the ground and the atmosphere. Although it is widely recognized that both liquid and gaseous water movement are fundamental factors in the quantification of soil heat flux and surface evaporation, their computation is still rarely considered in most models or practical applications. Moreover, questions remain about the correct computation of key factors such as the soil surface resistance or the soil surface temperature. This study was conducted to: (a) implement a fully coupled numerical model to solve the governing equations for liquid water, water vapor, and heat transport in bare soils, (b) test the numerical model with detailed measurements of soil temperature, heat flux, water content, and evaporation from the surface, and (c) test different formulations for the soil surface resistance parameter and test their effect on soil evaporation. The code implements a non-isothermal solution of the vapor flux equation that accounts for the thermally driven water vapor transport and phase changes. Simulated soil temperature, heat flux, and water content were in good agreement with measured values. The model showed that vapor transport plays a key role in soil mass and energy transfer and that vapor flow may induce sinusoidal variations in soil water content near the surface. Different results were obtained for evaporation calculations, depending on the choice of the soil surface resistance equation, which was shown to be a fundamental term in the soil-atmosphere interactions. The results also demonstrated that soil water dynamics are strongly linked to temperature variations and that it is important to consider coupled transport of heat, vapor and liquid water when assessing energy dynamics in soils.

  18. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    NASA Astrophysics Data System (ADS)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  19. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Sveinbjörnsdottir, A. E.; Jónsson, T. H.; Johnsen, S. J.

    2012-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  20. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    SciTech Connect

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  1. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    NASA Technical Reports Server (NTRS)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  2. Purple Crow Lidar Vibrational Raman water vapor mixing ratio and temperature measurements in the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Argall, P. S.

    2006-12-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapor and nitrogen molecules allows height profiles of water vapor mixing ratio to be measured from 500 m to up into the lower stratosphere from the Delaware Observatory near London, Canada. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 km to 40 km altitude. External calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL derived water vapor concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights respectively, was undertaken to provide this calibration, which showed mean temperature differences over all flights for altitudes above 9 km of about 0.5 K, with agreement for water vapor below 7 km to within ±12%. Comparisons of the cold point temperature with the coincident water vapor measurements will be presented to investigate the transport of air from the tropics to midlatitudes.

  3. Water Vapor Products from Differential-InSAR with Auxiliary Calibration Data: Accuracy and Statistics

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.; Webley, P.

    2014-12-01

    Although water vapor disturbance has been long term recognized as the major error source in differential Interferometric Synthetic Aperture Radar (d-InSAR) techniques for the ground deformation monitoring and topography reconstruction, it provides opportunities to extract the atmospheric water-vapor information from satellite SAR imageries that can be further used to support studies on earth energy budget, climate, the hydrological cycle, and meteorological forecasting, etc. The water vapor contribution in interferometric phases is normally referred as the atmospheric delay dominated by water vapor rather than condensed water (e.g. cloud). D-InSAR can produce maps of the column water vapor amounts (equivalent to integrated water vapor (IWV) or Precipitable Water Vapor (PWV) in other literatures) that are important parameters quantitatively describe the total amount of water vapor overlying a point on the earth surface. Similar products have been operationally produced in multi-spectrum remote sensing, e.g. Moderate-resolution Imaging Spectroradiometer (MODIS) with a spatial resolution in 500 m to 1km; Whereas, the PWV products derived by d-InSAR have remarkably high spatial resolution that can capture fine scale of water vapor variations in space as small as tens of meters or even less. In recent years, some efforts have been made to derive the water vapor products from interferogram and analyze the corresponding products quality, such as studies comparing integrated water vapor derived from interferometric phases to other measurements (e.g. MERIS, MODIS, GNSS), studies on deriving absolute water vapor products from d-InSAR, and studies on integrating d-InSAR water vapor products in meteorological numerical forecast. In this study, considering these limitation factors and based on previous studies, we discuss the accuracy and statistics of the water vapor products from satellite SAR, including (1) Accuracy of the differential water vapor products; (2) Sources of

  4. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

  5. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system. PMID:23187280

  6. Glow discharge in hydrogen-water vapor mixture

    SciTech Connect

    Kharlov, A.V.; Grigor`ev, S.V.

