Science.gov

Sample records for air-blown krw gasifier

  1. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    PubMed

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  2. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    PubMed

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification.

  3. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  4. Exergetic comparison of two KRW-based IGCC power plants

    NASA Astrophysics Data System (ADS)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D. T.

    1994-04-01

    In studies supported by the U.S. Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared here from the exergetic viewpoint. The first design configuration (case 1) uses an air-blown KRW gasifier and hot gas cleanup while the second configuration (reference case) uses an oxygen-blown KRW gasifier and cold gas cleanup. Each case uses two General Electric MS7001F advanced combustion turbines. The exergetic comparison identifies the causes of performance difference between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using (a) oxygen-blown versus air-blown-KRW gasifiers, and (b) hot gas versus cold gas cleanup processes was evaluated. The results indicate that, among the available options, an oxygen-blown KRW gasifier using in-bed desulfurization combined with an optimized hot gas cleanup process has the largest potential for providing performance improvements.

  5. Exergetic comparison of two KRW-based IGCC power plants

    SciTech Connect

    Tsatsaronis, G.; Tawfik, T.; Lin, L. . Center for Electric Power); Gallaspy, D.T. )

    1994-04-01

    In studies supported by the US Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared here from the exergetic viewpoint. The first design configuration (case 1) uses an air-blown KRW gasifier and hot gas cleanup while the second configuration (reference case) uses an oxygen-blown KRW gasifier and cold gas cleanup. Each case uses two General Electric MS7001F advanced combustion turbines. The exergetic comparison identifies the causes of performance difference between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using (a) oxygen-blown versus-air-blown-KRW gasifiers, and (b) hot gas versus cold gas cleanup processes was evaluated. The results indicate that, among the available options, an oxygen-blown KRW gasifier using in-bed desulfurization combined with an optimized hot gas cleanup process has the largest potential for providing performance improvements.

  6. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  7. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 2, Appendix A: Fixed bed gasifier and sulfur sorbent regeneration subsystem computer model development: Final report

    SciTech Connect

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  8. Exergoeconomic evaluation of a KRW-based IGCC power plant

    NASA Astrophysics Data System (ADS)

    Tsatsaronis, G.; Lin, L.; Tawfik, T.; Gallaspy, D. T.

    1994-04-01

    In a study supported by the U.S. Department of Energy, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. One of these configurations was analyzed from the exergoeconomic (thermoeconomic) viewpoint. This design configuration uses an air-blown KRW gasifier, hot gas cleanup, and two General Electric MS7001F advanced combustion turbines. Operation at three different gasification temperatures was considered. The detailed exergoeconomic evaluation identified several changes for improving the cost effectiveness of this IGCC design configuration. These changes include the following: decreasing the gasifier operating temperature, enhancing the high-pressure steam generation in the gasification island, improving the efficiency of the steam cycle, and redesigning the entire heat exchanger network. Based on the cost information supplied by the M. W. Kellogg Company, an attempt was made to calculate the economically optimal exergetic efficiency for some of the most important plant components.

  9. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems, Volume 4

    SciTech Connect

    Not Available

    1991-02-01

    This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix. The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.

  10. Exergoeconomic evaluation of a KRW-based IGCC power plant

    SciTech Connect

    Tsatsaronis, G.; Lin, L.; Tawfik, T. . Center for Electric Power); Gallaspy, D.T. )

    1994-04-01

    In a study supported by the U.S. Department of Energy, several design configurations of Kellogg-Rust Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. One of these configurations was analyzed from the exergoeconomic (thermoeconomic) viewpoint. This design configuration uses an air-blown KRW gasifier, hot gas cleanup, and two General Electric MS7001F advanced combustion turbines. Operation at three different gasification temperatures was considered. The detailed exergoeconomic evaluation identified several changes for improving the cost effectiveness of this IGCC design configuration. These changes include the following: decreasing the falsifier operating temperature, enhancing the high-pressure steam generation in the gasification island, improving the efficiency of the steam cycle, and redesigning the entire heat exchanger network. Based on the cost information supplied by the M.W. Kellogg Company, an attempt was made to calculate the economically optimal exergetic efficiency for some of the most important plant components.

  11. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    SciTech Connect

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  12. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems, Volume 4. Appendix C: Design and performance of standardized fixed bed air-blown gasifier IGCC systems for future electric power generation: Final report

    SciTech Connect

    Not Available

    1991-02-01

    This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix. The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.

  13. Thermoeconomic design optimization of a KRW-based IGCC power plant

    SciTech Connect

    Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. . Center for Electric Power)

    1991-11-01

    This report discussed the cost and efficiency optimization of an integrated gasification-combined-cycle (IGCC) power plant design and the effects of important design options and parameters. Advanced thermoeconomic techniques were used to evaluate and optimize a given IGCC concept which uses Illinois No. 6 bituminous coal, air-blown KRW coal gasifiers, a hot gas cleanup system, and GE MS7001F gas turbines. Three optimal design concepts are presented and discussed in the report. Two of the concepts are characterized by minimum cost of electricity at two different values of the steam high pressure. The third concept represents the thermodynamic optimum. This study identified several differences between the original design and the design of the optimized cases. Compared with the original concept, significant annual savings are achieved in the cost optimal cases. Comparisons were made between results obtained using both the old and the new performance data for the MS7001F gas turbine. This report discusses the effects of gasification temperature, steam high pressure, coal moisture, and various design options on the overall plant efficiency and cost of electricity. Cost sensitivity studies were conducted and recommendations for future studies were made.

  14. Thermoeconomic design optimization of a KRW-based IGCC power plant. Final report

    SciTech Connect

    Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T.

    1991-11-01

    This report discussed the cost and efficiency optimization of an integrated gasification-combined-cycle (IGCC) power plant design and the effects of important design options and parameters. Advanced thermoeconomic techniques were used to evaluate and optimize a given IGCC concept which uses Illinois No. 6 bituminous coal, air-blown KRW coal gasifiers, a hot gas cleanup system, and GE MS7001F gas turbines. Three optimal design concepts are presented and discussed in the report. Two of the concepts are characterized by minimum cost of electricity at two different values of the steam high pressure. The third concept represents the thermodynamic optimum. This study identified several differences between the original design and the design of the optimized cases. Compared with the original concept, significant annual savings are achieved in the cost optimal cases. Comparisons were made between results obtained using both the old and the new performance data for the MS7001F gas turbine. This report discusses the effects of gasification temperature, steam high pressure, coal moisture, and various design options on the overall plant efficiency and cost of electricity. Cost sensitivity studies were conducted and recommendations for future studies were made.

  15. Gas dynamics of an air-blown electric are

    SciTech Connect

    Borodin, N.S.; Belousov, G.E.; Burmistrov, M.P.; Khitrov, V.G.; Suvorova, S.N.

    1986-05-01

    The authors obtained the basic evidence on the gas dynamics of an air-blown arc by modification of the track method, which involves photographing the tracks of incandescent particles and determining the lengths of the individual tracks and their positions in the arc. To photograph the tracks, the camera was placed so that the shutter blind moved in the opposite direction of the particles or perpendicular to that direction, while the plane of the film (FOTO-250) was 300-400mm from the electrodes. In the model for the blowing method, it is shown that there are differing factors rather than identical ones controlling the residence times for particles and vapor in the discharge zone, so it may be possible to control them seperately. This is particularly important for using chemical isoformation in conjunction with spectral analysis; it is not necessary for the collector particles to evaporate completely, and their higher transport speed in the discharge tends to reduce the intensity of the incoherent background, while the thin films of relevance on the particles, which may be refractory, enter the discharge fully. The emission time remains sufficient for the vapors.

  16. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    SciTech Connect

    Brown, Robert C

    2007-04-06

    were inconclusive. A computer model was developed that successfully predicted the thermal performance of the ballasted gasifier. An economic comparison of an air-blown gasification plant and a ballasted gasifier plant found that operating costs for ballasted gasification plant are about 31% higher than for the air blown gasifier plant. Hydrogen from the ballasted gasification plant and air blown gasification plant are projected to be $2.43/kg and $1.85/kg, respectively. This is lower than U.S. DOE’s 2010 target price of $2.90/kg and comparable to U.S. DOE’s 2015 target price of $2.00/kg.

  17. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    EPA Science Inventory

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  18. A semi-empirical model for pressurised air-blown fluidized-bed gasification of biomass.

    PubMed

    Hannula, Ilkka; Kurkela, Esa

    2010-06-01

    A process model for pressurised fluidized-bed gasification of biomass was developed using Aspen Plus simulation software. Eight main blocks were used to model the fluidized-bed gasifier, complemented with FORTRAN subroutines nested in the programme to simulate hydrocarbon and NH(3) formation as well as carbon conversion. The model was validated with experimental data derived from a PDU-scale test rig operated with various types of biomass. The model was shown to be suitable for simulating the gasification of pine sawdust, pine and eucalyptus chips as well as forest residues, but not for pine bark or wheat straw.

  19. Slagging gasifier

    SciTech Connect

    Schulz, H.

    1982-07-20

    A slagging gasifier for the gasification of coal and organic waste materials is disclosed. The gasifier includes a vertical blast furnace having a hearth section at the bottom thereof. A slag tap hole is formed in hearth section and opens into a quenching vessel. A honeycomb structure is formed on the inner surface of said hearth section in the area surrounding said slag tap hole, and the inner wall of the hearth section. A plurality of tuyeres extend into the hearth section and feed the furnace with steam and oxygen so as to permit the oxidation of coal and organic waste materials fed into the furnace. As a result of the oxidation, gas and molten slag are formed in the furnace. The slag is collected in the hearth section and exits the hearth section via the tap hole. One or more conduits are provided for recycling (Either internally or externally) the gas exiting the top of the gasifier with the tars, oils, and particulates entrained therein to the partial combustion zone of the gasifier where the tars, oils and particulates are converted to noncondensible gases. A portion of the tar-free product gas is removed from an intermediate point in the gasifier below the pyrolysis and coking zone.

  20. Southern Company Services' study of a Kellogg Rust Westinghouse (KRW)-based gasification-combined-cycle (GCC) power plant

    SciTech Connect

    Gallaspy, D.T.; Johnson, T.W.; Sears, R.E. )

    1990-07-01

    A site-specific evaluation of an integrated-gasification-combined- cycle (IGCC) unit was conducted by Southern Company Services, Inc. (SCS) to determine the effect of such a plant would have on electricity cost, load response, and fuel flexibility on the Southern electric system (SES). The design of the Plant Wansley IGCC plant in this study was configured to utilize three oxygen-blown Kellogg Rust Westinghouse (KRW) gasifiers integrated with two General Electric (GE) MS7001F combustion turbines. The nominal 400-MW IGCC plant was based on a nonphased construction schedule, with an operational start date in the year 2007. Illinois No. 6 bituminous coal was the base coal used in the study. Alabama lignite was also investigated as a potential low-cost feedstock for the IGCC plant, but was found to be higher in cost that the Illinois No. 6 coal when shipped to the Wansley site. The performance and cost results for the nominal 400-MW plant were used in an economic assessment that compared the replacement of a 777-MW pulverized-coal-fired unit with 777-MW of IGCC capacity based on the Southern electric system's expansion plans of installing 777-MW of baseload capacity in the year 2007. The economic analysis indicated that the IGCC plant was competitive compared to a baseload pulverized-coal-fired unit. Capital costs of the IGCC unit were approximately the same as a comparably sized pulverized-coal-fired plant, but the IGCC plant had a lower production cost due to its lower heat rate. 10 refs., 34 figs., 18 tabs.

  1. System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler

    SciTech Connect

    Daw, C Stuart; FINNEY, Charles E A; Wiggins, Gavin; Hao, Ye

    2010-01-01

    We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

  2. Catalytic performance of limonite in the decomposition of ammonia in the coexistence of typical fuel gas components produced in an air-blown coal gasification process

    SciTech Connect

    Naoto Tsubouchi; Hiroyuki Hashimoto; Yasuo Ohtsuka

    2007-12-15

    Catalytic decomposition of 2000 ppm NH{sub 3} in different atmospheres with an Australian {alpha}-FeOOH-rich limonite ore at 750-950{sup o}C under a high space velocity of 45000 h{sup -1} has been studied with a cylindrical quartz reactor to develop a novel hot gas cleanup method of removing NH{sub 3} from fuel gas produced in an air-blown coal gasification process for an integrated gasification combined cycle (IGCC) technology. The limonite shows very high catalytic activity for the decomposition of NH{sub 3} diluted with inert gas at 750{sup o}C, regardless of whether the catalyst material is subjected to H{sub 2} reduction before the reaction or not. Conversion of NH{sub 3} to N{sub 2} over the reduced limonite reaches {ge}99% at 750-950{sup o}C, and the catalyst maintains the high performance for about 40 h at 750{sup o}C. When the decomposition reaction is carried out in the presence of fuel gas components, the coexistence of syngas (20% CO/10% H{sub 2}) causes not only the serious deactivation of the limonite catalyst but also the appreciable formation of deposited carbon and CO{sub 2}. On the other hand, the addition of 10% CO{sub 2} or 3% H{sub 2}O to the syngas improves the catalytic performance and concurrently suppresses the carbon deposition almost completely, and the NH{sub 3} conversion in the 3% H{sub 2}O-containing syngas reaches about 90% and almost 100% at 750 and 850 {sup o}C, respectively. Influential factors controlling the catalytic activity of the limonite ore in the coexistence of fuel gas components are discussed on the basis of the results of the powder X-ray diffraction measurements, thermodynamic calculations, and some model experiments. 16 refs., 11 figs., 1 tab.

  3. An Overview of hydrogen production from KRW oxygen-blown gasification with carbon dioxide recovery

    SciTech Connect

    Doctor, R. D.; Brockmeier, N. F.; Molburg, J. C.; Thimmapuram, P.; Chess, K. L.

    2000-08-31

    All the process elements are commercially available to operate coal gasification so that it can produce electricity, hydrogen, and carbon dioxide while delivering the same quantity of power as without H{sub 2} and CO{sub 2} recovery. To assess the overall impact of such a scheme, a full-energy cycle must be investigated (Figure 1). Figure 2 is a process flow diagram for a KRW oxygen-blown integrated gasification combined-cycle (IGCC) plant that produces electricity, H{sub 2}, and supercritical CO{sub 2}. This system was studied in a full-energy cycle analysis, extending from the coal mine to the final destination of the gaseous product streams [Doctor et al. 1996, 1999], on the basis of an earlier study [Gallaspy et al. 1990]. The authors report the results of updating these studies to use current turbine performance.

  4. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    SciTech Connect

    Tortorelli, P.F.; DeVan, H.J.; Judkins, R.R.

    1995-06-01

    The product gas resulting from the partial oxidation of carboniferous materials in a gasifier consists predominantly of CO, CO{sub 2}, H{sub 2}, H{sub 2}O, CH{sub 4}, and, for air-blown units, N{sub 2} in various proportions at temperatures ranging from about 400 to 1000{degree}C. Depending on the source of the fuel, smaller concentrations of H{sub 2}S, COS, and NH{sub 3} can also be present. The gas phase is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials used in the gasifier can occur. Therefore, there are numerous concerns about materials performance in coal gasification systems, particularly at the present time when demonstration-scale projects are in or nearing the construction and operation phases. This study focused on the subset of materials degradation phenomena resulting from carbon formation and carburization processes, which are related to potential operating problems in certain gasification components and subsystems. More specifically, it examined the current state of knowledge regarding carbon deposition and a carbon-related degradation phemonenon known as metal dusting as they affect the long-term operation of the gas clean-up equipment downstream of the gasifier and addressed possible means to mitigate the degradation processes. These effects would be primarily associated with the filtering and cooling of coal-derived fuel gases from the gasifier exit temperature to as low as 400{degree}C. However, some of the consideratins are sufficiently general to cover conditions relevant to other parts of gasification systems.

  5. Project Update: Ther Vermont Gasifier

    SciTech Connect

    2000-06-01

    A new demonstration biomass gasifier in Burlington, Vermont, takes a major step toward biopower systems of the 21st century. The project’s purpose is to verify design and operating characteristics of this intermediate size gasifier. This fact sheet provides details about this gasifier project.

  6. Improving thermocouple service life in slagging gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

    2005-01-01

    The measurement of temperature within slagging gasifiers for long periods of time is difficult/impossible because of sensor failure or blockage of inputs used to monitor gasifier temperature. One of the most common means of temperature measurement in a gasifier is physically, through the use of thermocouples in a gasifier sidewall. These units can fail during startup, standby, or during the first 40-90 days of gasifier service. Failure can be caused by a number of issues; including thermocouple design, construction, placement in the gasifier, gasifier operation, and molten slag attack of the materials used in a thermocouple assembly. Lack of temperature control in a gasifier can lead to improper preheating, slag buildup on gasifier sidewalls, slag attack of gasifier refractories used to line a gasifier, or changes in desired gas output from a gasifier. A general outline of thermocouple failure issues and attempts by the Albany Research Center to improve the service life of thermocouples will be discussed.

  7. Fixed Bed Biomass Gasifier

    SciTech Connect

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  8. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01

    The ceramic cross-flow filter (CXF) system is a promising method to be used in advanced coal based power systems for high temperature, high pressure (HTHP) particle removal. Using a subpilot scale pressurized fluid-bed combustor (PFBC) at Argonne National Laboratory and various PFBC simulators, prior projects have indicated that CXF systems can be used in oxidizing environments at PFBC conditions. To extend the use of CXF systems, this project completed an economic analysis comparing the cost of various oxygen and air blown gasification systems with the CXF system incorporated, initiated the scaleup of the CXF element from development to commercial size, predicted the characteristics of gasifier dust cake, evaluated cleaning pulse characteristics in a large multielement simulation, upgraded pulse cleaning mathematical model, and completed additional testing of the CXF elements under gasification (reducing) and PFBC conditions. Coors Ceramic Company and GTE Products Corporation were integrally involved in this program through the development and fabrication of the CXF elements. 39 figs., 23 tabs.

  9. PNNL Coal Gasifier Transportation Logistics

    SciTech Connect

    Reid, Douglas J.; Guzman, Anthony D.

    2011-04-13

    This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNL’s coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNL’s Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administration’s Cargo Securement Rules.

  10. Heating stove which includes a pyrolysis gasifier

    SciTech Connect

    Beierle, F.P.; Boyer, B.T.; Suisse, R.A.

    1988-04-19

    A heating stove is described comprising: gasifier means for reduction of biomass input material to produce fuel gas and charcoal; means for burning the fuel gas produced by the gasifier means; means for drawing air through the gasifier means and for moving the fuel gas produced by the gasifier means to the fuel gas burner; means for automatically adding biomass input material to the gasifier means when the biomass input material present in the gasifier means is below a preselected level; means for automatically igniting the existing charcoal is the gasifier means in response to a thermostat changing to an on condition from an off condition; means for automatically controlling the level of charcoal in the gasifier means; and means for automatically terminating the operation of the gasifier means when the thermostat is in an off condition and the biomass input material has been substantially all reduced to charcoal.

  11. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  12. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  13. New developments in gasifier refractories

    SciTech Connect

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennet, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-01-01

    For Integrated Gasification Combined Cycle (IGCC) systems, operational reliability depends in part upon the ability of the materials of construction to tolerate harsh, high-temperature environments for extended periods of time. The harshest conditions within an IGCC system occur inside the gasifier itself, where for slagging systems the environment includes elevated temperature and pressure, as well as the presence of corrosive slags and gases. Attempts to enhance gasifier performance by operating at higher temperatures, with higher throughputs, and/or with variable feedstocks, put additional stress on the materials exposed to the operating environment, often resulting in a corresponding decrease in their useful service life. Current generation refractory materials commonly used at the hot face of commercial slagging systems will typically last from four to 18 months, depending on the operating conditions of the specific gasifier. However, as gasification technology matures, the need for new and improved materials will increase as the time between required maintenance shutdowns, and hence the economics and reliability of operation, are defined more and more by the service life of the materials from which the system is built. To address this need for materials development, the U.S. Department of Energy's Office of Fossil Energy and the Albany Research Center are exploring ways to extend the service life of the refractory liner that contains the gasification reaction in slagging gasifiers. In this paper, we examine how refractory materials fail in the gasifier environment, and introduce a new refractory designed specifically to resist such failures. Based on laboratory exposure tests, this new refractory is predicted to significantly enhance gasifier reliability and availability through increased service life.

  14. Quench ring for a gasifier

    SciTech Connect

    Denbleyker, A.L.

    1989-01-31

    This patent describes a gasifier for the high temperature combustion of a carbonaceous fuel to produce a usable gas, which gasifier includes an insulated shell having a combustion chamber in which the fuel is burned at an elevated temperature and pressure, a quench chamber in the shell holding a liquid bath for cooling products of combustion, a constricted throat communicating the respective combustion chamber and quench chamber, and an elongated dip tube having an inner wall which defines a flow guide path between the combustion chamber and the quench chamber, and having opposed upper and lower edges.

  15. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  16. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  17. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  18. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  19. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick; Musa Karakus; Alireza Rezaie

    2004-03-30

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  20. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  1. Refractory for Black Liquor Gasifiers

    SciTech Connect

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  2. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  3. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and

  4. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr.; Alireza Rezaie

    2004-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  5. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  6. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and

  7. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  8. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  9. Method and apparatus for gasifying with a fluidized bed gasifier having integrated pretreating facilities

    DOEpatents

    Rice, Louis F.

    1981-01-01

    An integral gasifier including a pretreater section and a gasifier section separated by a distribution grid is defined by a single vessel. The pretreater section pretreats coal or other carbon-containing material to be gasified to prevent caking and agglomeration of the coal in the gasifier. The level of the coal bed of the pretreater section and thus the holding or residence time in said bed is selectively regulated by the amount of pretreated coal which is lifted up a lift pipe into the gasifier section. Thus, the holding time in the pretreater section can be varied according to the amount of pretreat necessary for the particular coal to be gasified.

  10. Coal gasifier cogeneration powerplant project

    NASA Technical Reports Server (NTRS)

    Shure, L. I.; Bloomfield, H. S.

    1980-01-01

    Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.

  11. Open-top wood gasifiers

    SciTech Connect

    Mukunda, H.S.; Dasappa, S.; Shrinivasa, U.

    1993-12-31

    The technology and economics of a new class of open-top gasifiers for use with diesel engines in dual-fuel mode are described. The performance of systems that range in capacity from 3.7 to 100 kilowatts are discussed, with special emphasis placed on gasifiers at extreme ends of the capacity range. The essential differences and benefits of the new technology are compared with World War 2 closed-top models. Studies indicate that the open-top design achieves diesel replacement values greater than 80 percent and is less dependent on feedstock quality, moisture content, and density. The amount of diesel fuel saved per system among motivated users (mostly small farmers) exceeds 70 percent. A comparative analysis of two gasifier systems: a 5 kilowatt system that runs the village power station in Hosahalli, Karnatka (India), and a 100 kilowatt system that powers a sawmill on the remote island of Port Blair in the Andaman and Nicobar archipelago was undertaken. The cost of installing the larger system, including computerized data acquisition and control systems, was US $625 (Rs 12,500) per kilowatt, with an energy cost of $0.074 (Rs 1.60) per kWh (the cost of energy subsidized by the state is RS 1.25 per kWh).

  12. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Wayne S. Seames; Devdutt Shukla; Xi Hong; John P. Hurley

    2005-12-01

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by refractory materials under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) was utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. High-alumina and high-chromia refractory bricks were tested using slags obtained from two solid fuel gasifiers. Testing was performed at 1475 C in a reducing atmosphere (2% H{sub 2} in N{sub 2}) The CADCAF tests show that high-chrome refractories have greater corrosion resistance than high-aluminum refractories; coal slag readily diffuses into the refractory through its grain boundaries; the refractory grains are more stable than the matrix in the tests, and the grains are the first line of defense against corrosion; calcium and alkali in the slag are more corrosive than iron; and silicon and calcium penetrate the deepest into the refractory. The results obtained from this study are preliminary and should be combined with result from other research programs. In particular, the refractory corrosion results from this study should be compared with refractories removed from commercial gasifiers.

  13. Advanced Gasifier Pilot Plant Concept Definition

    SciTech Connect

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  14. Refractory liner materials used in slagging gasifiers

    SciTech Connect

    Bennett, James P.

    2004-09-01

    Refractory liners are used on the working face of entrained flow slagging gasifiers that react coal, petroleum coke, or other carbon feedstock with oxygen and water. The refractory liners protect the gasifier shell from elevated temperatures, corrosive slags, and thermal cycling during gasification. Refractory failure is primarily by two means, corrosive dissolution and spalling. High chrome oxide refractory materials have evolved as the material of choice to line the hot face of gasifiers, yet the performance of these materials does not meet the service requirements of industry. A review of gasifier liner materials, their evolution, issues impacting their performance, and future research direction are discussed.

  15. Process for electrochemically gasifying coal

    DOEpatents

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  16. Vermont gasifier project. Final report, Phase I

    SciTech Connect

    1995-07-01

    This report presents an engineering status report for the Vermont gasifier project. Technical areas of concern are discussed with the cyclone performance, agglomeration problems in the combustor, particlate emissions, valve design, deflagration venting, gasifier and combustion blower surge control, and other related areas. Attachments pertaining to the drawing and specification register are included.

  17. CANMET Gasifier Liner Coupon Material Test Report

    SciTech Connect

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  18. Gasified coal-fired system. [MHD generator

    SciTech Connect

    Fernandes, J.H.

    1982-08-24

    A downflow coal gasifier, supplied lime/limestone with the coal, removes sulfur and obviates the production of particulate matter in generating a clean, low btu gas for the combustor of an mhd channel. Air for both the combustor of the mhd channel and the gasifier is heated by the discharged fluids from the channel.

  19. METC Gasifier Advanced Simulation (MGAS) model

    SciTech Connect

    Syamlal, M.; Bissett, L.A.

    1992-01-01

    Morgantown Energy Technology Center is developing an advanced moving-bed gasifier, which is the centerpiece of the Integrated Gasifier Combined-Cycle (IGCC) system, with the features of good efficiency, low cost, and minimal environmental impact. A mathematical model of the gasifier, the METC-Gasifier Advanced Simulation (MGAS) model, has been developed for the analysis and design of advanced gasifiers and other moving-bed gasifiers. This report contains the technical and the user manuals of the MGAS model. The MGAS model can describe the transient operation of coflow, counterflow, or fixed-bed gasifiers. It is a one-dimensional model and can simulate the addition and withdrawal of gas and solids at multiple locations in the bed, a feature essential for simulating beds with recycle. The model describes the reactor in terms of a gas phase and a solids (coal or char) phase. These phases may exist at different temperatures. The model considers several combustion, gasification, and initial stage reactions. The model consists of a set of mass balances for 14 gas species and three coal (pseudo-) species and energy balances for the gas and the solids phases. The resulting partial differential equations are solved using a finite difference technique.

  20. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  1. Commercial gasifier for IGCC applications study report

    SciTech Connect

    Notestein, J.E.

    1990-06-01

    This was a scoping-level study to identify and characterize the design features of fixed-bed gasifiers appearing most important for a gasifier that was to be (1) potentially commercially attractive, and (2) specifically intended for us in integrated coal gasification/combined-cycle (IGCC) applications. It also performed comparative analyses on the impact or value of these design features and on performance characteristics options of the whole IGCC system since cost, efficiency, environmental traits, and operability -- on a system basis -- are what is really important. The study also reviewed and evaluated existing gasifier designs, produced a conceptual-level gasifier design, and generated a moderately advanced system configuration that was utilized as the reference framework for the comparative analyses. In addition, technical issues and knowledge gaps were defined. 70 figs., 31 tabs.

  2. The improvement of slagging gasifier refractories

    SciTech Connect

    Kwong, K.-S.; Bennett, J.P.; Powell, C.A.; Krabbe, R.A.

    2006-03-01

    Refractories play a vital role in slagging gasifier on-line availability and profitability for the next clean power generation system. A recent survey of gasifier users by USDOE indicated that a longer service life of refractories is the highest need among gasifier operators. Currently, Cr2O3 based refractories, the best of commercially available materials for use in slagging gasifiers, last between 3 and 24 months. Researchers at Albany Research Center (ARC) have identified structural spalling, caused by slag penetration, as one of the major failure mechanisms of Cr2O3 refractories through postmortem analysis. New Cr2O3 refractories with phosphate additives have been developed by ARC to decrease slag penetration and thus structural spalling. Laboratory physical property tests indicated that ARC developed refractories are superior to other commercial bricks. One of the ARC developed phosphate containing refractories has been installed in a slagging gasifier. Preliminary results of the performance of this refractory in the gasifier will be reported along with research to develop non-chromia refractories.

  3. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  4. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  5. TASK 3: PILOT PLANT GASIFIER TESTING

    SciTech Connect

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  6. Functional design of refractories for slagging gasifiers

    SciTech Connect

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-09-01

    Refractories are used in coal slagging gasifiers to protect the outer steel shell from coal slag attack and to insulate it from heat. Corrosion by the aggressive coal slags and unexpected temperature shock severely shorten the service life of these refractories. Currently, the best refractories available for the slagging coal gasifiers last from 6 to 18 months. The down time for the installation of new refractory lining reduces on-line availability of the gasifier. Researchers at the Albany Research Center (ARC) have found that structural spalling by slag penetration into the refractory is responsible for the early failure of refractories in some gasifiers. The low melting point of coal slags, the low thermal gradient in the refractory, and the improper design of refractory microstructure contribute to promote slag penetration. Work at ARC has demonstrated that refractories with an improved functional design are more resistant to slag penetration. Cooperation with commercial refractory companies and gasifier designers/operators is underway to produce and test improved refractories.

  7. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; John P. Hurley

    2002-09-27

    As DOE continues to advance new power systems, materials issues are often pivotal in determining the ultimate efficiency that can be reached in the system. Refractory performance in slagging gasification represents one of these issues. The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The focus of the proposed work is to test the corrosion resistance of commercially available refractories to flowing coal slag, and propose the mechanisms of corrosion for the conditions studied. Corrosion is the degradation of material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases, causing loss of material and consequently a decrease in strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Once these are identified, methods for reducing corrosion rates can be developed. The work will take advantage of equipment and experimental techniques developed at the EERC under funding from several DOE programs. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) will be utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. To date, efforts have focused on final shakedown of the CADCAF and obtaining representative samples of slag and refractory for testing.

  8. Method of operating a coal gasifier

    DOEpatents

    Blaskowski, Henry J.

    1979-01-01

    A method of operating an entrained flow coal gasifier which comprises the steps of firing coal at two levels in a combustion zone with near stoichiometric air, removing molten ash from the combustion zone, conveying combustion products upwardly from the combustion zone through a reduction zone, injecting additional coal into the combustion products in the reduction zone and gasifying at least a portion of the coal to form low BTU gas, conveying the gas to a point of use, including also reducing gasifier output by modifying the ratio of air to coal supplied to the upper level of the combustion zone so that the ratio becomes increasingly substoichiometric thereby extending the gasification of coal from the reduction zone into the upper level of the combustion zone, and maintaining the lower level of coal in the combustion zone at near stoichiometric conditions so as to provide sufficient heat to maintain effective slagging conditions.

  9. Handbook of biomass downdraft gasifier engine systems

    SciTech Connect

    Reed, T B; Das, A

    1988-03-01

    This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

  10. Commissioning an Engineering Scale Coal Gasifier

    SciTech Connect

    Reid, Douglas J.; Bearden, Mark D.; Cabe, James E.

    2010-07-01

    This report explains the development, commissioning, and testing of an engineering scale slagging coal gasifier at PNNL. The initial objective of this project was to commission the gasifier with zero safety incidents. The commissioning work was primarily an empirical study that required an engineering design approach. After bringing the gasifier on-line, tests were conducted to assess the impact of various operating parameters on the synthesis gas (syngas) product composition. The long-term intent of this project is to produce syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in catalyst, materials, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for greater than 4 hours using coal feedstock. In addition, alternate designs that allow for increased flexibility regarding the fuel sources that can be used for syngas production is desired. Continued modifications to the fuel feed system will be pursued to address these goals. Alternative feed mechanisms such as a coal/methanol slurry are being considered.

  11. Pressure-Letdown Plates for Coal Gasifiers

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    Variation of pseudoporous plates used with coal gasifiers in pressure letdown stage of processing minimize clogging. Rotating plates containing variable gap annuli continually change flow path to enable erosionless reduction of gas pressure. Particles that otherwise clog porous plugs pass through gaps.

  12. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  13. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  14. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  15. Evaluating the status of the Texaco gasifier

    SciTech Connect

    Perry, H.

    1981-01-01

    Conclusions after a series of runs at steady state conditions in the pilot plant are: (1) Western Kentucky No. 9 coal (either run-of-mine or washed) can be gasified without pretreatment; (2) other coking bituminous coal may also be able to be gasified without pretreatment; (3) pretreatment is not required to achieve satisfactory ash agglomeration; (4) balanced ash agglomeration with satisfactory removal of the agglomerates has been achieved and stable operation of ash agglomeration is possible during periods of short upset; (5) solutions appear to have been found for prevention of clinkering and sintering by alternative venturi design, modification in the oxygen feed system and increasing the superficial velocity of the gas; (6) under certain circumstances fines recycle has been achieved with stable operation and fluidization; (7) the process can be operated at pressures up to 60 psig without adversely affecting other process parameters; (8) a wide range of operating conditions can be used while maintaining system operability; and (9) in a single test water cooling of the cyclone appears to prevent ash deposition on the cooled surfaces which confirms the experience of Westinghouse with ash deposition prevention in their fluidized bed gasifier. 11 references, 12 tables.

  16. Refractories for dry ash coal gasifiers

    SciTech Connect

    Sadler, L.Y. III; Heystek, H.; Raymon, N.S.; Clancy, T.A.

    1984-01-01

    This report summarizes the findings of a 9-yr research program, sponsored by the US Department of Energy and conducted by the Bureau of Mines, to evaluate refractory liner materials for coal gasifier reactors. Commercially available refractories were exposed to coal gasifier reactor environments, reproduced in the laboratory with a high-temperature, high-pressure test facility, followed by extensive postexposure evaluation. Thirty-six castable or gunnable refractories and cements and 24 refractory brick were evaluated. The behavior of castable refractories reinforced with stainless steel fibers was also examined. Gas environments that were evaluated included steam, H/sub 2/, CO/sub 2/, CO, and typical high- and low-Btu gas mixtures. Exposure pressures ranged from 100 to 1,000 psig, temperatures from 500/sup 0/ to 1100/sup 0/C, for periods from 50 h to 2000 h. In some exposures, sodium and/or potassium hydroxide were introduced in order to simulate a high-alkali environment. It was found that intermediate- and low-alumina refractories produced from domestically available raw materials, rather than high-alumina refractories produced from imported raw materials, gave the best service as liner materials and that alkali attack was probably not a serious problem with most refractories. Based on the results of this program, good choices of refractory liner materials for gasifier reactors can be made. 7 references, 25 figures, 30 tables.

  17. First Experiences with the New Chalmers Gasifier

    NASA Astrophysics Data System (ADS)

    Thunman, H.; Seemann, M. C.

    During summer 2007 a 2-6 MWth indirect gasification section was integrated into the loop of the existing 82➀2 MWth circulating fluidized bed boiler at Chalmers University. With help of a particle distributor the gasification unit is connected to the loop after the cyclone. Hot bed material entrained from the boiler is so transferred to the gasifier providing the heat for the production of a nearly nitrogen free product gas. Non-gasified char is returned together with the bed material into the boiler and converted. Biomass can be fed into both sections; the boiler and the gasifier. The gasification is separated from the boiler via two loop seals and a particle distributer, directing particles either back to the boiler or into the gasification section. For that reason the CFB boiler can be operated even after the retrofit independently, just like before, or in combined combustion/gasification mode. This possibility keeps the risk for a retrofit low. As, furthermore, the investment costs for the integration are considerably lower than standalone gasification units of that size, the retrofit is an easy way to extend the potential of a CFB Boiler towards bi- and tri-generation (heat, power, fuel) and enter new markets.

  18. Comparison of salient features of alternative CO{sub 2} recovery processes

    SciTech Connect

    Molburg, J.C.; Thimmapuram, P.; Doctor, R.D.

    1994-06-01

    In the case of direct coal combustion, the recovery of carbon dioxide (CO{sub 2}) is complicated by dilution of the flue gas with nitrogen (N{sub 2}) from the combustion air, as well as with excess air, which invariably accompanies coal combustion. For a representative boiler using bituminous coal, the mole fraction of CO{sub 2} in the flue gas is in the range of 10--15%. For coal gasification, no excess air is provided. In fact, the air supplied is inadequate for complete combustion. The mole fraction of carbon monoxide (CO) plus CO{sub 2} in the fuel gas from the Kellogg-Rust-Westinghouse (KRW) gasifier, which is the gasifier for which these CO{sub 2} recovery processes are designed, is about 22% for an air-blown gasifier and 59.1% for an oxygen-blown gasifier. The CO can be converted to CO{sub 2} via the water-gas shift reaction. Because of the higher CO{sub 2} partial pressure, recovery of the CO{sub 2} from this shifted synthesis gas requires a less costly recovery system than that which would be required for recovery following direct coal combustion in air. This analysis is intended to provide a first-order estimate of the effects of CO{sub 2} recovery on the cost and performance of a gasifier and to compare these effects for common commercial CO{sub 2} recovery processes.

  19. Tracy Power Station -- Unit No. 4, Pinon Pine Power Project Public Design Report

    SciTech Connect

    1994-12-01

    This Public Design Report describes the Pinon Pine Project which will be located at the Sierra Pacific Power Company`s (SPPCO) Tracy Station near Reno, Nevada. The integrated gasification combined-cycle (IGCC) plant is designed to process 880 tones per day (TPD) of bituminous coal producing approximately 107 gross megawatts of electric power (MWe). This project is receiving cost-sharing from the US Department of Energy (DOE) in accordance with DOE Cooperative Agreement DE-FC2192MC29309. The plant incorporates the Kellogg-Rust-Westinghouse (KRW) fluidized bed gasification technology which produces a low-Btu gas which is used as fuel in a combined cycle power plant which has been modified to accommodate the fuel gas produced by an air-blown gasifier. The gasification system also includes hot gas removal of particulates and sulfur compounds from the fuel gas resulting in a plant with exceptionally low atmospheric emissions. Desulfurization is accomplished by a combination of limestone injection into the KRW fluidized bed gasifier and by a transport reactor system. Particulate removal is accomplished by high efficiency cyclones and a barrier filter. The Pinon Pine Project Schedule is divided into three phases. Phase I includes permitting and preliminary design. Phase II, which overlaps Phase I, covers detailed design, procurement, and construction. Phase III will cover the initial operation and demonstration portion of the project.

  20. Biomass Gasifier Facility (BGF). Environmental Assessment

    SciTech Connect

    Not Available

    1992-09-01

    The Pacific International Center for High Technology Research (PICHTR) is planning, to design, construct and operate a Biomass Gasifier Facility (BGF). This facility will be located on a site easement near the Hawaiian Commercial & Sugar company (KC&S) Paia Sugar Factory on Maui, Hawaii. The proposed BGF Project is a scale-up facility, intended to demonstrate the technical and economic feasibility of emerging biomass gasification technology for commercialization. This Executive Summary summarizes the uses of this Environmental Assessment, the purpose and need for the project, project,description, and project alternatives.

  1. Process for electrochemically gasifying coal using electromagnetism

    DOEpatents

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  2. Coating for gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Harper-Tervet, Jan (Inventor); Dowler, Warren L. (Inventor); Yen, Shiao-Ping S. (Inventor); Mueller, William A. (Inventor)

    1982-01-01

    A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments.

  3. Apparatus and method for feeding coal into a coal gasifier

    DOEpatents

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  4. Determination of gasifier outlet and quench zone blockage

    SciTech Connect

    Clomburg, L.A. Jr.; Crenwelge, O.E. Jr.

    1990-10-16

    This patent describes a process for monitoring the open cross sectional area of the outlet, or a section of a quench zone or conduit proximate to and communicating with the outlet, to detect changes therein, of a gasifier operated under elevated temperature and pressure for partially oxidizing coal, while quenching synthesis gas and molten flyash particles from the gasifier and while carrying out a process for the partial oxidation of coal in the gasifier. It comprises: providing at least one first pressure transducer in the gasifier; providing at least one second pressure transducer at a locus in the quench zone proximate the outlet of the gasifier; concomitantly receiving sound pressure generated in the gasifier in both the at least one first pressure transducer and the at least one second pressure transducer, and transmitting from each of the transducers a time domain electrical signal proportionate to the amplitude of the sound pressure received by each of the respective transducers; converting the time domain signals respectively to mathematically complex signals in the frequency domain proportional to their pressure magnitudes; comparing the frequency domain signal from the at least one transducer in the quench zone to the frequency domain signal from the at least one transducer in the gasifier at a pre-selected frequency, and deriving a frequency response function from the comparison; and comparing the magnitude of the frequency response function with a predetermined value.

  5. Down-flow moving-bed gasifier with catalyst recycle

    DOEpatents

    Halow, John S.

    1999-01-01

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  6. Down-flow moving-bed gasifier with catalyst recycle

    DOEpatents

    Halow, J.S.

    1999-04-20

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.

  7. ENHANCEMENT OF STRUCTURAL FOAM MATERIALS BY INCORPORATION OF GASIFIER SLAG

    SciTech Connect

    Olin Perry Norton; Ronald A. Palmer; W. Gene Ramsey

    2006-03-15

    As advanced gasification technology is increasingly adopted as an energy source, disposal of the resulting slag will become a problem. We have shown that gasifier slag can be incorporated into foamed glass, which is currently being manufactured as an abrasive and as an insulating material. The slag we add to foamed glass does not simply act as filler, but improves the mechanical properties of the product. Incorporation of gasifier slag can make foamed glass stronger and more abrasion resistant.

  8. Real Time Flame Monitoring of Gasifier and Injectors

    SciTech Connect

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  9. Fluid Dynamic of Pressurized Coal Gasifiers.

    SciTech Connect

    Louge, M.T.

    1997-11-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we have conducted a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea was to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employed a unique entrained gas-solid flow facility with the flexibility to recycle -rather than discard- gases other than air. By matching five dimensionless parameters, experiments employing plastic and glass powders fluidized with mixtures of sulfur hexafluoride, carbon dioxide, helium and air at ambient temperature and pressure achieved hydrodynamic similarity with generic high-temperature risers of variable scale operating at 1 and 8 atm. We interpreted our results in the upper riser using steady, fully developed momentum balances for the gas and solid phases. This analysis showed that, for a wide range of experiments, two parameters capture the dependence of the pressure gradients upon the ratio of the mean gas and solid mass flow rates. The first is the ratio of the mean particle slip and superficial gas velocities. The second represents spatial correlations between the radial profiles of interstitial gas velocity and voidage. Variations of the first with dimensionless parameters indicated that our `atmospheric` and `pressurized` experiments conformed to distinct viscous and inertial regimes. In this study, we established also that the descending velocity

  10. REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS

    SciTech Connect

    James Servaites; Serguei Zelepouga; David Rue

    2003-10-01

    This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and

  11. Improved Refractories for Slagging Gasifiers in IGCC Power Systems

    SciTech Connect

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2003-04-24

    The gasification of coal and other carbon-containing fuels provides the opportunity to produce energy more efficiently, and with significantly less environmental impact, than more-conventional combustion-based processes. In addition, the synthesis gas that is the product of the gasification process offers the option of ''polygeneration,'' i.e., the production of alternative products instead of power should it be economically favorable to do so. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy's Vision 21 power system. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center is to develop improved refractory materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction, and includes both the refractory lining that protects and insulates the slagging gasifier, as well as the thermocouple assemblies that are utilized to monitor gasifier operating temperatures. Current generation refractory liners in slagging gasifiers are typically replaced every four to 18 months, at costs ranging up to $2,000,000, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for the refractory exchange. Current generation thermocouple devices rarely survive the gasifier start-up process, leaving the operator with no real means of temperature measurement during routine operation. Reliable, efficient, and economical gasifier operation that includes the

  12. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  13. Improved refractories for slagging gasifiers in IGCC power systems

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Chinn, Richard E.

    2004-01-01

    Most gasifiers are operated for refining, chemical production, and power generation. They are also considered a possible future source of H2 for future power systems under consideration. A gasifier fulfills these roles by acting as a containment vessel to react carbon-containing raw materials with oxygen and water using fluidized-bed, moving-bed, or entrained-flow systems to produce CO and H2, along with other gaseous by-products including CO2, CH4, SOx, HS, and/or NOx. The gasification process provides the opportunity to produce energy more efficiently and with less environmental impact than more conventional combustion processes. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy?s vision of an advanced power system for the 21st Century. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center (ARC) is to develop improved refractory liner materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction. Current generation refractory liners in slagging gasifiers are typically replaced every 3 to 18 months at costs ranging up to $1,000,000 or more, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for refractory repair/exchange. The goal of this project is to develop new refractory materials or to extend the service life of refractory liner materials currently used to at least 3 years. Post-mortem analyses of refractory brick

  14. Hot-Gas Filter Testing with a Transport Reactor Gasifier

    SciTech Connect

    Swanson, M.L.; Hajicek, D.R.

    2002-09-18

    Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

  15. Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

    2005-01-01

    Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

  16. Great Plains ASPEN model development: gasifier model. Final topical report

    SciTech Connect

    Benjamin, B.W.

    1985-01-01

    A rigorous model of a moving-bed, dry-bottom gasifier, RGAS, has been incorporated into ASPEN. The model is designed to calculate the variables which characterize gasifier performance: (1) the composition of the outlet gas; (2) the flow of the outlet gas; (3) the temperature of the outlet gas; (4) the temperature profile of the solids (especially important in dry bottom gasifiers because of the necessity of maintaining the maximum temperature of the bed below the ash softening temperature); and (5) the rate of steam generation in the jacket (if applicable). The option of using alternative kinetic expressions has been incorporated into the model structure. Presently, RGAS can be used to simulate gasifier performance using the kinetic expressions for gasification established at West Virginia University and the University of Delaware. The models of both West Virginia University and the University of Delaware were tuned to agree with the Great Plains gasifier flowsheet. Then, several case studies were run to determine the sensitivity of each model to changes in such inputs as: (1) feed rates; (2) feed temperatures; (3) reaction parameters; and (4) heat transfer coefficient. The data from these case studies have been compared with experimental findings. For example, increasing the oxygen feed rate or increasing the temperature of the inlet gas feed both serve to increase the reactor temperature which, in turn, increases the carbon conversion and steam generation rate. On the other hand, increasing the steam feed rate does the opposite. These results agree with trends observed experimentally. 5 references.

  17. Gasifiers optimized for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W. B.; Lee, A.; Meyers, S. J.

    Conventional coal gasification carbonate fuel cell systems are typically configured so that the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45-53 percent (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  18. Gasification of pelletized biomass in a pilot scale downdraft gasifier.

    PubMed

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2012-07-01

    This work presents a pilot-scale investigation aimed at assessing the feasibility and reliability of biomass pellet gasification. Wood sawdust and sunflower seeds pellets were tested in a 200 kW downdraft gasifier operating with air as gasifying agent. The gasification of pelletized biomass led to rather high and unstable pressure drops, reducing the gasifier productivity and stability. Furthermore the generation of fine residues compromised the operation of wet ash removal systems. On the other hand, good syngas compositions (H(2) 17.2%, N(2) 46.0%, CH(4) 2.5%, CO 21.2%, CO(2) 12.6%, and C(2)H(4) 0.4%), specific gas production (2.2-2.4 N m(3) kg(-1)) and cold gas efficiency (67.7-70.0%) were achieved. For these reasons pelletized biomass should be considered only as complementary fuel in co-gasification with other feedstock. PMID:22537399

  19. Second stage gasifier in staged gasification and integrated process

    SciTech Connect

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  20. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect

    Robinson, P.J.; Luyben, W.L.

    2008-10-15

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  1. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

  2. Review of ash agglomeration in fluidized bed gasifiers

    SciTech Connect

    Matulevicius, E.S.; Golan, L.P.

    1984-07-01

    The purpose of this study is to review the data and mathematical models which describe the phenomena involved in the agglomeration of ash in fluidized bed coal gasifiers (FBG). Besides highlighting the data and theoretical models, this review lists areas where there is a lack of information regarding the actual mechanisms of agglomeration. Also, potential areas for further work are outlined. The work is directed at developing models of agglomeration which could be included in computer codes describing fluidized bed gasifier phenomena, e.g., FLAG and CHEMFLUB which have been developed for the US Department of Energy. 134 references, 24 figures, 13 tables.

  3. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  4. Method of operating a two-stage coal gasifier

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

  5. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    SciTech Connect

    2006-09-01

    Gasification offers an efficient approach for producing fuels and products from a wide variety of biomass. The object of this Congressionally-mandated project is to develop an indirectly-heated gasification system (ballasted gasifier) for converting switch grass into a hydrogen-rich gas suitable for powering fuel cells.

  6. Slag Penetration into Refractory Lining of Slagging Coal Gasifier

    SciTech Connect

    Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

    2008-10-25

    The impurities in coal are converted into molten slag typically containing SiO2, FeO, CaO, and Al2O3 when coal feedstock is burned in slagging gasifiers. The slag flows down the gasifier sidewalls, dissolves, and penetrates and reacts with the refractory lining that protects the stainless steel shell of the gasifier from elevated temperatures (1300–1600°C). Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements because of low resistance to spalling. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that the spalling is affected by the depth of slag penetration that is in turn affected by the wettability and interconnected porosity of the refractory as well as the slag viscosity. Laboratory tests were conducted to measure the viscosity of slags (Wyoming Powder River Basin [PRB], Pocahontas #3, and Pittsburgh #8), their contact angle on refractories (chromia-alumina [Aurex 75SR] and high-chromia [Serv 95 and Aurex 95P]), and the apparent porosity of selected refractories. In addition, the depth of slag penetration as a function of time and temperature was determined for various refractory-slag combinations. The results of laboratory tests were used to develop a refractory material that has high resistance to penetration by molten slag and thus has a potential to have a substantially longer service life than the materials currently being used.

  7. High temperature erosion testing in a gasifier environment

    SciTech Connect

    Tylczak, Joseph H.; Rawers, James C.; Adler, Thomas A.

    2004-01-01

    The development of materials with the ability to operate in adverse conditions while resisting the effects of erosion and corrosion is essential to the future success of high efficiency power plants. Many next generation coal power plants are envisioned as combined cycle, with gasifiers used to produce both steam and syngas. The gasifier sections of these plants require materials of construction that are resistant to the effects of erosion from silica found in the gas streams and corrosion caused by a reducing atmosphere that may contain sulfur and chloride compounds. The Albany Research Center has developed a test apparatus designed to test the erosion-resistance of candidate materials under a range of environmental conditions, including those found in gasifiers. This Hostile Atmosphere Erosion Wear test apparatus (HAET) has been used to evaluate a group of high alloy candidate materials such as iron aluminide and Haynes HR 160, and compare them to a conventional 310 stainless steel. Erosion tests were conducted using 270μm silica abrasive, a typical impact velocities of 20 m/sec at temperatures up to 700°C in an atmosphere simulating gasifier conditions. The effects of erosion under these conditions on the surface scales that form are described. The total loss rate, loss rates due to erosion and corrosion for the test materials are compared.

  8. Low inlet gas velocity high throughput biomass gasifier

    DOEpatents

    Feldmann, Herman F.; Paisley, Mark A.

    1989-01-01

    The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

  9. Slag-Refractory Interaction in Slagging Coal Gasifiers

    SciTech Connect

    Matyas, Josef; Sundaram, S. K.; Hicks, Brent J.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

    2008-03-03

    The combustion chamber of slagging coal gasifiers is lined with refractories to protect the stainless steel shell of the gasifier from elevated temperatures and corrosive attack of the coal slag. Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that slag penetration and subsequent spalling of refractory are the cause of significantly shorter service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of three slags representative of a wide variety of coals in the United States into chromia-alumina and two high-chromia refractories. Variables tested were refractory-slag combinations and two partial pressures of O2. Slag penetration depths were measured from spliced images of each refractory. Samples heated to 1470°C for 2 hrs had maximum penetration depths ranging from 1.99±0.15 mm to at least 21.6 mm. Aurex 95P, a high-chromia refractory containing 3.3% phosphorous pentoxide (P2O5), showed the least slag penetration of all refractories tested. P2O5 likely reacts with the slags to increase their viscosity and restrict molten slag penetration. Experimental data on the slag-refractory interaction will be incorporated into mathematical model that will be used to 1) identify critical conditions at which refractory corrosion sharply increases, and 2) predict the service life of a gasifier refractory.

  10. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect

    Ehrlinger, H.P. III ); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. DESTEC Energy Williams Technology, Illinois Coal Association )

    1992-01-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  11. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  12. Slag breaker of pressure-type coal gasifier

    SciTech Connect

    Starke, J.; Exner, R.; Girodi, E.; Jakubik, A.; Strudinger, M.

    1984-02-21

    A slag breaker of a pressure-type coal gasifier having a rotary grate with a plurality of grate segments, a generator bottom and an ash separator, has an inclined breaking plate arranged to be located immediately below the grate segment and prior to the ash separator and provided with a plurality of breaking projections, and a wear sheet arranged to be located on the generator bottom and provided with a plurality of breaking webs.

  13. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  14. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  15. Combined goal gasifier and fuel cell system and method

    DOEpatents

    Gmeindl, Frank D.; Geisbrecht, Rodney A.

    1990-01-01

    A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.

  16. Modelling of a downdraft gasifier fed by agricultural residues

    SciTech Connect

    Antonopoulos, I.-S.; Karagiannidis, A.; Gkouletsos, A.; Perkoulidis, G.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Development of software for downdraft gasification simulation. Black-Right-Pointing-Pointer Prediction of the syngas concentration. Black-Right-Pointing-Pointer Prediction of the syngas heating value. Black-Right-Pointing-Pointer Investigation of the temperature effect in reduction zone in syngas concentration. - Abstract: A non-stoichiometric model for a downdraft gasifier was developed in order to simulate the overall gasification process. Mass and energy balances of the gasifier were calculated and the composition of produced syngas was predicted. The capacity of the modeled gasifier was assumed to be 0.5 MW, with an Equivalence Ratio (EQ) of 0.45. The model incorporates the chemical reactions and species involved, while it starts by selecting all species containing C, H, and O, or any other dominant elements. Olive wood, miscanthus and cardoon were tested in the formulated model for a temperature range of 800-1200 Degree-Sign C, in order to examine the syngas composition and the moisture impact on the supplied fuel. Model results were then used in order to design an olive wood gasification reactor.

  17. University of Minnesota Duluth, gasifier health risk assessment

    SciTech Connect

    Meyer, H.R.; O'Donnell, F.R.; Van Hoesen, S.D.; Etnier, E.L.

    1984-09-01

    This document describes an investigation of potential public and occupational health impacts associated with operation of the small, low Btu gasifier at the University of Minnesota, Duluth (UMD). The purpose of this study is to identify and quantify, within the uncertainty limits imposed by the available data, major contributors to such impacts. Consequently, we have estimated potential occupational health impacts and the gasifier's potential for producing certain health endpoints in the general public. Endpoints are specifically noncancer acute and chronic effects (threshold effects), and cancer and SO/sub x/-related mortalities (linear, nonthreshold effects) associated with atmospheric releases (no direct releases to aquatic systems occur at the facility) and subsequent inhalation exposure to representatives of three classes of released materials - metals, organics, and criteria pollutants. Other potential pathways to public exposure (atmospherically-contaminated drinking water, ingestion of locally produced foods, etc.) should not be responsible for a significant fraction of estimated risk, given the high dilution potential of the city's drinking water source (Lake Superior), and the fact that a relatively small quantity of food is grown locally. The report is organized to provide the reader with: (1) discussion and estimation, as feasible, of gasifier worker health risks, (2) source term (release rate) data, environmental transport and population exposure information, and (3) an assessment of the general population health risk based on these exposure estimates. 82 references, 1 figure, 9 tables.

  18. An analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

    2006-01-01

    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575DGC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier's refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier's on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  19. Performance potential of combined cycles integrated with low-Btu gasifiers for future electric utility applications

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.

    1977-01-01

    A comparison and an assessment of 10 advanced utility power systems on a consistent basis and to a common level of detail were analyzed. Substantial emphasis was given to a combined cycle systems integrated with low-Btu gasifiers. Performance and cost results from that study were presented for these combined cycle systems, together with a comparative evaluation. The effect of the gasifier type and performance and the interface between the gasifier and the power system were discussed.

  20. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  1. Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

    1996-12-31

    This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO2 release rate of 0.801 kg/kV-Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H2S recovery, followed by either low-pressure glycol or membrane CO2 recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H2S recovery and a fuel cell as the topping cycle, with no shift stages. From the IGCC plant, a 500-km pipeline takes the CO2 to geological sequestering. For the optimal CO2 recovery case, the net electric power production was reduced by 37.6 MW from the base case, with a CO2 release rate of 0.277 kg/kWhe (when makeup power was considered). In a comparison of air-blown and oxygen-blown CO2-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, while the cost for oxygen-blown IGCC was 58.29 mills/kWh. For the optimal cases employing glycol CO2 recovery, there was no clear advantage; the cost for air-blown IGCC was 95.48 mills/kWh, and the cost for the oxygen-blown IGCC was slightly lower, at 94.55 mills/kWh.

  2. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    SciTech Connect

    Anbo Wang; Kristie Cooper

    2008-07-19

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  3. Slagging and fluidity behavior of coal ash under gasifier environment

    SciTech Connect

    Kim, H.T.; Bae, H.J.; Lee, S.H.; Park, J.S.; Yun, Y.S.; Chung, S.W.