    1995-12-31

    Glow discharge in hydrogen is widely used in various modifications of the ion sources for generation both H{sup +} and H{sup {minus}}. This paper is devoted to experimental investigations of plasma parameters of positive column in hydrogen and water vapor mixture. The discharge was fired between two parallel 15 mm diameter Mo electrodes with 80 mm separation in a 15 mm inner diameter quartz tube. The total gas pressure and discharge current were changed between 0.2--2 Torr and 10--30 mA respectively. The electron temperature (T{sub e}) was measured with a Langmuir probe. The excitation temperature (T{sub exc}) was estimated from the intensity ratio of the emission lines H{sub {lambda}} and H{sub {delta}}. It was measured that this temperature depends strongly on the amount of H{sub 2}O due to the vibrational collisions between electrons and H{sub 2}O molecules. When the water vapor concentration was optimal, the authors observed a significant decreasing of T{sub e} and T{sub exc} in comparison with pure hydrogen case (4--5 times).

  7. Condensation of water vapor in rarefaction waves. I - Homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.

    1976-01-01

    A detailed theoretical investigation has been made of the condensation of water vapor/carrier gas mixtures in the nonstationary rarefaction wave generated in a shock tube. It is assumed that condensation takes place by homogeneous nucleation. The equations of motion together with the nucleation rate and the droplet growth equations were solved numerically by the method of characteristics and Lax's method of implicit artificial viscosity. It is found that, for the case considered, the condensation wave formed by the collapse of the metastable nonequilibrium state is followed by a shock wave generated by the intersection of characteristics of the same family. The expansion is practically isentropic up to the onset of condensation. The condensation front accelerates in the x,t plane. The results of the computations for a chosen case of water vapor/nitrogen mixture are presented by plotting variations of pressure, nucleation rate, number density of critical clusters, and condensate mass-fraction along three particle paths. Some consideration is given to homogeneous condensation experiments conducted in a shock tube. Although a direct comparison of the present theoretical work and these experiments is not possible, several worthwhile interpretative features have resulted nevertheless.

  8. Modern monsoon extent and moisture dynamics over eastern Asian: evidence from precipitation and water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Kei, Yoshimura; Bowen, Gabriel J.; Tian, Lide

    2013-04-01

    The climate of eastern Asia is dominated by the Asia monsoon (AM) system, which controls seasonal patterns of moisture sources and transport to the region. Measurements of water isotopes can provide insight into monsoon extent and moisture dynamics. Here we present an analysis of a spatially dense network of precipitation isotopes (d18O and dD) from a ground-based network and water vapor dD retrieved from satellite measurements. The results show that isotopic seasonality for both precipitation and water vapor exhibits two distinctly different, spatially coherent modes. Summer-season isotope ratios are relatively low to the south of ~35°N and high to the north, with the transition between these zones reflecting the approximate northward extent of Asia summer monsoon influence. In the southern monsoon domain, low isotope values with relatively low precipitation d-excess (9.4‰ in SE China) in summer appear not to reflect the amount effect, but rather the dominance of monsoon moisture with long-distance transport from the Indian and southern Pacific oceans and continental convective recycling (contribute to about 30-48% moisture in SE China). In contrast, other seasons are dominated by dry continental masses, characterized by high d-excess (12.7‰) and isotope values. In northern China, a region that is beyond extent of monsoon, the moisture is derived overwhelmingly from the dry continental air masses. Here, water isotope ratios exhibit stronger temperature dependence, with enriched values in summer and depleted values in other seasons. The relatively low precipitation d-excess (<8‰) in northern China and inverse spatial isotope patterns between precipitation and water vapor across China during the summer further suggest that re-evaporation of falling raindrops is a key driver of water isotope behavior in northern China.