    1997-12-31

    The objective of this study is to predict the slagging and fluidity behavior of coal ashes from the physical/chemical properties of parent coals to determine the optimum operating parameter of a slagging-type coal gasifier. Three types of coal samples, such as Alaska Usibelli, China Datong and Posco (blended coal), are analyzed for their ash composition and ash fusion temperature. To investigate the effect of flux addition on ash slagging behavior, optimum quantity of CaO addition is evaluated with considering negative effect of CaO addition on gasification reaction. The effect of blending of Posco coal with Alaska and Datong coal on ash slagging is also investigated to expand the variety and performance of coal types in slagging-type entrained-bed gasifier. The results of the experiment shows that the optimum CaO fluxing quantity is 10%, 20% on Alaska and Dating coal, respectively. However, optimum blending ratio for ash slagging is not found when mixing Posco coal with Alaska or Datong coals. Melting and slagging characteristics of coal ash samples with changing temperature are examined in detail by DTA. ASTM ash melting temperatures as well as critical viscosity temperature are compared with TGA and DTA profiles. DTA experiments illustrate that coal ash starts to melt before the IDT (initial deformation temperature) and that theoretical T{sub CV} is well correlated with DTA profile. Experiment of ash fluidity are also carried on with the Alaska and Datong coal ashes using a high temperature viscometer. The experimental viscosity data is compared with the calculated viscosity and results show good correlation. As a result, viscosity of coal ash could be calculated with the Watt and Fereday equation in the high temperature range. The experimental results from this investigation will be used as reference data for determining optimum operating condition of 3t/d bench scale unit gasifier which is located in Ajou University, Suwon, Korea.

  4. Conversion of forest residues to a methane-rich gas in a high-throughput gasifier

    SciTech Connect

    Feldmann, H.F.; Paisley, M.A.; Appelbaum, H.R.; Taylor, D.R.

    1988-05-01

    Research was conducted in a process research unit to develop an entrained bed gasifier which is supplied heat by recirculating a stream of sand between a separate combustion vessel and the gasifier. The char remaining after gasification of the wood provides the fuel for the combustor. The research program was conducted in two phases. In the first phase, a 6 in. I.D. gasifier was used to establish the feasibility of the concept for a wide variety of biomass feeds. The second phase of the program was conducted with a 10 in. I.D. gasifier, and a fully automated feeder system, to evaluate gasifier performance at very high feed rates. The experimental results were used to develop design parameters and detailed energy and material balances for a conceptual plant. A preliminary cost analysis is presented in the report based on the conceptual design. 5 refs., 24 figs., 13 tabs.

  5. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    SciTech Connect

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  6. Development of improved performance refractory liner materials for slagging gasifiers

    SciTech Connect

    Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

    2005-01-01

    Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

  7. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  8. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  9. Process for gasifying carbonaceous material from a recycled condensate slurry

    DOEpatents

    Forney, Albert J.; Haynes, William P.

    1981-01-01

    Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

  10. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect

    Li, Tingwen; Gel, Aytekin; Syamlal, M; Guenther, Chris; Pannala, Sreekanth

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  11. Field Trial Results of an Improved Refractory Material for Slagging Gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Petty, A.V., Jr.; Thomas, H.; Prior, H.D.; Schnake, M.

    2006-09-01

    Gasifiers are used commercially to react a carbon feedstock with water and oxygen under reducing conditions; producing chemicals used as feedstock for other processes, fuel for power plants, and/or steam used in other processes. A gasifier acts as a high temperature, high pressure reaction chamber, typically operating between 1250-1575°C, and with pressures between 300-1000 psi. Ash that originates from mineral impurities in the carbon feedstock becomes a by-product of gasification. In a slagging gasifier it melts, forming a liquid which flows down the gasifier sidewall; penetrating and wearing away the refractory liner by corrosive dissolution, abrasive wear, or by other processes such as spalling. The refractory liner must withstand the severe service environment, protecting the steel shell against corrosive gases, temperature, and material wear. Users have identified refractory service life as the most important limitation to sustained on-line availability of gasifiers, limiting gasifier acceptance and use by industry. The National Energy Technology Laboratory in Albany, OR, has developed and patented (US Patent # 6,815,386) a phosphate containing high chrome oxide refractory for use in slagging gasifiers. In cooperation with ANH Refractories Company, this refractory material has been commercially produced and is undergoing field tests in commercial gasifiers. An analysis of data from these field tests indicates that the phosphate containing refractory results in an improved service life over other refractory materials currently used as gasifier liners. Results from the post-mortem analysis of the field trial in relation to the failure mechanisms in a slagging gasifier will be presented.

  12. Superheater Tube Corrosion in Wood Gasifier Ash Deposits

    SciTech Connect

    Bestor, Michael A; Keiser, James R; Meisner, Roberta A

    2011-01-01

    The upper operating temperature of tubes in heat exchangers/steam generators is strongly influenced by the degradation that can occur because of the reaction of the exchanger/generator tubing with the deposits that accumulate on the surface of the tubes. In fact, severe corrosion has been observed in some biomass fired systems, particularly with elevated potassium and chlorine concentrations in the deposits. Wood gasifiers have recently been and are currently being constructed at several sites in North America. In these systems, the syngas is burned to produce steam and the performance of the heat exchanger tubes under ash deposits is of great concern. As temperatures of the heat exchangers are increased in an effort to increase their operating efficiency, the performance of the tubes is of greater interest. The corrosion behavior of alloy steel tubes as a function of temperature has been investigated by exposing samples of selected alloys to ash collected from the steam generator fired by syngas produced in wood gasifiers. This study compares corrosion rates from laboratory exposures of synthesis gas and ash at 500 C and 600 C. This study investigated the material performance of four ferritic steels and one austenitic steel exposed to conditions expected on the fireside of a wood gasifier. The purpose of this study was to identify an effective method for determining material performance for samples exposed to both the process gas and the fly ash that is typically observed within the steam generator for times up to 1000 hours. Mass changes were measured for all of the samples, but this information can be misleading concerning material performance due to the difficulty in sufficiently cleaning the samples after exposure in the ash. Therefore, small cross sections of the samples were collected and imaged using optical microscopy. Oxide thicknesses were measured along with metal losses. The metal loss information provides a clear indication of material performance

  13. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  14. Development of mercury and chloride monitors for coal gasifiers

    SciTech Connect

    Buttermore, W.H.; Norton, G.A.; Chriswell, C.D.; Eckels, D.E.; Peters, R.E.

    1996-12-31

    Ames Laboratory will develop an integrated sampling and analysis system suitable for on-line monitoring of mercury (Hg) and hydrogen chloride (HCl) in advanced coal-based gasifiers. The objectives of this project are to (1) summarize current technology for monitoring Hg and HCl in gaseous effluents; (2) identify analytical techniques for such determinations in high-temperature, high-pressure gases from coal-based systems for producing electrical power; (3) evaluate promising analytical approaches, and (4) produce reliable on-line monitors which are adaptable to plant-scale diagnostics and process control. For HG, the techniques selected for further consideration were atomic absorption and atomic fluorescence. For HCl, non-dispersive infrared absorption, a dry colorimetric procedure, and ion mobility spectroscopy were selected for testing in the laboratory. Results to date are described.

  15. THERMOCHEMICAL MODELING OF REFRACTORY CORROSION IN SLAGGING COAL GASIFIERS

    SciTech Connect

    Besmann, Theodore M

    2008-01-01

    Slagging coal gasifiers suffer corrosive attack on the refractory liner and these interactions were thermochemically simulated. The slag is observed to penetrate the refractory, which complicates modeling the phase behavior of the slag-penetrated interior of the refractory. A simple strategy was adopted such that step-wise changes in composition with decreasing slag content were assumed to account for the compositional changes as slag penetrates the refractory. The thermochemical equilibrium calculations following this strategy typically yielded three solution phases as well as the stoichiometric crystalline phases AlPO4 and Ca3(PO4)2 depending on composition/penetration. Under some conditions a slag liquid miscibility gap exists such that two slag liquids co-exist.

  16. Grate assembly for fixed-bed coal gasifier

    DOEpatents

    Notestein, John E.

    1993-01-01

    A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

  17. An update on the development of an improved performance refractory material for slagging coal gasifiers

    SciTech Connect

    Powell, Cynthia A.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2004-01-01

    Severe slag attack of high temperature materials that line coal gasifiers used in the production of chemicals, liquid fuels, and/or electricity result in their unacceptably short lifetimes, lasting anywhere from 3 months to 24 months. Lengthening of this short service life to increase gasifier reliability and increase on-line availability of a gasifier is viewed as critical for greater technology acceptance and utilization. A phosphate containing high chrome oxide refractory has been developed by the Albany Research Center of DOE and scaled up by an industrial producer of refractories for plant trials. An update of this material and its properties will be presented.

  18. Process for gasifying fine grained and dust-like solid fuels

    SciTech Connect

    Dutz, K.; Goeke, E.; Preusser, G.

    1980-06-10

    Fine grained fuel such as coal dust is gasified at an elevated pressure by passing the fuel from a supply tank which is at atmospheric pressure by pump means into a pressurized lock basin and therefrom into the gasifier, the fuel during such movement retaining its loose consistency. This can be accomplished for instance by a solid piston pump which is only partially filled with the fuel. Thus, agglomerations are avoided and the fuel is directly conveyed into the gasifier in flowable and fluidizable form without the necessity of being reconverted into a finely divided form.

  19. Two-stage fixed-bed gasifier with selectable middle gas off-take point

    DOEpatents

    Strickland, Larry D.; Bissett, Larry A.

    1992-01-01

    A two-stage fixed bed coal gasifier wherein an annular region is in registry with a gasification zone underlying a devolatilization zone for extracting a side stream of high temperature substantially tar-free gas from the gasifier. A vertically displaceable skirt means is positioned within the gasifier to define the lower portion of the annular region so that vertical displacement of the skirt means positions the inlet into the annular region in a selected location within or in close proximity to the gasification zone for providing a positive control over the composition of the side stream gas.

  20. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect

    Ehrlinger, H.P. III ); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. DESTEC Energy Williams Technology Illinois Coal Association )

    1992-01-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  1. Environmental implications of small fixed-bed gasifiers for industry. [Assumes 500 small gasifiers in 1990 and 2500 in 2000

    SciTech Connect

    Dobson, J.E.; Cushman, R.M.; Walsh, P.J.

    1981-05-01

    The Oak Ridge National Laboratory is responsible for an assessment of the environmental implications of small fixed-bed coal gasifiers for industry. The assessment focuses on the industrial utilization of low energy gas (often called low-Btu gas) in the range of 3708 to 7416 kJ/m/sup 3/ manufactured on-site or nearby in a coal-air-steam reaction process. The major risk is in occupational health due to potential exposure to toxic substances. This risk to workers is considerably greater than the risk to the public at large. The major sources of occupational exposure will be process steam leaks, accidental spills, and maintenance operations. The composition of the process stream produced during low-Btu gasification is not well know at present.

  2. Pinon Pine power project nears start-up

    SciTech Connect

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing of the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.

  3. Applications of moving granular-bed filters to advanced systems

    SciTech Connect

    Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

    1993-09-01

    The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

  4. On-line monitoring of mercury and hydrogen chloride in hot gases from coal gasifiers

    SciTech Connect

    Norton, G.A.; Chriswell, C.D.; Eckels, D.E.; Buttermore, W.H.

    1993-09-01

    A variety of analytical techniques which may be applicable to monitoring Hg or HCl in METC gasifier streams were identified. Potential approaches for on-line analysis of Hg and HCl are discussed in detail.

  5. An update on field test results for an engineered refractory for slagging gasifiers

    SciTech Connect

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology’s ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved performance structural materials with longer service life in this application. Current generation refractory materials used to line the air-cooled, slagging gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials contributes to gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of an improved refractory material engineered by the NETL for longer service life in this application, and provide an update on recent field test results.

  6. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    PubMed

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling.

  7. Analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.A.; Thomas, H.; Krabbe, R.A.

    2006-03-01

    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575oC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier’s refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier’s on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  8. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    PubMed

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. PMID:26855290

  9. Preliminary results from field testing an improved refractory material for slagging coal gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.

    2004-01-01

    Slag attack of refractory materials used to line the hot face of slagging gasifiers limits their service life to between 3 and 24 months. These gasifiers use coal, petroleum coke, or combinations of them as raw materials to produce chemicals, liquid fuel, and/or electricity; with future consideration being given to the use of other abundant, low cost feedstock such as biomass. The ash from these materials generate liquid slags during gasification at temperature between 1300 - 1575 C and pressures up to 1000 psi, leading to severe slag attack of a vessel lining and causing unacceptable gasifier reliability and on-line availability. To maximize refractory life and provide protection of the gasifier metal shell, the best liners have contained a minimum of 60-70 pct chromia in combination with alumina, alumina/zirconia, or magnesia. The Albany Research Center of DOE has developed a phosphate containing high chrome oxide refractory liner that indicates potential for increased service life over currently used materials. This new liner has been produced commercially by a refractory company and installed in a gasifier for performance evaluation. Refractory issues in slagging gasifiers, the development and properties of the phosphate containing high chrome oxide material, and the preliminary results from the plant trial of this material will be presented.

  10. Dynamic modeling of a single-stage downward firing, entrained flow gasifier

    SciTech Connect

    Kasule, J., Turton, R., Bhattacharyya, D., Zitney, S.

    2012-01-01

    The gasifier is the heart of the integrated gasification combined cycle (IGCC), a technology that has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. Understanding the optimal performance of the gasifier is therefore paramount for the efficient operation of IGCC power plants. Numerous gasifier models of varying complexity have been developed to study the various aspects of gasifier performance. These range from simple one-dimensional (1D) process-type models to rigorous higher order 2-3D models based on computational fluid dynamics (CFD). Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster 1D partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state models that have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the current study, a 1D transient model of a single-stage downward-fired GE/Texaco-type entrained-flow gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs in the spatial

  11. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  12. Isolated thermocouple amplifier system for stirred fixed-bed gasifier

    DOEpatents

    Fasching, George E.

    1992-01-01

    A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.

  13. Ash level meter for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  14. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    PubMed Central

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  15. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    PubMed

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.

  16. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  17. CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models

    SciTech Connect

    Ma, J.; Zitney, S.

    2012-01-01

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

  18. IGCC performance comparison for variations in gasifier type and gas turbine firing temperature

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.; Nainiger, J. J.

    1983-01-01

    Performance estimates were made for a series of integrated coal gasification combined cycle (IGCC) power systems using three generic types of coal gasification subsystems. The objectives of this study were (1) to provide a self consistent comparison of IGCC systems using different types of gasifiers and different oxidants and (2) to use this framework of cases to evaluate the effect of a gas turbine firing temperature and cooling approach an overall system efficiency. The basic IGCC systems considered included both air and oxygen blown versions of a fluidized bed gasifier, represented by the Westinghouse design, and an entrained bed gasifier, represented by the Texaco design. Also considered were systems using an oxygen blown, fixed bed gasifier, represented by the British Gas Corporation (BGC) slagging gasifier. All of these gasifiers were integrated with a combined cycle using a gas turbine firing temperature of 1700 K (2600 F) and a compressor pressure ratio of 16:1. Steam turbine throttle conditions were chosen to be 16.6 MPa/811 K (2400 psia/1000 F) with a single reheat to 810 K (1000 F). Some of these cases were modified to allow the evaluation of the effect of gas turbine firing temperature. Turbine firing temperatures from state of the art 1365 K (2000 F) to an advanced technology 1920 K (3000 F) were analyzed. A turbine cooling technology that maintains metal temperatures below acceptable limits was assumed for each level of firing temperature. System performance comparisons were made using three advanced turbine cooling technologies for the 1920 K (3000 F) firing temperature. The results indicate that the IGCC using the BGC gasifier had the highest net system efficiency (42.1 percent) of the five gasification cases considered.

  19. Preliminary environmenal assessment of the University of Minnesota, Duluth Coal Gasifier, FY 1980

    SciTech Connect

    Suter, G.W. II; Cushman, R.M.

    1981-07-01

    Preliminary results are reported for the environmental assessment portion of a comprehensive monitoring and testing program focused on a small Foster-Wheeler/Stoic coal gasifier at the University of Minnesota, Duluth. Leachates of solid wastes (bottom ash and cyclone ash) from the gasifier were tested chemically and toxicologically. Trace element levels in the leachates were well below levels that would classify a solid waste as hazardous in accordance with the Resource Conservation and Recovery Act of 1976. Most other water quality criteria were satisfied as well. The leachates caused little or no toxic effect in a battery of toxicity tests using Daphnia magna, freshwater algae, and radish and sorghum seedlings. Ambient air quality was measured at two monitoring stations within 1 km of the gasifier. Levels of SO/sub 2/, NO/sub x/, O/sub 3/, hydrocarbons, and total suspended particulates were monitored at the two stations, and meteorological variables were monitored at the downwind (based on prevailing wind patterns) station. Ambient air quality was well within standards, except for hydrocarbons (the cause for this excess is under investigation). Conversion of the campus steam plant to partial use of gasifier products appears to have resulted in an increase in SO/sub 2/ and particulate emissions and a decrease in NO/sub x/ emissions relative to the previous fuel mix. No increments in ambient air pollution levels are attributable to the gasifier.

  20. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  1. Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995

    SciTech Connect

    1995-06-01

    This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.

  2. Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995

    SciTech Connect

    Farell, A.E.; Reddy, S.

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order to assess MGAS for use as a model of the FBG for control systems analysis.

  3. Method for the desulfurization of hot product gases from coal gasifier

    DOEpatents

    Grindley, Thomas

    1988-01-01

    The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate.

  4. Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier.

    PubMed

    Wei, Lin; Pordesimo, Lester O; Haryanto, Agus; Wooten, James

    2011-05-01

    Seeking appropriate approaches to utilize the crude glycerol produced in biodiesel production is very important for the economic viability and environmental impacts of biodiesel industry. Gasification may be one of options for addressing this issue. Co-gasification of hardwood chips blending with crude glycerol in various loading levels was undertaken in the study involving a pilot scale fixed-bed downdraft gasifier. The results indicated that crude glycerol loading levels affected the gasifier's performance and the quality of syngas produced. When crude glycerol loading level increased, the CO, CH(4), and tar concentrations of the syngas also increased but particle concentration decreased. Though further testing is suggested, downdraft gasifiers could be run well with hardwood chips blending with liquid crude glycerol up to 20 (wt%). The syngas produced had relatively good quality for fueling internal combustion engines. This study provides a considerable way to utilize crude glycerol. PMID:21435871

  5. Comparison of Refractory Performance in Black Liquor Gasifiers and a Smelt Test System

    SciTech Connect

    Peascoe, RA

    2001-09-25

    Prior laboratory corrosion studies along with experience at the black liquor gasifier in New Bern, North Carolina, clearly demonstrate that serious material problems exist with the gasifier's refractory lining. Mullite-based and alumina-based refractories used at the New Bern facility suffered significant degradation even though they reportedly performed adequately in smaller scale systems. Oak Ridge National Laboratory's involvement in the failure analysis, and the initial exploration of suitable replacement materials, led to the realization that a simple and reliable, complementary method for refractory screening was needed. The development of a laboratory test system and its suitability for simulating the environment of black liquor gasifiers was undertaken. Identification and characterization of corrosion products were used to evaluate the test system as a rapid screening tool for refractory performance and as a predictor of refractory lifetime. Results from the test systems and pl ants were qualitatively similar.

  6. System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock.

    PubMed

    Balu, Elango; Chung, J N

    2012-03-01

    The main objective of this study is to investigate the thermal profiles of a trailer-scale gasifier in different zones during the course of gasification and also to elaborate on the design, characteristics and performance of the gasification system using different biomass feedstock. The purpose is to emphasize on the effectiveness of distributed power generation systems and demonstrate the feasibility of such gasification systems in real world scenarios, where the lingo-cellulosic biomass resources are widely available and distributed across the board. Experimental data on the thermal profiles with respect to five different zones in the gasifier and a comprehensive thermal-chemical equilibrium model to predict the syngas composition are presented in detail. Four different feedstock-pine wood, horse manure, red oak, and cardboard were evaluated. The effects of C, H, O content variations in the feedstock on the thermal profiles, and the efficiency and viability of the trailer-scale gasifier are also discussed.

  7. CFD modeling of commercial-scale entrained-flow coal gasifiers

    SciTech Connect

    Ma, J.; Zitney, S.

    2012-01-01

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here

  8. Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995

    SciTech Connect

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.

  9. Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    1995-12-31

    In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBG run No. 11 and transfer of data to USC.

  10. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  11. Uncertainty analysis of an IGCC system with single-stage entrained-flow gasifier

    SciTech Connect

    Shastri, Y.; Diwekar, U.; Zitney, S.

    2008-01-01

    Integrated Gasification Combined Cycle (IGCC) systems using coal gasification is an attractive option for future energy plants. Consequenty, understanding the system operation and optimizing gasifier performance in the presence of uncertain operating conditions is essential to extract the maximum benefits from the system. This work focuses on conducting such a study using an IGCC process simulation and a high-fidelity gasifier simulation coupled with stochastic simulation and multi-objective optimization capabilities. Coal gasifiers are the necessary basis of IGCC systems, and hence effective modeling and uncertainty analysis of the gasification process constitutes an important element of overall IGCC process design and operation. In this work, an Aspen Plus{reg_sign} steady-state process model of an IGCC system with carbon capture enables us to conduct simulation studies so that the effect of gasification variability on the whole process can be understood. The IGCC plant design consists of an single-stage entrained-flow gasifier, a physical solvent-based acid gas removal process for carbon capture, two model-7FB combustion turbine generators, two heat recovery steam generators, and one steam turbine generator in a multi-shaft 2x2x1 configuration. In the Aspen Plus process simulation, the gasifier is represented as a simplified lumped-parameter, restricted-equilibrium reactor model. In this work, we also make use of a distributed-parameter FLUENT{reg_sign} computational fluid dynamics (CFD) model to characterize the uncertainty for the entrained-flow gasifier. The CFD-based gasifer model is much more comprehensive, predictive, and hence better suited to understand the effects of uncertainty. The possible uncertain parameters of the gasifier model are identified. This includes input coal composition as well as mass flow rates of coal, slurry water, and oxidant. Using a selected number of random (Monte Carlo) samples for the different parameters, the CFD model is

  12. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  13. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOEpatents

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  14. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    SciTech Connect

    2009-12-01

    Capstone Turbine Corporation, in collaboration with the University of California – Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  15. Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers

    SciTech Connect

    Peter Ariessohn; Hans Hornung

    2006-10-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and

  16. Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers

    SciTech Connect

    Peter Ariessohn; Hans Hornung

    2006-01-15

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plants to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components is not a

  17. Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wen, Jia-Long; Sun, Run-Cang

    2016-07-01

    Bio-oil derived from fast pyrolysis of rice husk was gasified for producing gas. The effectiveness of equivalence ratio and gasifying agents on the gas composition, ratio of H2/CO, tar amount, low heating value, degree of oxidation and cold gas efficiency of the gas were comprehensively investigated. Under different equivalence ratios and gasifying agents, the gases can be used as synthesis gas for Fischer-Tropsch synthesis, fuel gas for gas turbines in a power plant and reducing gas for ore reduction, respectively. The H2 concentration, CO level and cold gas efficiency of the resulted gas derived from gasification of bio-oil were significantly higher, while tar content was remarkably lower than those derived from gasification of solid biomass using the same equivalent ratio value and gasifying agent. In short, bio-oil gasification is economically feasible for large scale production of fuels and chemicals.

  18. Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wen, Jia-Long; Sun, Run-Cang

    2016-07-01

    Bio-oil derived from fast pyrolysis of rice husk was gasified for producing gas. The effectiveness of equivalence ratio and gasifying agents on the gas composition, ratio of H2/CO, tar amount, low heating value, degree of oxidation and cold gas efficiency of the gas were comprehensively investigated. Under different equivalence ratios and gasifying agents, the gases can be used as synthesis gas for Fischer-Tropsch synthesis, fuel gas for gas turbines in a power plant and reducing gas for ore reduction, respectively. The H2 concentration, CO level and cold gas efficiency of the resulted gas derived from gasification of bio-oil were significantly higher, while tar content was remarkably lower than those derived from gasification of solid biomass using the same equivalent ratio value and gasifying agent. In short, bio-oil gasification is economically feasible for large scale production of fuels and chemicals. PMID:27017126

  19. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    SciTech Connect

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  20. Mathematical modeling of the synthane gasifier for non-caking coals

    SciTech Connect

    Pukanic, G.W.; Cobb, J.T.; Haynes, W.P.; McMichael, W.J.; Strakey, J.P.; Schehl, R.R.; Kornosky, R.M.

    1980-11-01

    A mathematical model based on IGT kinetics has been developed to simulate the gasification of coal in the Synthane gasifier. Two computer codes have been prepared that incorporate this model. The first, called the analytical code, has been designed primarily to evaluate model parameters from runs on the 4-inch Synthane PDU gasifier. The second, called the predictive code, has been designed to predict temperatures for the zones within the model as well as the effluent products from a stipulation of run conditions. In the present report some 35 Synthane runs for the non-caking western coal Montana Rosebud have been analyzed. Parity plots have been prepared to check the efficacy of the model and of the computer codes developed.

  1. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  2. Gasifier feed - Tailor-made from Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. |||

    1992-08-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  3. Optimization of Solid Circulation Rate in Compartmented Fluidized Bed Gasifier for Power Generation

    NASA Astrophysics Data System (ADS)

    Chok, V. S.; Wee, S. K.; Ariffin, M. Z. Mohd.; Gorin, A.; Chua, H. B.; Yan, H. M.

    2008-10-01

    The present paper reports the optimization of solid circulation rate (SCR) in Compartmented Fluidized Bed Gasifier (CFBG), an indirectly heated fluidized bed that incorporates two sets of v-valves and risers to control the solid circulation across the two compartments, i.e. combustor and gasifier of a pilot plant scale (the height and ID are 1.8m and 0.66m respectively). Sand was used as inert fluidized by air. Four operating variables were studied i.e. bed height, riser, v-valve and main bed flowrate. Based on 24 full factorial design of experiment in Yates' algorithm, at confidence level ⩾95%, ANOVA analysis has revealed six important effects. The steepest ascent method was applied on linear regression generated from these effects to design the subsequent optimization experiments. The optimum values of SCR have been estimated for both low and high bed level at specific operating parameters.

  4. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    SciTech Connect

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  5. [Gasification characteristics of waste tires in laboratory-scale fluidized-bed gasifier].

    PubMed

    Miao, Qi; Chi, Yong; Xiao, Gang; Zhu, Wen-li; Jiang, Xu-guang; Cen, Ke-fa

    2006-05-01

    A laboratory-scale fluidized-bed gasifier was designed and used to investigate the characteristics of waste tires gasification. Granulated tires were gasified with different excessive air ratios at a temperature range of 400-700 degrees C. The gasification efficiency, carbon conversion efficiency, heating value, yield and components of syngas were analyzed. Results showed that the optimum operation conditions were achieved when the gasification temperature was 700 degrees C and the excessive air radio (EAR) was 0.4. A gaseous product, mainly containing CH4, CO, H2, C2H6, and longer-chain hydrocarbon with a lower heating value (LHV) of about 4804 kJ/m3, can be generated at the highest gasification efficiency of 47.96% under the optimum operation conditions.

  6. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  7. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1984-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  8. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1986-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  9. Fluid dynamics of pressurized, entrained coal gasifiers. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Louge, M.Y.

    1995-10-01

    A study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs) is being conducted. The idea is to simulate the flows in generic industrial PECGs using dimensional simulitude. A unique entrained gas-solid flow facility with the flexibility to recycle rather than discard gases other than air has been utilized. By matching five dimensionaless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-up on the fluid dynamics of PECGs.

  10. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    PubMed

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems.

  11. Design of gasifiers to optimize fuel cell systems. Final report, September 1990--September 1993

    SciTech Connect

    Not Available

    1993-08-01

    Pursuing the key national goal of clean and efficient utilization of the abundant domestic coal resources for power generation, this study was conducted to evaluate the potential of optimizing the integrated catalytic gasification/carbonate fuel cell power generation system. ERC in close collaboration with Fluor Daniel (providing engineering design and costing), conducted a detailed system configuration study to evaluate various catalytic gasification/carbonate fuel cell power plant configurations and compare them to present day, as well as emerging, alternate coal-based power plant technologies to assess their competitive position. A Topical Report (1992) was submitted documenting this effort, and the three catalytic gasification case studies are summarized in Appendix A. Results of this study indicate that system efficiencies approaching 55% (HHV) can be achieved by integrating low temperature catalytic gasification with high efficiency carbonate fuel cells. Thermal balance in the gasifier is achieved without oxygen by recycling hydrogen from the fuel cell anode exhaust. A small amount of air is added to the gasifier to minimize hydrogen recycle. In order to validate the assumptions made in the case configurations, experimental studies were performed to determine the reactivity of Illinois No. 6 coal with the gasification catalysts. The reactivity of the catalyzed coal has significant bearing on gasifier sizing and hence system cost and efficiency.

  12. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    SciTech Connect

    Hanson, Ronald; Whitty, Kevin

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  13. On the modeling of a single-stage, entrained-flow gasifier using Aspen Custom Modeler (ACM)

    SciTech Connect

    Kasule, J.; Turton, R.; Bhattacharyya, D.; Zitney, S.

    2010-01-01

    Coal-fired gasifiers are the centerpiece of integrated gasification combined cycle (IGCC) power plants. The gasifier produces synthesis gas that is subsequently converted into electricity through combustion in a gas turbine. Several mathematical models have been developed to study the physical and chemical processes taking place inside the gasifier. Such models range from simple one-dimensional (1D) steady-state models to sophisticated dynamic 3D computational fluid dynamics (CFD) models that incorporate turbulence effects in the reactor. The practical operation of the gasifier is dynamic in nature but most 1D and some higher-dimensional models are often steady state. On the other hand, many higher order CFD-based models are dynamic in nature, but are too computationally expensive to be used directly in operability and controllability dynamic studies. They are also difficult to incorporate in the framework of process simulation software such as Aspen Plus Dynamics. Thus lower-dimensional dynamic models are still useful in these types of studies. In the current study, a 1D dynamic model for a single-stage, downward-firing, entrained-flow GE-type gasifier is developed using Aspen Custom Modeler{reg_sign} (ACM), which is a commercial equation-based simulator for creating, editing, and re-using models of process units. The gasifier model is based on mass, momentum, and energy balances for the solid and gas phases. The physical and chemical reactions considered in the model are drying, devolatilization/pyrolysis, gasification, combustion, and the homogeneous gas phase reactions. The dynamic gasifier model is being developed for use in a plant-wide dynamic model of an IGCC power plant. For dynamic simulation, the resulting highly nonlinear system of partial differential algebraic equations (PDAE) is solved in ACM using the well-known Method of Lines (MoL) approach. The MoL discretizes the space domain and leaves the time domain continuous, thereby converting the PDAE to

  14. Analysis and control of the METC fluid bed gasifier. Final report (includes technical progress report for October 1994--January 1995), September 1994--September 1996

    SciTech Connect

    1996-09-01

    This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.

  15. A one-dimensional transient model of a single-stage, downward-firing entrained-flow gasifier

    SciTech Connect

    Kasule, J.; Turton, R.; Bhattacharyya, D.; Zitney, S.

    2012-01-01

    The integrated gasification combined cycle (IGCC) technology has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. The core unit of this technology is the gasifier whose optimal performance must be understood for efficient operation of IGCC power plants. This need has led a number of researchers to develop gasifier models of varying complexities. Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster one-dimensional (1D) partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state and have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the present study, a 1D transient model of a single-stage downward flow GE/Texaco-type gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs are discretized in the spatial domain and the resulting differential algebraic equations (DAEs) are then solved to obtain the transient response. The transient response of various gasifier performance parameters to

  16. Design, Fabrication and Testing of an Infrared Ratio Pyrometer System for the Measurement of Gasifier Reaction Chamber Temperature

    SciTech Connect

    Tom Leininger

    2005-03-31

    Texaco was awarded contract DE-FC26-99FT40684 from the U.S. DOE to design, build, bench test and field test an infrared ratio pyrometer system for measuring gasifier temperature. The award occurred in two phases. Phase 1, which involved designing, building and bench testing, was completed in September 2000, and the Phase 1 report was issued in March 2001. Phase 2 was completed in 2005, and the results of the field test are contained in this final report. Two test campaigns were made. In the first one, the pyrometer was sighted into the gasifier. It performed well for a brief period of time and then experienced difficulties in keeping the sight tube open due to a slag accumulation which developed around the opening of the sight tube in the gasifier wall. In the second test campaign, the pyrometer was sighted into the top of the radiant syngas cooler through an unused soot blower lance. The pyrometer experienced no more problems with slag occlusions, and the readings were continuous and consistent. However, the pyrometer readings were 800 to 900 F lower than the gasifier thermocouple readings, which is consistent with computer simulations of the temperature distribution inside the radiant syngas cooler. In addition, the pyrometer readings were too sluggish to use for control purposes. Additional funds beyond what were available in this contract would be required to develop a solution that would allow the pyrometer to be used to measure the temperature inside the gasifier.

  17. Exergy and Economic Analysis of Catalytic Coal Gasifiers Coupled With Solid Oxide Fuel Cells

    SciTech Connect

    Siefert, Nicholas; Litster, Shawn

    2011-01-01

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ~4%/yr and ~2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the

  18. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    SciTech Connect

    Wang, Anbo; Yu, Zhihao

    2015-11-30

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

  19. Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies.

    PubMed

    Carter, Ellison M; Shan, Ming; Yang, Xudong; Li, Jiarong; Baumgartner, Jill

    2014-06-01

    Household air pollution from solid fuel combustion is the leading environmental health risk factor globally. In China, almost half of all homes use solid fuel to meet their household energy demands. Gasifier cookstoves offer a potentially affordable, efficient, and low-polluting alternative to current solid fuel combustion technology, but pollutant emissions and energy efficiency performance of this class of stoves are poorly characterized. In this study, four Chinese gasifier cookstoves were evaluated for their pollutant emissions and efficiency using the internationally recognized water boiling test (WBT), version 4.1.2. WBT performance indicators included PM2.5, CO, and CO2 emissions and overall thermal efficiency. Laboratory investigation also included evaluation of pollutant emissions (PM2.5 and CO) under stove operating conditions designed to simulate common Chinese cooking practices. High power average overall thermal efficiencies ranged from 22 to 33%. High power average PM2.5 emissions ranged from 120 to 430 mg/MJ of useful energy, and CO emissions ranged from 1 to 30 g/MJ of useful energy. Compared with several widely disseminated "improved" cookstoves selected from the literature, on average, the four Chinese gasifier cookstoves had lower PM2.5 emissions and higher CO emissions. The recent International Organization for Standardization (ISO) International Workshop Agreement on tiered cookstove ranking was developed to help classify stove performance and identify the best-performing stoves. The results from this study highlight potential ways to further improve this approach. Medium power stove operation emitted nearly twice as much PM2.5 as was emitted during high power stove operation, and the lighting phase of a cooking event contributed 45% and 34% of total PM2.5 emissions (combined lighting and cooking). Future approaches to laboratory-based testing of advanced cookstoves could improve to include greater differentiation between different modes of

  20. Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies.

    PubMed

    Carter, Ellison M; Shan, Ming; Yang, Xudong; Li, Jiarong; Baumgartner, Jill

    2014-06-01

    Household air pollution from solid fuel combustion is the leading environmental health risk factor globally. In China, almost half of all homes use solid fuel to meet their household energy demands. Gasifier cookstoves offer a potentially affordable, efficient, and low-polluting alternative to current solid fuel combustion technology, but pollutant emissions and energy efficiency performance of this class of stoves are poorly characterized. In this study, four Chinese gasifier cookstoves were evaluated for their pollutant emissions and efficiency using the internationally recognized water boiling test (WBT), version 4.1.2. WBT performance indicators included PM2.5, CO, and CO2 emissions and overall thermal efficiency. Laboratory investigation also included evaluation of pollutant emissions (PM2.5 and CO) under stove operating conditions designed to simulate common Chinese cooking practices. High power average overall thermal efficiencies ranged from 22 to 33%. High power average PM2.5 emissions ranged from 120 to 430 mg/MJ of useful energy, and CO emissions ranged from 1 to 30 g/MJ of useful energy. Compared with several widely disseminated "improved" cookstoves selected from the literature, on average, the four Chinese gasifier cookstoves had lower PM2.5 emissions and higher CO emissions. The recent International Organization for Standardization (ISO) International Workshop Agreement on tiered cookstove ranking was developed to help classify stove performance and identify the best-performing stoves. The results from this study highlight potential ways to further improve this approach. Medium power stove operation emitted nearly twice as much PM2.5 as was emitted during high power stove operation, and the lighting phase of a cooking event contributed 45% and 34% of total PM2.5 emissions (combined lighting and cooking). Future approaches to laboratory-based testing of advanced cookstoves could improve to include greater differentiation between different modes of

  1. Pinon pine project. Annual report, January 1995--December 1995

    SciTech Connect

    1996-04-01

    This annual report has been prepared to present the status of the Pinon Pine Project, a nominal 107 MWe (gross) coal-fired integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the U.S. Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient, reliable and able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal as the design fuel. Testing will also be performed on a high-sulfur eastern coal. The Pinon Pine Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV. This new unit will be designated as Tracy Unit No. 4. SPPCo, the project participant, has contracted with the Foster Wheeler USA Corporation (FW USA) for the overall project management, engineering, procurement and construction of the project. FW USA in turn has subcontracted with The M.W. Kellogg Company (MWK) for the engineering and procurement of key components for the Gasifier Island.

  2. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    SciTech Connect

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  3. Properties and effects of remaining carbon from waste plastics gasifying on iron scale reduction.

    PubMed

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2011-06-01

    The carbonous activities of three kinds of carbon-bearing materials gasified from plastics were tested with coal coke as reference. The results showed that the carbonous activities of these remaining carbon-bearing materials were higher than that of coal-coke. Besides, the fractal analyses showed that the porosities of remaining carbon-bearing materials were higher than that of coal-coke. It revealed that these kinds of remaining carbon-bearing materials are conducive to improve the kinetics conditions of gas-solid phase reaction in iron scale reduction.

  4. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    NASA Astrophysics Data System (ADS)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  5. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier.

    PubMed

    Kelley, Madison A; Jakulewicz, Micah S; Dreyer, Christopher B; Parker, Terence E; Porter, Jason M

    2015-05-01

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2-20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  6. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier

    SciTech Connect

    Kelley, Madison A.; Dreyer, Christopher B.; Parker, Terence E.; Porter, Jason M.; Jakulewicz, Micah S.

    2015-05-15

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2–20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  7. Technical application of a fixed bed coal gasifier as a secondary fuel source for a cupola designed for the village level in the Philippines

    SciTech Connect

    Chalmers, D.E.

    1983-01-01

    The technical application of a fixed bed coal gasifier as a secondary fuel source for a cupola, designed for the village level in the Philippines, is discussed. The purposes of the study were: 1) to determine if a small-scale cupola could be used as an essential tool in the development process of a less developed nation, 2) to determine if a coal gasifier would make the process more resource efficient, 3) to determine if a low cost-efficient way for the LDC's to create a foundry industry was identifiable, and 4) to determine if a cupola-gasifier combination which was structurally simple was feasible. The procedure involved the construction and testing of the cupola-gasifer system. The results indicated that the use of a gasifier as a secondary fuel source in a cupola increased the melting efficiency by 31%. The gasifier did function minimally but the gasifier hearth diameter, grate and the bottom lid seal require further design modifications. The cupola tuyere area, the size of the individual pieces of metal charged and the length of the heat exchanger also need modification. The manpower allocation was one skilled person and two unskilled laborers for the operation of the cupola-gasifier. The payback period for the gasifier was calculated to be four months.

  8. Process for determining the fuel flow into the gasifier of a partial oxidation installation for solid, fine-grain or dust-like fuels

    SciTech Connect

    Forster, M.; Geidis, U.

    1980-01-08

    The fuel flow into the gasifier of a partial oxidation installation using solid fine-grain or dust-like fuel is determined by a radiometric density measurement of the fuel immediately prior to its entry into the gasifier and while the fuel particles are suspended in a gaseous or vaporous medium.

  9. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  10. Subpilot scale gasifier evaluation of ceramic cross flow filter. Final report, February 1, 1988--December 31, 1992

    SciTech Connect

    Lippert, T.E.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.; Meyer, J.H.

    1993-08-01

    The operating characteristics, performance and durability of a hot gas cross flow filter system were evaluated at the Texaco 15 tpd, entrained-bed gasifier pilot plant facility that is located at their Montebello Research Facilities (MRL) in California. A candle filter unit was also tested for comparative purposes. A wide range of operating test conditions were experienced. This report summarizes the results of eleven different test runs that occurred from April 1989 through August 1992. Differences between filter operation on the entrained gasifier and prior experience on fluid bed combustion are discussed.

  11. Perovskite sensing materials for syngas composition monitoring and biomass gasifier numerical model validation: A preliminary approach

    NASA Astrophysics Data System (ADS)

    Pallozzi, V.; Di Carlo, A.; Zaza, F.; Villarini, M.; Carlini, M.; Bocci, E.

    2016-06-01

    Biomass gasification represents a suitable choice for global environmental impact reduction, but more efforts on the process efficiency need to be conducted in order to enhance the use of this technology. Studies on inputs and outputs of the process, as well as measurements and controls of syngas composition and correlated organic and inorganic impurities, are crucial points for the optimization of the entire process: models of the system and sensing devices are, thus, very attractive for this purpose. In particular, perovskite based chemoresistive sensors could represent a promising technology, since their simplicity in function, relatively low cost and direct high temperature operation. The aim of this work is to develop a steam fluidized bed biomass gasifier model, for the prediction of the process gas composition, and new perovskite compounds, LaFeO3 based, as sensing material of chemoresistive sensors for syngas composition and impurities measurements. Chemometric analysis on the combustion synthesis via citrate-nitrate technique of LaFeO3 was also performed, in order to evaluate the relationship between synthesis conditions and perovskite materials and, thus, sensor properties. Performance of different sensors will be tested, in next works, with the support of the developed gasifier model.

  12. Thermal valorization of post-consumer film waste in a bubbling bed gasifier

    SciTech Connect

    Martínez-Lera, S. Torrico, J.; Pallarés, J.; Gil, A.

    2013-07-15

    Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m{sup 3} and cold gas efficiencies up to 60%.

  13. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  14. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  15. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  16. Combustion performance of cellulosic biomass in a gasifier-based cookstove

    NASA Astrophysics Data System (ADS)

    Sulaiman, Shaharin A.; Romli, Raffisyazana

    2012-06-01

    Depletion in fossil fuel and increase in the world population may change the trend in future kitchens in households. Cooking with LPG fuel may one day become impossible and households would have to consider alternatives such as electric stoves. One other solution to this problem is through the use of biomass cook stoves. However, traditional cook stoves, predominantly used in the households, are not efficient and its utilizations for domestic cooking have been a major contributor to the ill effects related in respiratory and other health problem. Improved cook stoves programs implemented in the developing world attempt to address these problems. Biomass gasification appears to have significant potential in Asia for domestic cooking applications. Gasifier-based cook stoves are fuel efficient in comparison to traditional cook stove. The objective of this paper is to study the performance of various type of cellulosic biomass in a gasifier-based cook stove. The biomass considered in this study are oil palm fronds, dried leaves, wood sticks, coconut shells, bagasse, charcoal, and saw dust. The samples are analyzed in order to study their chemical properties. The thermochemical properties of the biomass were characterized. The performance of the each of the samples is studied by observing the time taken to boil water. It is found that oil palm fronds are the best type of biomass for the gasifer cook stove. It is also concluded that the higher the carbon content and the calorific value in a biomass, the lesser the time taken to boil the water.

  17. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    SciTech Connect

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  18. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  19. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  20. Basic refractory and slag management for petcoke carbon feedstock in gasifiers

    DOEpatents

    Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

    2014-04-22

    The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

  1. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    NASA Astrophysics Data System (ADS)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  2. Development of an entrained flow gasifier model for process optimization study

    SciTech Connect

    Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L.

    2009-10-15

    Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

  3. Gasification behavior of carbon residue in bed solids of black liquor gasifier

    SciTech Connect

    Preto, Fernando; Zhang, Xiaojie; Wang, Jinsheng

    2008-07-15

    Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

  4. Design, engineering and evaluationn of refractory liners for slagging gasifiers. Seventh quarterly technical progress report, April 1-June 30, 1980

    SciTech Connect

    Firestone, R.F.; Hales, C.; Greaves, M.J.

    1980-07-01

    Temperatures in slagging gasifiers are in the 2500 to 3300/sup 0/F range, which limits the materials that can be used. In addition, the combination of high pressure (up to 1500 psi) with water vapor and the presence of carbon monoxide and hydrogen can present corrosion problems for refractories. The silica in aluminum silicate materials is chemically attacked by hydrogen and may be removed either by formation of volatile silicon monoxide, or hydrosilicic acid, which is leached out and redeposited in another area of the gasifier. The action of carbon monoxide on iron compounds in refractories is also disruptive. Potential refractory failure mechanisms in coal gasifier assemblies include: gaseous corrosion from hydrogen, steam, carbon monoxide, carbon dioxide and alkalies; slag corrosion; abrasion and erosion due to high velocity particles in gas streams; thermomechanical failures resulting in hot spots on the shell; and condensation of acids when the steel shell temperature is below the acid dew point. Low iron, high alumina refractories are the presently preferred materials for coal gasification plants. The atmospheres and other conditions found in vessels used in coal gasification require the use of dense and insulating high Al/sub 2/O/sub 3/ refractory shapes and castables. Considerable research is required to establish optimum refractory system and design methods for slagging coal gasifiers. This program is a first attempt at the required research.

  5. Small-scale biomass gasifiers for heat and power: A global review. World Bank technical paper energy series

    SciTech Connect

    Stassen, H.E.

    1995-12-31

    The report begins by explaining the revival and worldwide interest in biomass gasification for developing countries during the 1970s and 1980s as well as the rationale for the monitoring program. It continues, in chapter 2, by discussing the technical, commercial, economic, pollution, health, and safety aspects of biomass gasification technology. The methods used by the BGMP, the gasifiers monitored, and the results of the monitoring are described in chapter 3. The performance aspects of the technology, as revealed by the BGMP data, are discussed and analyzed in chapter 4; the BGMP data are also compared with the equipment manufacturers` specifications. Insights on the costs and economics of the use of biomass gasifiers in developing countries are provided in the following chapter. The report summaries the project`s conclusions about the value added by biomass gasifiers, costs and economics of gasification, and availability and reliability of gasification equipment in chapter 6. A final chapter contains a checklist, including background information, that could serve as a quick evaluation instrument for assessing the viability and applicability of proposed biomass gasifier projects.

  6. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect

    Not Available

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  7. Crystallization of synthetic coal-petcoke slag mixtures simulating those encountered in entrained bed slagging gasifiers

    SciTech Connect

    Jinichiro Nakano; Seetharaman Sridhar; Tyler Moss; James Bennett; Kyei-Sing Kwong

    2009-09-15

    Commercial entrained bed slagging gasifiers use a carbon feedstock of coal, petcoke, or combinations of them to produce CO and H{sub 2}. These carbon sources contain mineral impurities that liquefy during gasification and flow down the gasification sidewall, interacting with the refractory linear and solidifying in the cooler zones of the gasifier. Proper slag flow is critical to good gasifier operation. A hot-stage confocal scanning laser microscope (CSLM) was used to analyze the kinetic behavior of slag crystallization for a range of synthetic coal-petcoke mixtures. On the basis of the observed precipitation during cool down studies in the 1200-1700{sup o}C temperature range, a time-temperature-transformation (TTT) diagram was created. The crystallization studies were conducted with a CO/CO{sub 2} (=1.8) corresponding to a gasification PO{sub 2} of approximately 10-8 atm at 1500{sup o}C. Ash chemistries were chosen such that they correspond to coal-petcoke feedstock mixtures with coal ash amounts of 0, 10, 30, 50, 70, and 100% (by weight), with the balance being petcoke ash. The TTT diagram exhibited two crystallization areas, one above and one below 1350{sup o}C. At the nose of the higher temperature curves, karelianite (V{sub 2}O{sub 3}) crystallization occurred and was fastest for a 30% coal-petcoke ash mixture. The second nose was located below 1350{sup o}C and had spinel-type phases that formed at 1200{sup o}C, in which preferred atomic occupation at the octahedral and tetrahedral sites varied depending upon the ash composition. At 1200{sup o}C, an Al-rich spinel formed for 100% coal slag and a Fe-rich spinel formed in petcoke-enriched slags. The addition of petcoke ash to coal ash promoted crystallization in the slag, with additional crystalline phases, such as V-rich spinel, forming at the lower temperatures. These phases were not predicted using commercially available databases. 30 refs., 18 figs.

  8. New high efficiency mixed cycles with air-blown combustion for CO{sub 2} emission abatement

    SciTech Connect

    Gambini, M.; Guizzi, G.L.; Vellini, M.

    1999-07-01

    In this paper a new advanced mixed cycle (AMC) for CO{sub 2} emission abatement with high conversion efficiency is presented. The AMC plant lay-out consists of a reheat gas turbine with steam injection in the first combustion chamber, a steam turbine for steam expansion before its injection, a heat recovery boiler for superheated and resuperheated steam generation and an atmospheric separator for water recovery from exhaust gas mixture. The steam recirculation in the cycle allows to reduce the excess of air to limit the turbine inlet temperature and then to enrich the exhaust gas by CO{sub 2}, as it occurs in combined cycle provided with exhaust gas recirculation at the compressor inlet. This involves a stack flow rate much lower than in conventional cycle configuration sot that exhaust gas treatment for CO{sub 2} removal may be usefully applied. In this work the chemical absorption technique for CO{sub 2} removal has been considered. The thermodynamic performance of the proposed AMC plant has been investigated in comparison with that attainable by combined cycle power plants (CC). This comparison has been developed pointing out the efficiency decrease involved by the CO{sub 2} removal systems and by the unit for the liquefaction of the removed carbon dioxide. The main result of the performed investigation is that while the two plants attain the same efficiency level without CO{sub 2} removal (about 56% for AMC and 55.8% for CC) the AMC plant achieves a net electric efficiency of about 50% with CO{sub 2} removal and liquefaction units: it's over 2 points higher than the efficiency evaluated for the Cc equipped with the same CO{sub 2} units (about 47.7%). The final carbon dioxide emissions are about 0.04 kg/kWh for AMC and CC, while the emissions of the plants without CO{sub 2} removal systems are about 0.36 kg/kWh.

  9. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.

    PubMed

    García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

    2008-09-01

    In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator. PMID:18083026

  10. Analysis of potential benefits of integrated-gasifier combined cycles for a utility system

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.

    1983-01-01

    Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.

  11. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  12. Electric co-generation units equipped with wood gasifier and Stirling engine

    SciTech Connect

    Bartolini, C.M.; Caresana, F.; Pelagalli, L.

    1998-07-01

    The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

  13. Influence of temperature on oxygen permeation through ion transport membrane to feed a biomass gasifier

    NASA Astrophysics Data System (ADS)

    Antonini, T.; Foscolo, P. U.; Gallucci, K.; Stendardo, S.

    2015-11-01

    Oxygen-permeable perovskite membranes with mixed ionic-electronic conducting properties can play an important role in the high temperature separation of oxygen from air. A detailed design of a membrane test module is presented, useful to test mechanical resistance and structural stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) capillary membrane in the reactor environment. Preliminary experimental results of membrane permeation tests highlight the positive effect of temperature on perovskite materials. This behaviour is also confirmed by a computational model of char combustion with oxygen permeated through the membrane module, when it is placed inside a gasifier reactor to provide the necessary input of heat to the gasification endothermic process. The results show that the temperature affects the oxygen permeation of the BSCF membrane remarkably.

  14. Constructive features, operation and sizing of fluidized bed gasifiers for biomass

    SciTech Connect

    Gomes, E.O.; Lora, E.S.; Cortez, L.A.B.

    1995-11-01

    In this paper a few considerations about constructive features, operation and sizing of biomass atmospheric fluidized bed gasifiers are presented. The analysis is carried out on the base of papers and reports on different authors, and also based on the own authors` experience. The state-of-the-art of this technology is presented, as well as the main problems to solve for its wide industrial application. Successful commercial plants are mentioned. A method to calculate main design parameters using recommended values for the air factor, gas superficial velocity and bed temperature is given. The results are the gas, air and biomass flows, the reactor inner diameter and the expanded bed height. Calculations for three different biomass (sugarcane trash and bagasse, and rice husk) are presented.

  15. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  16. Comparison of Integrated Gasifier-Combined Cycle and AFB-steam turbine systems for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Abbott, J. M.; Burns, R. K.

    1981-01-01

    In the cogeneration technology alternatives study (CTAS) a number of advanced coal fired systems were examined and systems using a integrated coal gasifier IGCC or a fluid bed combustor AFB were found to yield attractive cogeneration results in industrial cogeneration applications. A range of site requirements and cogeneration sizing strategies using ground rules based on CTAS were used in comparing an IGCC and an AFB. The effect of time variations in site requirements and the sensitivity to fuel and electricity price assumptions are examined. The economic alternatives of industrial or utility ownership are also considered. The results indicate that the IGCC system has potentially higher fuel and emission savings and could be an attractive option for utility ownership. The AFB steam turbine system has a potentially higher return on investment and could be attractive assuming industrial ownership.

  17. Refractory Testing and Evaluation at Oak Ridge National Laboratory for Black Liquor Gasifier Applications.

    SciTech Connect

    Hemrick, James Gordon; Keiser, James R; Meisner, Roberta Ann; Hubbard, Camden R; Lara-Curzio, Edgar

    2006-01-01

    Work is on-going at Oak Ridge National Laboratory to evaluate refractory containment and smelt contact materials for black liquor gasification applications. Materials have been evaluated and selected for low temperature gasification processes, with a number of materials being installed in commercial units currently under construction. For high temperature low pressure gasification processes, efforts have focused on screening candidate lining materials through immersion testing, improving existing refractory performance through the application of surface treatments, and the installation and evaluation of samples in an operating gasifier in New Bern, NC. Efforts concerning high temperature high pressure gasification have involved the identification and testing of suitable refractory materials for the coating of a helical carbon steel cooling coil arrangment.

  18. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.

    PubMed

    García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

    2008-09-01

    In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator.

  19. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this

  20. Gasifier feed - Tailor-made from Illinois coals. [Quarterly] report, March 1, 1992--May 31, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. |||

    1992-10-01

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  1. Prediction of biomass conversion process for oil palm fronds in a downdraft gasifier

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Ahmad, M. Redzuan T.

    2012-06-01

    With no previous work on gasification of oil palm fronds (OPF), the design of a gasifier with optimum performance for such a biomass can be difficult. Prediction of the optimum operating condition using computer software can avoid costly trial and error designs. The objective of this work is to simulate biomass gasification process in a downdraft gasifier using OPF as a feedstock by means of Aspen Plus software. Three different equilibrium models were proposed using the unit operation models of ASPEN. Prediction of syngas composition obtained from each model was compared with experimental results from literature in order to select the best model that gives more reliable results. The optimum operating conditions that would result in the best composition of syngas was determined based on the prediction of the models. Sensitivity analysis has been carried out to investigate, the effect of temperature (500°C - 1000°C), and equivalence ratio (ER) (0.2 < ER < 0.53), to the resulting composition of syngas. From the work, it is found that rate of production of CO in the syngas increases with temperature, while the trend is decreasing for CO2. The rate of production of H2 is nearly constant for temperature values above 700°C. In addition, the rate of production of CO2 increases with equivalence ratio while that of H2 is predicted to decrease at higher equivalence ratio. The rate of production of CH2 tends to be only in trace amount for equivalence ratio values above 0.3, while a maximum output of CO is achieved at lower equivalence ratio less than 0.3, and higher oxidation zone temperature value, above 800°C. The simulation results showed that the operating condition would be optimum at higher temperature range of above 800°C, and equivalence ratio value of 0.3.

  2. Investigation of non-intrusive radiometers for entrained gasifier temperature measurement. Fourth quarterly report, August 1-October 31, 1984. Revision 3

    SciTech Connect

    Gat, N.

    1985-03-11

    The objective of this project is to develop and test a nonintrusive radiometer for entrained bed gasifier/combustor temperature measurements. This quarterly report is focused on design, fabrication and testing of radiometers. 3 refs., 5 figs., 1 tab.

  3. High Temperature Millimeter Wave Radiometric and Interferometric Measurements of Slag-Refractory Interaction for Application to Coal Gasifiers

    NASA Astrophysics Data System (ADS)

    McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Slaugh, Ryan; Woskov, Paul P.

    2011-11-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous measurements of sample temperature, emissivity, and flow dynamics. Interferometric capability at 137 GHz is supplied via a probe signal originating from a local oscillator allowing monitoring of sample dynamics such as volume expansion and thickness change. This capability has been used to monitor characteristic behavior between refractories and slag such as slag infiltration, slag melting, viscous flow, foaming, and crucible corrosion by the molten slag. These results show the promise of the MMW system for extracting process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity.

  4. Evaluation of gas turbine and gasifier-based power generation system

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhua

    As a technology in early commercial phase, research work is needed to provide evaluation of the effects of alternative designs and technology advances and provide guidelines for development direction of Integrated Gasification Combined Cycle (IGCC) technology in future. The objective of this study is to evaluate the potential pay-offs as well as risks of technological infeasibility for IGCC systems and to provide insight regarding desired strategies for the future development of advanced IGCC systems. Texaco gasifier process is widely used in power generation. A process simulation model for a base Texaco gasifier-based IGCC system, including performance (e.g., efficiency), emissions, and cost, was implemented in the ASPEN Plus. The model is calibrated and verified based on other design studies. To find out the implications of the effects of coal compositions on IGCC plant, the Illinois No.6, Pittsburgh No.8, and West Kentucky coal are selected for comparison. The results indicate that the ash content and sulfur content of coal have effects on performance, SO2 emissions, and capital cost of IGCC system. As the main component for power generation, the effects of the most advanced Frame 7H and the current widely used Frame 7F gas turbine combined cycles on IGCC system were evaluated. The results demonstrated the IGCC system based on 7H gas turbine (IGCC-7H) has higher efficiency, lower CO2 emission, and lower cost of electricity than the 7FA based system (IGCC-7FA). A simplified spreadsheet model is developed for estimating mass and energy balance of gas turbine combined cycle. It demonstrated that an accurate and sensitive model can be implemented in a spreadsheet. This study implicated the ability to do desktop simulations to support policy analysis. Uncertainty analysis is implemented to find out the risks associated with the IGCC systems, i.e., there is about 80% probability that the uncertain results of the efficiency of IGCC-7FA system are lower than the

  5. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier, Volume 2

    SciTech Connect

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01

    This final report describes work conducted on the development of the ceramic cross flow filter for high temperature gas cleaning. This work was conducted from October 1984 through December 1988. Volume 1 provides an overall discussion of the program results. Volume 2 consists of Appendices that are referenced in Volume 1. Electricity costs, flow diagrams of the gasifier, and a model which describes the cleaning of the filter is included.