  9. Microstructure and water vapor transport properties of temperature sensitive polyurethanes

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei

    Temperature sensitive polyurethane (TS-PU) is one novel type of smart polymers. The water vapor permeability (WVP) of its membrane could undergo a significant increase as temperature increases within a predetermined temperature range. Such smart property enables this material to have a broad range of potential applications to textile industry, medicine, environmental fields and so on. However, based on the literature review, contradicting results were found on some TS-PUs. The aims of this project are to synthesize TS-PU with Tm in the broader temperature range including ambient temperature range, and then investigate systematically the relationships between microstructure and water vapor transport properties of TS-PU. For this purpose, in this project, a series of polyurethanes (PU) were synthesized using five different crystalline polyols with approximately similar molecule weight and three different hydrophilic contents, and dense membranes were prepared accordingly. The microstructure and properties of these PUs were investigated using DSC, WAXD, DMA, FTIR, GPC, POM, TEM, SEM and PALS. Their equilibrium water sorption and water vapor permeability were measured accordingly. Results show that crystal melting of these resulting PUs take place in the temperature range from -10--60°C as desired. Storage modulus (E') drops down quickly in the temperature range of crystal melting, suggesting a great transition in the predetermined temperature range. The decreased HSC as well as regular chemical structure of polyols results in the larger spherulites and higher melting end temperature, and the higher crystallinity induces the more obvious incompatibility of soft segment and hard segment in the PUs. These PUs are proved to have good enough tensile properties for textile application. The mean free volume size and fractional free volume increase more significantly in the temperature range of crystal melting than in other temperature intervals. Finally, as expected, the

  10. Continuous on-line water vapor isotope measurements in Antarctica

    NASA Astrophysics Data System (ADS)

    Landsberg, Janek; Romanini, Daniele; Holmen, Kim; Isaksson, Elisabeth; Meijer, Harro; Kerstel, Erik

    2010-05-01

    In the context of a globally warming climate it is crucial to study the climate variability in the past and to understand the underlying mechanisms (1). Precipitation deposited on the polar ice caps provides a means to retrieve information on temperature changes (through the paleo-temperature dependence of the isotopic composition of the ice) and atmospheric composition (of gas stored in bubbles in the ice) on time scales from one to almost one million years, with sub-annual resolution in the most recent centuries. However, it is now widely recognized that the calibration of the paleo-thermometer is highly problematic. For this reason attempts to model the global water cycle, including the isotope signals, are ongoing with the aim of providing a more physical basis of the isotope - temperature relation. Currently, there is a large divergence in the results obtained by different modeling strategies. The missing link in these model studies is their forcing by experimental data on the pre-deposition isotopic composition of the vapor phase compartment of the hydrological cycle. We propose to measure the isotopic composition of moisture carried towards and deposited on Antarctica, in order to constrain the numerical models. In this context we are developing a modified, more sensitive and precise, version of a laser water vapor isotope spectrometer, originally designed for stratospheric studies (2, 3). This instrument, which will first be operated at the Norwegian station of Troll in Queen Maud Land, will enable the continuous, online measurement of all three stable isotope ratios of atmospheric water vapor. So far, such data is non-existent. Our data should improve the validity of the models and improve the understanding of the physical mechanisms at the basis of the isotope thermometer. This in turn will lead to an increased confidence in the predictions of (general circulation) models concerning climate variability. (1) International Panel on Climate Change (IPCC), 4

  11. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T (sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  12. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1989-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T(sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  13. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    NASA Technical Reports Server (NTRS)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  14. Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs

    SciTech Connect

    Pruess, Karsten

    2006-11-06

    Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing reservoir pressures,production well flow rates, and long-term sustainability of steamproduction, injection has also been shown to reduce concentrations ofnon-condensible gases (NCGs) in produced steam. The latter effectimproves energy conversion efficiency and reduces corrosion problems inwellbores and surface lines.This report reviews thermodynamic andhydrogeologic conditions and mechanisms that play an important role inreservoir response to water injection. An existing general-purposereservoir simulator has been enhanced to allow modeling of injectioneffects in heterogeneous fractured reservoirs in three dimensions,including effects of non-condensible gases of different solubility.Illustrative applications demonstrate fluid flow and heat transfermechanisms that are considered crucial for developing approaches to insitu abatement of NCGs.

  15. Homogeneous nucleation rate measurements in supersaturated water vapor.

    PubMed

    Brus, David; Zdímal, Vladimír; Smolík, Jirí

    2008-11-01

    The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a thermal diffusion cloud chamber. Helium was used as a carrier gas. Our study covers a range of nucleation rates from 3x10(-1) to 3x10(2) cm(-3) s(-1) at four isotherms: 290, 300, 310, and 320 K. The molecular content of critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of nucleation rate of water on saturation ratio were compared with the prediction of the classical theory of homogeneous nucleation, the empirical prediction of Wolk et al. [J. Chem. Phys. 117, 10 (2002)], the scaled model of Hale [Phys. Rev. A 33, 4156 (1986)], and the former nucleation onset data. PMID:19045352

  16. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  17. A case study of natural variability of water vapor content in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Jakobson, E.; Keernik, H.

    2012-12-01

    Water vapor is the most essential component of the Earth's atmosphere. It is contributing about 60 % of the natural greenhouse effect, being the resource for precipitation in the lower troposphere and playing a critical role in many chemical reactions. Therefore, its quantity must be known precisely to understand, associate and forecast meteorological processes. On the other hand, temporal as well as spatial variability of water vapor occur such a fine scales, that resolving it adequately presuppose observing systems with high sampling resolution in space and time. Regular radiosondes with 12 h or 24 h sampling interval are not sufficient for detecting fast changes neither in the humidity profiles nor in the water vapor total content. During three days (10th-12th August 2010) total of 24 radiosoundings with interval 3 h were made in Toravere, Estonia (58°15' N, 26°27' E), using GRAW DFM-06 radiosondes. Column-integrated water vapor content, known as precipitable water, varied during the campaign from 24 mm to 36 mm. The temporal variation of specific humidity was surprisingly uniform, up to 2 g/kg within any layer in the profile below 6 km. It is noteworthy, as the average values varied even one magnitude - from 12 g/kg at the ground level to 1 g/kg at 6000 m. These changes in the humidity content in the whole profile can be explained only with exchanges of the air masses. In addition to the radiosondes data, NCEP-CFSR vertical profile data of specific humidity and temperature for the Baltic Sea region (here defined as region 52° - 68° N, 12° - 32° E) was used with temporal and spatial resolution of 6 h and 0.5 degrees, respectively. For the overlapping period, NCEP-CFSR followed the measured profiles reasonably well, giving us some justice to use this model for the whole period and region. The region average of precipitable water was 22.8 mm, though local extreme values varied through the summer even one magnitude - from 4.5 mm to 51 mm. The average

  18. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  19. Characterization of Upper Troposphere Water Vapor Measurements during AFWEX using LASE

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Browell, E. V.; Ismail, S.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Linne, H.; Lammert, A.

    2002-01-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. We show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UTWV measurements.

  20. Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

    1994-01-01

    Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

  1. Spatiotemporal variability of water vapor investigated using lidar and FTIR vertical soundings above the Zugspitze

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2015-03-01

    recorded by the DIAL within time intervals from 1 to 5 h. For all altitudes, the variability increases with widened time intervals. The lowest relative variability is observed in the lower free troposphere around an altitude of 4.5 km. Above 5 km, the relative variability increases continuously up to the tropopause by about a factor of 3. Analysis of the covariance of the vertical variability reveals an enhanced variability of water vapor in the upper troposphere above 6 km. It is attributed to a more coherent flow of heterogeneous air masses, while the variability at lower altitudes is also driven by local atmospheric dynamics. By studying the short-term variability of vertical water vapor profiles recorded within a day, we come to the conclusion that the contribution of long-range transport and the advection of heterogeneous layer structures may exceed the impact of local convection by 1 order of magnitude even in the altitude range between 3 and 5 km.

  2. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  3. Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro; Sato, Kaoru; Hirasawa, Naohiko; Tsutsumi, Masaki; Nakamura, Takuji

    2015-12-01

    Balloon-borne observations of lower stratospheric water vapor were conducted with the Cryogenic Frostpoint Hygrometer (CFH) in July, September, and November 2013 at Syowa Station (69.0oS, 39.6oE) in the Antarctic. High-precision and high vertical resolution data of water vapor concentration up to an altitude of about 28 km were obtained successfully except for a contamination in the observation of July 2013. A comparison between the CFH and coincident satellite (i.e., Aura/MLS) observations showed a good agreement within their uncertainty. A position of Syowa Station relative to the stratospheric polar vortex edge varied depending on both the observation date and altitude. Temperature and pressure histories of the observed air parcels were examined by 10-day backward trajectories. These analyses clearly demonstrated that most air parcels observed in the lower stratosphere above Syowa Station experienced final dehydration inside the polar vortex. On the other hand, a clear signature of rehydration or incomplete dehydration was also observed around a 25 hPa pressure level in the observation of July 2013.