  6. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    SciTech Connect

    Not Available

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  7. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  8. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect

    Parkinson, W. J. ,

    2003-01-01

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  9. The development of a 20-inch indirect fired fluidized bed gasifier

    SciTech Connect

    Flanigan, V.J.; Sitton, O.C.; Huang, W.E

    1988-03-01

    This report discusses the design, fabrication and operation of a 20'' I.D. fluidized bed gasifier producing medium Btu gas. The reactor is indirectly heated using 30 x 1-inch U-tubes inserted in the inert bed. The U-tubes are heated using flue gases produced from a propane burner system located at the bottom of the reactor. The feed material was dry wood chips fed into the bed with a 6in. auger. The reactor was fed both into the bed and at the top of the bed. The fluidizing medium was superheated steam which was superheated to 1000/degree/F. The gas produced from the reactor was passed through a cyclone for char removal and routed to the flare for combustion and disposal. The parameters measured during the experimental runs were wood feed rate, steam flow rate, steam temperatures, bed temperatures, free board temperatures, product gas temperatures, bed differential pressures, char production, gas production, gas analyses, and tar production. The parameters measured in the laboratory were moisture contents (wood and char), ash contents (wood and char), and tar content. 9 refs., 19 figs., 11 tabs.

  10. Phosphorus leaching from soils amended with thermally gasified piggery waste ash.

    PubMed

    Kuligowski, Ksawery; Poulsen, Tjalfe Gorm

    2009-09-01

    In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g(-1). Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha(-1) corresponding to 91 mg P kg(-1) soil dry matter) as a function of precipitation rate (9.5 and 2.5 mm h(-1)), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na(2)HPO(4)). Water soluble P in GA and IA constituted 0.04% and 0.8% of total ash P. Ash amended soil released much less P (0.35% of total P applied in sand) than Na(2)HPO(4) (97% and 12% of total P applied in Jyndevad and sand, respectively). PMID:19427189

  11. Combustion tests of a turbine simulator burning low Btu fuel from a fixed bed gasifier

    SciTech Connect

    Cook, C.S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Najewicz, D.J.; Samuels, M.S.

    1993-11-01

    One of the most efficient and environmentally compatible coal fueled power generation technologies is the integrated gasification combined cycle (IGCC) concept. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) measurement of NO{sub x}, CO, and particulate emissions; and (3) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fired with simulated low Btu fuel. The overall objective of this project is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.

  12. Thermal valorization of post-consumer film waste in a bubbling bed gasifier.

    PubMed

    Martínez-Lera, S; Torrico, J; Pallarés, J; Gil, A

    2013-07-01

    The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%.

  13. Ash bed level control system for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  14. Biomedical response to products and effluents from the University of Minnesota-Duluth gasifier

    SciTech Connect

    Epler, J.L.; Fry, R.J.M.; Rao, T.K.; Larimer, F.W.; Dumont, J.N.; Schultz, T.W.; Russell, L.B.; Generoso, W.M.; Witschi, H.; Smith, L.H.

    1983-09-01

    Electrostatic precipitator tars from the UMD gasifier were found to be mutagenic in the Salmonella/microsome assay and were confirmed in the yeast assay. After chemical fractionation of the ESP tars, it was found that the mutagenic activity was contributed principally by the organic constituents of the basic fraction, and only secondarily by constituents of the neutral fraction. The ESP tars occupy a position intermediate to the low-activity petroleum crude oils and the relatively higher-activity coal-derived liquids, with respect to mutagenic potential. Aqueous extracts of ESP tar were embryotoxic and teratogenic in the amphibian system. Distilled water leachates of bottom ash were both embryotoxic and teratogenic in the amphibian system. ESP tar caused decreased postnatal survival, cytotoxicity, and some teratogenicity coincident to the mouse spot test, but there was no evidence of mutation induction. ESP tar caused transient loss of reproductive capacity in mice. There was a detectable increase in dominant-lethal mutations at all stages in spermatogenesis. ESP tars were slightly toxic to mice when given orally. Moderate toxicity was noted following intraperitoneal injection. Tar samples caused moderate, albeit reversible, eye irritation. The data obtained in the mouse lung adenoma bioassay indicate that ESP tar is tumorigenic. ESP tar is carcinogenic mouse skin. 10 references.

  15. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.

    PubMed

    Werle, Sebastian

    2014-10-01

    This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production.

  16. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.

    PubMed

    Phillips, Claire L; Trippe, Kristin M; Whittaker, Gerald; Griffith, Stephen M; Johnson, Mark G; Banowetz, Gary M

    2016-05-01

    Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the United States. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochars, produced by gasification of either Kentucky bluegrass seed screenings (KB) or mixed conifer wood (CW), to support the growth of plants in mine spoils from the abandoned Formosa and Almeda Mines in Oregon. To evaluate the potential for plant establishment in mine tailings, wheat was grown in tailings amended with biochar at rates ranging from 0 to 9% (w/w). Both KB and CW biochars promoted plant establishment by increasing soil pH, increasing concentrations of macro- and micronutrients, and decreasing the solubility and plant uptake of heavy metals. Formosa tailings required at least 4% biochar and Almeda soil required at least 2% biochar to promote healthy wheat growth. A complimentary experiment in which mine spoils were leached with simulated precipitation indicated that biochar amendment rates ≥4% were sufficient to neutralize the elution pH and reduce concentrations of potentially toxic elements (Zn, Cu, Ni, Al) to levels near or below concern. These findings support the use of gasified biochar amendments to revegetate acid mine soils. PMID:27136169

  17. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. PMID:26210232

  18. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up.

  19. Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. |||

    1992-12-31

    The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

  20. GC/MS characterization of condensable tars in the output stream of a stirred fixed-bed gasifier

    SciTech Connect

    Lamey, S.C.; McCaskill, K.B.; Smith, R.R.

    1981-12-01

    The output stream of the stirred fixed-bed gasifier at the Morgantown Energy Technology Center was sampled for total entrained material. A major portion of the entrained material, in addition to particles, is condensable tar that is subsequently removed from the process gas by wet scrubbing. Characterization of the entrained materials, specifically the tar, is important to establish contaminant levels and to evaluate performance of downstream cleanup units. Samples of tars were collected from the process unit in a combined ice, dry ice, and liquid nitrogen sampler and stored in a refrigerator. The tar samples were then separated into asphaltene, neutral oil, tar acid, and base fractions by solvent extraction using toluene, pentane, sulfuric acid, and potassium hydroxide extraction. Characterization of the fractions obtained from these tars include IR, UV, GC, and GC/MS analysis. The mass spectrometer analysis of the various isolates shows that many individual peaks in the gas chromatograph are in fact mixtures that can be readily identified by the mass spectrometer. It was found that many of the species identified in these fractions were members of aromatic homologous series consisting of parent, mono, di, and tri substituted compounds. Compound identification was made by comparison of the data system library and standard reference spectra. This paper will discuss the instrumental approach and limitation of the GC/MS and the results of the characterization studies of entrained hydrocarbons collected from the gasifier stream.

  1. High temperature millimeter wave radiometric and interferometric measurements of slag-refractory interaction for application to coal gasifiers

    SciTech Connect

    McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Slaugh, Ryan W.; Woskov, Paul P.

    2011-09-17

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments) such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a state-of-the-art dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous radiometric measurements of sample temperature, emissivity, and flow dynamics to over 1873 K. Interferometric capability is supplied via a probe signal originating from the 137 GHz radiometer local oscillator (LO). The interferometric 'video' channels allow measurement of additional parameters simultaneously, such as volume expansion, thickness change, and slag viscosity along with temperature or emissivity. This capability has been used to demonstrate measurement of temperature and simulated coal slag infiltration into a chromia refractory brick sample as well as slag flow down a vertically placed refractory brick. Observed phenomena include slag melting and slumping, slag reboil and foam with oxygen evolution, and eventual failure of the alumina crucible through corrosion by the molten slag. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity.

  2. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  3. Solids circulation around a jet in a fluidized bed gasifier. Final technical report, September 1, 1978-September 30, 1980

    SciTech Connect

    Gidaspow, D.; Ettehadieh, B.; Lin, C.; Goyal, A.; Lyczkowski, R.W.

    1980-01-01

    The object of this investigation was to develop an experimentally verified hydrodynamic model to predict solids circulation around a jet in a fluidized bed gasifier. Hydrodynamic models of fluidization use the principles of conservation of mass, momentum and energy. To account for unequal velocities of solid and fluid phases, separate phase momentum balances are developed. Other fluid bed models used in the scale-up of gasifiers do not employ the principles of conservation of momentum. Therefore, these models cannot predict fluid and particle motion. In such models solids mixing is described by means of empirical transfer coefficients. A two dimensional unsteady state computer code was developed to give gas and solid velocities, void fractions and pressure in a fluid bed with a jet. The growth, propagation and collapse of bubbles was calculated. Time-averaged void fractions were calculated that showed an agreement with void fractions measured with a gamma ray densitometer. Calculated gas and solid velocities in the jet appeared to be reasonable. Pressure and void oscillations also appear to be reasonable. A simple analytical formula for the rate of solids circulation was developed from the equations of change. It agrees with Westinghouse fluidization data in a bed with a draft tube. One dimensional hydrodynamic models were applied to modeling of entrained-flow coal gasification reactors and compared with data. Further development of the hydrodynamic models should make the scale-up and simulation of fluidized bed reactors a reality.

  4. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  5. Power Systems Development Facility Gasification Test Run TC11

    SciTech Connect

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  6. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    SciTech Connect

    Seggiani, Maurizia; Puccini, Monica; Raggio, Giovanni

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  7. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-10-01

    The general goal of this project is to provide a fundamental understanding of deposition processes of flyash and pulverized coal particles in coal combustors and coal gasifiers. In the period of April 1 to June 30, 1996, further research progress was made. The computational model for simulating particle motions in turbulent flows was applied to the dispersion and deposition analysis. The study of particle transport and deposition in a circular duct was completed and the major findings are summarized. A detailed model for particle resuspension process in a gas flow is developed. The new model accounts for the surface adhesion, surface roughness, as well as the structure of near wall turbulent flows. The model also accounts for all the relevant hydrodynamic forces and torques exerted on the particle attached to a surface. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  8. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    PubMed

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well.

  9. Method and apparatus for removing coarse unentrained char particles from the second stage of a two-stage coal gasifier

    DOEpatents

    Donath, Ernest E.

    1976-01-01

    A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.

  10. Gasifier feed: Tailor-made from Illinois coals. Interim final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K.

    1992-12-31

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals. Destec Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technologies, Inc., will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handleability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals.

  11. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier.

    PubMed

    Rapagnà, Sergio; Gallucci, Katia; Di Marcello, Manuela; Matt, Muriel; Nacken, Manfred; Heidenreich, Steffen; Foscolo, Pier Ugo

    2010-09-01

    A bench-scale fluidized-bed biomass gasification plant, operating at atmospheric pressure and temperature within the range 800-820 degrees C, has been used to test an innovative gas cleaning device: a catalytic filter candle fitted into the bed freeboard. This housing of the gas conditioning system within the gasifier itself results in a very compact unit and greatly reduced thermal losses. Long term (22h) tests were performed on the gasifier both with and without the catalytic candle filter, under otherwise identical conditions. Analysis of the product gas for the two cases showed the catalytic filtration to give rise to notable improvements in both gas quality and gas yield: an increase in hydrogen yield of 130% and an overall increase in gas yield of 69% - with corresponding decreases in methane and tar content of 20% and 79%, respectively. HPLC/UV analysis was used to characterize the tar compounds.

  12. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier. Sixth quarterly report, January 1, 1986--March 31, 1986

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1986-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  13. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier. First quarterly project report, October 1, 1984--December 31, 1984

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1984-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  14. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier. Third quarterly report, April 1--June 30, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  15. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    SciTech Connect

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC

  16. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  17. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  18. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  19. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  20. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  1. Development of a model of entrained flow coal gasification and study of aerodynamic mechanisms of action on gasifier operation

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Ryzhkov, A. F.

    2015-11-01

    Problems requiring solution in development of modern highly efficient gasification reactor of a promising high power integrated gasification combined-cycle plant are formulated. The task of creating and testing a numerical model of an entrained-flow reactor for thermochemical conversion of pulverized coal is solved. The basic method of investigation is computational fluid dynamics. The submodel of thermochemical processes, including a single-stage scheme of volatile substances outlet and three heterogeneous reactions of carbon residue conversion (complete carbon oxidation, Boudouard reaction and hydrogasification), is given. The mass loss rate is determined according to the basic assumptions of the diffusion-kinetic theory. The equations applied for calculation of the process of outlet of volatile substances and three stages of fuel gasifi-cation (diffusion of reagent gas toward the surface of the coal particle, heterogeneous reactions of gas with carbon on its surface, and homogeneous reactions beyond the particle surface) are presented. The universal combined submodel Eddy Dissipation/Finite Rate Chemistry with standard (built-in) constants is used for numerical estimates. Aerodynamic mechanisms of action on thermochemical processes of solid fuel gasification are studied, as exemplified by the design upgrade of a cyclone reactor of preliminary thermal fuel preparation. Volume concentrations of combustible gases and products of complete combustion in the syngas before and after primary air and pulverized coal flows' redistribution are given. Volume concentrations of CO in syngas at different positions of tangential secondary air inlet nozzle are compared.

  2. Manufacture of gasification briquettes from meager-lean coal for use in chemical fertilizer-plant gasifiers

    SciTech Connect

    Xu Zesheng; Yang Qiaowen; Zhao Yinrong; Wang Xingou; Hu Kunmo; Wang Shiquan; Tao Xilo; Wang Guangnan; Meng Zhongze

    1998-12-31

    Chinese fertilizer plants, especially middle or small fertilizer plants, feed lump anthracite to atmospheric fixed bed gasifiers to produce fuel gas and syngas. However, the available lump coal meets less than one half the demand for fertilizer production, and the price of good lump anthracite has risen. Most good anthracite is produced in Shanxi Province. Chemical fertilizer plants in other areas pay high transportation costs and leave Shanxi mines with waste fine coal and slime that cause environmental pollution. So, it is important to fully utilize fine anthracite coal or bituminous coal to produce the industrial gasification briquettes. That may mitigate the disparity between supply and demand of lump coal, reduce the fertilizer production cost, and decrease the degree of environmental pollution. The briquettes don`t require heat-drying in their production and have the characteristics of high strength and water resistance. This technology is very important for local fertilizer plants where only meager-lean coal is produced. This paper discusses the processing technique and parameters, the quality standards and testing methods of briquettes made from meager-lean coal.

  3. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  4. Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier

    NASA Astrophysics Data System (ADS)

    Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.

    2016-02-01

    This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.

  5. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier. Second quarterly project report, January 1, 1985--March 31, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  6. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier. Fifth quarterly report, October 1, 1985--December 31, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  7. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier. Fourth quarterly report, July 1, 1985--September 30, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  8. TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.; Pummill, Randy J.; Waind, Travis; Wagner, David R.; Whitty, Kevin J.

    2014-07-01

    Tunable diode laser absorption spectroscopy based in situ sensors for CO (2.33 μm), CO2 (2.02 μm), CH4 (2.29 μm) and H2O (1.35 μm) were deployed in a pilot-scale (1 ton/day), high-pressure (up to 18 atm), entrained flow, oxygen-blown, slagging coal gasifier at the University of Utah. Measurements of species mole fraction with 3-s time resolution were taken at the pre- and post-filtration stages of the gasifier synthesis gas (called here syngas) output flow. Although particulate scattering makes pre-filter measurements more difficult, this location avoids the time delay of flow through the filtration devices. With the measured species and known N2 concentrations, the H2 content was obtained via balance. The lower heating value and the Wobbe index of the gas mixture were estimated using the measured gas composition. The sensors demonstrated here show promise for monitoring and control of the gasification process.

  9. Gasifier method and apparatus

    SciTech Connect

    Caughey, R.A.

    1986-05-06

    A gas generator apparatus is described for generating combustible gas by pyrolysis of biomass material, the generator apparatus comprising, in combination an enclosed chamber, parallel uniformly inclined and axially-extending support tubes, each of which has a hollow interior axial passage connecting a lower inlet end and an upper outlet end, the support tubes dividing the chamber to form a single gas-generating first chamber region situated above the tubes and a plenum second chamber region below the tubes, the tubes being adapted for oscillation about the axis thereof in a common direction to facilitate the delivery of ash and unburned biomass into the second chamber region, means for introducing biomass material into the first chamber region onto the upper ends of the tubes, means for introducing primary air into the second chamber region for flowing upwardly between the tubes for pyrolysis of the biomass material, means for introducing cooling air into the passages of the tubes at the lower inlet ends thereof for cooling the tubes, the cooling air becoming heated by a heat exchange process as it cools the tubes, and the air being vented from the upper ends thereof, means for exhausting from the first chamber region combustible gas generated by the pyrolysis of the biomass, means for removing ash and unburned biomass from the first chamber region at the lower ends of the tubes, and screw discharge means for removing ash and unburned biomass from the second chamber region.

  10. Solar-Heated Gasifier

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1985-01-01

    Catalytic coal and biomass gasifer system heated by solar energy. Sunlight from solar concentrator focused through quartz window onto ceramic-honeycomb absorber surface, which raises temperature of reactant steam, fluidizing gas, and reactor walls.

  11. "A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"

    SciTech Connect

    Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

    2007-11-01

    Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we

  12. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter. [Patent application; monitoring char flow in coal gasifier

    DOEpatents

    Roach, P.D.; Raptis, A.C.

    1980-11-24

    A method and apparatus for monitoring char flow in a coal gasifier system includes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provides a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  13. Investigation of carbon monoxide disintegration of refractories in coal gasifiers. Annual progress report for the period June 1, 1979-May 30, 1980

    SciTech Connect

    Jayatilleke, W.; Martin, C.; Brown, J.J. Jr.

    1981-04-01

    CO disintegration of high alumina castables is not likely to be a problem in coal gasifiers which operate at or near atmospheric pressure and above 800/sup 0/C. A 1000 h exposure to a simulated coal gasification atmosphere did not cause any visible damage or strength loss in any castable examined. CO disintegration of high alumina castables is a potential cause of refractory failure at high pressures; the time required for refractory failure rapidly decreases as pressure increases. The effect of even small amounts of iron impurities greatly accelerate the rate of disintegration. In coal gasifiers, CO disintegration is likely to affect the abrasion resistance of the refractories long before any of the more typical signs of CO disintegration appear. The 50% Al/sub 2/O/sub 3/ castable is more susceptible to abrasion than the 90% Al/sub 2/O/sub 3/ castable. The temperature range over which CO disintegration is active shifts to higher temperature as pressure increases. Alkali compounds, especially K/sub 2/CO/sub 3/, have no effect or slightly accelerate CO disintegration of high alumina castables. The 50% Al/sub 2/O/sub 3/ castable disintegrates faster than the 90% Al/sub 2/O/sub 3/ castable, possibly a result of the higher iron content of the calcined kaolin used in the 50% Al/sub 2/O/sub 3/ composition. Stainless steel (AlSl 310, 316, and 446) reinforced castables possess very poor resistance to CO disintegation both at atmospheric and 1000 psi pressure.

  14. Use of Laboratory Drag Measurements in Evaluating Hot-Gas Filtration of Char from the Transport Gasifier at the Power Systems Development Facility

    SciTech Connect

    Dahlin, R.S.; Landham, E.C.

    2002-09-19

    The initial objective of this study was to better understand the reasons for the substantial increase in filter DP that was observed after the gasifier recycle loop modifications. Beyond this specific objective, a secondary goal was to develop a meaningful method of evaluating the effect of particle size and other particle properties on dustcake drag and filter DP. As mentioned earlier, the effect of particle size on dustcake drag and filter DP can be a very important consideration in the selection and specification of a precleaner cyclone for use upstream of the hot-gas filter. Installing a cyclone ahead of a hot-gas filter will reduce the transient areal loading of dust to the filter, but the beneficial effect of the reduced areal loading may be offset by an increase in drag associated with a finer particle-size distribution. The overall goal of this study was to better understand these tradeoffs and to ultimately develop a procedure that would be useful in analyzing the performance of hot-gas filters and in sizing new hot-gas filters. In addition to the obvious effects of a cyclone on dust loading and particle size, other indirect effects on particulate properties and flow resistance may occur when the cyclone is incorporated into the gasifier recycle loop as was the case at the PSDF. To better understand the importance of these other effects, this study sought to separate the particle-size effect from these other effects by measuring the drag of size-fractionated char samples collected before and after the recycle loop modifications.

  15. Catalytic combustion of actual low and medium heating value gases

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1982-01-01

    Catalytic combustion of both low and medium heating value gases using actual coal derived gases obtained from operating gasifiers was demonstrated. A fixed bed gasifier with a complete product gas cleanup system was operated in an air blown mode to produce low heating value gas. A fluidized bed gasifier with a water quench product gas cleanup system was operated in both an air enriched and an oxygen blown mode to produce low and medium, heating value gas. Noble metal catalytic reactors were evaluated in 12 cm flow diameter test rigs on both low and medium heating value gases. Combustion efficiencies greater than 99.5% were obtained with all coal derived gaseous fuels. The NOx emissions ranged from 0.2 to 4 g NO2 kg fuel.

  16. Conversion of Western U.S. Coals for Sequestration-Ready Power Systems

    SciTech Connect

    2005-09-01

    This project proposes to develop and test schemes for the direct utilization of western U.S. coals in advanced power systems. One of the major issues facing such utilization of coal is the arrival of vapor-phase ash constituents that can cause fouling and hot corrosion of gas path components. The utilization schemes being developed and tested rely on the fact that western U.S. coals can be ''partially'' gasified at relatively low temperatures, and that the concomitant char produced is reactive. These characteristics afford western U.S. coals a significant advantage over bituminous coals and solid waste fuels such as petroleum coke. As part of this project, over the past four years, WRI has constructed and tested a fuel-flexible gasifier. The four-inch diameter, fluidized-bed gasifier was designed to be operated as an air-blown, enriched air-blown, oxygen-blown, or as a steam pyrolysis unit. During the past year, the fluidized-bed gasification unit was modified for oxygen-blown operation. Specifically, steam and oxygen delivery systems were installed to allow steam/O{sub 2} mixtures to be used in place of air, and gasification tests were performed with steam/O{sub 2} as the fluidizing medium. The primary goal was to characterize the synthesis gas and char products for oxygen-blown conditions.

  17. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  18. Toxicological and chemical characterization of the process stream materials and gas combustion products of an experimental low-Btu coal gasifier

    SciTech Connect

    Benson, J.M.; Hanson, R.L.; Royer, R.E.; Clark, C.R.; Henderson, R.F.

    1984-04-01

    The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mugtagenicity of 6.7 reverants/..mu..g (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/..mu..g), a significant overall reduction in mutagenicity was achieved (to 2200 reverants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/..mu..g (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the aerosolized tars emitted in fugitive emissions. Health risks to general population resulting from exposure to gas combustion products are expected to be minimal. 28 references.

  19. Power Systems Development Facility Gasification Test Run TC08

    SciTech Connect

    Southern Company Services

    2002-06-30

    This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

  20. Pressure Reducer for Coal Gasifiers

    NASA Technical Reports Server (NTRS)

    Kendall, James M., Sr.

    1983-01-01

    Quasi-porous-plug pressure reducer is designed for gases containing abrasive particles. Gas used to generate high pressure steam to drive electric power generators. In giving up heat to steam, gas drops in temperature. Device used for coal gasification plants.

  1. Causticizing for Black Liquor Gasifiers

    SciTech Connect

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  2. Gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor); Ramohalli, Kumar N. R. (Inventor); Dowler, Warren L. (Inventor)

    1982-01-01

    Fine, carbon-graphite fibers do not combust during the combustion of a composite and are expelled into the air as fine conductive particles. Coating of the fibers with a salt of a metal having a work function below 4.2 eV such as an alkaline earth metal salt, e.g., calcium acetate, catalytically enhances combustion of the fibers at temperatures below 1000.degree. C. such that the fibers self-support combustion and burn to produce a non-conductive ash. Fire-polishing the fibers before application of the coating is desirable to remove sizing to expose the carbon surface to the catalyst.

  3. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    SciTech Connect

    Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

    1992-12-31

    There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

  4. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    SciTech Connect

    Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

    1992-01-01

    There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

  5. Power Systems Development Facility Gasification Test Campaing TC14

    SciTech Connect

    Southern Company Services

    2004-02-28

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

  6. Assessment of deposition for power-plant molten-carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Wenglarz, R. A.

    1982-03-01

    Particulate deposition in molten carbonate fuel cell anodes is addressed for operation with future coal gasification power plants. Power plant systems factors affecting deposition are explored such as gas cleanup requirements for particulate removal and gasifier product gas composition differences for various gasifier types and operational modes (air blown versus oxygen blown). Effects of fuel cell characteristics (including average cell current density and fuel utilization) on anode deposition are also quantified. Particulate effects on molten carbonate fuel cell anode performance may not be as detrimental as perhaps perceived in the past. Gas cleanup to remove virtually all particles larger than one micron in diameter is expected to prevent or at least greatly reduce anode deposition. However, cathode deposition in molten carbonate fuel cells should be evaluated in the future since cathodes are likely more prone to deposition than anodes even though cathode channel particle concentrations are much lower.

  7. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power

  8. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect

    Southern Company Services

    2004-08-24

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  9. Computer modeling of coal-gasification reactors. Volume III. Users' manual for CHEMFLUB: a numerical model for fluidized bed gasifiers (planar and axisymmetric versions). Final report, June 1975-November 1980. [CHEMFLUB code

    SciTech Connect

    Chen, P.J.

    1981-04-01

    The CHEMFLUB code was designed to provide predictions of the transient, two-phase, reactive flow fields occurring in a fluidized bed coal gasification reactor. CHEMFLUB can be operated in either two-dimensional Cartesian (planar) or axisymmetric geometry. The solid particle phase is treated in a Lagrangian manner in order to maintain sharp interfaces around bubbles and at the freeboard while the gas phase is treated using an Eulerian approach. A detailed chemistry model, encompassing both heterogeneous and homogeneous reactions of both combustion and gasification, is included in the model. Thus, the computer model CHEMFLUB incorporates the coupled dynamic effects of the hydrodynamic, thermodynamic and chemical phenomena which dominate flow in most fluidized bed coal gasifiers. Datailed discussions of the governing equations are given in Volume II of this report. This volume contains a summary of the governing differential and constitutive equations; a brief descritpion of the code, including a flow chart, subroutine structure and dimension parameters; as well as a detailed input sequence are presented. A sample of input and output is provided in the Appendix.

  10. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  11. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  12. Pinon Pine Power Project. Annual report, January 1--December 31, 1996

    SciTech Connect

    1997-12-31

    This annual report has been prepared to present the status of the Pinon Pine Power Project, a nominal 107 MWe (gross) coal-fired integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the US Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient, reliable and able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Power Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal as the design fuel. Testing will also be performed on a high-sulfur eastern coal. The Pinon Pine Power Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV. This new unit is designated as Tracy Unit No. 4.

  13. Pinon Pine Power Project. Annual report, August 1992--December 1993

    SciTech Connect

    1994-11-01

    This annual report has been prepared to present the status of the Pinon Pine Power Project, a nominal 104 MWe (gross) integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the US Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient and reliable and that are able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Power Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal. The Pinon Pine Power Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV.

  14. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

    2010-09-30

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

  15. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  16. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-06-01

    This Phase II SBIR contract is developing a sorbent and process which removes H{sub 2}S from hot gasified coal and generates sulfur during regeneration of the sorbent. The process can be used with any type of reactor (e.g., fixed or moving bed) and any gasifier (e.g., KRW or Texaco) and shows lower costs that competing H{sub 2}S removal processes. TDA Research`s (TDA) process uses a regenerable stannic oxide-based (SnO{sub 2}) sorbent as the first sorbent and zinc ferrite (or zinc titanate) as a second sorbent to remove H{sub 2}S to very low concentrations. The process converts the sulfides from both sorbents to elemental sulfur, a commercial product which is easy to store and transport. The object of this phase is to develop chemically active, high sulfur loadings, and durable stannic oxide sorbents and to demonstrate the process at the bench scale.

  17. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems: Greenfield assessment. Final report

    SciTech Connect

    Not Available

    1991-12-01

    Both the KRW fluidized-bed gasifier and the transport gasifier case studies were used for this assessment. The transport technology is a high-velocity circulating fluidized-bed reactor currently under development by The M.W. Kellogg Company. In the earlier assessment, seven design concepts or cases were identified; a process design was developed; major equipment items were identified; estimates of capital cost, operation and maintenance cost, and cost of electricity were developed; reliability was predicted; and development issues were identified for six studies. Three of the most probable cases were further evaluated for a Greenfield assessment in this report to adequately determine all costs independent of facilities at Plant Wansley.

  18. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems: Greenfield assessment

    SciTech Connect

    Not Available

    1991-12-01

    Both the KRW fluidized-bed gasifier and the transport gasifier case studies were used for this assessment. The transport technology is a high-velocity circulating fluidized-bed reactor currently under development by The M.W. Kellogg Company. In the earlier assessment, seven design concepts or cases were identified; a process design was developed; major equipment items were identified; estimates of capital cost, operation and maintenance cost, and cost of electricity were developed; reliability was predicted; and development issues were identified for six studies. Three of the most probable cases were further evaluated for a Greenfield assessment in this report to adequately determine all costs independent of facilities at Plant Wansley.

  19. Power Systems Development Facility Gasification Test Campaign TC24

    SciTech Connect

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  20. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    SciTech Connect

    Ekstrom, T.E.; Battista, R.A.; Belisle, F.H.; Maxwell, G.P.

    1993-11-01

    This program has the objectives to: A. Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition. B. Determine emissions characteristics including NO, NO{sub x}, CO, levels etc. associated with each of the diluents, and C. Operate with at least two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions. As a result of this program: 1. GE Engineering is now confident that the syngas fuels produced by all currently--viable coal gasifiers can be accommodated by the GE advanced (``F`` Technology) combustion system, and 2. For proposed syngas fuels with varying amounts of steam, nitrogen or CO{sub 2} diluent, the combustion and emissions characteristics can be reasonably estimated without undertaking expensive new screening tests for each different fuel.

  1. Advanced hot gas filter development. Topical report, May 1995--December 1996

    SciTech Connect

    Hurley, J.L.; June, M.R.

    1997-12-31

    Porous iron aluminide was evaluated for use as a particulate filter in pressurized fluid-bed combustion (PFBC) and integrated gasification combined cycles (IGCC) with a short term test. Three alloy compositions were tested: Fe{sub 3}Al 5% chromium (FAL), Fe{sub 3}Al 2% chromium (FAS) and FeAl 0% chromium. The test conditions simulated air blown (Tampa Electric) and oxygen blown (Sierra Pacific) gasifiers with one test gas composition. Four test conditions were used with hydrogen sulfide levels varying from 783 ppm to 78,3000 ppm at 1 atmosphere along with temperatures ranging between 925 F and 1200 F. The iron aluminide was found capable of withstanding the proposed operating conditions and capable of giving years of service. The production method and preferred composition were established as seamless cylinders of Fe{sub 3}Al 2% chromium with a preoxidation of seven hours at 1472 F.

  2. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  3. Development of pressurized coal partial combustor

    SciTech Connect

    Yoshida, K.; Ino, T.; Yamamoto, T.; Kimura, N.

    1995-12-31

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. The oxygen-blown entrained flow gasification process is a relatively simple method of producing medium calorie coal gas suitable for application to gas turbines. Various systems for this process have been developed to a demonstration level in Europe and America. Japan has actively been developing the air-blown process. However, taking stable molten slag discharge into consideration, coal must be supplied at two stages to raise the combustor temperature in ash molten part. Only two reports have been presented regarding two-stage coal supply. One is the report on an experiment with the Hycol gasifier, in which air feed ratio is varied, with coal feed fixed. The other is report on a simulation study with various gasifier coal feed ratios, conducted at Central Research Institute of Electric Power Industry. It seems that the appropriate feed ratio has not yet been established. Through this activity, a unique furnace construction has been established, and these influences of stoichiometric air ratio, of oxygen enrichment, of char recycling and of coal types on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (PCPC), thereby improving the IGCC technology. For the present study, we conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale PCPC test facility, operated at the pressure of 0.4 MPa, and clarified the influence of coal feed ratio on coal gasification performance. This report describes the above-mentioned bench scale test procedures and results, and also some informations about a plan of a 25 t/d-coal pilot test system.

  4. Anaerobic treatment of gasifier effluents. Quarterly report

    SciTech Connect

    Cross, W.H.; Chian, E.S.K.; Pohland, F.G.; Giabbai, M.; Harper, S.R.; Kharkar, S.; Cheng, S.S.; Shuey, P.S.

    1982-01-01

    This report summarizes the work performed during the quarter ending December 30, 1981. The major efforts have been directed toward the continued acclimation of two anaerobic treatment systems, start up of a third anaerobic treatment system, GC/MS characterization of the coal gasification wastewater, data acquisition for determination of distribution coefficients for the extraction of phenol from the wastewater using MIBK, and preliminary design of a solvent extraction system for wastewater pretreatment. The progress of these efforts are depicted in the Gannt Chart, along with project expenditures for the above contract, and are presented in detail in the following sections.

  5. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of July 1 to September 30, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.

  6. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of October I to December 31, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.

  7. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  8. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of October 1 to December 31, 1996. In particular, the sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. The computational model for simulating particle transport in turbulent flows was used to analyze the dispersion and deposition of particles in a recirculating flow region. The predictions of the particle resuspension model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as we as the surface roughness are included the model agrees with the available experimental data. Considerable progress was also made in the direct numerical simulation of particle removal process in turbulent gas flows. Experimental data for transport and deposition of glass fiber in the aerosol wind tunnel was also obtained.

  9. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  10. Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite

    SciTech Connect

    Steinfeld, G.

    1984-03-01

    This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

  11. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    SciTech Connect

    Galloway, E.N.; Rockey, J.M.; Tucker, M.S.

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  12. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  13. Development of the IGT RENUGAS{reg_sign} process

    SciTech Connect

    Lau, F.S.; Carty, R.H.

    1994-09-01

    The RENUGAS process was specifically developed for pressurized fluidized bed gasification of biomass to produce either an industrial fuel gas or a chemical synthesis gas depending on air- or oxygen-blown operation. The RENUGAS gasifier is a single stage fluidized bed reactor with a deep bed of inert solids that provide stable fluidization behavior and needed heat capacity for efficient transfer of energy released by the combustion to the endothermic devolatilization and gasification reactions. The use of a deep single-stage bed of inert solids yields high carbon conversion and low oils and tars production. The 11 metric tonne per day RENUGAS process development unit (PDU) built at IGT under a US DOE program, has been tested under various operating conditions with a variety of feedstocks from RdF to woody and herbaceous biomass. Currently, the PDU is being used to test hot gas cleanup for power turbines in support of the Hawaii demonstration gasifier. Biomass conversions of over 95% were achieved for most biomass tested. The successful demonstration of the PDU tests resulted in RENUGAS being selected for further scaleup to a 91 metric ton per day demonstration gasifier being constructed in Hawaii by the Pacific International Center for High Technology Research (PICHTR); a research program being conducted by Westinghouse Electric to validate a hot gas cleanup system for operation of the RENUGAS gasifier with a gas turbine; and the feasibility study of a 70-80 Megawatt combined cycle power plant using an air blown RENUGAS gasifier with alfalfa stems as the feedstock. In this paper, the IGT RENUGAS process is described and its status in three current programs is discussed.

  14. Current status of the IGT RENUGAS{reg_sign} process

    SciTech Connect

    Lau, F.S.; Carty, R.H.

    1994-09-01

    The RENUGAS process was specifically developed for pressurized fluidized bed gasification of biomass to produce either an industrial fuel gas or a chemical synthesis gas depending on air- or oxygen-blown operation. The RENUGAS gasifier is a single state fluidized bed reactor with a deep bed of inert solids that provide stable fluidization behavior and needed heat capacity for efficient transfer of energy released by the combustion to the endothermic devolatilization and gasification reactions. The use of a deep single-stage bed of inert solids yields high carbon conversion and low production of oils and tars. The 11 metric tons per day RENUGAS process development unit built at IGT under a USDOE program, has been tested under various operating conditions with a variety of feedstocks from RdF to woody and herbaceous biomass. Currently, the PDU is being used to test hot gas cleanup for power turbines in support of the Hawaii demonstration gasifier. Biomass conversions of over 95% were achieved for most biomass tested. The successful demonstration of the PDU tests resulted in RENUGAS being selected for further scaleup a 91 metric ton per day demonstration gasifier being constructed in Hawaii by the Pacific International Center for High Technology Research (PICHTR); a research program being conducted by Westinghouse Electric to validate a hot gas cleanup system for operation of the RENUGAS gasifier with a gas turbine; and the feasibility study of a 70-80 Megawatt combined cycle power plant using an air blown RENUGAS gasifier with alfalfa stems as the feedstock. In this paper, the development of the IGT RENUGAS process from a concept in 1977 to its status in three current programs is discussed.

  15. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  16. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  17. Cold flow scaleup facility experimental results and comparison of performance at different bed configurations, Volume 1: Topical report, January--December 1983

    SciTech Connect

    Schmidt, D.K.; Yang, W.C.; Ettehadieh, B.; Anestis, T.C.; Haldipur, G.B.; Kettering, E.; O'Rourke, R.E.; Weigle, D.

    1988-12-01

    KRW Energy Systems Inc. is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-BTU fuel gas from a variety of fossilized carbonaceous feedstocks for electric power generation, synthetic natural gas, chemical feedstocks and industrial fuels. This report presents analysis of the Cold Flow Scaleup Facility (CFSF) operations. Included is work performed on the 3-meter CFSF model using four different bed configurations to check correlations and scale-up criteria developed from studies conducted in small-scale cold flow units and those available in open literature. The 3-meter model permits full front-face viewing of the fluidized bed through a transparent plastic window and with its instrumentation allows detailed studies of jet behavior, bubble dynamics, solid circulation, gas mixing, and related phenomena important to the design of a large-scale gasifier. 87 refs., 95 figs., 56 tabs.

  18. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Astrophysics Data System (ADS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  19. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Technical Reports Server (NTRS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  20. Low NO sub x heavy fuel combustor concept program phase 1A gas tests

    NASA Technical Reports Server (NTRS)

    Cutrone, M. B.; Beebe, K. W.; Cutrone, M. B.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf were assessed. The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. Although meeting NOx goals for the 167 Btu/scf gas, NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx generation from NH3 was significant at ammonia concentrations significantly less tha 0.5%. These levels occur depending on fuel gas cleanup system design, However, NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher.

  1. Coal Gasification - section in Kirk-Othmer Concise Encyclopedia of Chemical Technology, 5th Edition, 2-vol. set, July 2007, ISBN 978-0-470-04748-4, pp. 580-587

    SciTech Connect

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2007-07-01

    Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reduced forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).

  2. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  3. Advanced high-temperature, high-pressure transport reactor gasification

    SciTech Connect

    Swanson, M.L.

    1999-07-01

    conducted. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system will be determined. Operating results from the enriched air- and oxygen-blown operation will be utilized to optimize future tests at the PSDF facility and to make commercial projections about the performance of a transport reactor gasifier on a variety of fuels. Current economic projections for an air-blown transport reactor gasifier show that the total plant cost is around $900/kWe with a heat rate below 7000 Btu/kWh with a COE of 3.12 {cents}/kWh. The availability of low-cost oxygen separation membranes is expected to significantly improve the economics of oxygen-blown transport reactor gasification.

  4. Gas turbine systems development to meet the requirements of a dual fuel biomass/diesel oil application

    SciTech Connect

    Mina, T.I.; Robinson, G.S.; Seamer, A.

    1994-12-31

    The present work describes the necessary development and modifications undertaken to supply an EGT TYPHOON gas turbine to operate on a gas fuel, produced by the gasification of wood waste (biomass gas fuel), with a lower calorific value, (LCV), in the range of 4.6 to 5 MJ/Nm{sup 3}. The systems involved are air bleed, fuel, combustion and control. All systems have been developed to production standards and meet the requirements for a dual fuel biomass/diesel commercial application. The gasification process utilises an air blown pressurised bed type gasifier. The air is supplied to the gasifier from the gas turbine compressor via a booster compressor. The air bleed system is designed to supply up to 15% of total compressor air to the gasification process with minimum disturbance to the combustion system and minimum pressure loss. The biomass fuel is supplied to the gas turbine at a temperature in the range of 300{degrees}C to 400{degrees}C and a working pressure up to 22 bara. The gas fuel system is designed to supply and control the biomass fuel flow at the above conditions and to compensate for variation in the LCV of the gas. The biomass fuel will not be available until the gasifier has reached steady state operating conditions, therefore, the gas turbine must run for a considerable length of time on an alternative fuel, in this case diesel oil. The gas turbine combustion system is designed to operate on the biomass fuel and diesel oil. The system has been developed to be capable of starting on the auxiliary fuel and operating around the required engine cycle, including on-load fuel change over. An imposed restriction on the combustion system design has been to maintain physical interchangeability with the standard conventional TYPHOON combustion system. The gas turbine control system has been modified to allow satisfactory interaction with the integrated plant.

  5. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    SciTech Connect

    Hurley, J.P.; Nowok, J.W.

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  6. Design of gasifiers to optimize fuel cell systems

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  7. Gasifier feed: Tailor-made from Illinois coals

    SciTech Connect

    Ehrlinger, H.P. III.

    1991-01-01

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  8. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    SciTech Connect

    Massoudi, Mehrdad; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  9. Interactions of Refractory Materials with Molten Gasifier Slags

    SciTech Connect

    Nakano, Jimichiro; Sridhar, Seetharaman; Kwong, Kye-Sing; Bennett, James; Moss, Tyler

    2011-04-01

    The current study focuses on the analysis of sessile-drop interfacial reactions between two synthetic slags (based on average ash chemistries of coal and petcoke feedstock) and two refractory materials (90 wt% Cr{sub 2}O{sub 3}–10 wt% Al{sub 2}O{sub 3} and 100 wt% Al{sub 2}O{sub 3}), using a Confocal Scanning Laser Microscope (CSLM). Ground slag samples (less than 325 mesh) were placed at specific microstructure locations on refractory substrates and heated to 1500 °C in an atmosphere of CO/CO{sub 2} gas mixture (volume ratio = 1.8), using a gold-image heating chamber. Cross-sections of the slag/refractory interface indicated unique slag penetration into preferred areas of the refractory and grain dissolution into the slag which promoted spalling of the refractory. Initially, the slag attacked both grain boundaries and fine microstructure areas, freeing alumina grains into the slag. The formation of VO{sub x}-based crystalline material in the petcoke slag was found to alter the liquid composition. Chemical spalling of Cr-containing crystal layer also facilitated degradation of the refractory.

  10. Environment friendly biomass gasifier cookstove for community cooking.

    PubMed

    Panwar, N L; Rathore, N S

    2015-01-01

    Traditional community cookstoves have a low level of efficiency due to their poor heat transfer efficiency and incomplete combustion. The low efficiency results in a high consumption of fuel wood, thereby creating a need of more fuel wood. This paper deals with the development of a biomass cookstove suitable for community cooking. The stove exhibits approximately 36.38% thermal efficiency and has a thermal power rating of 5 kW. The maximum flame temperature recorded was 712°C. The data indicate that the developed cookstove can save approximately 7155 kg of CO2 per annum. PMID:25745979

  11. Environment friendly biomass gasifier cookstove for community cooking.

    PubMed

    Panwar, N L; Rathore, N S

    2015-01-01

    Traditional community cookstoves have a low level of efficiency due to their poor heat transfer efficiency and incomplete combustion. The low efficiency results in a high consumption of fuel wood, thereby creating a need of more fuel wood. This paper deals with the development of a biomass cookstove suitable for community cooking. The stove exhibits approximately 36.38% thermal efficiency and has a thermal power rating of 5 kW. The maximum flame temperature recorded was 712°C. The data indicate that the developed cookstove can save approximately 7155 kg of CO2 per annum.

  12. SEM evaluation of advanced refractory failures in slagging gasifiers

    SciTech Connect

    Collins, W.Keith; Dahlin, Cheryl L.; Bennett, James P.; Kwong, Kyei-Sing; Rawers, James C.

    2005-08-01

    The SEM is an invaluable tool in the evaluation of advanced refractories and their failure. A reaction vessel?s refractory liner, at minimum, must protect the reaction vessel from elevated temperatures, corrosive slag and thermal cycling. To understand the failure mechanisms ARC staff had first to determine how an advanced chrome rich refractory was attacked by various components that make up a slag. Refractory cups were made from the refractory of interest and various compounds that can be found in a slag such as CaO, SiO2, Fe2O3, NaCl were placed into the test cups and fired for 24 hours at the required temperature with the desired atmosphere. The cups are prepared for examination by embedding in epoxy and cross sectioning. SEM examination revealed how various slag compositions attacked and penetrated the refractory. The slag could corrode, free refractory grains or react with the refractory and from a new compound. It was found that the only way to measure slag component penetration was with multiple elemental X-ray maps. SiO2 penetrated deeply and in many instances moved through the cup. The knowledge of slag refractory interactions gather during cup testing was applied to actual spent refractory from reaction vessels. Obtaining samples from the reaction vessel itself proved difficult due to time constraints imposed in relining. Samples were selected based on spent brick shape, color or location in the heap of spent refractory. Sample preparation affected the results dry, water or oil coolant during cutting may dissolve reaction products. The complex reactions between the slag and refractory made for very interesting and time consuming evaluation. Elemental X-ray maps at low and high magnification combined with point analysis aided in locating regions of interest. Crystals were found growing in voids and appear to be from vapor deposition. Other crystal structures are from the slag refractory interaction. Knowledge gathered from this and other supporting research resulted in a new patented refractory composition that resists slag penetration.

  13. Selection and performance of Materials for Biomass Gasifiers

    SciTech Connect

    Keiser, James R; Hemrick, James Gordon; Meisner, Roberta A; Blau, Peter J; Pint, Bruce A

    2010-01-01

    Production of syngas through gasification or pyrolysis offers one of the more efficient routes for utilization of biomass resources; however, the containment structures used for many of these thermochemical processes are exposed to severe environments that limit their longevity and reliability. Studies have been conducted for three of these systems, and superior alternative materials have been identified. Improved materials will be of even greater importance in proposed gasification systems, many of which will generate even more extreme operating conditions.

  14. Erection of gasifier by Poland to begin in 1987

    SciTech Connect

    Not Available

    1986-09-01

    Erection of a coal gasification project in Poland is to resume in 1987. The plant is to be built by Krupp Koppers at Libiaz in southern Poland. Equipment for the plant has been stored at Libiaz for several years. The project, which began in 1980, has been stalled due to political difficulties in Poland. The Libiaz project will reportedly use approximately 1 million metric tons per year of high sulfur coal. Synthesis gas produced by the Koppers Totzek technology will be utilized to produce methanol.

  15. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  16. Sulfur-deactivated steam reforming of gasified biomass

    SciTech Connect

    Koningen, J.; Sjoestroem, K.

    1998-02-01

    The effect of hydrogen sulfide on the stream reforming of methane has been studied. Methane is the most difficult component to convert by steam reforming in the mixture of hydrocarbons, which is produced in biomass gasification. Two catalysts were subjected to hydrogen sulfide levels up to 300 ppm so as to study the effect of sulfur on their deactivation. These catalysts were the C11-9-061, from United Catalyst Inc., and the HTSR1, from Haldor Topsoee. The activation energy of the sulfur-deactivated steam-reforming reaction was calculated to be 280 and 260 kJ/mol, for each catalyst, respectively. The high values most probably originate from the fact that the degree of sulfur coverage of the nickel surface is close to 1 for these experiments. Even under these severe conditions, steam reforming of methane is possible without any carbon formation. The HTSR1 catalyst exhibits a very high sulfur-free activity, resulting in a performance in the presence of hydrogen sulfide higher than that for the C11-9-061 catalyst. By using the HTSR1 catalyst, the reactor temperature can be lowered by 60 C in order to reach comparable levels of conversion.

  17. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  18. Development of a small scale BIGGT power plant

    SciTech Connect

    Craig, J.D.

    1994-12-31

    Cratech, Inc. is progressing on a 3-phase plan to develop a one ton per hour (tph) biomass-fueled integrated-gasifier gas turbine (BIGGT) power plant. The goal is to develop economical, small scale (1-20 MWe) power plants for entities worldwide that desire to use a variety of biomass resources for fuel including those with high ash content and that are prone to slagging. Phase 1 has been successfully completed. Phase 1 included design, fabrication and operation of a 0.5 tph air-blown pressurized fluidized bed gasification unit complete with a hot gas cleanup system. The unit was fueled with cotton gin trash (CGT), a biomass resource that is high in ash and very prone to slagging. The system demonstrated production of a gas from CGT that can be maintained at a minimum chemical heating value of 130 BTU/SCF, at an outlet temperature of 1265 {+-} 15{degrees}F with a maximum particle content of 6.4 ppmw of 2.8 um maximum particle size.

  19. Evaluation of solid oxide fuel cell systems for electricity generation

    NASA Technical Reports Server (NTRS)

    Somers, E. V.; Vidt, E. J.; Grimble, R. E.

    1982-01-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  20. Evaluation of solid oxide fuel cell systems for electricity generation

    NASA Astrophysics Data System (ADS)

    Somers, E. V.; Vidt, E. J.; Grimble, R. E.

    1982-12-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  1. Evaluation of solid oxide fuel cell systems for electricity generation. interim; Final Report

    SciTech Connect

    Somers, E.V.; Vidt, E.J.; Grimble, R.E.

    1982-12-01

    Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.

  2. Gasification Product Improvement Facility (GPIF). Final report

    SciTech Connect

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  3. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  4. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  5. The THERMIE energy farm project

    SciTech Connect

    Lange, H.J. de; Barbucci, P.; Greil, C.; Modi, R.

    1998-07-01

    At a site close to Pisa (Italy), a plant with a net power-output of approximately 12 MWe will be erected; it features an atmospheric, air-blown, circulating fluidized-bed (CFB) gasifier, integrated with a 10.9 MWe, single-shaft, heavy-duty gas-turbine, suited to burn the low-calorific value fuel-gas produced by the gasifier, and a heat-recovery steam-generator (HRSG), which provides steam to a 5 MWe condensing steam-turbine. The plant's net thermal-efficiency amounts to about 32%. Wet wood is shredded to chips, mixed with the agricultural residues and fed to a dryer. Here, flue gases from the HRSG are used to dry the fuel to the desired moisture content. The dried fuel is gasified in a CFB reactor to produce a fuel-gas. This fuel-gas is cooled in two stages during which the gasification air is preheated and steam is produced in a gas-cooler (GC). Then, it is washed in a wet-scrubber and compressed in several intercooled stages before it is delivered to the gas turbine model PGT10 B/1. The gas turbine adopts a newly developed, high-efficiency air-compressor and its special, dual-fuel combustion-chamber is now under development. The combined-cycle is completed with a dual pressure-level HRSG. The steam turbine is fed by the steam produced in the HRSG and the GC located in the gasification island. As a consequence of the changed agricultural market, the fuel will consist not only of short rotation forestry (SRF) but also of forestry and agricultural residues. The wood species include poplar, black locust, willow and chestnut, whereas the agricultural residues comprise olive stones and grape-seed flour. The financial viability of the project relies on the incentive provided by the Italian government with a premium price per kWh of electricity produced from renewables and on the financial contribution from the EU.

  6. Moving Granular Bed Filter Development Program

    SciTech Connect

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1992-11-01

    The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

  7. Moving Granular Bed Filter Development Program

    SciTech Connect

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1992-01-01

    The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

  8. Granular-bed and ceramic candle filters in commercial plants: A comparison

    SciTech Connect

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1993-04-01

    Advanced coal fired power cycles require the removal of coal ash at high temperature and pressure. Granular-bed and ceramic candle filters can be used for this service. Conceptual designs for commercial size applications are made for each type of filter. The filters are incorporated in the design of a Foster Wheeler 450 MWe second generation pressurized fluidized bed combustion plant which contains a pressurized fluidized combustor and carbonizer. In a second application, the inters are incorporated in the design of a 100 MWe KRW (air) gasifier based power plant. The candle filter design is state of the art as determined from the open literature with an effort to minimize the cost. The granular-bed filter design is based on test work performed at high temperature and low pressure, tests at New York University performed at high pressure and temperate, and new analysis used to simplify the scale up of the filter and reduce overall cost. The incorporation of chemically reactive granites in the granular-bed filter for the removal of additional coal derived contaminants such as alkali or sulfur is considered. The conceptual designs of the granular-bed inter and the ceramic candle filter are compared in terms of the cost of electricity, capital cost, and operating and maintenance costs for each application.

  9. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  10. Hot Gas Desulfurization Using Transport Reactors

    SciTech Connect

    Moorehead, E.L.

    1996-12-31

    Sierra Pacific Power Company is building a 100 MW, IGCC power plant based on KRW fluid bed gasifier technology that utilizes transport reactors for hot gas desulfurization and sorbent regeneration. Use of a transport absorber avoids the need for pre-filtration of dust-laden gasifier effluent, while a transport regenerator allows for the use of 100% air without the need for heat exchange equipment. Selection of transport reactors for hot gas desulfurization using a proprietary sorbent, based on testing performed in a transport reactor test unit (TRTU) at the M. W. Kellogg Technology Development Center and in a fixed bed reactor at Morgantown Energy Technology Center (METC), is outlined. The results obtained in these two test facilities and reasons for selecting transport reactors for the IGCC power plant in preference to either fixed bed or fluidized bed reactors are discussed. This paper reviews the evolution of the hot gas desulfurization system designs and includes selected results on H{sub 2}S absorption and regeneration of sulfided sorbent over several absorption/regeneration cycles conducted in the TRTU and the METC fixed bed reactor. The original design for the Sierra Pacific Project was based on fixed bed reactors with zinc ferrite as the sorbent. Owing to the high steam requirements of this sorbent, zinc titanate was selected and tested in a fixed bed reactor and was found unacceptable due to loss of strength on cyclic absorption/regeneration operation. Another sorbent evaluated was Z-Sorb{reg_sign}, a proprietary sorbent developed by Phillips Petroleum Company, was found to have excellent sulfur capacity, structural strength and regenerability. Steam was found unsuitable as fixed bed regenerator diluent, this results in a requirement for a large amount of inert gas, whereas a transport regenerator requires no diluent. The final Sierra design features transport reactors for both desulfurization and regeneration steps using neat air. 3 refs., 3 figs., 2 tabs.

  11. 21 CFR 177.2800 - Textiles and textile fibers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prescribed under 21 CFR 178.3740(b) of this chapter. Polyethylene, oxidized (air blown) Polyvinyl acetate... the manufacture of items for repeated use. Rayon (ii) Adjuvant substances: Aluminum stearate Borax...

  12. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  13. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  14. Gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

    1994-09-01

    The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

  15. IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993

    SciTech Connect

    1993-10-01

    Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.

  16. Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator

    SciTech Connect

    Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

    1994-10-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

  17. Design and Development of Gas Carburettor for a Gasifier-Engine System

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Avdhesh Kumar

    2016-07-01

    This work presents a novel design of a gas-carburettor for SI engine operated on producer gas in single fuel mode. For geometrical modelling of carburettor, the ANSYS workbench is used, while RNG k-ɛ turbulence model in conjunction with species transport model is employed for numerical simulations. This carburettor design was fabricated, the operations were performed to ensure load following flexibility of gas carburettor. CFD model for gas carburettor gives realistic predictions for qualitative trends of pressure drop at different load conditions.

  18. Design, engineering and evaluation of refractory liners for slagging gasifiers. Final report

    SciTech Connect

    deTineo, B J; Booth, G; Firestone, R F; Greaves, M J; Hales, C; Lamoureux, J P; Ledford, R R

    1982-08-01

    The contract for this program was awarded at the end of September 1978. Work was started on 1 October 1978, on Tasks A, B, and E. Task A, Conceptual Liner Designs, and Task B, Test System Design and Construction, were completed. Task C, Liner Tests, and Task D, Liner Design Evaluation, were to begin upon completion of Task B. Task E, Liner Model Development, is inactive after an initial data compilation and theoretical model development effort. It was to be activated as soon as data were available from Task D. Task F, Liner Design Handbook, was active along with Task A since the reports of both tasks were to use the same format. At this time, Tasks C, D, and F are not to be completed since funding of this project was phased out by DOE directive. The refractory text facility, which was constructed, was tested and found to perform satisfactorily. It is described in detail, including a hazard analysis which was performed. (LTN)

  19. Gasifier feed: Tailor-made from Illinois coals. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    Ehrlinger, H.P. III

    1991-12-31

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  20. Gasified grass and wood biochars facilitate plant establishment in acid mine soils

    EPA Science Inventory

    Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the U.S. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochar...

  1. Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers

    SciTech Connect

    G. Norton; D. Eckels; C. Chriswell

    2001-02-26

    The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

  2. Sulfidation and reduction of zinc titanate and zinc oxide sorbents for injection in gasifier exit ducts

    SciTech Connect

    Ishikawa, K. |; Krueger, C.; Flytzani-Stephanopoulos, M.; Jl, W.; Higgins, R.J.; Bishop, B.A.; Goldsmith, R.L.

    1995-12-31

    The sulfidation reaction kinetics of fine particles of zinc titanate and zinc oxide with H{sub 2}S were studied in order to test the potential of the sorbent injection hot-gas desulfurization process. Fine sorbent particles with diameter between 0.3 and 60 {mu}m were sulfided with H{sub 2}S and/or reduced with H{sub 2} in a laminar flow reactor over the temperature range of 500-900{degrees}C. Sulfidation/reduction conversion was compared for different particle sizes and sorbents with various porosities and atomic ratios of Zn and Ti. In reduction of ZnO with H{sub 2} and without H{sub 2}S, significant amount of Zn was formed and vaporized, while the presence of H{sub 2}S suppressed elemental Zn formation. This suggests that H{sub 2}S may suppress the surface reduction of ZnO and/or gaseous Zn may react with H{sub 2}S homogeneously and form fine particles of ZnS. Formation and vaporization of elemental Zn from zinc titanate sorbents was slower than from zinc oxide with and without H{sub 2}S.

  3. US bituminous coal test program in the British Gas/Lurgi (BGL) gasifier. Final report

    SciTech Connect

    de Souza, M.D.; Tart, K.R.; Eales, D.F.; Turna, O.

    1991-12-01

    The BGL moving-bed, slagging-gasification process is an extension of the commercially proven Lurgi dry-ash, moving-bed gasification process. British Gas and Lurgi have demonstrated the process over an 11-year period at the 350 and 500 t/d scale at British Gas` Westfield Development Center, Scotland, with a wide variety of US and British coals. British Gas also installed a gas purification and HICOM methanation plant at Westfield to treat approximately 190,000 sft{sup 3}/h of purified syngas. Objectives are: To demonstrate the suitability of US bituminous coals as feed-stocks in the BGL gasification process; to provide performance data for use in designing commercial-scale BGL-based gasification-combined-cycle (GCC) power plants; and to evaluate the performance of the British Gas HICOM process for methanation of US coal-derived syngas.

  4. US bituminous coal test program in the British Gas/Lurgi (BGL) gasifier

    SciTech Connect

    de Souza, M.D.; Tart, K.R.; Eales, D.F. ); Turna, O. )

    1991-12-01

    The BGL moving-bed, slagging-gasification process is an extension of the commercially proven Lurgi dry-ash, moving-bed gasification process. British Gas and Lurgi have demonstrated the process over an 11-year period at the 350 and 500 t/d scale at British Gas' Westfield Development Center, Scotland, with a wide variety of US and British coals. British Gas also installed a gas purification and HICOM methanation plant at Westfield to treat approximately 190,000 sft{sup 3}/h of purified syngas. Objectives are: To demonstrate the suitability of US bituminous coals as feed-stocks in the BGL gasification process; to provide performance data for use in designing commercial-scale BGL-based gasification-combined-cycle (GCC) power plants; and to evaluate the performance of the British Gas HICOM process for methanation of US coal-derived syngas.

  5. Toxicity of coal gasifier solid waste to the aquatic plants Selenastrum capricornutum and Spirodela oligorhiza

    SciTech Connect

    Klaine, S.J.

    1985-10-01

    Classical assessment of aquatic toxicity has focused on fish and invertebrates primarily due to their economic importance. However, increased awareness of the role of aquatic vegetation as primary producers in aquatic systems has stimulated their use in aquatic hazards evaluations. This paper presents the results of solid waste leaching tests using a procedure which was designed to mimic landfilling of solid waste. Results are reported for leachate analysis of the ash agglomerate and the relative toxicity of this leachate to Selenastrum capricornutum (a unicellular green alga) and Spirodela oligorhiza (a floating aquatic vascular plant).

  6. Gasified grass and wood biochars facilitate plant establishment in acid mine soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thousands of abandoned mines in the Western U.S. threaten ecosystems, due to high heavy metal concentrations in exposed mine spoils and waters flowing from them. Biochars derived from the pyrolysis or gasification of organic biomass may serve as a valuable soil amendment to revegetate mine sites, du...

  7. The corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres

    SciTech Connect

    Douglas, D.L.; Bhide, V.S.; Vineberg, E.

    1981-08-01

    Six alloys, 310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 160/sup 0/C and 1800/sup 0/C. The chars, FMC and Husky, contained 2.7% and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was strictly sulfidation when the char was replenished every 24 hr or less. The kinetics of reaction were nearly linear with time. The reaction resulted in thick external sulfide scales with extensive internal sulfidation in the substrate. The kinetics and reaction-product morphologies suggested that diffusion through the sulfide scale played a minor role, and that an interfacial reaction was the rate-controlling step. A mathematical model was developed which supported this hypothesis. The reaction rates showed a relatively minor role on alloy composition, depending upon whether the alloys were tested singularly or in combination with others. Inconel 671, the best alloy in CGA environments, consistently corroded the most rapidly of the chromia-former types regardless of char sulfur content or of the temperature. Type 310 stainless was marginally better than Inconel 671. Incoloy 800 was intermediate, wheras, Haynes 188 and Hastelloy X exhibited the best corrosion resistance. The FeCrAlY alloys reacted very rapidly in the absence of preoxidation treatments. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None of the alloys will be acceptable for use in contact with char unless coatings are applied.

  8. Corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres

    SciTech Connect

    Douglass, D.L.; Bhide, V.S.; Vineberg, E.

    1981-08-01

    310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 1600/degree/ and 18000/degree/F. The chars, FMC and Husky, contained 2.7% and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was sulfidation. An interfacial reaction was the rate-controlling step. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None will be acceptable for use in contact with char unless coatings are applied. 7 refs.

  9. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael L. Swanson

    2005-08-30

    50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  10. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  11. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  12. Subtask 7.4 - Power River Basin Subbituminous Coal-Biomass Cogasification Testing in a Transport Reactor

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2009-03-01

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the Kellogg Brown and Root transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 3600 hours of operation on 17 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air- and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 90% have also been obtained and are highly dependent on the oxygen

  13. Particulate Hot Gas Stream Cleanup Technical Issues: Quarterly report, July 1-September 30, 1996

    SciTech Connect

    Pontius, D.H.

    1996-12-09

    This is the eighth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, additional analyses were performed on ashes from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. Work continued on the HGCU data base being constructed in Microsoft Access. A variety of information has been entered into the data base, including numerical values, short or long text entries, and photographs. Detailed design of a bench top device for high temperature measurement of ash permeability has also begun. In addition to these activities, a paper was prepared and a poster was presented summarizing recent work performed under this contract at the 1996 DOE/METC Contractor`s Conference. A presentation was also given corresponding to the manuscript entitled Particle Characteristics and High-Temperature Filtration that was prepared for publication in the Proceedings of the Thirteenth Annual International Pittsburgh Coal Conference held this September in Pittsburgh, PA. Arrangements have been made to be present at the DOE/METC Modular Gas Cleanup Rig (MGCR) at the conclusion of the next run of the DOE/METC air blown Fluid Bed Gasifier (FBG). This visit will include on-site sampling to collect and characterize the filter cakes collected during FGB operation. Task 2 efforts during the past quarter focused on

  14. Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - Activity 1.13 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael

    2011-09-01

    Modifications were made to the inlet of the existing Energy & Environmental Research Center (EERC) thermal oxidizer to accommodate side-by-side coupon holders for exposure testing. Two 5-day tests with over 200 hours of total exposure time were completed. The first week of testing was conducted in enriched air-blown mode, with coupon temperatures ranging from 128° to 272°F. Carbonyl sampling was conducted, but it was discovered after the fact that the methodology used was producing very low recoveries of iron and nickel carbonyl. Therefore, the data generated during this week of testing were not considered accurate. The second week of testing was conducted in oxygen-blown mode, with coupon temperatures ranging from 220° to 265°F. Two improved methods were used to measure carbonyl concentration during this week of testing. These methods produced results closer to equilibrium calculations. Since both weeks of testing mostly produced a product gas with approximately 15%–18% carbon monoxide, it was felt that actual carbonyl concentrations for Week 1 should be very similar to those measured during Week 2. The revised carbonyl sampling methodology used during the second week of testing greatly improved the recovery of iron and nickel carbonyl in the sample. Even though the sampling results obtained from the first week were inaccurate, the results from the second week can be used as an estimate for the periods during which the gasifier was operating under similar conditions and producing similar product gas compositions. Specifically, Test Periods 2 and 3 from the first week were similar to the conditions run during the second week. For a product gas containing roughly 15%–18% CO and a coupon temperature of approximately 220°–270°F, the nickel carbonyl concentration should be about 0.05–0.1 ppm and the iron carbonyl concentration should be about 0.1–0.4 ppm. After each week of testing the coupons were recovered from the coupon holder, weighed, and shipped

  15. Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket

    NASA Astrophysics Data System (ADS)

    Wang, Gang-Jin; Xie, Chi

    2013-03-01

    We investigate the cross-correlations between Renminbi (CNY) and four major currencies (USD, EUR, JPY, and KRW) in the Renminbi currency basket, i.e., the cross-correlations of CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW. Qualitatively, using a statistical test in analogy to the Ljung-Box test, we find that cross-correlations significantly exist in CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW. Quantitatively, employing the detrended cross-correlation analysis (DCCA) method, we find that the cross-correlations of CNY-USD, CNY-EUR, CNY-JPY, and CNY-KRW are weakly persistent. We use the DCCA cross-correlation coefficient ρ to quantify the level of cross-correlations and find the currency weight in the Renminbi currency basket is arranged in the order of USD>EUR>JPY >KRW. Using the method of rolling windows, which can capture the time-varying cross-correlation scaling exponents, we find that: (i) CNY and USD are positively cross-correlated over time, but the cross-correlations of CNY-USD are anti-persistent during the US sub-prime crisis and the European debt crisis. (ii) The cross-correlation scaling exponents of CNY-EUR have the cyclical fluctuation with a nearly two-year cycle. (iii) CNY-JPY has long-term negative cross-correlations, during the European debt crisis, but CNY and KRW are positively cross-correlated.

  16. Economic Impact of Atopic Dermatitis in Korean Patients

    PubMed Central

    Kim, Chulmin; Park, Kui Young; Ahn, Seohee; Kim, Dong Ha; Li, Kapsok; Kim, Do Won; Kim, Moon-Beom; Jo, Sun-Jin; Yim, Hyeon Woo

    2015-01-01

    Background Atopic dermatitis is a global public health concern owing to its increasing prevalence and socioeconomic burden. However, few studies have assessed the economic impact of atopic dermatitis in Korea. Objective We conducted a cost analysis of atopic dermatitis and evaluated its economic impacts on individual annual disease burden, quality of life, and changes in medical expenses with respect to changes in health related-quality of life. Methods The cost analysis of atopic dermatitis was performed by reviewing the home accounting records of 32 patients. The economic impact of the disease was evaluated by analyzing questionnaires. To handle uncertainties, we compared the results with the data released by the Health Insurance Review & Assessment Board on medical costs claimed by healthcare facilities. Results The direct cost of atopic dermatitis per patient during the 3-month study period was 541,280 Korean won (KRW), and expenditures on other atopic dermatitis-related products were 120,313 KRW. The extrapolated annual direct cost (including expenditures on other atopic dermatitis-related products) per patient was 2,646,372 KRW. The estimated annual indirect cost was 1,507,068 KRW. Thus, the annual cost of illness of atopic dermatitis (i.e., direct+indirect costs) was estimated to be 4,153,440 KRW. Conclusion The annual total social cost of atopic dermatitis on a national level is estimated to be 5.8 trillion KRW. PMID:26082587

  17. Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier

    SciTech Connect

    Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J.

    2005-05-01

    This analysis developed detailed process flow diagrams and an Aspen Plus{reg_sign} model, evaluated energy flows including a pinch analysis, obtained process equipment and operating costs, and performed an economic evaluation of two process designs based on the syngas clean up and conditioning work being performed at NREL. One design, the current design, attempts to define today's state of the technology. The other design, the goal design, is a target design that attempts to show the effect of meeting specific research goals.

  18. Control of gasifier operations using neural networks, Task 7.11. Topical report, September 1992--December 1993

    SciTech Connect

    Cisney, S.; Erjavec, J.; Rao, C.N.

    1994-04-01

    The incentive for this project was to investigate applicability of a new modeling tool -- a system of equations which emulate the human brain, called neural nets -- for chemical process modeling and control at the Dakota Gasification Company (DGC) coal gasification plant in Beulah, North Dakota. The specific goals were (1) to determine guidelines for identifying likely candidate processes for the use of neural nets, (2) to screen the various process areas of the Beulah plant, using these guidelines, (3) select a process area to study, and (4) apply neural nets to model that particular process area. The gasification area was the prominent candidate for the application of neural nets. Calculations showed that it was possible to save over $500,000 by increasing the steam-to-oxygen (S:O) ratio. The problem is that when the S:O ratio is increased, more gas liquor is produced, and there is a limit to how much gas liquor can be handled downstream. Thus, if a model were available to predict how much gas liquor would be produced, the S:O ratio could be increased to the operating limits. The performance of the neural net was apparently hindered by the type of data input used. Once the known effects of oxygen flow rate and S:O ratio were taken into account, there was no correlation left between any of the input data and the gas liquor flow rate. This result was verified using regression analysis, so there is likely no problem with the neutral net itself. Rather, the conclusion is that the data used did not give any information useful for predicting gas liquor flow. Therefore, in order to apply neural nets to go after the savings, more variables must be logged on a regular basis. The most important variable needed to continue this project is probably the volatiles content of the coal.

  19. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-12-31

    The computational model for simulating particle motions in turbulent flows was further developed and used to analyze the transport and dispersion of particles in a recirculating flow region. The model for resuspension of particles from surfaces in a gas flow is also further developed; it accounts for the surface adhesion as well as hydrodynamic forces and torques. It includes effects of the structure of near wall turbulent flows as well as surface roughness. In addition, a direct numerical simulation procedure for analyzing the particle removal process in turbulent gas flows is also developed. The sublayer model for evaluating the particle deposition in turbulent flows is being extended to include the effect of particle rebound. Further progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  20. Optimizing modes of a small-scale combined-cycle power plant with atmospheric-pressure gasifier

    NASA Astrophysics Data System (ADS)

    Donskoi, I. G.; Marinchenko, A. Yu.; Kler, A. M.; Ryzhkov, A. F.

    2015-09-01

    The scheme of an integrated coal gasification combined-cycle power plant with small capacity is proposed. Using the built mathematical model a feasibility study of this unit was performed, taking into account the kinetics of physical and chemical transformations in the fuel bed. The estimates of technical and economic efficiency of the plant have been obtained and compared with the alternative options.

  1. Southeastern Regional Biomass Energy Program: vortex gasifier burner and the EZY flow dryer/metering bin. Final report

    SciTech Connect

    McKinney, C. Jr.

    1985-01-01

    A new method of conditioning pine timbers in a steam autoclave was introduced to ALA-TENN Industries, Inc. The procedure used steam pressure in a autoclave to condition the wood with the promise of reducing the requirement of time for conditioning down to three to six hours as opposed to two to six days for kiln-drying. Part of the 100 tons per day of wood waste produced by McKinney Lumber, Inc. was used to fuel the system. 28 figs. 2 tabs.

  2. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Ahmadi, G.

    1996-07-01

    During this report period, additional progress was made in accomplishing the tasks of the project. In particular, the computational model for simulating particle motions in turbulent flows was further developed. The model was applied to the dispersion analysis of particles in a circular duct and the transport and deposition of particles in a recirculating region. A model for resuspension of particles from various surfaces in a gas flow is also being developed. The new model accounts for the surface adhesion, as well as the hydrodynamic forces and torques. In addition, the model includes the effect of surface roughness and the structure of near wall turbulent flow. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  3. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2003-07-01

    Polk Power has decided that the Texaco gasification unit will not be sold to a third party. Therefore, including the ownership transfer of the Texaco gasification unit in the agreement is not an issue any more. The cooperative agreement between Texaco and Polk Power has been revised several times in this quarter. Polk power is making comments on the last draft that Texaco sent to them. The modification fieldwork and testing will start once the cooperative agreement is signed with Polk Power.

  4. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2004-01-01

    ChevronTexaco has shipped the pyrometer system to Tampa, Florida. Polk Power is in the process of installing the mechanical, electrical and instrumentation of the pyrometer system as well as integrating the instrumentation to the test site Distributed Control System. The startup and field testing of the system will begin afterwards.

  5. DESIGN, FABRICATION AND BENCH TESTNG OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2003-04-01

    The cooperative agreement between Texaco and Polk Power has been revised by Polk Power and ChevronTexaco several times already. Lawyers from both Polk Power and ChevronTexaco are in the process to include the issues related to the ownership transfer of the Texaco gasification unit in the agreement and finalize the draft. The modification fieldwork and testing will start once the cooperative agreement is signed with Polk Power.

  6. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Thomas F. Leininger; Hua-Min Huang

    2003-10-01

    Polk Power and ChevronTexaco have signed the cooperative agreement at the end of reporting period. ChevronTexaco is shipping the pyrometer system to Tampa, Florida. Polk Power will start the modification fieldwork and installation of the system. The testing will start when the next opportunity is available.

  7. Mechanism of corrosion of structural materials in contact with coal chars in coal gasifier atmospheres. Final report

    SciTech Connect

    Douglass, D.L.; Bhide, V.S.; Vineberg, E.

    1980-05-01

    Six alloys, 310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 1600 and 1800/sup 0/F. The chars, FMC and Husky, contained 2.7 and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was strictly sulfidation when the char was replenished every 24 hours or less. The kinetics of reaction were nearly linear with time. The reaction resulted in thick external sulfide scales with extensive internal sulfidation in the substrate. The kinetics and reaction-product morphologies suggested that diffusion through the sulfide scale played a minor role and that an interfacial reaction was the rate-controlling step. A mathematical model was developed which supported this hypothesis. The reaction rates showed a relatively minor role on alloy composition, depending upon whether the alloys were tested singularly or in combination with others. Inconel 671, the best alloy in CGA environments, consistently corroded the most rapidly of the chromia-former types regardless of char sulfur content or of the temperature. Type 310 stainless was marginally better than Inconel 671. Incoloy 800 was intermediate, whereas, Haynes 188 and Hastelloy X exhibited the best corrosion resistance. The FeCrAlY alloys reacted very rapidly in the absence of preoxidation treatments. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None of the alloys will be acceptable for use in contact with char unless coatings are applied.

  8. Cold flow scaleup facility experimental results and comparison of performance at different bed configurations, Volume 2: Topical report, January--December 1983

    SciTech Connect

    Schmidt, D.K.; Yang, W.C.; Ettehadieh, B.; Anestis, T.C.; Haldipur, G.B.; Ketrering, E.; O'Rourke, R.E.; Weigle, D.

    1988-12-01

    KRW Energy Systems Inc. is engaged in the continuing development of a pressurized fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-BTU fuel gas from a variety of fossilized carbonaceous feedstocks for electric power generation, synthetic natural gas, chemical feedstocks, and industrial fuels. This report presents the experimental data on the Cold Flow Scaleup Facility (CFSF) operations.

  9. Support services for ceramic fiber-ceramic matrix composites. Annual technical progress report

    SciTech Connect

    Hurley, J.P.; Nowok, J.W.

    1996-12-27

    Ceramic and advanced alloy corrosion in fossil energy systems is being investigated. During 1995-6, ash was collected for testing corrosion resistance of materials in air-blown fluidized-bed gasification systems. Descriptions of the activities are presented in this report, which is an extension of a technical paper on testing corrosion rates of ceramics in coal gasification systems. A section of this report covers factors affecting the composition of ash deposits.

  10. New Fan Engine Noise-Reduction Concept Using Trailing Edge Blowing of Fan Blades Demonstrated

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.

    2002-01-01

    A major source of noise in commercial turbofan engines is the interaction of the fan blade wakes with the fan exit vanes (stators). These wakes can be greatly reduced by filling them with air blown out of the blade trailing edge. Extensive testing of this concept has demonstrated significant noise reductions. These tests were conducted on a low-speed, 4- ft-diameter fan using hollow blades at NASA Glenn Research Center's Aeroacoustic Propulsion Laboratory (AAPL).

  11. Industrial equipment for selective charge crushing

    SciTech Connect

    Ryabichenko, A.D.; Belyaev, E.V.; Kochkin, V.V.

    1983-01-01

    The design, operation, and performance of fluidized-bed equipment for the pneumatic separation and selective crushing of the coal charge for coking plants are described. Air blown through gratings sets up a fluidized bed of coal in which separation by size and density is initiated. The oversize fraction is sent to a hammer crusher to be further reduced before returning it to the separator. Since the size is more uniform in the coal charge, the coke quality shows improvement.

  12. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.

    PubMed

    Rong, Le; Maneerung, Thawatchai; Ng, Jingwen Charmaine; Neoh, Koon Gee; Bay, Boon Huat; Tong, Yen Wah; Dai, Yanjun; Wang, Chi-Hwa

    2015-02-01

    As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes. PMID:25532673

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  14. Design, engineering, and evaluation of refractory liners for slagging gasifiers. Second annual technical progress report, 1 October 1979-30 September 1980

    SciTech Connect

    Booth, G.; Firestone, R. F.; Greaves, M. J.; Hales, C.; Lamoureux, J. P.; Ledford, R. R.

    1980-10-01

    The program has been making steady progress to completion. The refractory liner test system is a much more complex design than originally proposed, but it is also safer and better able to simulate the actual coal gasification environment to which refractories will be exposed. Consequently, the data from the tests will be more reliable and the final handbook more useful for refractory liner design.

  15. Integrated Sensing & Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier & Syngas Cooler. Topical Rerport for Phase III

    SciTech Connect

    Kumar, Aditya

    2011-02-17

    This Topical Report for the final Phase III of the program summarizes the results from the Task 3 of the program. In this task, the separately designed extended Kalman Filter (EKF) and model predictive controls (MPC) with ideal sensing, developed in Phase II, were integrated to achieve the overall sensing and control system for the gasification section of an IGCC plant. The EKF and MPC algorithms were updated and re-tuned to achieve closed-loop system stability as well as good steady-state and transient control response. In particular, the performance of the integrated EKF and MPC solution was tested extensively through multiple simulation studies to achieve improved steady-state as well as transient performance, with coal as well as coal-petcoke blended fuel, in the presence of unknown modeling errors as well as sensor errors (noise and bias). The simulation studies demonstrated significant improvements in steady state and transient operation performance, similar to that achieved by MPC with ideal sensors in Phase II of the program.

  16. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.

    PubMed

    Rong, Le; Maneerung, Thawatchai; Ng, Jingwen Charmaine; Neoh, Koon Gee; Bay, Boon Huat; Tong, Yen Wah; Dai, Yanjun; Wang, Chi-Hwa

    2015-02-01

    As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes.

  17. Biochars derived from gasified feedstocks increase the growth and improve the nutrient acquisition of Triticum aestivum (L.) grown in agricultural alfisols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Our recent characterization of biochars produced from gasification of Kentucky bluegrass (P...

  18. Comparison of Costs of Endovascular Repair versus Open Surgical Repair for Abdominal Aortic Aneurysm in Korea

    PubMed Central

    Min, Sang Il; Min, Seung-Kee; Ahn, Sanghyun; Kim, Suh Min; Park, Daedo; Park, Taejin; Chung, Jin Wook; Park, Jae Hyung; Ha, Jongwon; Kim, Sang Joon

    2012-01-01

    This study was designed to compare the hospital-related costs of elective abdominal aortic aneurysm (AAA) treatment and cost structure between endovascular aneurysm repair (EVAR) and open surgical repair (OSR) in Korean health care system. One hundred five primary elective AAA repairs (79 OSRs and 26 EVARs) performed in the Seoul National University Hospital from 2005 to 2009 were included. Patient characteristics were similar between two groups except for older age (P = 0.004) and more frequent history of malignancy (P = 0.031) in EVAR group. Thirty-day mortality rate was similar between two groups and there was no AAA-related mortality in both groups for 5 yr after repair. The total in-hospital costs for the index admission were significantly higher in EVAR patients (mean, KRW19,857,119) than OSR patients (mean KRW12,395,507) (P < 0.001). The reimbursement was also significantly higher in EVAR patients than OSR patients (mean, KRW14,071,081 vs KRW6,238,895, P < 0.001) while patients payments was comparable between two groups. EVAR patients showed higher follow-up cost up to 2 yr due to more frequent imaging studies and reinterventions for type II endoleaks (15.4%). In the perspective of cost-effectiveness, this study suggests that the determination of which method to be used in AAA treatment be more finely trimmed and be individualized. PMID:22468106

  19. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China.

    PubMed

    Turdi, Muyessar; Yang, Linsheng

    2016-09-23

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element-induced health risk (including for DW adults) was higher than acceptable (10(-6)) and lower than priority risk levels (10(-4)) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10(-4), higher than acceptable and priority risk levels (10(-4)).

  20. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China

    PubMed Central

    Turdi, Muyessar; Yang, Linsheng

    2016-01-01

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element–induced health risk (including for DW adults) was higher than acceptable (10−6) and lower than priority risk levels (10−4) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10−4, higher than acceptable and priority risk levels (10−4). PMID:27669274

  1. 77 FR 23768 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ...-Counter (``OTC'') foreign currency (``FX'') product offering to facilitate changing its methodology for... (``USD/ INR''), U.S. Dollar/Korean Won (``USD/KRW''), U.S. Dollar/Philippine Peso (``USD/PHP''), U.S... obligations of the clearing agency or persons using such service. CME further notes that the policies of...

  2. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China.

    PubMed

    Turdi, Muyessar; Yang, Linsheng

    2016-01-01

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element-induced health risk (including for DW adults) was higher than acceptable (10(-6)) and lower than priority risk levels (10(-4)) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10(-4), higher than acceptable and priority risk levels (10(-4)). PMID:27669274

  3. Reclaiming Waste Heat

    NASA Technical Reports Server (NTRS)

    1976-01-01

    'Air-O-Space' heater, based on spacecraft heat, requires no fuel other than electricity to run fan. Installed in chimney flue, heat pipes transfer heat from waste hot gases (but not the gases themselves) to fresh air blown across the other end of the pipes. It can transport roughly 500 times the heat flux of the best solid conductors with a temperature drop of less than 3 degrees per foot. This instrument has also been used by Kin-Tek Laboratories Inc. to produce an instrument to calibrate gas analyzers for air-pollution monitoring.

  4. MBMS Monitoring of ClearFuels/Rentech PDU: Cooperative Research and Development Final Report, CRADA Number CRD-10-386

    SciTech Connect

    Carpenter, D.

    2014-06-01

    NREL will provide detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Rentech gasifier and its compatibility with catalytic conversion to fuels.

  5. Renewable Energy Institute International (REII): Cooperative Research and Development Final Report, CRADA Number CRD-10-387

    SciTech Connect

    Carpenter, D.

    2014-11-01

    NREL will provide the Renewable Energy Institute with detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Red Lion Bioenergy gasifier and its compatibility with catalytic conversion to fuels.

  6. OPTIMIZING SYNTHESIS GAS YIELD FROM THE CROSS DRAFT GASIFICATION OF WOODY BIOMASS

    EPA Science Inventory

    Biomass can be gasified to yield synthesis gas, tars, and ash. The process is governed by a number of parameters such as the temperature of the gasifying medium (in this case air), and the moisture content of the feedstock. Synthesis gas from gasifying wood pellets was collected ...

  7. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Phase 2, Final report, May 1, 1983-July 31, 1984

    SciTech Connect

    1987-09-15

    KRW Energy Systems Inc. is engaged in the development of a pressurized, fluidized-bed, gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-Btu fuel gas from a variety of fossilized, carbonaceous feedstocks for electrical power generation, substitute natural gas, chemical feedstocks, and industrial fuels. This report covers Phase II of the contract period (May 1, 1983 to July 31, 1984) and is a continuation of the work performed in 1983 and reported in the Phase I final report, FE-19122-30. Included is work performed in fiscal 1983 to 1984 on PDU testing, process analysis, cold flow scaleup facility, process and component engineering and design, and laboratory support studies.

  8. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  9. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996

    SciTech Connect

    Southards, W.T.; Blude, J.D.; Dickinson, J.A.

    1997-06-01

    This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

  10. Comparison of Pratt and Whitney Rocketdyne IGCC and commercial IGCC performance

    SciTech Connect

    Jeffrey Hoffmann; Jenny Tennant; Gary J. Stiegel

    2006-06-15

    This report compares the performance and cost of commercial Integrated Gasification Combined Cycle (IGCC) plants using General Electric Energy (GEE) and Shell gasifiers with conceptual IGCC plant designs using the Pratt and Whitney Rocketdyne (PWR) compact gasifier. the PWR gasifier is also compared with the GEEE gasifier in hydrogen production and carbon capture mode. With the exception of the PWR gasifier, the plants are designed with commercially available equipment to be operational in approximately 2010. All results should be considered preliminary and dictated in large part by the selected design basis. 10 refs., 54 exhibits

  11. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    PubMed

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal. PMID:24727699

  12. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.

  13. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    PubMed

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal.

  14. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion. PMID:22439940

  15. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  16. Power Systems Development Facility Gasification Test Run TC09

    SciTech Connect

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  17. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  18. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O'Donnell, J.J.

    1992-01-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO[sup 4]; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  19. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O`Donnell, J.J.

    1992-11-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO{sup 4}; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  20. Studies of in-situ calcium based sorbents in advanced pressurized coal conversion systems. Final report, June 1991--October 1994

    SciTech Connect

    Katta, S.; Shires, P.J.; Campbell, W.M.; Henningsen, G.

    1994-10-01

    The overall objective of this project was to obtain experimental data on the reactions of calcium-based sorbents in both air-blown coal gasification systems and second generation fluid bed coal combustion systems (partial gasification) as well as stabilization of the spent sorbent produced. The project consisted of six tasks: Tasks 1 and 2 dealt mostly with project-related activities and preparation of test equipment, Task 3 -- study on sulfidation of calcium-based sorbents, Task 4 -- kinetic studies on calcium-catalyzed carbon gasification reactions, and Task 5 -- oxidation of CaS present in LASHs and DASHs (mixtures of coal ash and limestone or dolomite respectively) to CaSO{sub 4} and absorption of SO{sub 2} on various solids, and Task 6 -- economic evaluation of the most promising CaS oxidation method developed under this program. Experimental studies were conducted primarily to address Task 5 issues, and are discussed in this report.

  1. Advanced Turbine Systems Program conceptual design and product development: Task 4.0

    SciTech Connect

    Not Available

    1994-06-01

    This Topical Report presents the results of Task 4 of the Westinghouse ATS Program. The purpose of Task 4 is to determine the technical development needs for conversion of the gas-fired ATS (GFATS). Two closely related, advanced, coal-based power plant technologies have been selected for consideration as the CFATS -- air-blown, coal gasification with hot gas cleaning incorporated into an Integrated Gasification Combined Cycle (IGCC), and the Second-Generation Pressurized Fluidized Bed Combustion (PFBC) combined cycle. These are described and their estimated performance and emissions in the CFATS are reported. A development program for the CFATS is described that focuses on major commercialization issues. These issues are in the areas of combustion, flow distribution, structural analysis, and materials selection.

  2. Development of BEACON technology. Volume I. Final report, April 1980-April 1983

    SciTech Connect

    1983-08-01

    The BEACON process is based on the catalytic deposition of a highly reactive carbon from low heating value gases, primarily by the carbon monoxide disproportionation reaction. This carbon is subsequently reacted with steam to produce predominantly methane or hydrogen, depending on the catalyst formulation and operating conditions. Commercial application envisions an air-blown coal gasification combined-cycle power plant with a coproduct of either methane or hydrogen. Significant cost reductions are anticipated relative to corresponding oxygen-blown coal gasification systems. Excellent fluid bed catalysts have been developed which have retained initial activity for over 400 hours of steady state operation. This stability was demonstrated in a tandem reactor system which provides for semi-continuous catalyst circulation between the carbon deposition and steam gasification fluid bed reactors.

  3. Minnesota Agri-Power Project. Quarterly report, January--March, 1998

    SciTech Connect

    Wilbur, D.

    1998-05-01

    The Minnesota Valley Alfalfa Producers propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota industrial park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project utilizes air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and provide steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. This progress report describes feedstock testing, feedstock supply system, performance guarantees, sales contracts, environmental permits, education, environment, economy, and project coordination and control.

  4. The diving reflex in healthy infants in the first year of life.

    PubMed

    Pedroso, Fleming S; Riesgo, Rudimar S; Gatiboni, Tanira; Rotta, Newra T

    2012-02-01

    A cohort study was conducted with a random sample of 33 healthy infants evaluated at birth and at 1, 2, 3, 4, 5, 6, 9, and 12 months to determine the frequency of respiratory rate changes in response to air blown over the face (diving reflex) in the first year of life, and to standardize the description of diving reflex occurrence. All 33 infants remained neurologically normal throughout follow-up. Diving reflex was observed in 95.3% of newborns and in 100% of infants between 2 and 6 months of age. At 6 months, it started to decrease but persisted in 90% of the infants up to 12 months. The diving reflex is highly prevalent in the first year of life and can be easily elicited by applying a flow of air over the infant's face, particularly during crying.

  5. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  6. Pressurized feeding on the GEGAS system

    NASA Technical Reports Server (NTRS)

    Furman, A. H.

    1977-01-01

    A continuous process to feed coal directly into a pressurized gasifier is described. Coal fines are heated and mixed with a recycled tar binder and extruded through a novel die system against gasifier pressure. Performance data on a 2 in. system is given and scale up to a larger 6 in. system is described.

  7. Carbonate fuel cell system with thermally integrated gasification

    DOEpatents

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  8. Refractory failure in IGCC fossil fuel power systems

    SciTech Connect

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2001-01-01

    Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

  9. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  10. Integrated control system and method

    SciTech Connect

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  11. Gasification of ash-containing solid fuels

    SciTech Connect

    Moss, G.

    1983-03-01

    Ash-contaminated solid or semi-solid fuel is passed into the bottom zone of a fluidized bed gasifier, preferably containing cao to fix labile sulfur moieties, and gasified at a temperature below the ash-softening point. The resulting char and ash of relatively low size and/or weight pass to a top zone of the bed wherein the char is gasified at a temperature above the ash-softening point whereby a substantial proportion of the ash sticks to and agglomerates with solids in the top zone until the particle size and/or weight of the resulting agglomerates causes them to sink to the bottom of the gasifier from where they can be recovered. The hot gases leaving the top of the gasifying bed have a reduced burden of entrained ash, and may be cooled to prevent any entrained ash adhering to downstream equipment through which the gases pass.

  12. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  13. Soot blower using fuel gas as blowing medium

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  14. Preference elicitation approach for measuring the willingness to pay for liver cancer treatment in Korea

    PubMed Central

    Cho, Donghun

    2015-01-01

    Background/Aims The Korean government has expanded the coverage of the national insurance scheme for four major diseases: cancers, cardiovascular diseases, cerebrovascular diseases, and rare diseases. This policy may have a detrimental effect on the budget of the national health insurance agency. Like taxes, national insurance premiums are levied on the basis of the income or wealth of the insured. Methods Using a preference elicitation method, we attempted to estimate how much people are willing to pay for insurance premiums that would expand their coverage for liver cancer treatment. Results We calculated the marginal willingness to pay (MWTP) through the marginal rate of substitution between the two attributes of the insurance premium and the total annual treatment cost by adopting conditional logit and mixed logit models. Conclusions The effects of various other terms that could interact with socioeconomic status were also estimated, such as gender, income level, educational attainment, age, employment status, and marital status. The estimated MWTP values of the monthly insurance premium for liver cancer treatment range from 4,130 KRW to 9,090 KRW. PMID:26523270

  15. Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions

    SciTech Connect

    Gil, J.; Caballero, M.A.; Martin, J.A.; Aznar, M.P.; Corella, J.

    1999-11-01

    The performance of a biomass gasifier, fluidized-bed type, is improved by in-bed use of calcined dolomite. Tar contents in the raw flue gas below 1 g/m{sub n}{sup 3} are obtained by using a bed with a percentage between 15 and 30 wt% of dolomite (the rest being silica sand). The work is carried out at small pilot-plant scale (10 kg of biomass/h) with equivalence ratios (ER) between 0.20 and 0.35 and temperatures of 800--840 C in the gasifier bed. To replace the eroded and elutriated dolomite (from the gasifier bed), an amount of dolomite (0.40--0.63 mm) is continuously fed, mixed with the biomass at 3 wt%. When the results obtained with in-bed dolomite are compared to the ones gained in a gasifier bed without dolomite, change of the following variables is reported: gas composition and its corresponding heating value, gas and char yields, apparent thermal efficiency, and tar contents. Once the usefulness of the in-bed use of dolomite is established, three main operation variables (ER and temperature of the gasifier bed and freeboard) are studied in the improved gasifier. Carryover of solids from the gasifier also increases when calcined dolomite is used because of its softness. Elutriation rate constants are calculated for several operational parameters.

  16. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  17. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  18. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  19. Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.

  20. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    SciTech Connect

    M. G. McKellar; G. L. Hawkes; J. E. O'Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  1. Evaluation of use and cost of medical care of common lumbar disorders in Korea: cross-sectional study of Korean Health Insurance Review and Assessment Service National Patient Sample data

    PubMed Central

    Ahn, Yong-Jun; Shin, Joon-Shik; Lee, Jinho; Lee, Yoon Jae; Kim, Me-Riong; Park, Ki Byung; Lee, Jun-Hwan; Shin, Kyung-Min

    2016-01-01

    Objectives To assess medical care and costs of the 3 highest prevalence lumbar disorders—non-specific low back pain (nLBP), intervertebral disc disorder (IDD) and spinal stenosis (SS)—from national billing data to provide basic information for standards of appropriate management. Design Retrospective analysis of National Health Insurance National Patient Sample data provided by the Korean Health Insurance Review and Assessment Service (HIRA). Setting 2011 claims data from all medical institutions which filed billing statements to HIRA. Participants A total of 135 561 patients with lumbar disorder who received medical services during 2011. Outcome measures Patient characteristics, medical procedures, medication, cost, injection and surgery. Results In the nLBP and IDD groups, the 50–59 age range had the highest prevalence, whereas prevalence increased with age in SS. All 3 groups showed a higher percentage in women. The average treatment cost was 196 552 KRW in the nLBP and 362 050 KRW in the IDD group, and highest in the SS group at 439 025 KRW. While in the nLBP group women spent more on medical expenses, in the other 2 groups men showed higher expenditure. Expenditure grew with age in the nLBP and SS groups, whereas that of the IDD group peaked in their 40s. Analgesics were used in 73.43% of patients with nLBP, 82.64% of patients with IDD and 86.46% of patients with SS, and opioids in 4.12% of patients with IDD and 5.36% of patients with SS. Surgery rates were highest in the SS group at 4.85%, with 0.9% for nLBP and 4.59% for IDD. The most frequent injection code was lumbar/caudal epidural nerve block. Expenditure and surgery rates were higher in the injection than in the non-injection subgroup in all 3 groups. Conclusions Patterns of medical care of most frequent lumbar disorders from HIRA data showed significant difference between groups and provide a basic standard for future usual care guidelines linked with health policy and budget

  2. Characteristics of Wet and Dried Distillers Grains on In vitro Ruminal Fermentation and Effects of Dietary Wet Distillers Grains on Performance of Hanwoo Steers.

    PubMed

    Kim, Ill Young; Ahn, Gyu Chul; Kwak, Hyung Jun; Lee, Yoo Kyung; Oh, Young Kyoon; Lee, Sang Suk; Kim, Jeong Hoon; Park, Keun Kyu

    2015-05-01

    Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months (495.1±91 kg) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up

  3. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation.

    PubMed

    Seo, Jakyeom; Jung, Jae Keun; Seo, Seongwon

    2015-01-01

    Much research on animal feed has focused on finding alternative feed ingredients that can replace conventional ones (e.g., grains and beans) to reduce feed costs. The objective of this study was to evaluate the economic, as well as nutritional value of spent coffee grounds (SCG) and Japanese mugwort (Artemisia princeps) residues (APR) as alternative feed ingredients for ruminants. We also investigated whether pre-fermentation using Lactobacillus spp. was a feasible way to increase the feed value of these by-products. Chemical analyses and an in vitro study were conducted for SCG, APR, and their pre-fermented forms. All the experimental diets for in vitro ruminal fermentation were formulated to contain a similar composition of crude protein, neutral detergent fiber and total digestible nutrients at 1x maintenance feed intake based on the dairy National Research Council (NRC). The control diet was composed of ryegrass, corn, soybean meal, whereas the treatments consisted of SCG, SCG fermented with Lactobacillus spp. (FSCG), APR, and its fermented form (FAPR). The treatment diets replaced 100 g/kg dry matter (DM) of the feed ingredients in the control. Costs were lower for the all treatments, except FAPR, than that of the control. After 24-h incubation, the NDF digestibility of the diets containing SCG and its fermented form were significantly lower than those of the other diets (P < 0.01); pre-fermentation tended to increase NDF digestibility (P = 0.07), especially for APR. Supplementation of SCG significantly decreased total gas production (ml/g DM) after 24-h fermentation in comparison with the control (P < 0.05); however, there were no significant differences between the control and the SCG or the APR diets in total gas production, as expressed per Korean Won (KRW). Diets supplemented with SCG or FSCG tended to have a higher total volatile fatty acid (VFA) concentration, expressed as per KRW, compared with the control (P = 0.06). Conversely, the fermentation

  4. Estimating the lifetime economic burden of stroke according to the age of onset in South Korea: a cost of illness study

    PubMed Central

    2011-01-01

    Background The recently-observed trend towards younger stroke patients in Korea raises economic concerns, including erosion of the workforce. We compared per-person lifetime costs of stroke according to the age of stroke onset from the Korean societal perspective. Methods A state-transition Markov model consisted of three health states ('post primary stroke event', 'alive post stroke', and 'dead') was developed to simulate the natural history of stroke. The transition probabilities for fatal and non-fatal recurrent stroke by age and gender and for non-stroke causes of death were derived from the national epidemiologic data of the Korean Health Insurance Review and Assessment Services and data from the Danish Monitoring Trends in Cardiovascular Disease study. We used an incidence-based approach to estimate the long-term costs of stroke. The model captured stroke-related costs including costs within the health sector, patients' out-of-pocket costs outside the health sector, and costs resulting from loss of productivity due to morbidity and premature death using a human capital approach. Average insurance-covered costs occurring within the health sector were estimated from the National Health Insurance claims database. Other costs were estimated based on the national epidemiologic data and literature. All costs are presented in 2008 Korean currency values (Korean won = KRW). Results The lifetime costs of stroke were estimated to be: 200.7, 81.9, and 16.4 million Korean won (1,200 KRW is approximately equal to one US dollar) for men who suffered a first stroke at age 45, 55 and 65 years, respectively, and 75.7, 39.2, and 19.3 million KRW for women at the same age. While stroke occurring among Koreans aged 45 to 64 years accounted for only 30% of the total disease incidence, this age group incurred 75% of the total national lifetime costs of stroke. Conclusions A higher lifetime burden and increasing incidence of stroke among younger Koreans highlight the need for more

  5. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation

    PubMed Central

    Seo, Jakyeom; Jung, Jae Keun

    2015-01-01

    Much research on animal feed has focused on finding alternative feed ingredients that can replace conventional ones (e.g., grains and beans) to reduce feed costs. The objective of this study was to evaluate the economic, as well as nutritional value of spent coffee grounds (SCG) and Japanese mugwort (Artemisia princeps) residues (APR) as alternative feed ingredients for ruminants. We also investigated whether pre-fermentation using Lactobacillus spp. was a feasible way to increase the feed value of these by-products. Chemical analyses and an in vitro study were conducted for SCG, APR, and their pre-fermented forms. All the experimental diets for in vitro ruminal fermentation were formulated to contain a similar composition of crude protein, neutral detergent fiber and total digestible nutrients at 1x maintenance feed intake based on the dairy National Research Council (NRC). The control diet was composed of ryegrass, corn, soybean meal, whereas the treatments consisted of SCG, SCG fermented with Lactobacillus spp. (FSCG), APR, and its fermented form (FAPR). The treatment diets replaced 100 g/kg dry matter (DM) of the feed ingredients in the control. Costs were lower for the all treatments, except FAPR, than that of the control. After 24-h incubation, the NDF digestibility of the diets containing SCG and its fermented form were significantly lower than those of the other diets (P < 0.01); pre-fermentation tended to increase NDF digestibility (P = 0.07), especially for APR. Supplementation of SCG significantly decreased total gas production (ml/g DM) after 24-h fermentation in comparison with the control (P < 0.05); however, there were no significant differences between the control and the SCG or the APR diets in total gas production, as expressed per Korean Won (KRW). Diets supplemented with SCG or FSCG tended to have a higher total volatile fatty acid (VFA) concentration, expressed as per KRW, compared with the control (P = 0.06). Conversely, the fermentation

  6. Characteristics of Wet and Dried Distillers Grains on In vitro Ruminal Fermentation and Effects of Dietary Wet Distillers Grains on Performance of Hanwoo Steers

    PubMed Central

    Kim, Ill Young; Ahn, Gyu Chul; Kwak, Hyung Jun; Lee, Yoo Kyung; Oh, Young Kyoon; Lee, Sang Suk; Kim, Jeong Hoon; Park, Keun Kyu

    2015-01-01

    Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months (495.1±91 kg) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up

  7. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    SciTech Connect

    Andrew Lucero

    2009-03-25

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  8. On-Farm Small-Scale Waste Energy Demonstration

    SciTech Connect

    2006-08-01

    This project is composed of three tasks: development of feedstock pocessing, handling, storage cost estimates, gasifier system development, and on-farm testing of the resulting gasification and power generation system.

  9. Coal pressurization and feeding: Use of a lock hopper system

    NASA Technical Reports Server (NTRS)

    Lewis, R.; Santore, R. R.; Dubis, D.

    1977-01-01

    Operation of a synthane gasifier pilot plant is discussed. The specific problems experienced with the operation of the Petrocarb system at the pilot plant are described along with modifications made to improve its performance.

  10. Solids feeder apparatus

    DOEpatents

    Bell, Jr., Harold S.

    1979-01-01

    This invention sets forth a double-acting piston, which carries a floating piston, and which is reciprocated in a housing, for feeding coal to a high pressure gasifier system. The housing has a plurality of solids (for instance: coal) in-feeding ports and a single discharge port, the latter port being in communication with a high pressure gasifier system. The double-acting piston sequentially and individually communicates each of the in-feeding ports with the discharge port. The floating piston both seals off the discharge port while each in-feeding port is receiving coal or the like, to prevent undue escape of gas from the gasifier system, and translates in the housing, following a discharge of coal or the like into the discharge port, to return gas which has been admitted into the housing back into the gasifier system.

  11. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  12. Economic feasibility study of a wood gasification-based methanol plant: A subcontract report

    SciTech Connect

    Not Available

    1987-04-01

    This report presents an economic feasibility study for a wood-gasification-based methanol plant. The objectives were to evaluate the current commercial potential of a small-scale, wood-fed methanol plant using the SERI oxygen-blown, pressurized, down-draft gasifier technology and to identify areas requiring further R and D. The gasifier gas composition and material balance were based on a computer model of the SERI gasifier since acceptable test data were not available. The estimated capital cost was based on the Nth plant constructed. Given the small size and commercial nature of most of the equipment, N was assumed to be between 5 and 10. Only large discrepancies in gasifier output would result in significant charges in capital costs. 47 figs., 55 tabs.

  13. Power Systems Development Facility Gasification Test Run TC10

    SciTech Connect

    Southern Company Services

    2002-12-30

    This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and

  14. Updraft Fixed Bed Gasification Aspen Plus Model

    SciTech Connect

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  15. NASA-Lewis closed-cycle magnetohydrodynamics plant analysis

    NASA Technical Reports Server (NTRS)

    Penko, P. F.

    1979-01-01

    A brief review of preliminary analyses of coal fired closed cycle MHD power plants is presented. The performance of three power plants with differing combustion systems were compared. The combustion systems considered were (1) a direct coal-fired combustor, (2) a coal gasifier with in-bed desulfurization and (3) a coal gasifier requiring external fuel gas cleanup. Power plant efficiencies (auxiliary power excluded) were 44.5, 43, and 41 percent for the three plants, respectively.

  16. Feasibility study: Liquid hydrogen plant, 30 tons per day

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design considerations of the plant are discussed in detail along with management planning, objective schedules, and cost estimates. The processing scheme is aimed at ultimate use of coal as the basic raw material. For back-up, and to provide assurance of a dependable and steady supply of hydrogen, a parallel and redundant facility for gasifying heavy residual oil will be installed. Both the coal and residual oil gasifiers will use the partial oxidation process.

  17. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  18. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  19. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  20. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  1. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  2. Biomass gasification: Produced gas upgrading by in-bed use of dolomite

    SciTech Connect

    Olivares, A.; Aznar, M.P.; Caballero, M.A.; Gil, J.; Frances, E.; Corella, J.

    1997-12-01

    When some calcined dolomite (OCa{center_dot}OMg) is used in the bed of a biomass gasifier of fluidized bed type the raw gas produced is cleaner than when only silica sand is used in it as fluidizing medium. In-bed dolomite changes the product distribution at the gasifier exit because of in-situ catalytic reactions promoted by the calcined dolomite. Gasifying with steam-O{sub 2} mixtures causes the tar content in the exit gas to decrease from 12 to 2--3 g tar/m{sup 3}{sub n}, the H{sub 2} content to increase from 25--28 to 43 vol%, and the CO content to decrease from 45 to 27 vol% when the gas and char yields, heating value of the gas, and other main variables also undergo important changes because of the in-bed dolomite. The experimental work here reported is carried out at small pilot plant scale in a 15 cm i.d. atmospheric and bubbling fluidized bed gasifier fed by 10 kg biomass/h. Dolomite is continuously fed to the gasifier, mixed with the biomass in percentages of 2--3 wt% of the total mass flow fed. A 10 wt% of calcined dolomite in the gasifier bed is enough to significantly improve the product distribution and gas quality.

  3. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect

    Seong W. Lee

    2004-04-01

    The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

  4. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the third quarter, April 1, 1991--June 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    This report is concerned with the progress made during the third period of the two year project. A significant portion of this reporting period has been consumed in measurement of induction time of oil-free and oil-coated bubbles, modification of collector gasifier, hydrocarbon oil encapsulated flotation tests and float and sink analyses of various rank of coal samples, building a 1-inch column cell, as well as building the ultrasound collector emulsification apparatus. Induction time has been measured using an Electronic Induction Timer. The results indicate that alteration of chemical properties of air bubble by applying hydrocarbon oil or reagent can drastically improve the rate of flotation process. Various techniques have been employed in hydrocarbon oil encapsulated flotation processes to further enhance the selectivity of the process, which include: (1) gasified collector flotation with addition of gasified collector into the air stream in the initial stage; (2) two-stage (rougher-cleaner) gasified collector flotation; and (3) starvation gasified collector flotation by addition of gasified collector at various flotation times. Among these, three techniques used in hydrocarbon oil encapsulated flotation process, the starvation flotation technique provides the best selectivity.

  5. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  6. Filter system cost comparison for IGCC and PFBC power systems

    SciTech Connect

    Dennis, R.A.; McDaniel, H.M.; Buchanan, T.

    1995-12-01

    A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

  7. Informed Consent as a Litigation Strategy in the Field of Aesthetic Surgery: An Analysis Based on Court Precedents

    PubMed Central

    2016-01-01

    Background In an increasing number of lawsuits doctors lose, despite providing preoperative patient education, because of failure to prove informed consent. We analyzed judicial precedents associated with insufficient informed consent to identify judicial factors and trends related to aesthetic surgery medical litigation. Methods We collected data from civil trials between 1995 and 2015 that were related to aesthetic surgery and resulted in findings of insufficient informed consent. Based on these data, we analyzed the lawsuits, including the distribution of surgeries, dissatisfactions, litigation expenses, and relationship to informed consent. Results Cases were found involving the following types of surgery: facial rejuvenation (38 cases), facial contouring surgery (27 cases), mammoplasty (16 cases), blepharoplasty (29 cases), rhinoplasty (21 cases), body-contouring surgery (15 cases), and breast reconstruction (2 cases). Common reasons for postoperative dissatisfaction were deformities (22%), scars (17%), asymmetry (14%), and infections (6%). Most of the malpractice lawsuits occurred in Seoul (population 10 million people; 54% of total plastic surgeons) and in primary-level local clinics (113 cases, 82.5%). In cases in which only invalid informed consent was recognized, the average amount of consolation money was KRW 9,107,143 (USD 8438). In cases in which both violation of non-malfeasance and invalid informed consent were recognized, the average amount of consolation money was KRW 12,741,857 (USD 11,806), corresponding to 38.6% of the amount of the judgment. Conclusions Surgeons should pay special attention to obtaining informed consent, because it is a double-edged sword; it has clinical purposes for doctors and patients but may also be a litigation strategy for lawyers. PMID:27689046

  8. Informed Consent as a Litigation Strategy in the Field of Aesthetic Surgery: An Analysis Based on Court Precedents

    PubMed Central

    2016-01-01

    Background In an increasing number of lawsuits doctors lose, despite providing preoperative patient education, because of failure to prove informed consent. We analyzed judicial precedents associated with insufficient informed consent to identify judicial factors and trends related to aesthetic surgery medical litigation. Methods We collected data from civil trials between 1995 and 2015 that were related to aesthetic surgery and resulted in findings of insufficient informed consent. Based on these data, we analyzed the lawsuits, including the distribution of surgeries, dissatisfactions, litigation expenses, and relationship to informed consent. Results Cases were found involving the following types of surgery: facial rejuvenation (38 cases), facial contouring surgery (27 cases), mammoplasty (16 cases), blepharoplasty (29 cases), rhinoplasty (21 cases), body-contouring surgery (15 cases), and breast reconstruction (2 cases). Common reasons for postoperative dissatisfaction were deformities (22%), scars (17%), asymmetry (14%), and infections (6%). Most of the malpractice lawsuits occurred in Seoul (population 10 million people; 54% of total plastic surgeons) and in primary-level local clinics (113 cases, 82.5%). In cases in which only invalid informed consent was recognized, the average amount of consolation money was KRW 9,107,143 (USD 8438). In cases in which both violation of non-malfeasance and invalid informed consent were recognized, the average amount of consolation money was KRW 12,741,857 (USD 11,806), corresponding to 38.6% of the amount of the judgment. Conclusions Surgeons should pay special attention to obtaining informed consent, because it is a double-edged sword; it has clinical purposes for doctors and patients but may also be a litigation strategy for lawyers.

  9. Kemper County IGCC (tm) Project Preliminary Public Design Report

    SciTech Connect

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  10. Evaporation of J13 and UZ pore waters at Yucca Mountain

    SciTech Connect

    Rosenberg, N D; Gdowski, G E; Knauss, K G

    2000-10-01

    This work is motivated by a need to characterize the chemistry of aqueous films that might form at elevated temperatures on engineered components at the potential high-level, nuclear-waste repository at Yucca Mountain, Nevada. Such aqueous films might form through evaporation of water that seeps into the drifts, or by water vapor absorption by hydroscopic salts directly deposited on these components (possibly from previous evaporation events or possibly from air-blown particles drawn into the drifts through a drift ventilation system). There is no consensus at this time on the chemical composition of water that might come in contact with engineered components at Yucca Mountain. Two possibilities have received the most attention: well J13 water and pore waters from the unsaturated zone (UZ) above the repository horizon. These waters represent the two major types of natural waters at Yucca Mountain. Well J13 water is a dilute Na-HCO{sub 3}-CO{sub 3} water, representative of regional perched water and groundwater. The UZ pore waters are Ca-Cl-SO{sub 4}-rich waters with a higher dissolved ion content. These waters are less well-characterized. We have studied the evaporative evolution of these two major types of waters through a series of open system laboratory experiments, with and without crushed repository-horizon tuff present, conducted at sub-boiling temperatures (75 C-85 C).

  11. Sequential reductive and oxidative conditions used to biodegradation of organochlorine pesticides by native bacteria.

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Correa-Torres, S. N.; Plata, A.

    2016-07-01

    Despite restrictions and bans on the use of many organochlorine pesticides in the 1970s and 1980s, they continue to persist in the environment today. This is the case of Agustin Codazzi, Cesar where the organochlorine pesticides were buried without control in the soil in 1999, after being banned their use. Nowadays is necessary to find the best method, which allows remediation of this soils. Reductive dechlorination is the first and limiting step in the metabolism of many organochlorine pesticides by anaerobic bacteria. In this study the reductive conditions were enhanced by addition of biogas as an auxiliary electron donors.The soil sample was taken from the zone at Agustin Codazzi, Cesar, and their characteristics correspond to a loam soil with low nutrient and slight compaction. The experimental tests were performed by varying the exposure time of a reducer to oxidative environment. Reductive conditions were enhanced by methane from biogas and oxidative environment was generated by air blown to stimulate a metabolic process of the soil native bacteria. Removals between 70 and 78.9% of compounds such as 4,4'-DDT, 4, 4'-DDD, 4,4'-DDE, Endrin and Trans- Chlordane, detected by gas chromatography analysis, were achieved under reductive/oxidative conditions during 120 days. Furthermore, bacterial strains capable of degrading organochlorine pesticides were selected from the native bacteria, and identified by the purified and identified based on its morphological characteristics and 16S rDNA sequencing.

  12. Construction of a Heated Incubation Chamber around a Microscope Stage for Time-Lapse Imaging.

    PubMed

    Kulesa, Paul M; Kasemeier-Kulesa, Jennifer C

    2007-01-01

    INTRODUCTIONIntravital imaging of embryogenesis has the potential to provide valuable information on cell proliferation, cell shape changes, and cell migratory behaviors. However, most embryo model systems require a temperature-controlled environment. Several expensive commercially available temperature control devices have emerged, including microscope stages surrounded by custom-fit Plexiglas boxes, heated plates for culture dishes, and objective warmers for water-immersion lenses, that strictly control temperature and, in some cases, help control local gas mixtures. This protocol describes an easy-to-assemble, cost-effective, custom-made cardboard box and incubator, adaptable to each user's specifications and microscope set-up. The cardboard box fits around the microscope, primarily the stage area, to assist in maintaining a prescribed temperature near the microscope stage. Warmed air, blown into the box enclosure from an incubator, circulates around the stage. The heated incubation box maintains a set temperature with minimal fluctuations and has been tested and utilized for studies of chick, mouse, and zebrafish embryogenesis. PMID:21357130

  13. Minnesota agripower project. Quarterly report, April--June 1997

    SciTech Connect

    Baloun, J.

    1997-07-01

    The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and provide steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.

  14. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  15. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  16. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; Johnson, S.A.; Dixit, V.B.

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  17. Pollutant emissions from improved coal- and wood-fuelled cookstoves in rural households.

    PubMed

    Shen, Guofeng; Chen, Yuanchen; Xue, Chunyu; Lin, Nan; Huang, Ye; Shen, Huizhong; Wang, Yilong; Li, Tongchao; Zhang, Yanyan; Su, Shu; Huangfu, Yibo; Zhang, Weihao; Chen, Xiaofu; Liu, Guangqing; Liu, Wenxin; Wang, Xilong; Wong, Ming-Hung; Tao, Shu

    2015-06-01

    Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.

  18. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    PubMed

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process.

  19. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    PubMed

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. PMID:26849201

  20. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    SciTech Connect

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.