  4. Water Vapor Transport Over the Tropical Oceans During ENSO as Diagnosed from TRMM and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Smith, Eric A.; Sohn, Byung-Ju

    2000-01-01

    Traditionally, large-scale water vapor transport [div Q] has been derived directly from circulation statistics in which transport processes are often depicted by mean and eddy motions. Thus detailed and accurate calculations of moisture transport terms over the globe are required. Notably, the lack of systematically spaced conventional measurements of meteorological variables over oceans has hindered understanding of the distribution and transport of water vapor. This motivates the use of indirect calculation methods in which horizontal divergence of water vapor is balanced by the evaporation minus precipitation, assuming the rate of changes of precipitable water and condensates is small over a sufficiently long time period. In order to obtain the water vapor transport, we need evaporation rate minus precipitation (E-P). Focussing on the differences in water vapor transport between El Nino and La Nina periods and their influences on atmospheric circulations, we study January, February, and March of 1998 and 1999 periods which represent El Nino and La Nina respectively. SSM/I-derived precipitation and evaporation rate from SSM/I wind and total precipitable water, in conjunction with NCEP SST and surface air temperature, are used for the calculation of the transport potential function. For the retrieval of evaporation we use a stability-dependent aerodynamic bulk scheme developed by Chou (1993). It was tested against aircraft covariance fluxes measured during cold air outbreaks over the North Atlantic Ocean. Chou et al. (1997) reported that the SSM/I retrieved latent heat flux over the western Pacific warm pool area were found to be comparable with daily mean fluxes of a ship measurements during TOGA/COARE.

  5. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  6. Cold Water Vapor in the Barnard 5 Molecular Cloud

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  7. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    SciTech Connect

    Wirström, E. S.; Persson, C. M.; Charnley, S. B.; Cordiner, M. A.; Buckle, J. V.; Takakuwa, S.

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  8. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  9. Water vapor toward starless cores: The Herschel view

    NASA Astrophysics Data System (ADS)

    Caselli, P.; Keto, E.; Pagani, L.; Aikawa, Y.; Yıldız, U. A.; van der Tak, F. F. S.; Tafalla, M.; Bergin, E. A.; Nisini, B.; Codella, C.; van Dishoeck, E. F.; Bachiller, R.; Baudry, A.; Benedettini, M.; Benz, A. O.; Bjerkeli, P.; Blake, G. A.; Bontemps, S.; Braine, J.; Bruderer, S.; Cernicharo, J.; Daniel, F.; di Giorgio, A. M.; Dominik, C.; Doty, S. D.; Encrenaz, P.; Fich, M.; Fuente, A.; Gaier, T.; Giannini, T.; Goicoechea, J. R.; de Graauw, Th.; Helmich, F.; Herczeg, G. J.; Herpin, F.; Hogerheijde, M. R.; Jackson, B.; Jacq, T.; Javadi, H.; Johnstone, D.; Jørgensen, J. K.; Kester, D.; Kristensen, L. E.; Laauwen, W.; Larsson, B.; Lis, D.; Liseau, R.; Luinge, W.; Marseille, M.; McCoey, C.; Megej, A.; Melnick, G.; Neufeld, D.; Olberg, M.; Parise, B.; Pearson, J. C.; Plume, R.; Risacher, C.; Santiago-García, J.; Saraceno, P.; Shipman, R.; Siegel, P.; van Kempen, T. A.; Visser, R.; Wampfler, S. F.; Wyrowski, F.

    2010-10-01

    Aims: Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7 × 10-9). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. Methods: High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data. Results: The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s-1. The continuum level is 3.5 ± 0.2 mK in B68 and 11.4 ± 0.4 mK in L1544. No significant feature is detected in B68 and the 3σ upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5 × 1013 cm-2, or a fractional abundance x(o-H2O) < 1.3 × 10-9, more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5σ level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 ± 4) × 1012 cm-2. The corresponding fractional abundance is x(o-H2O) ≃ 5 × 10-9 at radii >7000 AU and ≃2 × 10-10 toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at ≃10-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Conclusions: Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar

  10. Low level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels

    NASA Technical Reports Server (NTRS)

    Robinson, W. D.; Chesters, D.; Uccellini, L. W.

    1983-01-01

    The use of the 11 and 12-micron IR-radiometer channels of the VISSR Atmosphere Sounder (VAS) on the GOES to detect water vapor in the lowest 300-400 mb of the troposphere is reported. An algorithm is developed to eliminate the background temperature, allowing the calculation of precipitable water (PW) over both land and water via a single-layer radiative model. This 'split-window' method is demonstrated in a case study, covering the US on July 13, 1981. PW values were calculated from five VAS images and compared with those from radiosonde data and surface measurements. It is shown that the VAS PW images have good resolution (15 km), reveal vivid, continuously evolving details, and differentiate deep, convection-supporting layers from shallow ones. PW ranged from 1.7 to 5.5 g/sq cm (+ or - 1.0 g/sq cm), in good agreement with other measurements. Since this method can detect mesoscale water-vapor fields in relatively clear air, it is considered of great potential value for numerical forecasting.

  11. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    PubMed

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling. PMID:23153278

  12. Thermodynamic study on dynamic water vapor sorption in Sylgard-184.

    PubMed

    Harley, Stephen J; Glascoe, Elizabeth A; Maxwell, Robert S

    2012-12-01

    The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling.

  13. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2015-02-06

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  14. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  15. Water vapor sources associated with the early summer precipitation over China

    NASA Astrophysics Data System (ADS)

    Chow, K. C.; Tong, Hang-Wai; Chan, Johnny C. L.

    2008-04-01

    This study investigates the water vapor sources for the early summer precipitation over China in association with the Asian summer monsoon, based on the sensitivity experiments performed by a regional climate model for the year 1998. It is found that the northern South China Sea (NSCS) is an important region for the early summer precipitation over China, particularly the south China region. The evaporative water vapor flux or sea surface temperature over the NSCS could significantly affect the southwesterly water vapor transport towards the NSCS. This in turn may significantly change the water vapor transport from the NSCS to China and so changes the precipitation there. The results of the experiments also show that the precipitation over China does not particularly depend on the water vapor transports from some distant sources by the large-scale flows. Most of the required water vapor could be obtained from the ocean within the monsoon region. The results suggest that the water vapor transport over China is basically a combination of the southeasterly water vapor transport associated with the north Western Pacific subtropical high and the southwesterly water vapor transport associated with the Indian summer monsoon. Without the latter, the early summer precipitation over China could be reduced by up to half of the original amount.

  16. Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.

    2015-10-01

    Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.

  17. The annual cycle of stratospheric water vapor in a general circulation model

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  18. Raman Lidar Water Vapor Measurements at the DOE SGP CART Site

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

  19. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  20. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  1. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  2. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

    NASA Astrophysics Data System (ADS)

    Won, Jihye; Park, Kwan-Dong; Kim, Dusik; Ha, Jihyun

    2011-12-01

    The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/m2 and 4.3 kg/m2 for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

  3. A numerical study of heat and water vapor transfer in MDCT-based human airway models.

    PubMed

    Wu, Dan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2014-10-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: [Formula: see text] and [Formula: see text], where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and [Formula: see text] is the tracheal equivalent diameter.

  4. Europa's Water Vapor Plumes: Systematically Constraining their Abundance and Variability

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz

    2014-10-01

    The discovery of transient water vapor plumes near Europa's south pole (Roth et al. 2014) has important implications for the search for life in our Solar System. Europa's subsurface water ocean is thought to provide all the ingredients needed for a habitable environment. The plumes might enable direct sampling of Europa's subsurface constituents and provide insights into the chemistry, mobility, and extent of the liquid water environments. In STIS spectral images obtained in Dec. 2012, the intensity ratios of atomic H and O auroral emissions uniquely identify the source as electron impact excitation of water molecules. However, a confirmation of the initial detection has not yet been achieved, and non-detections from four out of five previous such visits suggest a complex and possibly episodic variation in plume activity. We have identified five potential variability sources for plume activity and detectability and propose a focused program to systematically constrain Europa's plumes and their variability pattern. Our constraints for the plume activity on Europa are vital inputs for key programmatic decisions regarding NASA's next large mission to Europa.

  5. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    ERIC Educational Resources Information Center

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  6. Raman-shifted dye laser for water vapor DIAL measurements

    SciTech Connect

    Grossmann, B.E.; Singh, U.N.; Higdon, N.S.; Cotnoir, L.J.; Wilkerson, T.D.; Browell, E.V.

    1987-05-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, we have generated narrowband (--0.03-cm/sup -1/) laser radiation at 720- and 940-nm wavelengths by stimulated Raman scattering (SRS) using the narrow linewidth (--0.02-cm/sup -1/) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion