Sample records for air-breathing hypersonic vehicle

  1. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  2. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  3. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  4. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  5. Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Gao, Changsheng; Jing, Wuxing

    2018-03-01

    Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.

  6. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    PubMed

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  7. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Dalle, Derek J.

    The development and application of a first-principles-derived reduced-order model called MASIV (Michigan/AFRL Scramjet In Vehicle) for an air-breathing hypersonic vehicle is discussed. Several significant and previously unreported aspects of hypersonic flight are investigated. A fortunate coupling between increasing Mach number and decreasing angle of attack is shown to extend the range of operating conditions for a class of supersonic inlets. Detailed maps of isolator unstart and ram-to-scram transition are shown on the flight corridor map for the first time. In scram mode the airflow remains supersonic throughout the engine, while in ram mode there is a region of subsonic flow. Accurately predicting the transition between these two modes requires models for complex shock interactions, finite-rate chemistry, fuel-air mixing, pre-combustion shock trains, and thermal choking, which are incorporated into a unified framework here. Isolator unstart occurs when the pre-combustion shock train is longer than the isolator, which blocks airflow from entering the engine. Finally, cooptimization of the vehicle design and trajectory is discussed. An optimal control technique is introduced that greatly reduces the number of computations required to optimize the simulated trajectory.

  8. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  9. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  10. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  11. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  12. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  13. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  14. Improved prescribed performance control for air-breathing hypersonic vehicles with unknown deadzone input nonlinearity.

    PubMed

    Wang, Yingyang; Hu, Jianbo

    2018-05-19

    An improved prescribed performance controller is proposed for the longitudinal model of an air-breathing hypersonic vehicle (AHV) subject to uncertain dynamics and input nonlinearity. Different from the traditional non-affine model requiring non-affine functions to be differentiable, this paper utilizes a semi-decomposed non-affine model with non-affine functions being locally semi-bounded and possibly in-differentiable. A new error transformation combined with novel prescribed performance functions is proposed to bypass complex deductions caused by conventional error constraint approaches and circumvent high frequency chattering in control inputs. On the basis of backstepping technique, the improved prescribed performance controller with low structural and computational complexity is designed. The methodology guarantees the altitude and velocity tracking error within transient and steady state performance envelopes and presents excellent robustness against uncertain dynamics and deadzone input nonlinearity. Simulation results demonstrate the efficacy of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  16. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. System controls challenges of hypersonic combined-cycle engine powered vehicles

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Ianculescu, George D.

    1992-01-01

    Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented.

  18. Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Si, Yulin; Wu, Ligang; Hu, Xiaoxiang; Gao, Huijun

    2011-05-01

    This article investigates the problem of guaranteed cost control for a flexible air-breathing hypersonic vehicle (FAHV). The FAHV includes intricate coupling between the engine and flight dynamics as well as complex interplay between flexible and rigid modes, which results in an intractable system for the control design. A longitudinal model is adopted for control design due to the complexity of the vehicle. First, for a highly nonlinear and coupled FAHV, a linearised model is established around the trim condition, which includes the state of altitude, velocity, angle of attack, pitch angle and pitch rate, etc. Secondly, by using the Lyapunov approach, performance analysis is carried out for the resulting closed-loop FAHV system, whose criterion with respect to guaranteed performance cost and poles assignment is expressed in the framework of linear matrix inequalities (LMIs). The established criterion exhibits a kind of decoupling between the Lyapunov positive-definite matrices to be determined and the FAHV system matrices, which is enabled by the introduction of additional slack matrix variables. Thirdly, a convex optimisation problem with LMI constraints is formulated for designing an admissible controller, which guarantees a prescribed performance cost with the simultaneous consideration of poles assignment for the resulting closed-loop system. Finally, some simulation results are provided to show that the guaranteed cost controller could assign the poles into the desired regional and achieve excellent reference altitude and velocity tracking performance.

  19. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  20. Hypersonic Materials and Structures

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2016-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.

  1. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    PubMed

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-04-01

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Robust estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; Huang, Jiaqi; Wei, Daozhi

    2016-11-01

    This paper investigates the design of a novel estimation-free prescribed performance non-affine control strategy for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV) via back-stepping. The proposed control scheme is capable of guaranteeing tracking errors of velocity, altitude, flight-path angle, pitch angle and pitch rate with prescribed performance. By prescribed performance, we mean that the tracking error is limited to a predefined arbitrarily small residual set, with convergence rate no less than a certain constant, exhibiting maximum overshoot less than a given value. Unlike traditional back-stepping designs, there is no need of an affine model in this paper. Moreover, both the tedious analytic and numerical computations of time derivatives of virtual control laws are completely avoided. In contrast to estimation-based strategies, the presented estimation-free controller possesses much lower computational costs, while successfully eliminating the potential problem of parameter drifting. Owing to its independence on an accurate AHV model, the studied methodology exhibits excellent robustness against system uncertainties. Finally, simulation results from a fully nonlinear model clarify and verify the design.

  3. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  4. X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  5. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  6. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  7. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    DTIC Science & Technology

    2016-12-07

    dynamic inversion controller design for a non -minimum phase hypersonic vehicle is derived by Kuipers et al. [2008]. Moreover, integrated guidance and...stabilization time for inner loop variables is lesser than the intermediate loop variables because of the three-loop-control design methodology . The control...adaptive design . Control Engineering Practice, 2016. Michael A Bolender and David B Doman. A non -linear model for the longitudinal dynamics of a

  8. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  9. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Astrophysics Data System (ADS)

    Mehta, U.

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  10. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    NASA Astrophysics Data System (ADS)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  11. Center of Excellence for Hypersonics Research

    DTIC Science & Technology

    2012-01-25

    detailed simulations of actual combustor configurations, and ultimately for the optimization of hypersonic air - breathing propulsion system flow paths... vehicle development programs. The Center engaged leading experts in experimental and computational analysis of hypersonic flows to provide research...advanced hypersonic vehicles and space access systems will require significant advances in the design methods and ground testing techniques to ensure

  12. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun

    2014-08-01

    By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.

  13. A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Zhiling; Meng, Bin; Sun, Hongfei

    2017-09-01

    The nonlinear disturbance observer (NDO) proposed by W. H. Chen et al. needs an assumption that the disturbance varies slowly relative to the observer dynamics (i.e. ?), so as to ensure the convergence of the disturbance observer. When ?, however, there is no guarantee of the convergence in theory. To solve the problem, this paper presents a new NDO, namely high-order nonlinear disturbance observer (HONDO), for a nonlinear system with an unknown fast time-varying disturbance (i.e. ?). The HONDO not only inherits all the advantages of the usual NDO, but also guarantees the convergence of the estimated error for a nonlinear system with a fast time-varying disturbance. Therefore, the HONDO proposed in this paper broadens the application scope of the conventional NDOs, thus is a supplement to the theory of NDO. The numerical simulation for the cruise control of an air-breathing hypersonic vehicle further verifies the effectiveness of the HONDO-based control.

  14. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A close-up view of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, portion of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is

  16. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43

  17. Artist Concept of X-43A/Hyper-X Hypersonic Experimental Research Vehicle in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  18. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this side view of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry

  19. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  20. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  1. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  2. Hypersonic technology-approach to an expanded program

    NASA Technical Reports Server (NTRS)

    Hearth, D. P.; Preyss, A. E.

    1976-01-01

    An overview of research, testing, and technology in the hypersonic range. Military and civilian hypersonic flight systems envisaged, ground testing facilities under development, methods for cooling the heated airframe, and use of hydrogen as fuel and coolant are discussed extensively. Air-breathing hypersonic cruise systems are emphasized, the airframe-integrated scramjet configuration is discussed and illustrated, materials proposed for hypersonic vehicles are reviewed, and test results on hypersonic flight (X-15 research aircraft) are indicated. Major advances and major problems in hypersonic flight and hypersonic technology are outlined, and the need for a hypersonic flying-laboratory research craft is stressed.

  3. Effect of Sidewall Configurations on Hypersonic Intake Performance

    NASA Astrophysics Data System (ADS)

    Kim, Seihwan; Park, Ji Hyun; Jeung, In-Seuck; Lee, Hyoung Jin

    For reusable space launchers and hypersonic flight vehicles, use of an air-breathing propulsion system with supersonic combustion is the most promising option in terms of cost effectiveness. At this point, only the scramjet propulsion system provides a real alternative to expensive rocket driven systems, which currently are the only way to reach a hypersonics speeds.

  4. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  5. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  6. Progress in modeling hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  7. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  8. Hypersonic Global Strike Feasibility and Options

    DTIC Science & Technology

    2012-02-15

    materials for one-time use vehicles,123 and breakthroughs in in Low Energy Nuclear Reaction ( LENR ) research could revolutionize high-speed materials for air...breathing vehicles in the next 15 to 20 years.124 More research on possible LENR advances will accelerate hypersonic technology. Defense Industry...Revolution is not materials, is Energetics. LENR is being worked, some 1,000 to 1,000,000 times Chemical Energy Density, Fuel fraction/ weight goes away

  9. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  10. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  11. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  12. X-43 Hypersonic Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  13. TBCC Discipline Overview. Hypersonics Project

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.

    2011-01-01

    The "National Aeronautics Research and Development Policy" document, issued by the National Science and Technology Council in December 2006, stated that one (among several) of the guiding objectives of the federal aeronautics research and development endeavors shall be stable and long-term foundational research efforts. Nearly concurrently, the National Academies issued a more technically focused aeronautics blueprint, entitled: the "Decadal Survey of Civil Aeronautics - Foundations for the Future." Taken together these documents outline the principles of an aeronautics maturation plan. Thus, in response to these overarching inputs (and others), the National Aeronautics and Space Administration (NASA) organized the Fundamental Aeronautics Program (FAP), a program within the NASA Aeronautics Research Mission Directorate (ARMD). The FAP initiated foundational research and technology development tasks to enable the capability of future vehicles that operate across a broad range of Mach numbers, inclusive of the subsonic, supersonic, and hypersonic flight regimes. The FAP Hypersonics Project concentrates on two hypersonic missions: (1) Air-breathing Access to Space (AAS) and (2) the (Planetary Atmospheric) Entry, Decent, and Landing (EDL). The AAS mission focuses on Two-Stage-To-Orbit (TSTO) systems using air-breathing combined-cycle-engine propulsion; whereas, the EDL mission focuses on the challenges associated with delivering large payloads to (and from) Mars. So, the FAP Hypersonic Project investments are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime, which ultimately will be required for practical systems with highly integrated aerodynamic/vehicle and propulsion/engine technologies. Within the FAP Hypersonics, the technology management is further divided into disciplines including one targeting Turbine-Based Combine-Cycle (TBCC) propulsion. Additionally, to obtain expertise and support from outside

  14. Uncertainty Propagation in Hypersonic Vehicle Aerothermoelastic Analysis

    NASA Astrophysics Data System (ADS)

    Lamorte, Nicolas Etienne

    Hypersonic vehicles face a challenging flight environment. The aerothermoelastic analysis of its components requires numerous simplifying approximations. Identifying and quantifying the effect of uncertainties pushes the limits of the existing deterministic models, and is pursued in this work. An uncertainty quantification framework is used to propagate the effects of identified uncertainties on the stability margins and performance of the different systems considered. First, the aeroelastic stability of a typical section representative of a control surface on a hypersonic vehicle is examined. Variability in the uncoupled natural frequencies of the system is modeled to mimic the effect of aerodynamic heating. Next, the stability of an aerodynamically heated panel representing a component of the skin of a generic hypersonic vehicle is considered. Uncertainty in the location of transition from laminar to turbulent flow and the heat flux prediction is quantified using CFD. In both cases significant reductions of the stability margins are observed. A loosely coupled airframe--integrated scramjet engine is considered next. The elongated body and cowl of the engine flow path are subject to harsh aerothermodynamic loading which causes it to deform. Uncertainty associated with deformation prediction is propagated to the engine performance analysis. The cowl deformation is the main contributor to the sensitivity of the propulsion system performance. Finally, a framework for aerothermoelastic stability boundary calculation for hypersonic vehicles using CFD is developed. The usage of CFD enables one to consider different turbulence conditions, laminar or turbulent, and different models of the air mixture, in particular real gas model which accounts for dissociation of molecules at high temperature. The system is found to be sensitive to turbulence modeling as well as the location of the transition from laminar to turbulent flow. Real gas effects play a minor role in the

  15. Hyper-X: Flight Validation of Hypersonic Airbreathing Technology

    NASA Technical Reports Server (NTRS)

    Rausch, Vincent L.; McClinton, Charles R.; Crawford, J. Larry

    1997-01-01

    This paper provides an overview of NASA's focused hypersonic technology program, i.e. the Hyper-X program. This program is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. This paper presents some history leading to the flight test program, research objectives, approach, schedule and status. Substantial experimental data base and concept validation have been completed. The program is concentrating on Mach 7 vehicle development, verification and validation in preparation for wind tunnel testing in 1998 and flight testing in 1999. It is also concentrating on finalization of the Mach 5 and 10 vehicle designs. Detailed evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a data base for validation of design methods once flight test data are available.

  16. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a

  17. Hypersonic drone vehicle design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  18. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  19. Vehicle integration effects on hypersonic waveriders. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles Edward, Jr.

    1994-01-01

    The integration of a class of hypersonic high-lift configurations known as waveriders into hypersonic cruise vehicles was evaluated. Waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional hypersonic shapes. A wind-tunnel model was developed which integrates realistic vehicle components with two waverider shapes, referred to as the 'straight-wing' and 'cranked-wing' shapes. Both shapes were conical-flow-derived waveriders at a design Mach number of 4.0. The cranked-wing shape was designed to provide advantages in subsonic performance and directional stability over conventional waveriders. Experimental data and limited computational fluid dynamics (CFD) predictions were obtained over a Mach number range of 2.3 to 4.63 at a Reynolds number of 2.0x10(exp 6) per foot. The CFD predictions and flow visualization data confirmed the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider flow-field properties. Both CFD predictions and experimental data showed that no significant performance degradations occur at off-design Mach numbers for the waverider shapes and the integrated configurations. The experimental data showed that the effects of adding a realistic canopy were minimal. The effects of adding engine components were to increase the drag and thus degrade the aerodynamic performance of the configuration. A significant degradation in aerodynamic performance was observed when 0 degree control surfaces were added to close the blunt base of the waverider to a sharp trailing edge. A comparison of the fully-integrated waverider models to the baseline shapes showed that the performance was significantly degraded when all of the components were added to the waveriders. The fully-integrated configurations studied here do not offer significant performance advantages over conventional hypersonic vehicles, but still offer advantages in air-breathing propulsion

  20. Hypersonics. Volume 1 - Defining the hypersonic environment; Proceedings of the First Joint Europe/U.S. Short Course on Hypersonics, Paris, France, Dec. 7-11, 1987

    NASA Astrophysics Data System (ADS)

    Bertin, John J.; Glowinski, Roland; Periaux, Jacques

    1989-05-01

    The present work discusses the general characterization of hypersonic flows, the hypersonic phenomena to be encountered by the Hermes spacecraft, industrial methodologies for the design of hypersonic vehicles, the definition of aerodynamic methodology, and hypersonic airbreathing-propulsion vehicle design practices applicable to the U.S. National Aerospace Plane. Also discussed are real gas effects in the hypersonic regime, the influence of thermochemistry and of nonequilibrium and surface catalysis on hypersonic vehicle design, the modelling of nonequilibrium effects in high speed flows, air-dissociation thermochemistry, and rarefied gas dynamics effects for spacecraft.

  1. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  2. Hyper-X Vehicle Model - Side View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  3. Hyper-X Vehicle Model - Front View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  4. Hyper-X Vehicle Model - Side View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Sleek lines are apparent in this side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry

  5. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  6. X-43A Vehicle During Ground Testing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California in December 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only

  7. X-43A Vehicle During Ground Testing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By

  8. Hyper-X Vehicle Model - Top Rear View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This aft-quarter model view of NASA's X-43A 'Hyper-X' or Hypersonic Experimental Vehicle shows its sleek, geometric design. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen

  9. Hyper-X Vehicle Model - Top Front View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A top front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  10. Discrete Roughness Transition for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.

    2007-01-01

    The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.

  11. Hypersonic missile propulsion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmar, R.R.

    1998-11-01

    Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technologymore » base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.« less

  12. Combustion Efficiency, Flameout Operability Limits and General Design Optimization for Integrated Ramjet-Scramjet Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Mbagwu, Chukwuka Chijindu

    High speed, air-breathing hypersonic vehicles encounter a varied range of engine and operating conditions traveling along cruise/ascent missions at high altitudes and dynamic pressures. Variations of ambient pressure, temperature, Mach number, and dynamic pressure can affect the combustion conditions in conflicting ways. Computations were performed to understand propulsion tradeoffs that occur when a hypersonic vehicle travels along an ascent trajectory. Proper Orthogonal Decomposition methods were applied for the reduction of flamelet chemistry data in an improved combustor model. Two operability limits are set by requirements that combustion efficiency exceed selected minima and flameout be avoided. A method for flameout prediction based on empirical Damkohler number measurements is presented. Operability limits are plotted that define allowable flight corridors on an altitude versus flight Mach number performance map; fixed-acceleration ascent trajectories were considered for this study. Several design rules are also presented for a hypersonic waverider with a dual-mode scramjet engine. Focus is placed on ''vehicle integration" design, differing from previous ''propulsion-oriented" design optimization. The well-designed waverider falls between that of an aircraft (high lift-to-drag ratio) and a rocket (high thrust-to-drag ratio). 84 variations of an X-43-like vehicle were run using the MASIV scramjet reduced order model to examine performance tradeoffs. Informed by the vehicle design study, variable-acceleration trajectory optimization was performed for three constant dynamic pressures ascents. Computed flameout operability limits were implemented as additional constraints to the optimization problem. The Michigan-AFRL Scramjet In-Vehicle (MASIV) waverider model includes finite-rate chemistry, applied scaling laws for 3-D turbulent mixing, ram-scram transition and an empirical value of the flameout Damkohler number. A reduced-order modeling approach is justified

  13. A hypersonic vehicle approach to planetary exploration

    NASA Technical Reports Server (NTRS)

    Murbach, Marcus S.

    1993-01-01

    An enhanced Mars network class mission using a lifting hypersonic entry vehicle is proposed. The basic vehicle, derived from a mature hypersonic flight system called SWERVE, offers several advantages over more conventional low L/D or ballistic entry systems. The proposed vehicle has greatly improved lateral and cross range capability (e.g., it is capable of reaching the polar regions during less than optimal mission opportunities), is not limited to surface target areas of low elevation, and is less susceptible to problems caused by Martian dust storms. Further, the integrated vehicle has attractive deployment features and allows for a much improved evolutionary path to larger vehicles with greater science capability. Analysis of the vehicle is aided by the development of a Mars Hypersonic Flight Simulator from which flight trajectories are obtained. Atmospheric entry performance of the baseline vehicle is improved by a deceleration skirt and transpiration cooling system which significantly reduce TPS (Thermal Protection System) and flight battery mass. The use of the vehicle is also attractive in that the maturity of the flight systems make it cost-competitive with the development of a conventional low L/D entry system. Finally, the potential application of similar vehicles to other planetary missions is discussed.

  14. Hyper-X Research Vehicle - Artist Concept in Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  15. Seal Technology for Hypersonic Vehicle and Propulsion: An Overview

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    2008-01-01

    Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.

  16. Materials Development for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dirling, Ray; Croop, Harold; Fry, Timothy J.; Frank, Geoffrey J.

    2006-01-01

    The DARPA/Air Force Falcon program is planning to flight test several hypersonic technology vehicles (HTV) in the next several years. A Materials Integrated Product Team (MIPT) was formed to lead the development of key thermal protection system (TPS) and hot structures technologies. The technologies being addressed by the MIPT are in the following areas: 1) less than 3000 F leading edges, 2) greater than 3000 F refractory composite materials, 3) high temperature multi-layer insulation, 4) acreage TPS, and 5) high temperature seals. Technologies being developed in each of these areas are discussed in this paper.

  17. Computational study of generic hypersonic vehicle flow fields

    NASA Technical Reports Server (NTRS)

    Narayan, Johnny R.

    1994-01-01

    The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows.

  18. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams

    NASA Technical Reports Server (NTRS)

    McClinton, C. R.; Hunt, J. L.; Ricketts, R. H.; Reukauf, P.; Peddie, C. L.

    1999-01-01

    Significant advancements in hypersonic airbreathing vehicle technology have been made in the country's research centers and industry over the past 40 years. Some of that technology is being validated with the X-43 flight tests. This paper presents an overview of hypersonic airbreathing technology status within the US, and a hypersonic technology development plan. This plan builds on the nation's large investment in hypersonics. This affordable, incremental plan focuses technology development on hypersonic systems, which could be operating by the 2020's.

  19. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  20. X-43A Vehicle During Ground Testing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows a close-up, rear view of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California in December 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology

  1. X-43A/Hyper-X Vehicle Arrives at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A close-up of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X,' in its protective shipping framework as it arrives at the Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only

  2. Aeroelastic Analysis of a Trimmed Generic Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Nydick, I.; Friedmann, P. P.

    1999-01-01

    The aeroelastic equations of motion governing a hypersonic vehicle in free flight are derived. The equations of motion for a translating and rotating flexible body using Lagrange's equations in terms of quasi-coordinates are presented. These equations are simplified for the case of a vehicle with pitch and plunge rigid body degrees of freedom and small elastic displacements. The displacements are approximated by a truncated series of the unrestrained mode shapes, which are obtained using equivalent plate theory. Subsequently, the nonlinear equations of motion are linearized about the trim state, which is obtained using a rigid body trim model and steady hypersonic aerodynamics. The appropriate flutter derivatives are calculated from piston theory. Results describing mode shapes, trim behavior, and aeroelastic stability of a generic hypersonic vehicle are presented.

  3. Systems Challenges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  4. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    NASA Astrophysics Data System (ADS)

    Masternak, Tadeusz J.

    This research determines temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method with a Non-Linear Programming (NLP) solver. The vehicle is assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom scramjet aircraft model is adapted from previous work and includes flight dynamics, aerodynamics, and thermal constraints. Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. To solve the optimal control formulation, a MATLAB-based package called General Pseudospectral Optimal Control Software (GPOPS-II) is used, which transcribes continuous time optimal control problems into an NLP problem. In addition, since a mission profile can have varying vehicle dynamics and en-route imposed constraints, the optimal control problem formulation can be broken up into several "phases" with differing dynamics and/or varying initial/final constraints. Optimal trajectories are developed using several different performance costs in the optimal control formulation: minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for larger-scale operational and campaign planning and execution.

  5. HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Berkowitz, Brian M.

    1988-01-01

    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.

  6. Configuration development study of the OSU 1 hypersonic research vehicle

    NASA Technical Reports Server (NTRS)

    Stein, Matthew D.; Frankhauser, Chris; Zee, Warner; Kosanchick, Melvin, III; Nelson, Nick; Hunt, William

    1993-01-01

    In an effort to insure the future development of hypersonic cruise aircraft, the possible vehicle configurations were examined to develop a single-stage-to-orbit hypersonic research vehicle (HRV). Based on the needs of hypersonic research and development, the mission goals and requirements are determined. A body type is chosen. Three modes of propulsion and two liquid rocket fuels are compared, followed by the optimization of the body configuration through aerodynamic, weight, and trajectory studies. A cost analysis is included.

  7. X-43A/Hyper-X Vehicle Arrives at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X,' carefully packed in a protective shipping framework, is unloaded from a container after its arrival at NASA's Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet

  8. X-43A/Hyper-X Vehicle Arrives at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A head-on view of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X,' in its protective shipping framework as it arrives at the Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  9. A review of design issues specific to hypersonic flight vehicles

    NASA Astrophysics Data System (ADS)

    Sziroczak, D.; Smith, H.

    2016-07-01

    This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.

  10. Optimization of the Upper Surface of Hypersonic Vehicle Based on CFD Analysis

    NASA Astrophysics Data System (ADS)

    Gao, T. Y.; Cui, K.; Hu, S. C.; Wang, X. P.; Yang, G. W.

    2011-09-01

    For the hypersonic vehicle, the aerodynamic performance becomes more intensive. Therefore, it is a significant event to optimize the shape of the hypersonic vehicle to achieve the project demands. It is a key technology to promote the performance of the hypersonic vehicle with the method of shape optimization. Based on the existing vehicle, the optimization to the upper surface of the Simplified hypersonic vehicle was done to obtain a shape which suits the project demand. At the cruising condition, the upper surface was parameterized with the B-Spline curve method. The incremental parametric method and the reconstruction technology of the local mesh were applied here. The whole flow field was been calculated and the aerodynamic performance of the craft were obtained by the computational fluid dynamic (CFD) technology. Then the vehicle shape was optimized to achieve the maximum lift-drag ratio at attack angle 3°, 4° and 5°. The results will provide the reference for the practical design.

  11. Conceptual Study on Hypersonic Turbojet Experimental Vehicle (HYTEX)

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Murakami, Akira; Sato, Tetsuya; Tsuchiya, Takeshi

    Pre-cooled turbojet engines have been investigated aiming at realization of reusable space transportation systems and hypersonic airplanes. Evaluation methods of these engine performances have been established based on ground tests. There are some plans on the demonstration of hypersonic propulsion systems. JAXA focused on hypersonic propulsion systems as a key technology of hypersonic transport airplane. Demonstrations of Mach 5 class hypersonic technologies are stated as a development target at 2025 in the long term vision. In this study, systems analyses of hypersonic turbojet experiment (HYTEX) with Mach 5 flight capability is performed. Aerodynamic coefficients are obtained by CFD analyses and wind tunnel tests. Small Pre-cooled turbojet is fabricated and tested using liquid hydrogen as fuel. As a result, characteristics of the baseline vehicle shape is clarified, . and effects of pre-cooling are confirmed at the firing test.

  12. Emerging hypersonic propulsion technology

    NASA Technical Reports Server (NTRS)

    Curran, E. T.; Beach, H. L., Jr.

    1988-01-01

    Currently there is a renewal of interest in the utilization of air breathing engines for hypersonic flight. The use of such engines in accelerative missions is discussed, and the nature of the trade-off between engine thrust-to-weight ratio and specific impulse is highlighted. It is also pointed out that the use of a cryogenic fuel such as liquid hydrogen offers the opportunity to develop both precooled derivatives of turboaccelerator engines and new cryogenic engine cycles, where the heat exchange process plays a significant role in the engine concept. The continuing challenges of developing high speed supersonic combustion ramjet engines are discussed. The paper concludes with a brief review of the difficult discipline of vehicle integration, and the challenges of both ground and flight testing.

  13. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  14. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  15. STEM Educators' Integration of Formative Assessment in Teaching and Lesson Design

    NASA Astrophysics Data System (ADS)

    Moreno, Kimberly A.

    Air-breathing hypersonic vehicles, when fully developed, will offer travel in the atmosphere at unprecendented speeds. Capturing their physical behavior by analytical / numerical models is still a major challenge, still limiting the development of controls technology for such vehicles. To study, in an exploratory manner, active control of air-breathing hypersonic vehicles, an analtical, simplified, model of a generic hypersonic air-breathing vehicle in flight was developed by researchers at the Air Force Research Labs in Dayton, Ohio, along with control laws. Elevator deflection and fuel-to-air ratio were used as inputs. However, that model is very approximate, and the field of hypersonics still faces many unknowns. This thesis contributes to the study of control of air-breating hypersonic vehicles in a number of ways: First, regarding control laws synthesis, optimal gains are chosen for the previously developed control law alongside an alternate control law modified from existing literature by minimizing the Lyapunov function derivative using Monte Carlo simulation. This is followed by analysis of the robustness of the control laws in the face of system parametric uncertainties using Monte Carlo simulations. The resulting statistical distributions of the commanded response are analyzed, and linear regression is used to determine, via sensitivity analysis, which uncertain parameters have the largest impact on the desired outcome.

  16. Pegasus hypersonic flight research

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  17. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  18. Investigation of piloting aids for manual control of hypersonic maneuvers

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.

    1995-01-01

    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  19. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  20. Hyper-X Research Vehicle - Artist Concept in Flight with Scramjet Engine Firing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's depiction of a Hyper-X research vehicle under scramjet power in free-flight following separation from its booster rocket. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need

  1. Hypersonic airbreathing vehicle visions and enhancing technologies

    NASA Astrophysics Data System (ADS)

    Hunt, James L.; Lockwood, Mary Kae; Petley, Dennis H.; Pegg, Robert J.

    1997-01-01

    This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes—missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays.

  2. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed

  3. Flight testing of airbreathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hicks, John W.

    1993-01-01

    Using the scramjet engine as the prime example of a hypersonic airbreathing concept, this paper reviews the history of and addresses the need for hypersonic flight tests. It also describes how such tests can contribute to the development of airbreathing technology. Aspects of captive-carry and free-flight concepts are compared. An incremental flight envelope expansion technique for manned flight vehicles is also described. Such critical issues as required instrumentation technology and proper scaling of experimental devices are addressed. Lastly, examples of international flight test approaches, existing programs, or concepts currently under study, development, or both, are given.

  4. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  5. Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures

    NASA Astrophysics Data System (ADS)

    Falkiewicz, Nathan J.

    Design and simulation of hypersonic vehicles require consideration of a variety of disciplines due to the highly coupled nature of the flight regime. In order to capture all of the potential effects on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and structural dynamics as well as the interactions between these disciplines. The problem is further complicated by the large computational expense involved in capturing all of these effects and their interactions in a full-order sense. While high-fidelity modeling techniques exist for each of these disciplines, the use of such techniques is computationally infeasible in a vehicle design and control system simulation setting for such a highly coupled problem. Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design matures, thus requiring quick analysis turnaround time. Additionally, the number of states used in the analyses must be small enough to allow for efficient control simulation and design. As a result, alternatives to full-order models must be considered. This dissertation presents a fully coupled, reduced-order aerothermoelastic framework for the modeling and analysis of hypersonic vehicle structures. The reduced-order transient thermal solution is a modal solution based on the proper orthogonal decomposition. The reduced-order structural dynamic model is based on projection of the equations of motion onto a Ritz modal subspace that is identified a priori. The reduced-order models are assembled into a time-domain aerothermoelastic simulation framework which uses a partitioned time-marching scheme to account for the disparate time scales of the associated physics. The aerothermoelastic modeling framework is outlined and the formulations associated with the unsteady aerodynamics, aerodynamic heating, transient thermal, and structural dynamics are outlined. Results demonstrate the accuracy of the reduced-order transient

  6. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  7. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2011-11-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  8. Hypersonic airbreathing vehicle visions and enhancing technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.L.; Lockwood, M.K.; Petley, D.H.

    1997-01-01

    This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}

  9. Optimal trajectories for hypersonic launch vehicles

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Bowles, Jeffrey V.; Whittaker, Thomas

    1994-01-01

    In this paper, we derive a near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a hypersonic, dual-mode propulsion, lifting vehicle. Of interest are both the optical flight path and the optimal operation of the propulsion system. The guidance law is developed from the energy-state approximation of the equations of motion. Because liquid hydrogen fueled hypersonic aircraft are volume sensitive, as well as weight sensitive, the cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize gross take-off weight for a given payload mass and volume in orbit.

  10. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  11. Research on Aeroheating of Hypersonic Reentry Vehicle Base Flow Fields

    NASA Astrophysics Data System (ADS)

    Xuguo, Qin; Yongtao, Shui; Yonghai, Wang; Gang, Chen; Qiang, Li

    2017-09-01

    The structure of the base flow of a hypersonic reentry vehicle and the resulting base pressure and heat transfer have been studied by numerical study. The compressible Navier-Stokes equations are solved by the finite-volume method. SST k-ω turbulence model is used, and comparisons are made with flight test. Attention was focused on assessing the effects of angle of attack and Mach number. It was found that angle of attack can significantly alter the wake flow structure and reentry vehicle base pressure and heating distributions. The results of the simulation may provide a theoretical basis for the design of the thermal protection system of hypersonic reentry vehicles.

  12. Impact of Martian atmosphere parameter uncertainties on entry vehicles aerodynamic for hypersonic rarefied conditions

    NASA Astrophysics Data System (ADS)

    Fei, Huang; Xu-hong, Jin; Jun-ming, Lv; Xiao-li, Cheng

    2016-11-01

    An attempt has been made to analyze impact of Martian atmosphere parameter uncertainties on entry vehicle aerodynamics for hypersonic rarefied conditions with a DSMC code. The code has been validated by comparing Viking vehicle flight data with present computational results. Then, by simulating flows around the Mars Science Laboratory, the impact of errors of free stream parameter uncertainties on aerodynamics is investigated. The validation results show that the present numerical approach can show good agreement with the Viking flight data. The physical and chemical properties of CO2 has strong impact on aerodynamics of Mars entry vehicles, so it is necessary to make proper corrections to the data obtained with air model in hypersonic rarefied conditions, which is consistent with the conclusions drawn in continuum regime. Uncertainties of free stream density and velocity weakly influence aerodynamics and pitching moment. However, aerodynamics appears to be little influenced by free stream temperature, the maximum error of what is below 0.5%. Center of pressure position is not sensitive to free stream parameters.

  13. Elevator Sizing, Placement, and Control-Relevant Tradeoffs for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Dickeson, Jeffrey J.; Rodriguez, Armando A.; Sridharan, Srikanth; Korad, Akshay

    2010-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. The impact of elevator size and placement on control-relevant static properties (e.g. level-flight trimmable region, trim controls, Angle of Attack (AOA), thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Elevator usage has been examine for a class of typical hypersonic trajectories.

  14. Airframe Research and Technology for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merski, N. Ronald; Glass, Christopher E.

    2002-01-01

    The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.

  15. New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B. Jr

    The new 0.60-m. nozzle exit diameter hypersonic shock tunnel was designed to study advanced air-breathing propulsion system such as supersonic combustion and/or laser technologies. In addition, it may be used for hypersonic flow studies and investigations of the electromagnetic (laser) energy addition for flow control. This new hypersonic shock tunnel was designed and installed at the Laboratory for of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu, IEAv-CTA, Brazil. The design of the tunnel enables relatively long test times, 2-10 milliseconds, suitable for the experiments performed at the laboratory. Free stream Mach numbers ranging from 6 to 25 can be producedmore » and stagnation pressures and temperatures up to 360 atm. and up to 9,000 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization.« less

  16. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  17. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  18. Materials and structures for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.

    1988-01-01

    Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.

  19. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly

  20. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  1. Advanced Concept

    NASA Image and Video Library

    2002-01-01

    An artist's rendering of the air-breathing, hypersonic X-43B, the third and largest of NASA's Hyper-X series flight demonstrators, which could fly later this decade. Revolutionizing the way we gain access to space is NASA's primary goal for the Hypersonic Investment Area, managed for NASA by the Advanced Space Transportation Program at the Marshall Space Flight Center in Huntsville, Alabama. The Hypersonic Investment area, which includes leading-edge partners in industry and academia, will support future generation reusable vehicles and improved access to space. These technology demonstrators, intended for flight testing by decade's end, are expected to yield a new generation of vehicles that routinely fly about 100,000 feet above Earth's surface and reach sustained speeds in excess of Mach 5 (3,750 mph), the point at which "supersonic" flight becomes "hypersonic" flight. The flight demonstrators, the Hyper-X series, will be powered by air-breathing rocket or turbine-based engines, and ram/scramjets. Air-breathing engines, known as combined-cycle systems, achieve their efficiency gains over rocket systems by getting their oxygen for combustion from the atmosphere, as opposed to a rocket that must carry its oxygen. Once a hypersonic vehicle has accelerated to more than twice the speed of sound, the turbine or rockets are turned off, and the engine relies solely on oxygen in the atmosphere to burn fuel. When the vehicle has accelerated to more than 10 to 15 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's series of hypersonic flight demonstrators includes three air-breathing vehicles: the X-43A, X-43B and X-43C.

  2. Thermal-Mechanical Testing of Hypersonic Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Hudson, Larry; Stephens, Craig

    2007-01-01

    A viewgraph presentation describing thermal-mechanical tests on the structures of hypersonic vehicles is shown. The topics include: 1) U.S. Laboratories for Hot Structures Testing; 2) NASA Dryden Flight Loads Laboratory; 3) Hot Structures Test Programs; 4) Typical Sequence for Hot Structures Testing; 5) Current Hot Structures Testing; and 6) Concluding Remarks.

  3. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  4. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  5. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald

    1999-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  6. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaotian; Jiang, Binhao, E-mail: jiangbh@hit.edu.cn

    2015-06-21

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters ofmore » the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods.« less

  7. Development of a non-linear simulation for generic hypersonic vehicles - ASUHS1

    NASA Technical Reports Server (NTRS)

    Salas, Juan; Lovell, T. Alan; Schmidt, David K.

    1993-01-01

    A nonlinear simulation is developed to model the longitudinal motion of a vehicle in hypersonic flight. The equations of motion pertinent to this study are presented. Analytic expressions for the aerodynamic forces acting on a hypersonic vehicle which were obtained from Newtonian Impact Theory are further developed. The control surface forces are further examined to incorporate vehicle elastic motion. The purpose is to establish feasible equations of motion which combine rigid body, elastic, and aeropropulsive dynamics for use in nonlinear simulations. The software package SIMULINK is used to implement the simulation. Also discussed are issues needing additional attention and potential problems associated with the implementation (with proposed solutions).

  8. Hypersonic Vehicle Propulsion System Simplified Model Development

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  9. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.

  10. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.

  11. A comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh

    1993-01-01

    A computational study has been conducted to evaluate the performance of various turbulence models. The NASA P8 inlet, which represents cruise condition of a typical hypersonic air-breathing vehicle, was selected as a test case for the study; the PARC2D code, which solves the full two dimensional Reynolds-averaged Navier-Stokes equations, was used. Results are presented for a total of six versions of zero- and two-equation turbulence models. Zero-equation models tested are the Baldwin-Lomax model, the Thomas model, and a combination of the two. Two-equation models tested are low-Reynolds number models (the Chien model and the Speziale model) and a high-Reynolds number model (the Launder and Spalding model).

  12. The Role of Guidance, Navigation, and Control in Hypersonic Vehicle Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Soloway, Donald I.; Moerder, Daniel D.; Wolpert, David H.; Benavides, Jose Victor

    2009-01-01

    Airbreathing hypersonic systems offer distinct performance advantages over rocket-based systems for space access vehicles. However, these performance advantages are dependent upon advances in current state-of-the-art technologies in many areas such as ram/scramjet propulsion integration, high temperature materials, aero-elastic structures, thermal protection systems, transition to hypersonics and hypersonic control elements within the framework of complex physics and new design methods. The complex interactions between elements of an airbreathing hypersonic vehicle represent a new paradigm in vehicle design to achieve the optimal performance necessary to meet space access mission objectives. In the past, guidance, navigation, and control (GNC) analysis often follows completion of the vehicle conceptual design process. Individual component groups design subsystems which are then integrated into a vehicle configuration. GNC is presented the task of developing control approaches to meet vehicle performance objectives given that configuration. This approach may be sufficient for vehicles where significant performance margins exist. However, for higher performance vehicles engaging the GNC discipline too late in the design cycle has been costly. For example, the X-29 experimental flight vehicle was built as a technology demonstrator. One of the many technologies to be demonstrated was the use of light-weight material composites for structural components. The use of light-weight materials increased the flexibility of the X- 29 beyond that of conventional metal alloy constructed aircraft. This effect was not considered when the vehicle control system was designed and built. The impact of this is that the control system did not have enough control authority to compensate for the effects of the first fundamental structural mode of the vehicle. As a result, the resulting pitch rate response of the vehicle was below specification and no post-design changes could recover the

  13. Experimental And Numerical Investigation Of Aerothermal Characteristics Of The IXV Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Paris, S.; Charbonnier, D.; Tran, D.

    2011-05-01

    The main results of the aerothermodynamic hypersonic characterization of Intermediate eXperimental Vehicle (IXV), by means of both CFD simulations and wind tunnel measurements, have been reported and analyzed. In the framework of ESA FLPP Program, the VKI (Von Karman Institute) was in charge of an experimental test campaign for the consolidation of the aerothermal database in cold hypersonic regime. The tests campaign has been carried out at VKI Free Piston Longshot wind tunnel at mach 14. The numerical simulations have been performed for VKI wind tunnel conditions by CFSE with the in-house NSMB flow solver (Navier-Stokes Multi-Blocks 3D), the goal being to support the procedure of extrapolation-to-flight of the measurements and the general aerothermal characterization. Laminar, transitional and fully turbulent flows have been computed, with air considered as an ideal gas, for the wind tunnel tests numerical rebuilding. A detailed comparison of all measured and predicted hypersonic relevant phenomena and parameters (surface pressure and heat flux) is reported in the paper, together with a detailed description of configuration, freestream conditions, model attitude effects and flap deflection effect. The detailed analyze of the experimental and numerical data gives information on the nature of the flow on the body and on the flaps for the most critical configuration

  14. A concept of a hypersonic flight experiment of a winged vehicle

    NASA Astrophysics Data System (ADS)

    Shirouzu, Masao; Watanabe, Shigeya

    A concept of a flight experiment using a winged hypersonic research vehicle is proposed by the National Aerospace Laboratory (NAL) as one of the flight experiment series preceding to the development of HOPE (H-II Orbiting Plane). The present paper describes the purpose of the experiment, the outline of the flight, the configuration and aerodynamic characteristics of the vehicle, and items of experiment and measurement. The present experiment is to acquire experience on the development and the flight of a hypersonic winged vehicle, in contrast to the ballistic flight of the OREX (Orbital Reentry Experiment) and to collect flight data for validation of tests and simulations on the ground. The vehicle of about 1.5 tons will be launched by a two-stage version of the J-I. The vehicle will be separated at an altitude of 70-80 km at a velocity of Mach 18-20, and inserted to the reentry trajectory of HOPE. The vehicle will be decelerated by parachutes and splash into the ocean south of Japan, where it will be recovered.

  15. Performance evaluations of oxidation-resistant carbon-carbon composites in simulated hypersonic vehicle environments

    NASA Technical Reports Server (NTRS)

    Barrett, D. M.; Maahs, H. G.; Ohlhorst, C. W.; Vaughn, W. L.; Martin, R. H.

    1989-01-01

    An evaluation is made of the oxidation-protection requirements of carbon-carbon composite (CCC) structural components in a hypersonic vehicle aerothermodynamic environment, where maximum test temperatures in air are of the order of 2800 F, and pressures range from 0.03 to 1.0 atm. The specimens were exposed to high humidity between tests. Attention was given to the effects of coating composition and thickness, and of substrate architecture and surface preparation, on the oxidation resistance of CCCs. Both surface preparation and coating chemistry have a profound effect on coating adherence and longevity.

  16. Shock-tunnel combustor testing for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Loomis, Mark P.

    1994-01-01

    Proposed configurations for the next generation of transatmospheric vehicles will rely on air breathing propulsion systems during all or part of their mission. At flight Mach numbers greater than about 7 these engines will operate in the supersonic combustion ramjet mode (scramjet). Ground testing of these engine concepts above Mach 8 requires high pressure, high enthalpy facilities such as shock tunnels and expansion tubes. These impulse, or short duration facilities have test times on the order of a millisecond, requiring high speed instrumentation and data systems. One such facility ideally suited for scramjet testing is the NASA-Ames 16-Inch shock tunnel, which over the last two years has completed a series of tests for the NASP (National Aero-Space Plane) program at simulated flight Mach numbers ranging from 12-16. The focus of the experimental programs consisted of a series of classified tests involving a near-full scale hydrogen fueled scramjet combustor model in the semi-free jet method of engine testing whereby the compressed forebody flow ahead of the cowl inlet is reproduced (see appendix A). The AIMHYE-1 (Ames Integrated Modular Hypersonic Engine) test entry for the NASP program was completed in April 1993, while AIMHYE-2 was completed in May 1994. The test entries were regarded as successful, resulting in some of the first data of its kind on the performance of a near full scale scramjet engine at Mach 12-16. The data was distributed to NASP team members for use in design system verification and development. Due to the classified nature of the hardware and data, the data reports resulting from this work are classified and have been published as part of the NASP literature. However, an unclassified AIAA paper resulted from the work and has been included as appendix A. It contains an overview of the test program and a description of some of the important issues.

  17. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  18. Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2006-01-01

    Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles. . Heat-pipe leading edge development. Design validation heat pipe testing confirmed design. Three heat pipes embedded and tested in C/C. Single J-tube heat pipe fabricated and testing initiated. HPCLE work is currently underway at several locations.

  19. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  20. Flight Test Experiment Design for Characterizing Stability and Control of Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2008-01-01

    A maneuver design method that is particularly well-suited for determining the stability and control characteristics of hypersonic vehicles is described in detail. Analytical properties of the maneuver design are explained. The importance of these analytical properties for maximizing information content in flight data is discussed, along with practical implementation issues. Results from flight tests of the X-43A hypersonic research vehicle (also called Hyper-X) are used to demonstrate the excellent modeling results obtained using this maneuver design approach. A detailed design procedure for generating the maneuvers is given to allow application to other flight test programs.

  1. Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan J.; Smart, Michael K.

    2010-01-01

    For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.

  2. Solution-Space Screening of a Hypersonic Endurance Demonstrator

    NASA Technical Reports Server (NTRS)

    Chudoba, Bernd; Coleman, Gary; Oza, Amit; Gonzalez, Lex; Czysz, Paul

    2012-01-01

    This report documents a parametric sizing study performed to develop a program strategy for research and development and procurement of a feasible next-generation hypersonic air-breathing endurance demonstrator. Overall project focus has been on complementing technical and managerial decision-making during the earliest conceptual design phase towards minimization of operational, technical, and managerial risks.

  3. Flow analysis and design optimization methods for nozzle-afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, O.

    1992-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the 3D Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Ar. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. The Aerodynamic Design Optimization with Sensitivity analysis was then developed. Pre- and postoptimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  4. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  5. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  6. Numerical simulation of air hypersonic flows with equilibrium chemical reactions

    NASA Astrophysics Data System (ADS)

    Emelyanov, Vladislav; Karpenko, Anton; Volkov, Konstantin

    2018-05-01

    The finite volume method is applied to solve unsteady three-dimensional compressible Navier-Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicles are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some test cases on GPUs are reported, and a comparison between computational results of equilibrium chemically reacting and perfect air flowfields is performed. Speedup of solution on GPUs with respect to the solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for practical applications.

  7. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  8. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  9. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    PubMed

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  10. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Astrophysics Data System (ADS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-03-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  11. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Technical Reports Server (NTRS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-01-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  12. Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Dickeson, Jeffrey James

    This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

  13. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  14. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  15. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Lee, Jin-Ho; Krivanek, Thomas M.

    2005-01-01

    The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.

  16. Optimal trajectories for hypersonic launch vehicles

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Bowles, Jeffrey V.; Whittaker, Thomas

    1992-01-01

    In this paper, we derive a near-optimal guidance law for the ascent trajectory from Earth surface to Earth orbit of a hypersonic, dual-mode propulsion, lifting vehicle. Of interest are both the optimal flight path and the optimal operation of the propulsion system. The guidance law is developed from the energy-state approximation of the equations of motion. The performance objective is a weighted sum of fuel mass and volume, with the weighting factor selected to give minimum gross take-off weight for a specific payload mass and volume.

  17. Robust Stabilization Control Based on Guardian Maps Theory for a Longitudinal Model of Hypersonic Vehicle

    PubMed Central

    Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods. PMID:24795535

  18. Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  19. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  20. Integrated Design and Engineering Analysis (IDEA) Environment - Propulsion Related Module Development and Vehicle Integration

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2013-01-01

    This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.

  1. A comparison of hypersonic vehicle flight and prediction results

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1995-01-01

    Aerodynamic and aerothermodynamic comparisons between flight and ground test for four hypersonic vehicles are discussed. The four vehicles are the X-15, the Reentry F, the Sandia Energetic Reentry Vehicle Experiment (SWERVE), and the Space Shuttle. The comparisons are taken from papers published by researchers active in the various programs. Aerodynamic comparisons include reaction control jet interaction on the Space Shuttle. Various forms of heating including catalytic, boundary layer, shock interaction and interference, and vortex impingement are compared. Predictions were significantly exceeded for the heating caused by vortex impingement (on the Space Shuttle OMS pods) and for heating caused by shock interaction and interference on the X-15 and the Space Shuttle. Predictions of boundary-layer state were in error on the X-15, the SWERVE, and the Space Shuttle vehicles.

  2. Trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Vanburen, Mark A.

    1989-01-01

    The first step in the approach to developing guidance laws for a horizontal take-off, air breathing single-stage-to-orbit vehicle is to characterize the minimum-fuel ascent trajectories. The capability to generate constrained, minimum fuel ascent trajectories for a single-stage-to-orbit vehicle was developed. A key component of this capability is the general purpose trajectory optimization program OTIS. The pre-production version, OTIS 0.96 was installed and run on a Convex C-1. A propulsion model was developed covering the entire flight envelope of a single-stage-to-orbit vehicle. Three separate propulsion modes, corresponding to an after burning turbojet, a ramjet and a scramjet, are used in the air breathing propulsion phase. The Generic Hypersonic Aerodynamic Model Example aerodynamic model of a hypersonic air breathing single-stage-to-orbit vehicle was obtained and implemented. Preliminary results pertaining to the effects of variations in acceleration constraints, available thrust level and fuel specific impulse on the shape of the minimum-fuel ascent trajectories were obtained. The results show that, if the air breathing engines are sized for acceleration to orbital velocity, it is the acceleration constraint rather than the dynamic pressure constraint that is active during ascent.

  3. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  4. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  5. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  6. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  7. A trajectory design method via target practice for air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Kong, Xue; Yang, Ming; Ning, Guodong; Wang, Songyan; Chao, Tao

    2017-11-01

    There are strong coupling interactions between aerodynamics and scramjet, this kind of aircraft also has multiple restrictions, such as the range and difference of dynamic pressure, airflow, and fuel. On the one hand, we need balance the requirement between maneuverability of vehicle and stabilization of scramjet. On the other hand, we need harmonize the change of altitude and the velocity. By describing aircraft's index system of climbing capability, acceleration capability, the coupling degree in aerospace, this paper further propose a rapid design method which based on target practice. This method aimed for reducing the coupling degree, it depresses the coupling between aircraft and engine in navigation phase, satisfy multiple restriction conditions to leave some control buffer and create good condition for control implementation. According to the simulation, this method could be used for multiple typical fly commissions such as climbing, acceleration or both.

  8. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    NASA Astrophysics Data System (ADS)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  9. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  10. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  11. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  12. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  13. Simulation of hypersonic scramjet exhaust. [pressure distribution on afterbody/nozzle sections of vehicle

    NASA Technical Reports Server (NTRS)

    Oman, R. A.; Foreman, K. M.; Leng, J.; Hopkins, H. B.

    1975-01-01

    A plan and some preliminary analysis for the accurate simulation of pressure distributions on the afterbody/nozzle portions of a hypersonic scramjet vehicle are described. The objectives fulfilled were to establish the standards of similitude for a hydrogen/air scramjet exhaust interacting with a vehicle afterbody, determine an experimental technique for validation of the procedures that will be used in conventional wind tunnel facilities, suggest a program of experiments for proof of the concept, and explore any unresolved problems in the proposed simulation procedures. It is shown that true enthalpy, Reynolds number, and nearly exact chemistry can be provided in the exhaust flow for the flight regime from Mach 4 to 10 by a detonation tube simulation. A detailed discussion of the required similarity parameters leads to the conclusion that substitute gases can be used as the simulated exhaust gas in a wind tunnel to achieve the correct interaction forces and moments.

  14. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  15. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  16. Aeroelasticity, Aerothermoelasticity and Aeroelastic Scaling of Hypersonic Vehicles

    DTIC Science & Technology

    2004-12-01

    P. Friedmann Frangois-Xavier Bagnoud Professor Phone 734-763-2354; FAX 734-763-0578; Email peretzf@umich.edu Co-Principal Investigator: Kenneth G...34 order pimon theory - -- -- - C - uter. corne ! - -- v - -- tiner. refined80000 ’Z-". n .,- l- 70000 70000 6 110000 30000 F 20000 10000 2.5 5 7,5 10 12.5...hypersonic vehicle, calculated using 3rd order piston theory and Euler aerodynamics -- 3"• V o-der pistom theory . - ---- Euk-r, col-sc - -- 7

  17. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  18. Airframe-integrated propulsion system for hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    The paper describes a new hydrogen-burning airframe-integrated scramjet concept which offers good potential for efficient hypersonic cruise vehicles. The characteristics of the engine which assure good performance are extensive engine-airframe integration, fixed geometry, low cooling, and control of heat release in the supersonic combustor by mixed modes of fuel injection from the combustor entrance. The present paper describes the concept and presents results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines currently underway under conditions which simulate flight at Mach 4 and 7. It is concluded that this engine concept has the potential for high thrust and efficiency, low drag and weight, low cooling requirement, and application to a wide range of vehicle sizes.

  19. Advanced Guidance and Control for Hypersonics and Space Access

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.

    2003-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.

  20. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC

  1. Modeling of Electron Transpiration Cooling for Leading Edges of Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle Matthew

    The development of aeronautics has been largely driven by the passion to fly faster. From the flight of the Wright Flyer that flew 48 km/hr to the recent advances in hypersonic flight, most notably NASA's X-43A that flew at over 3 km/s, the velocity of flight has steadily increased. However, as these hypersonic speeds are reached and increased, contradicting aerothermodynamic design requirements present themselves. For example, a hypersonic cruise vehicle requires sharp leading edges to decrease the drag in order to maximize the range. However, the aerodynamic performance gains obtained by having a sharp leading edge come at the cost of very high, localized heating rates. There is currently no ideal way to manage these heating loads for sustained hypersonic flight, especially as flight velocities continue to increase. An approach that has been recently proposed involves using thermo-electric materials on these sharp leading edges to manage the heating loads. When exposed to high convective heating rates, these materials emit a current of electrons that leads to a cooling effect of the surface of the vehicle called electron transpiration cooling (ETC). This dissertation focuses on developing a modeling approach to investigate this phenomenon. The research includes developing and implementing an approach for ETC into a computational fluid dynamics code for simulation of hypersonic flow that accounts for electron emission from the surface. Models for space-charge-limited emission are also developed and implemented in order to accurately determine the level of emission from the surface. This work involves developing analytic models and assessing them using a direct-kinetic plasma sheath solver. Electric field effects are also implemented in the modeling approach, which accounts for forced diffusion and Joule heating. Finally, the modeling approach is coupled to a material response code in order to model the heat transfer into the material surface. Using this modeling

  2. High-speed aerodynamic design of space vehicle and required hypersonic wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Sakakibara, Seizou; Hozumi, Kouichi; Soga, Kunio; Nomura, Shigeaki

    Problems associated with the aerodynamic design of space vehicles with emphasis of the role of hypersonic wind tunnel facilities in the development of the vehicle are considered. At first, to identify wind tunnel and computational fluid dynamics (CFD) requirements, operational environments are postulated for hypervelocity vehicles. Typical flight corridors are shown with the associated flow density: real gas effects, low density flow, and non-equilibrium flow. Based on an evaluation of these flight regimes and consideration of the operational requirements, the wind tunnel testing requirements for the aerodynamic design are examined. Then, the aerodynamic design logic and optimization techniques to develop and refine the configurations in a traditional phased approach based on the programmatic design of space vehicle are considered. Current design methodology for the determination of aerodynamic characteristics for designing the space vehicle, i.e., (1) ground test data, (2) numerical flow field solutions and (3) flight test data, are also discussed. Based on these considerations and by identifying capabilities and limits of experimental and computational methods, the role of a large conventional hypersonic wind tunnel and the high enthalpy tunnel and the interrelationship of the wind tunnels and CFD methods in actual aerodynamic design and analysis are discussed.

  3. Hypersonic drone design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Efforts were focused on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necessary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: to fulfill a need for experimental data in the hypersonic regime, and to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. Three areas of great concern to NASP design were examined: propulsion, thermal management, and flight systems. Problem solving in these areas was directed towards design of the drone with the idea that the same design techniques could be applied to the NASP. A seventy degree swept double delta wing configuration, developed in the 70's at NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air-launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based upon the flight requirements give the drone a gross launch weight of 134,000 lb. and an overall length of 85 feet.

  4. The potential for a new era of supersonic and hypersonic aviation

    NASA Technical Reports Server (NTRS)

    Harris, Roy V.

    1990-01-01

    A new era of supersonic and hypersonic aviation is envisioned. The potential for supersonic and hypersonic flight vehicles in this new era is analyzed. Technology challenges that must be met in order to bring in this new era of flight are discussed. The current technical status and future potential are cited in the areas of aerodynamics, propulsion, and structural materials. A next major step in the development of high-speed air transportation is suggested.

  5. Supercomputer modeling of flow past hypersonic flight vehicles

    NASA Astrophysics Data System (ADS)

    Ermakov, M. K.; Kryukov, I. A.

    2017-02-01

    A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.

  6. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  7. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  8. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  9. Minimum weight passive insulation requirements for hypersonic cruise vehicles.

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1972-01-01

    Analytical solutions are derived for two representative cases of the transient heat conduction equation to determine the minimum weight requirements for passive insulation systems of hypersonic cruise vehicles. The cases discussed are the wet wall case with the interior wall temperature held to that of the boiling point of the fuel throughout the flight, and the dry wall case where the heat transferred through the insulation is absorbed by the interior structure whose temperature is allowed to rise.

  10. Structures for the 3rd Generation Reusable Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2001-01-01

    A major goal of NASA is to create an advance space transportation system that provides a safe, affordable highway through the air and into space. The long-term plans are to reduce the risk of crew loss to 1 in 1,000,000 missions and reduce the cost of Low-Earth Orbit by a factor of 100 from today's costs. A third generation reusable concept vehicle (RCV) was developed to assess technologies required to meet NASA's space access goals. The vehicle will launch from Cape Kennedy carrying a 25,000 lb. payload to the International Space Station (ISS). The system is an air breathing launch vehicle (ABLV) hypersonic lifting body with rockets and uses triple point hydrogen and liquid oxygen propellant. The focus of this paper is on the structural concepts and analysis methods used in developing the third generation reusable launch vehicle (RLV). Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  11. Prediction of forces and moments for hypersonic flight vehicle control effectors

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Long, Lyle N.; Pagano, Peter J.

    1991-01-01

    Developing methods of predicting flight control forces and moments for hypersonic vehicles, included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicate the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was proposed in which a better understanding is sought for the reasons of the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. To obtain this additional understanding, a more careful study of the results obtained relative to the methods used was undertaken. In addition, where appropriate and necessary, a more complete modeling of the flow was performed using well proven methods of computational fluid dynamics. As a result, assessments will be made which are more quantitative than those of phase 1 regarding the uncertainty involved in the prediction of the aerodynamic derivatives. In addition, with improved understanding, it is anticipated that improvements resulting in better accuracy will be made to the simple force and moment prediction.

  12. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated

  13. The application of dual fuel /JP-LH2/ for hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Weidner, J. P.

    1978-01-01

    The possibility of utilizing jet fuel (JP) stored primarily in the wings of hydrogen-fueled hypersonic cruise vehicles has been evaluated and compared to the performance of all hydrogen-fueled aircraft. Parametric investigations of wing loading, thrust-to-weight ratio, payload size and vehicle size are presented. Results indicate improvements in performance for a wide range of potential payload sizes, particularly when in-flight refueling of the JP fuel is considered as a means of increasing range and mission flexibility.

  14. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  15. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  16. Assessment of CFD capability for prediction of hypersonic shock interactions

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  17. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  18. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  19. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  20. Protective supplied-breathing-air garment

    DOEpatents

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  1. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  2. A hypersonic research vehicle to develop scramjet engines

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Reuss, R. L.

    1990-01-01

    Four student design teams produced conceptual designs for a research vehicle to develop the supersonic combustion ramjet (scramjet) engines necessary for efficient hypersonic flight. This research aircraft would provide flight test data for prototype scramjets that is not available in groundbased test facilities. The design specifications call for a research aircraft to be launched from a carrier aircraft at 40,000 feet and a Mach number of 0.8. The aircraft must accelerate to Mach 6 while climbing to a 100,000 foot altitude and then ignite the experimental scramjet engines for acceleration to Mach 10. The research vehicle must then be recovered for another flight. The students responded with four different designs, two piloted waverider configurations, and two unmanned vehicles, one with a blended body-wing configuration, the other with a delta wing shape. All aircraft made use of an engine database provided by the General Electric Aircraft Engine Group; both turbofan ramjet and scramjet engine performance using liquid hydrogen fuel was available. Explained here are the students' conceptual designs and the aerodynamic and propulsion concepts that made their designs feasible.

  3. Improved heat tolerance in air drives the recurrent evolution of air-breathing.

    PubMed

    Giomi, Folco; Fusi, Marco; Barausse, Alberto; Mostert, Bruce; Pörtner, Hans-Otto; Cannicci, Stefano

    2014-05-07

    The transition to air-breathing by formerly aquatic species has occurred repeatedly and independently in fish, crabs and other animal phyla, but the proximate drivers of this key innovation remain a long-standing puzzle in evolutionary biology. Most studies attribute the onset of air-breathing to the repeated occurrence of aquatic hypoxia; however, this hypothesis leaves the current geographical distribution of the 300 genera of air-breathing crabs unexplained. Here, we show that their occurrence is mainly related to high environmental temperatures in the tropics. We also demonstrate in an amphibious crab that the reduced cost of oxygen supply in air extends aerobic performance to higher temperatures and thus widens the animal's thermal niche. These findings suggest that high water temperature as a driver consistently explains the numerous times air-breathing has evolved. The data also indicate a central role for oxygen- and capacity-limited thermal tolerance not only in shaping sensitivity to current climate change but also in underpinning the climate-dependent evolution of animals, in this case the evolution of air-breathing.

  4. Improved heat tolerance in air drives the recurrent evolution of air-breathing

    PubMed Central

    Giomi, Folco; Fusi, Marco; Barausse, Alberto; Mostert, Bruce; Pörtner, Hans-Otto; Cannicci, Stefano

    2014-01-01

    The transition to air-breathing by formerly aquatic species has occurred repeatedly and independently in fish, crabs and other animal phyla, but the proximate drivers of this key innovation remain a long-standing puzzle in evolutionary biology. Most studies attribute the onset of air-breathing to the repeated occurrence of aquatic hypoxia; however, this hypothesis leaves the current geographical distribution of the 300 genera of air-breathing crabs unexplained. Here, we show that their occurrence is mainly related to high environmental temperatures in the tropics. We also demonstrate in an amphibious crab that the reduced cost of oxygen supply in air extends aerobic performance to higher temperatures and thus widens the animal's thermal niche. These findings suggest that high water temperature as a driver consistently explains the numerous times air-breathing has evolved. The data also indicate a central role for oxygen- and capacity-limited thermal tolerance not only in shaping sensitivity to current climate change but also in underpinning the climate-dependent evolution of animals, in this case the evolution of air-breathing. PMID:24619438

  5. Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Klock, Ryan J.

    Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled. This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing

  6. X-43A hypersonic research aircraft mated to its modified Pegasus booster rocket.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  7. X-43A Undergoing Controlled Radio Frequency Testing in the Benefield Anechoic Facility at Edwards Ai

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-43A Hypersonic Experimental (Hyper-X) Vehicle hangs suspended in the cavernous Benefield Aenechoic Facility at Edwards Air Force Base during radio frequency tests in January 2000. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration

  8. Launch vehicles of the future - Earth to near-earth space

    NASA Astrophysics Data System (ADS)

    Keyworth, G. A., II

    Attention is given to criteria for launch vehicles of the future, namely, cost, flexibility of payload size, and routine access to space. The National Aerospace Plane (NASP), an airplane designed to achieve hypersonic speeds using a sophisticated air-breathing engine, is argued to meet these criteria. Little additional oxygen is needed to enter low-earth orbit, and it will return to an airport runway under powered flight. Cost estimates for a NASP-derived vehicle are two to five million dollars for a payload of 20,000 to 30,000 pounds to orbit. For the Shuttle, a comparable payload is nominally about 150 million dollars. NASP estimates for the new single-stage-to-orbit designs are substantially lower than existing launch costs. The NASP also offers fast turnaround and minimal logistics. Access to virtually all near-earth orbits will be provided as well.

  9. Nonlinear fractional order proportion-integral-derivative active disturbance rejection control method design for hypersonic vehicle attitude control

    NASA Astrophysics Data System (ADS)

    Song, Jia; Wang, Lun; Cai, Guobiao; Qi, Xiaoqiang

    2015-06-01

    Near space hypersonic vehicle model is nonlinear, multivariable and couples in the reentry process, which are challenging for the controller design. In this paper, a nonlinear fractional order proportion integral derivative (NFOPIλDμ) active disturbance rejection control (ADRC) strategy based on a natural selection particle swarm (NSPSO) algorithm is proposed for the hypersonic vehicle flight control. The NFOPIλDμ ADRC method consists of a tracking-differentiator (TD), an NFOPIλDμ controller and an extended state observer (ESO). The NFOPIλDμ controller designed by combining an FOPIλDμ method and a nonlinear states error feedback control law (NLSEF) is to overcome concussion caused by the NLSEF and conversely compensate the insufficiency for relatively simple and rough signal processing caused by the FOPIλDμ method. The TD is applied to coordinate the contradiction between rapidity and overshoot. By attributing all uncertain factors to unknown disturbances, the ESO can achieve dynamic feedback compensation for these disturbances and thus reduce their effects. Simulation results show that the NFOPIλDμ ADRC method can make the hypersonic vehicle six-degree-of-freedom nonlinear model track desired nominal signals accurately and fast, has good stability, dynamic properties and strong robustness against external environmental disturbances.

  10. Prediction of forces and moments for hypersonic flight vehicle control effectors

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Long, Lyle N.; Guilmette, Neal; Pagano, Peter

    1993-01-01

    This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer.

  11. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air breathing equipment. 154.1852 Section 154.1852 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing...

  12. HYPERDATA - BASIC HYPERSONIC DATA AND EQUATIONS

    NASA Technical Reports Server (NTRS)

    Mackall, D.

    1994-01-01

    In an effort to place payloads into orbit at the lowest possible costs, the use of air-breathing space-planes, which reduces the need to carry the propulsion system oxidizer, has been examined. As this approach would require the space-plane to fly at hypersonic speeds for periods of time much greater than that required by rockets, many factors must be considered when analyzing its benefits. The Basic Hypersonic Data and Equations spreadsheet provides data gained from three analyses of a space-plane's performance. The equations used to perform the analyses are derived from Newton's second law of physics (i.e. force equals mass times acceleration); the derivation is included. The first analysis is a parametric study of some basic factors affecting the ability of a space-plane to reach orbit. This step calculates the fraction of fuel mass to the total mass of the space-plane at takeoff. The user is able to vary the altitude, the heating value of the fuel, the orbital gravity, and orbital velocity. The second analysis calculates the thickness of a spherical fuel tank, while assuming all of the mass of the vehicle went into the tank's shell. This provides a first order analysis of how much material results from a design where the fuel represents a large portion of the total vehicle mass. In this step, the user is allowed to vary the values for gross weight, material density, and fuel density. The third analysis produces a ratio of gallons of fuel per total mass for various aircraft. It shows that the volume of fuel required by the space-plane relative to the total mass is much larger for a liquid hydrogen space-plane than any other vehicle made. This program is a spreadsheet for use on Macintosh series computers running Microsoft Excel 3.0. The standard distribution medium for this package is a 3.5 inch 800K Macintosh format diskette. Documentation is included in the price of the program. Macintosh is a registered trademark of Apple Computer, Inc. Microsoft is a

  13. Ablative thermal management structural material on the hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Shortland, H.; Tsai, C.

    A hypersonic vehicle is designed to fly at high Mach number in the earth's atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.

  14. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  15. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  16. Buckling analysis and test correlation of hat stiffened panels for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Percy, Wendy C.; Fields, Roger A.

    1990-01-01

    The paper discusses the design, analysis, and test of hat stiffened panels subjected to a variety of thermal and mechanical load conditions. The panels were designed using data from structural optimization computer codes and finite element analysis. Test methods included the grid shadow moire method and a single gage force stiffness method. The agreement between the test data and analysis provides confidence in the methods that are currently being used to design structures for hypersonic vehicles. The agreement also indicates that post buckled strength may potentially be used to reduce the vehicle weight.

  17. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  18. Why and Whither Hypersonics Research in the US Air Force

    DTIC Science & Technology

    2000-12-01

    of strong interest in high supersonic and hypersonic flight. Actual flight achievements—notably the first supersonic flight by the XS - 1 on 14...Air Force is sponsoring Future Strike Aircraft studies with Boeing, Lockheed Martin, and Northrop Grumman . Under these studies, subsonic, supersonic...SMC/XRD) MSE Technology Applications, Inc. Northrop Grumman Air Combat Systems Orbital Sciences Corporation Boeing Phantom Works 18 May 2000

  19. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  20. Combined LAURA-UPS hypersonic solution procedure

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Thompson, Richard A.

    1993-01-01

    A combined solution procedure for hypersonic flowfields around blunted slender bodies was implemented using a thin-layer Navier-Stokes code (LAURA) in the nose region and a parabolized Navier-Stokes code (UPS) on the after body region. Perfect gas, equilibrium air, and non-equilibrium air solutions to sharp cones and a sharp wedge were obtained using UPS alone as a preliminary step. Surface heating rates are presented for two slender bodies with blunted noses, having used LAURA to provide a starting solution to UPS downstream of the sonic line. These are an 8 deg sphere-cone in Mach 5, perfect gas, laminar flow at 0 and 4 deg angles of attack and the Reentry F body at Mach 20, 80,000 ft equilibrium gas conditions for 0 and 0.14 deg angles of attack. The results indicate that this procedure is a timely and accurate method for obtaining aerothermodynamic predictions on slender hypersonic vehicles.

  1. A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantino, M

    1999-07-14

    An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less

  2. Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)

    2012-01-01

    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.

  3. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  4. Local and System Level Considerations for Plasma-Based Techniques in Hypersonic Flight

    NASA Astrophysics Data System (ADS)

    Suchomel, Charles; Gaitonde, Datta

    2007-01-01

    The harsh environment encountered due to hypersonic flight, particularly when air-breathing propulsion devices are utilized, poses daunting challenges to successful maturation of suitable technologies. This has spurred the quest for revolutionary solutions, particularly those exploiting the fact that air under these conditions can become electrically conducting either naturally or through artificial enhancement. Optimized development of such concepts must emphasize not only the detailed physics by which the fluid interacts with the imposed electromagnetic fields, but must also simultaneously identify system level issues integration and efficiencies that provide the greatest leverage. This paper presents some recent advances at both levels. At the system level, an analysis is summarized that incorporates the interdependencies occurring between weight, power and flow field performance improvements. Cruise performance comparisons highlight how one drag reduction device interacts with the vehicle to improve range. Quantified parameter interactions allow specification of system requirements and energy consuming technologies that affect overall flight vehicle performance. Results based on on the fundamental physics are presented by distilling numerous computational studies into a few guiding principles. These highlight the complex non-intuitive relationships between the various fluid and electromagnetic fields, together with thermodynamic considerations. Generally, energy extraction is an efficient process, while the reverse is accompanied by significant dissipative heating and inefficiency. Velocity distortions can be detrimental to plasma operation, but can be exploited to tailor flows through innovative electromagnetic configurations.

  5. Robust intelligent flight control for hypersonic vehicles. Ph.D. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Chamitoff, Gregory Errol

    1992-01-01

    Intelligent optimization methods are applied to the problem of real-time flight control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight conditions that will be encountered by single-stage-to-orbit vehicles, such as the National Aerospace Plane, present a tremendous challenge to the entire spectrum of aerospace technologies. Flight control for these vehicles is particularly difficult due to the combination of nonlinear dynamics, complex constraints, and parametric uncertainty. An approach that utilizes all available a priori and in-flight information to perform robust, real time, short-term trajectory planning is presented.

  6. Surface Heat Flux and Pressure Distribution on a Hypersonic Blunt Body With DEAS

    NASA Astrophysics Data System (ADS)

    Salvador, I. I.; Minucci, M. A. S.; Toro, P. G. P.; Oliveira, A. C.; Channes, J. B.

    2008-04-01

    With the currently growing interest for advanced technologies to enable hypersonic flight comes the Direct Energy Air Spike concept, where pulsed beamed laser energy is focused upstream of a blunt flight vehicle to disrupt the flow structure creating a virtual, slender body geometry. This allies in the vehicle both advantages of a blunt body (lower thermal stresses) to that of a slender geometry (lower wave drag). The research conducted at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics focused on the measurement of the surface pressure and heat transfer rates on a blunt model. The hypersonic flight conditions were simulated at the HTN Laboratory's 0.3 m T2 Hypersonic Shock Tunnel. During the tests, the laser energy was focused upstream the model by an infrared telescope to create the DEAS effect, which was supplied by a TEA CO2 laser. Piezoelectric pressure transducers were used for the pressure measurements and fast response coaxial thermocouples were used for the measurement of surface temperature, which was later used for the estimation of the wall heat transfer using the inverse heat conduction theory.

  7. Design Study of Wafer Seals for Future Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2005-01-01

    Future hypersonic vehicles require high temperature, dynamic seals in advanced hypersonic engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Current seals do not meet the demanding requirements of these applications, so NASA Glenn Research Center is developing improved designs to overcome these shortfalls. An advanced ceramic wafer seal design has shown promise in meeting these needs. Results from a design of experiments study performed on this seal revealed that several installation variables played a role in determining the amount of leakage past the seals. Lower leakage rates were achieved by using a tighter groove width around the seals, a higher seal preload, a tighter wafer height tolerance, and a looser groove length. During flow testing, a seal activating pressure acting behind the wafers combined with simulated vibrations to seat the seals more effectively against the sealing surface and produce lower leakage rates. A seal geometry study revealed comparable leakage for full-scale wafers with 0.125 and 0.25 in. thicknesses. For applications in which lower part counts are desired, fewer 0.25-in.-thick wafers may be able to be used in place of 0.125-in.-thick wafers while achieving similar performance. Tests performed on wafers with a rounded edge (0.5 in. radius) in contact with the sealing surface resulted in flow rates twice as high as those for wafers with a flat edge. Half-size wafers had leakage rates approximately three times higher than those for full-size wafers.

  8. Laboratory testing of two prototype in-vehicle breath test devices

    DOT National Transportation Integrated Search

    1985-08-01

    This report presents the results of laboratory testing of two recently developed prototype in-vehicle breath test devices. These devices are designed to prevent persons with alcohol on their breath from driving a car. The devices tested were the SOBE...

  9. Analysis of a hypersonic waverider research vehicle with a hydrocarbon scramjet engine

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.; Bowles, Jeffrey V.; Huynh, Loc C.

    1993-01-01

    The results of a feasibility study of a hypersonic waverider research vehicle with a hydrocarbon scramjet engine are presented. The integrated waverider/scramjet geometry is first optimized with a vehicle synthesis code to produce a maximum product of the lift-to-drag ratio and the cycle specific impulse, hence cruise range. Computational fluid dynamics (CFD) is then employed to provide a nose-to-tail analysis of the system at the on-design conditions. Some differences are noted between the results of the two analysis techniques. A comparison of experimental, engineering analysis and CFD results on a waverider forebody are also included for validation.

  10. Control of gill ventilation and air-breathing in the bowfin amia calva

    PubMed

    Hedrick; Jones

    1999-01-01

    The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume

  11. Retooling CFD for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  12. Supersonic investigation of two dimensional hypersonic exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Carboni, Jeanne D.; Shyne, Rickey J.; Leavitt, Laurence D.; Taylor, John G.; Lamb, Milton

    1992-01-01

    An experimental investigation was conducted in the NASA Lewis 10 x 10 ft supersonic Wind Tunnel to determine the performance characteristics of 2D hypersonic exhaust nozzles/afterbodies at low supersonic conditions. Generally, this type of application requires a single expansion ramp nozzle (SERN) that is highly integrated with the airframe of the hypersonic vehicle. At design conditions (hypersonic speeds), the nozzle generally exhibits acceptable performance. At off-design conditions (transonic to mid-supersonic speeds), nozzle performance of a fixed geometry configuration is generally poor. Various 2-D nozzle configurations were tested at off-design conditions from Mach 2.0 to 3.5. Performance data is presented at nozzle pressure ratios from 1 to 35. Jet exhaust was simulated with high-pressure air. To study performance of different geometries, nozzle configurations were varied by interchanging the following model parts: internal upstream contour, expansion ramp, sidewalls, and cowl.

  13. A methodology for hypersonic transport technology planning

    NASA Technical Reports Server (NTRS)

    Repic, E. M.; Olson, G. A.; Milliken, R. J.

    1973-01-01

    A systematic procedure by which the relative economic value of technology factors affecting design, configuration, and operation of a hypersonic cruise transport can be evaluated is discussed. Use of the methodology results in identification of first-order economic gains potentially achievable by projected advances in each of the definable, hypersonic technologies. Starting with a baseline vehicle, the formulas, procedures and forms which are integral parts of this methodology are developed. A demonstration of the methodology is presented for one specific hypersonic vehicle system.

  14. High temperature heat exchangers for gas turbines and future hypersonic air breathing propulsion

    NASA Astrophysics Data System (ADS)

    Avran, Patrick; Bernard, Pierre

    After surveying the results of ONERA's investigations to date of metallic and ceramic heat exchangers applicable to automotive and aircraft powerplants, which are primarily of finned-tube counterflow configuration, attention is given to the influence of heat-exchanger effectiveness on fuel consumption and exchanger dimensions and weight. Emphasis is placed on the results of studies of cryogenic heat exchangers used by airbreathing hypersonic propulsion systems. The numerical codes developed by ONERA for the modeling of heat exchanger thermodynamics are evaluated.

  15. CFD applications in hypersonic flight

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1992-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.

  16. Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Rodriguez, Armando A.; Dickeson, Jeffrey J.; Sridharan, Srikanth; Benavides, Jose; Soloway, Don; Kelkar, Atul; Vogel, Jerald M.

    2009-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.

  17. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  18. Global strike hypersonic weapons

    NASA Astrophysics Data System (ADS)

    Lewis, Mark J.

    2017-11-01

    Beginning in the 1940's, the United States has pursued the development of hypersonic technologies, enabling atmospheric flight in excess of five times the speed of sound. Hypersonic flight has application to a range of military and civilian applications, including commercial transport, space access, and various weapons and sensing platforms. A number of flight tests of hypersonic vehicles have been conducted by countries around the world, including the United States, Russia, and China, that could lead the way to future hypersonic global strike weapon systems. These weapons would be especially effective at penetrating conventional defenses, and could pose a significant risk to national security.

  19. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  20. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  1. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  2. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    PubMed

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  3. I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)

    2001-01-01

    The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air

  4. Employment of hypersonic glide vehicles: Proposed criteria for use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olguin, Abel

    Hypersonic Glide Vehicles (HGVs) are a type of reentry vehicle that couples the high speed of ballistic missiles with the maneuverability of aircraft. The HGV has been in development since the 1970s, and its technology falls under the category of Conventional Prompt Global Strike (CPGS) weapons. As noted by James M. Acton, a senior associate in the Nuclear Policy Program at the Carnegie Endowment, CPGS is a “missile in search of a mission.” With the introduction of any significant new military capability, a doctrine for use—including specifics regarding how, when and where it would be used, as well as tactics,more » training and procedures—must be clearly defined and understood by policy makers, military commanders, and planners. In this paper, benefits and limitations of the HGV are presented. Proposed criteria and four scenarios illustrate a possible method for assessing when to use an HGV.« less

  5. Air-breathing fishes in aquaculture. What can we learn from physiology?

    PubMed

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues. © 2014 The Fisheries Society of the British Isles.

  6. HIFiRE-5 Flight Vehicle Design

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan

    2010-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances

  7. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  8. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less

  9. Hypersonic vehicle control law development using H infinity and mu-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1992-01-01

    Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.

  10. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    NASA Astrophysics Data System (ADS)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the

  11. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    PubMed

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of <0.01 m from the face. Body surface temperature, shape and posture as well as clothing insulation have impact on the measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  12. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.

    PubMed

    Brauner, C J; Matey, V; Wilson, J M; Bernier, N J; Val, A L

    2004-04-01

    The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.

  13. Hypersonic Vehicle Trajectory Optimization and Control

    NASA Technical Reports Server (NTRS)

    Balakrishnan, S. N.; Shen, J.; Grohs, J. R.

    1997-01-01

    Two classes of neural networks have been developed for the study of hypersonic vehicle trajectory optimization and control. The first one is called an 'adaptive critic'. The uniqueness and main features of this approach are that: (1) they need no external training; (2) they allow variability of initial conditions; and (3) they can serve as feedback control. This is used to solve a 'free final time' two-point boundary value problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out conditions in velocity, flightpath angle, and altitude. The second neural network is a recurrent network. An interesting feature of this network formulation is that when its inputs are the coefficients of the dynamics and control matrices, the network outputs are the Kalman sequences (with a quadratic cost function); the same network is also used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use it to control a system whose parameters are uncertain. Numerical results are presented which illustrate the potential of these methods.

  14. Autonomic control of post-air-breathing tachycardia in Clarias gariepinus (Teleostei: Clariidae).

    PubMed

    Teixeira, Mariana Teodoro; Armelin, Vinicius Araújo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2015-08-01

    The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h(-1)) and a constant f G (43.16 ± 1.74 breaths min(-1)). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h(-1) and f G decreased to 39.12 ± 1.58 breaths min(-1). During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h(-1) and f G decreased to 34.97 ± 1.78 breaths min(-1). These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.

  15. Multidisciplinary aeroelastic analysis of a generic hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Petersen, K. L.

    1993-01-01

    This paper presents details of a flutter and stability analysis of aerospace structures such as hypersonic vehicles. Both structural and aerodynamic domains are discretized by the common finite element technique. A vibration analysis is first performed by the STARS code employing a block Lanczos solution scheme. This is followed by the generation of a linear aerodynamic grid for subsequent linear flutter analysis within subsonic and supersonic regimes of the flight envelope; the doublet lattice and constant pressure techniques are employed to generate the unsteady aerodynamic forces. Flutter analysis is then performed for several representative flight points. The nonlinear flutter solution is effected by first implementing a CFD solution of the entire vehicle. Thus, a 3-D unstructured grid for the entire flow domain is generated by a moving front technique. A finite element Euler solution is then implemented employing a quasi-implicit as well as an explicit solution scheme. A novel multidisciplinary analysis is next effected that employs modal and aerodynamic data to yield aerodynamic damping characteristics. Such analyses are performed for a number of flight points to yield a large set of pertinent data that define flight flutter characteristics of the vehicle. This paper outlines the finite-element-based integrated analysis procedures in detail, which is followed by the results of numerical analyses of flight flutter simulation.

  16. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    NASA Astrophysics Data System (ADS)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  17. Overview of X-38 Hypersonic Wind Tunnel Data and Comparison with Numerical Results

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Caram, Jose; Berry, Scott; DiFulvio, Michael; Horvath, Tom

    1997-01-01

    A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic characteristics of this X-23/X-2&4 derived crew return vehicle (designated X-38) are being evaluated in various wind tunnels in support of this effort. Aerodynamic data has been acquired in three NASA hypersonic facilities at Mach 20, and Mach 6. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with portions of this data. Experimental data from the Mach 6 Air and CF4 facilities illustrate a net positive pitching moment increment due to density ratio, as well as increased elevon effectiveness. Chemical nonequilibrium computational fluid dynamics solutions at flight conditions reinforce this conclusion.

  18. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  19. Hypersonic Flight and the Re-Entry Problem: The Twenty-First Wright Brothers Lecture

    NASA Technical Reports Server (NTRS)

    Allen, H. Julian

    1958-01-01

    Up to this point the discussion of the problems of rocket vehicles has been confined to the effects of phenomena which have in the past been important ones for lower speed aircraft and will continue to be important for aircraft of all speeds. Now with considerable extension of both speed and altitude, other phenomena also become important. The nature of some problems will be altered, as a result, and new problems, of course, will be encountered. First, it is well to note that our interest in bluff bodies for ballistic vehicles in particular, and in rounded-nosed bodies generally, has changed our emphasis in aerodynamics. The detached bow waves which occur with such bodies at high supersonic speeds complicate the calculations of the flow-field characteristics. In the present period, much attention is being given to such studies. In addition, at the very high altitudes attained by most of the rocket-craft, the mean free path of air molecules can be of the same order, or long, compared to the dimensions of the vehicles. Thus, slip-flow and free-molecule-flow studies are of interest, particularly for satellite vehicles." The aerodynatnicist must deal with air having unfamiliar states and properties. Second, at hypersonic speeds where, for example, air is greatly decelerated, it may undergo considerable change in composition, the degree of change depending upon many factors. Dissociation of oxygen and nitrogen molecules can occur and, in addition, thermal ionization of many of the constituents. It is naturally to be expected that the convective heat transfer will, as a result, be altered from what it was for the "perfect" gas, and this has been the subject of much recent research effort. Moreover, the decelerated gas becomes capable of radiating energy and the radiative heat transfer must generally be considered for hypersonic vehicles, particularly for long-range ballistic rockets. It is not only the aerodynamic heating problems that are affected. The fact that at very

  20. Breath-hold times in air compared to breath-hold times during cold water immersions.

    PubMed

    Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert

    2015-02-01

    Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.

  1. The role of size in synchronous air breathing of Hoplosternum littorale.

    PubMed

    Sloman, Katherine A; Sloman, Richard D; De Boeck, Gudrun; Scott, Graham R; Iftikar, Fathima I; Wood, Chris M; Almeida-Val, Vera M F; Val, Adalberto L

    2009-01-01

    Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.

  2. Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.

    PubMed

    Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J

    2003-01-01

    Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.

  3. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  4. Don't You Dare Breathe That Air!

    ERIC Educational Resources Information Center

    American Lung Association, New York, NY.

    Designed for elementary school students, the workbook focuses on the unhealthy and unpleasant effects of air pollution. Space is provided for students to draw pictures of: (1) how breathing polluted air can make people feel, (2) what polluted air can do to people's health--especially if they smoke cigarettes, (3) what air pollution can do to the…

  5. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi.

    PubMed

    da Cruz, André Luis; da Silva, Hugo Ribeiro; Lundstedt, Lícia Maria; Schwantes, Arno Rudi; Moraes, Gilberto; Klein, Wilfried; Fernandes, Marisa Narciso

    2013-04-01

    Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2-5 AB h(-1)). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h(-1)) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb-O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froning, H. David Jr

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathingmore » craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.« less

  7. Air-breathing behavior, oxygen concentrations, and ROS defense in the swimbladders of two erythrinid fish, the facultative air-breathing jeju, and the non-air-breathing traira during normoxia, hypoxia and hyperoxia.

    PubMed

    Pelster, Bernd; Wood, Chris M; Jung, Ellen; Val, Adalberto L

    2018-05-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two neighboring genera from the family of erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized, and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Measurement of swimbladder oxygen partial pressure (PO 2 ) of fish kept at 26 °C in normoxic, hyperoxic (28-32 mg O 2 L - 1 ) or hypoxic (1-1.5 mg O 2 L - 1 ) water revealed constant values in traira swimbladder. Under normoxic conditions in the jeju swimbladder PO 2 was higher than in traira, and the PO 2 significantly increased under hyperoxic conditions, even in the absence of air breathing. In jeju, air-breathing activity increased significantly under hypoxic conditions. Hypoxic air-breathing activity was negatively correlated to swimbladder PO 2 , indicating that the swimbladder was intensely used for gas exchange under these conditions. In traira, the capacity of the ROS defense system, as assessed by measurement of activities of enzymes involved in ROS degradation and total glutathione (GSH + GSSG) concentration, was elevated after 4 h of hyperoxic and/or hypoxic exposure, although swimbladder PO 2 was not affected. In jeju, experiencing a higher variability in swimbladder PO 2 due to the air-breathing activity, only a reduced responsiveness of the ROS defense system to changing environmental PO 2 was detected.

  8. Hypersonic Flight Test Windows for Technology Development Testing

    DTIC Science & Technology

    2013-11-01

    used. 2.1 Propulsion and Controls Test Window The technologies dealing with scramjet propulsion (inlets, fuel injection, etc.) and hypersonic ...AFRL-RQ-WP-TM-2013-0260 HYPERSONIC FLIGHT TEST WINDOWS FOR TECHNOLOGY DEVELOPMENT TESTING Barry M. Hellman Vehicle Technology Branch...DATES COVERED (From - To) November 2013 Final 01 November 2013 – 25 November 2013 4. TITLE AND SUBTITLE HYPERSONIC FLIGHT TEST WINDOWS FOR

  9. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    NASA Astrophysics Data System (ADS)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  10. PERIODIC AIR-BREATHING BEHAVIOUR IN A PRIMITIVE FISH REVEALED BY SPECTRAL ANALYSIS

    PubMed

    Hedrick; Katz; Jones

    1994-12-01

    The ventilatory patterns of air-breathing fish are commonly described as 'arrhythmic' or 'irregular' because the variable periods of breath-holding are punctuated by seemingly unpredictable air-breathing events (see Shelton et al. 1986). This apparent arrhythmicity contrasts with the perceived periodism or regularity in the gill ventilation patterns of some fish and with lung ventilation in birds and mammals. In this sense, periodism refers to behaviour that occurs with a definite, recurring interval (Bendat and Piersol, 1986). The characterisation of aerial ventilation patterns in fish as 'aperiodic' has been generally accepted on the basis of qualitative examination and it remains to be validated with rigorous testing. The bowfin, Amia calva (L.), is a primitive air-breathing fish that makes intermittent excursions to the air­water interface to gulp air, which is transferred to its well-vascularized gas bladder. Its phylogenetic position as the only extant member of the sister lineage of modern teleosts affords a unique opportunity to examine the evolution of aerial ventilation and provides a model for the examination of ventilatory patterns in primitive fishes. To establish whether Amia calva exhibit a particular pattern of air-breathing, we examined time series records of aerial ventilations from undisturbed fish over long periods (8 h). These records were the same as those used to calculate average ventilation intervals under a variety of experimental conditions (Hedrick and Jones, 1993). Their study also reported the occurrence of two distinct breath types. Type I breaths were characterised by an exhalation followed by an inhalation, whereas type II breaths were characterised by inhalation only. It was also hypothesized that the type I breaths were employed to meet oxygen demands, whereas the type II breaths were used to regulate gas bladder volume. However, they did not investigate the potential presence of a periodic ventilatory pattern. We now report

  11. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.

    2001-01-01

    The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.

  12. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    NASA Technical Reports Server (NTRS)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  13. Constrained Aerothermodynamic Design of Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gally, Tom; Campbell, Dick

    2002-01-01

    An investigation was conducted into possible methods of incorporating a hypersonic design capability with aerothermodynamic constraints into the CDISC aerodynamic design tool. The work was divided into two distinct phases: develop relations between surface curvature and hypersonic pressure coefficient which are compatible with CDISC's direct-iterative design method; and explore and implement possible methods of constraining the heat transfer rate over all or portions of the design surface. The main problem in implementing this method has been the weak relationship between surface shape and pressure coefficient at the stagnation point and the need to design around the surface blunt leading edge where there is a slope singularity. The final results show that some success has been achieved, but further improvements are needed.

  14. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas

  15. International Conference on Hypersonic Flight in the 21st Century, 1st, University of North Dakota, Grand Forks, Sept. 20-23, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Higbea, Mary E.; Vedda, James A.

    The present conference on the development status of configurational concepts and component technologies for hypersonic-cruise and transatmospheric vehicles discusses topics relating to the U.S. National Aerospace Plane program, ESA-planned aerospace vehicles, Japanese spaceplane concepts, the integration of hypersonic aircraft into existing infrastructures, hypersonic airframe designs, hypersonic avionics and cockpit AI systems, hypersonic-regime CFD techniques, the economics of hypersonic vehicles, and possible legal implications of hypersonic flight. Also discussed are Soviet spaceplane concepts, propulsion systems involving laser power sources and hypervelocity launch technologies, and the management of support systems operations for hypersonic vehicles.

  16. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    2005-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Path finder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  17. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Venkatapathy, Ethiraj

    2004-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  18. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    1997-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  19. Hypersonic vehicle simulation model: Winged-cone configuration

    NASA Technical Reports Server (NTRS)

    Shaughnessy, John D.; Pinckney, S. Zane; Mcminn, John D.; Cruz, Christopher I.; Kelley, Marie-Louise

    1990-01-01

    Aerodynamic, propulsion, and mass models for a generic, horizontal-takeoff, single-stage-to-orbit (SSTO) configuration are presented which are suitable for use in point mass as well as batch and real-time six degree-of-freedom simulations. The simulations can be used to investigate ascent performance issues and to allow research, refinement, and evaluation of integrated guidance/flight/propulsion/thermal control systems, design concepts, and methodologies for SSTO missions. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number, and control surface deflections. The model data were estimated by using a subsonic/supersonic panel code and a hypersonic local surface inclination code. Thrust coefficient and engine specific impulse were estimated using a two-dimensional forebody, inlet, nozzle code and a one-dimensional combustor code and are given as functions of Mach number, dynamic pressure, and fuel equivalence ratio. Rigid-body mass moments of inertia and center of gravity location are functions of vehicle weight which is in turn a function of fuel flow.

  20. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  1. Hypersonic Inlet for a Laser Powered Propulsion System

    NASA Astrophysics Data System (ADS)

    Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave

    2011-11-01

    Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.

  2. On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2013-12-01

    Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.

  3. Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1974-01-01

    The configuration and performance of the propulsion system for the hypersonic research vehicle are discussed. A study of the interactions between propulsion and aerodynamics of the highly integrated vehicle was conducted. The hypersonic research vehicle is configured to test the technology of structural and thermal protection systems concepts and the operation of the propulsion system under true flight conditions for most of the hypersonic flight regime. The subjects considered are: (1) research vehicle and scramjet engine configurations to determine fundamental engine sizing constraints, (2) analytical methods for computing airframe and propulsion system components, and (3) characteristics of a candidate nozzle to investigate vehicle stability and acceleration performance.

  4. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  5. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket mounted to NASA's NB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  6. Conceptual study of space plane powered by hypersonic airbreathing propulsion system

    NASA Astrophysics Data System (ADS)

    Maita, Masataka; Ohkami, Yoshiaki; Yamanaka, Tatsuo; Mori, Takashige

    1990-10-01

    The paper describes the investigations of aerospace plane concept, conducted by the National Aerospace Laboratory (NAL) of Japan, with particular attention given to a concept which integrates a scram/liquid air cycle engine (LACE) hypersonic propulsion system fueling with slush hydrogen. The key requirements in achieving the space plane using scram/LACE propulsion system are described along with the mission requirements and the vehicle characteristics. Typical outputs of SSTO analysis are presented.

  7. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  8. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  9. Effect of hypobaric air, oxygen, heliox (50:50), or heliox (80:20) breathing on air bubbles in adipose tissue.

    PubMed

    Hyldegaard, O; Madsen, J

    2007-09-01

    The fate of bubbles formed in tissues during decompression to altitude after diving or due to accidental loss of cabin pressure during flight has only been indirectly inferred from theoretical modeling and clinical observations with noninvasive bubble-measuring techniques of intravascular bubbles. In this report we visually followed the in vivo resolution of micro-air bubbles injected into adipose tissue of anesthetized rats decompressed from 101.3 kPa to and held at 71 kPa corresponding to approximately 2.750 m above sea level, while the rats breathed air, oxygen, heliox (50:50), or heliox (80:20). During air breathing, bubbles initially grew for 30-80 min, after which they remained stable or began to shrink slowly. Oxygen breathing caused an initial growth of all bubbles for 15-85 min, after which they shrank until they disappeared from view. Bubble growth was significantly greater during breathing of oxygen compared with air and heliox breathing mixtures. During heliox (50:50) breathing, bubbles initially grew for 5-30 min, from which point they shrank until they disappeared from view. After a shift to heliox (80:20) breathing, some bubbles grew slightly for 20-30 min, then shrank until they disappeared from view. Bubble disappearance was significantly faster during breathing of oxygen and heliox mixtures compared with air. In conclusion, the present results show that oxygen breathing at 71 kPa promotes bubble growth in lipid tissue, and it is possible that breathing of heliox may be beneficial in treating decompression sickness during flight.

  10. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    PubMed

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  11. Changes in cardiac output during swimming and aquatic hypoxia in the air-breathing Pacific tarpon.

    PubMed

    Clark, T D; Seymour, R S; Christian, K; Wells, R M G; Baldwin, J; Farrell, A P

    2007-11-01

    Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V(b)) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49 kg) and adult (1.21 kg) tarpon were allowed to recover in a swim flume at 27 degrees C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V(b) and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03 breaths min(-1) and V(b) was about 15 mL min(-1) kg(-1). Normoxic exercise (swimming at about 1.1 body lengths s(-1)) increased air-breathing frequency by 8-fold in both groups (reaching 0.23 breaths min(-1)) and increased V(b) by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2 kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53 breaths min(-1)) in both groups, and while V(b) again increased 3-fold in resting juvenile fish, V(b) was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95 breaths min(-1)) in comparison with resting normoxic fish. While juvenile fish increased V(b) nearly 2-fold with exercise in hypoxia, adult fish maintained the same V(b) irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply.

  12. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Bowles, Jeffrey V.; Adelman, Henry G.; Cambier, Jean-Luc

    1989-01-01

    A performance analysis is given of a conceptual transatmospheric vehicle (TAV). The TAV is powered by a an oblique detonation wave engine (ODWE). The ODWE is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this wave combustor concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture, thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter lighter engine compared to the scramjet. The ODWE-powered hypersonic vehicle performance is compared to that of a scramjet-powered vehicle. Among the results outlined, it is found that the ODWE trades a better engine performance above Mach 15 for a lower performance below Mach 15. The overall higher performance of the ODWE results in a 51,000-lb weight savings and a higher payload weight fraction of approximately 12 percent.

  13. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  14. Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Puster, R. L.; Kelly, H. N.

    1987-01-01

    Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained.

  15. NASA's hypersonic fluid and thermal physics program (Aerothermodynamics)

    NASA Technical Reports Server (NTRS)

    Graves, R. A.; Hunt, J. L.

    1985-01-01

    This survey paper gives an overview of NASA's hypersonic fluid and thermal physics program (recently renamed aerothermodynamics). The purpose is to present the elements of, example results from, and rationale and projection for this program. The program is based on improving the fundamental understanding of aerodynamic and aerothermodynamic flow phenomena over hypersonic vehicles in the continuum, transitional, and rarefied flow regimes. Vehicle design capabilities, computational fluid dynamics, computational chemistry, turbulence modeling, aerothermal loads, orbiter flight data analysis, orbiter experiments, laser photodiagnostics, and facilities are discussed.

  16. Ontogenetic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access.

    PubMed

    Ahmad, Riaz; Hasnain, Absar-Ul

    2005-02-01

    In air-breathing snakehead Channa punctatus, Ldh-B is expressed at all ontogenetic and developmental stages, while Ldh-A is expressed temporally in pre-hatchlings 12-13 days ahead of bimodal respiration marked by air-breathing. Remarkable differences are observed in the LDH isozyme expression among various ontogenetic and developmental stages upon denying air access. When denied air access, water-breathing larvae show two distinct characteristics: (i) they survive longer than transitory air-breathers due to independence from air-breathing and (ii) there is more transient induction of Ldh-B than Ldh-A. Transition to bimodal breathing, which occurred post-hatching in 15-day old larvae, is coincidental with inducibility of Ldh-A and concomitant down-regulation of Ldh-B. Heart tissue from air-breathing adults denied air access shows a preferential expression of LDH-A subunit and slight down-regulation of LDH-B. Heterotetramers of A and B subunits participate in adjusting LDH levels among those stages which either precede air-breathing switchover, or are subsequent to this transition. The contribution of heterotetramers depends on the stage-specific levels of LDH homotetramers A(4) or B(4). Scaling of muscle mass during growth, tolerance to extended deprivation of air access and induction of Ldh-A are correlated. Response to restoring air contact indicated that advanced air-breathing stages of C. punctatus possess an inherent capacity to sense surface air. In kinetic properties, LDH isozymes of C. punctatus are teleost-like but species specificity is displayed in oxidative potential by cardiac muscle and in L-lactate reduction by skeletal muscle.

  17. Air Intake Performance of Air Breathing Ion Engines

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa

    The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.

  18. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  19. Phoenix Missile Hypersonic Testbed (PMHT): Project Concept Overview

    NASA Technical Reports Server (NTRS)

    Jones, Thomas P.

    2007-01-01

    An over view of research into a low cost hypersonic research flight test capability to increase the amount of hypersonic flight data to help bridge the large developmental gap between ground testing/analysis and major flight demonstrator Xplanes is provided. The major objectives included: develop an air launched missile booster research testbed; accurately deliver research payloads through programmable guidance to hypersonic test conditions; low cost; a high flight rate minimum of two flights per year and utilize surplus air launched missiles and NASA aircraft.

  20. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  1. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    PubMed Central

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.; Johansen, Jacob L.; Skov, Peter Vilhelm; Svendsen, Morten B. S.; Steffensen, John F.; Abe, Augusto S.

    2015-01-01

    ABSTRACT Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  2. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  3. Aerothermodynamics of expert ballistic vehicle at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Kharitonov, A. M.; Adamov, N. P.; Chirkashenko, V. F.; Mazhul, I. I.; Shpak, S. I.; Shiplyuk, A. N.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2012-01-01

    The European EXPErimental Re-entry Test bed (EXPERT) vehicle is intended for studying various basic phenomena, such as the boundary-layer transition on blunted bodies, real gas effects during shock wave/boundary layer interaction, and effect of surface catalycity. Another task is to develop methods for recalculating the results of windtunnel experiments to flight conditions. The EXPERT program implies large-scale preflight research, in particular, various calculations with the use of advanced numerical methods, experimental studies of the models in various wind tunnels, and comparative analysis of data obtained for possible extrapolation of data to in-flight conditions. The experimental studies are performed in various aerodynamic centers of Europe and Russia under contracts with ESA-ESTEC. In particular, extensive experiments are performed at the Von Karman Institute for Fluid Dynamics (VKI, Belgium) and also at the DLR aerospace center in Germany. At ITAM SB RAS, the experimental studies of the EXPERT model characteristic were performed under ISTC Projects 2109, 3151, and 3550, in the T-313 supersonic wind tunnel and AT-303 hypersonic wind tunnel.

  4. Computational Study of a McDonnell Douglas Single-Stage-to-Orbit Vehicle Concept for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1996-01-01

    This paper presents the results of a computational flow analysis of the McDonnell Douglas single-stage-to-orbit vehicle concept designated as the 24U. This study was made to determine the aerodynamic characteristics of the vehicle with and without body flaps over an angle of attack range of 20-40 deg. Computations were made at a flight Mach number of 20 at 200,000 ft. altitude with equilibrium air, and a Mach number of 6 with CF4 gas. The software package FELISA (Finite Element Langley imperial College Sawansea Ames) was used for all the computations. The FELISA software consists of unstructured surface and volume grid generators, and inviscid flow solvers with (1) perfect gas option for subsonic, transonic, and low supersonic speeds, and (2) perfect gas, equilibrium air, and CF4 options for hypersonic speeds. The hypersonic flow solvers with equilibrium air and CF4 options were used in the present studies. Results are compared with other computational results and hypersonic CF4 tunnel test data.

  5. Health and efficiency in trimix versus air breathing in compressed air workers.

    PubMed

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  6. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  7. The second X-43A hypersonic research vehicle, mounted under the right wing of the B-52B launch aircraft, viewed from the B-52 cockpit

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research vehicle, mounted under the right wing of the B-52B launch aircraft, viewed from the B-52 cockpit. The crew is working on closing out the research vehicle, preparing it for flight.

  8. Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1996-01-01

    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.

  9. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.

    PubMed

    Lin, Hui-Chen; Sung, Wen-Ting

    2003-01-01

    Respiration and ion regulation are the two principal functions of teleostean gills. Mainly found in the gill filaments of fish, mitochondria-rich cells (MRCs) proliferate to increase the ionoregulatory capacity of the gill in response to osmotic challenges. Gill lamellae consist mostly of pavement cells, which are the major site of gas exchange. Although lamellar MRCs have been reported in some fish species, there has been little discussion of which fish species are likely to have lamellar MRCs. In this study, we first compared the number of filament and lamellar MRCs in air-breathing and non-air-breathing fish species acclimated to freshwater and 5 g NaCl L(-1) conditions. An increase in filament MRCs was found in both air-breathing and non-air-breathing fish acclimated to freshwater. Lamellar MRCs were found only in air-breathing species, but the number of lamellar MRCs did not change significantly with water conditions, except in Periophthalmus cantonensis. Next, we surveyed the distribution of MRCs in the gills of 66 fish species (including 29 species from the previous literature) from 12 orders, 28 families, and 56 genera. Our hypothesis that lamellar MRCs are more likely to be found in air-breathing fishes was supported by a significant association between the presence of lamellar MRCs and the mode of breathing at three levels of systematic categories (species, genus, and family). Based on this integrative view of the multiple functions of fish gills, we should reexamine the role of MRCs in freshwater fish.

  10. Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.; Hobbs, J.-P. A.; Östlund-Nilsson, S.; Munday, P. L.

    2007-06-01

    Hypoxia tolerance and air-breathing occur in a range of freshwater, estuarine and intertidal fishes. Here it is shown for the first time that coral reef fishes from the genera Gobiodon, Paragobiodon and Caracanthus, which all have an obligate association with living coral, also exhibit hypoxia tolerance and a well-developed air-breathing capacity. All nine species maintained adequate respiration in water at oxygen concentrations down to 15-25% air saturation. This hypoxia tolerance is probably needed when the oxygen levels in the coral habitat drops sharply at night. Air-breathing abilities of the species correlated with habitat association, being greatest (equaling oxygen uptake in water) in species that occupy corals extending into shallow water, where they may become air exposed during extreme low tides. Air-breathing was less well-developed or absent in species inhabiting corals from deeper waters. Loss of scales and a network of subcutaneous capillaries appear to be key adaptations allowing cutaneous respiration in air. While hypoxia tolerance may be an ancestral trait in these fishes, air-breathing is likely to be a more recent adaptation exemplifying convergent evolution in the unrelated genera Gobiodon and Caracanthus in response to coral-dwelling lifestyles.

  11. Global Sliding Mode Control for the Bank-to-Turn of Hypersonic Glide Vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yu, Y. F.; Yan, P. P.; Fan, Y. H.; Guo, X. W.

    2017-03-01

    The technology of Bank-to-Turn has been recognized as an attractive direction due to their significance for the control of hypersonic glide vehicle. Strong coupling existing among pitch, yaw and roll channel was a great challenge for banking to turn, and thus a novel global sliding mode controller was designed for hypersonic glider in this paper. Considering the coupling among channels as interference, we can use invariance principle of sliding mode motion to realize the decoupling control. The global sliding mode control system could eliminate the stage of reaching, which can lead to the realization of whole systematic process decoupling control. When the global sliding mode factor was designed, a minimum norm pole assignment method of the sliding mode matrix was introduced to improve the robustness of the system. The method of continuity of symbolic function was adopted to overcome the chatter, which furtherly modify the transient performance of the system. The simulation results show that this method has good performance of three channel decoupling control and guidance command tracking. And it can meet the requirements of the dynamic performance of the system.

  12. A ceramic matrix composite thermal protection system for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Pitts, William C.

    1993-01-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bonded to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems.

  13. Earth-to-orbit reusable launch vehicles: A comparative assessment

    NASA Technical Reports Server (NTRS)

    Chase, R. L.

    1978-01-01

    A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.

  14. Developmental cardiorespiratory physiology of the air-breathing tropical gar, Atractosteus tropicus.

    PubMed

    Burggren, Warren W; Bautista, Gil Martinez; Coop, Susana Camarillo; Couturier, Gabriel Márquez; Delgadillo, Salomón Páramo; García, Rafael Martínez; González, Carlos Alfonso Alvarez

    2016-10-01

    The physiological transition to aerial breathing in larval air-breathing fishes is poorly understood. We investigated gill ventilation frequency (f G ), heart rate (f H ), and air breathing frequency (f AB ) as a function of development, activity, hypoxia, and temperature in embryos/larvae from day (D) 2.5 to D30 posthatch of the tropical gar, Atractosteus tropicus, an obligate air breather. Gill ventilation at 28°C began at approximately D2, peaking at ∼75 beats/min on D5, before declining to ∼55 beats/min at D30. Heart beat began ∼36-48 h postfertilization and ∼1 day before hatching. f H peaked between D3 and D10 at ∼140 beats/min, remaining at this level through D30. Air breathing started very early at D2.5 to D3.5 at 1-2 breaths/h, increasing to ∼30 breaths/h at D15 and D30. Forced activity at all stages resulted in a rapid but brief increase in both f G and f H , (but not f AB ), indicating that even in these early larval stages, reflex control existed over both ventilation and circulation prior to its increasing importance in older fishes. Acute progressive hypoxia increased f G in D2.5-D10 larvae, but decreased f G in older larvae (≥D15), possibly to prevent branchial O 2 loss into surrounding water. Temperature sensitivity of f G and f H measured at 20°C, 25°C, 28°C and 38°C was largely independent of development, with a Q 10 between 20°C and 38°C of ∼2.4 and ∼1.5 for f G and f H , respectively. The rapid onset of air breathing, coupled with both respiratory and cardiovascular reflexes as early as D2.5, indicates that larval A. tropicus develops "in the fast lane." Copyright © 2016 the American Physiological Society.

  15. Arc-heated gas flow experiments for hypersonic propulsion applications

    NASA Astrophysics Data System (ADS)

    Roseberry, Christopher Matthew

    Although hydrogen is an attractive fuel for a hypersonic air-breathing vehicle in terms of reaction rate, flame temperature, and energy content per unit mass, the substantial tank volume required to store hydrogen imposes a drag penalty to performance that tends to offset these advantages. An alternative approach is to carry a hydrocarbon fuel and convert it on-board into a hydrogen-rich gas mixture to be injected into the engine combustors. To investigate this approach, the UTA Arc-Heated Wind Tunnel facility was modified to run on methane rather than the normally used nitrogen. Previously, this facility was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow along a single expansion ramp nozzle (SERN) in addition to more generalized applications. This formidable development process, which involved modifications to every existing subsystem along with the incorporation of new subsystems, is described in detail. Fortunately, only a minor plumbing reconfiguration was required to prepare the facility for the fuel reformation research. After a failure of the arc heater power supply, a 5.6 kW plasma-cutting torch was modified in order to continue the arc pyrolysis experiments. The outlet gas flow from the plasma torch was sampled and subsequently analyzed using gas chromatography. The experimental apparatus converted the methane feedstock almost completely into carbon, hydrogen and acetylene. A high yield of hydrogen, consisting of a product mole fraction of roughly 0.7, was consistently obtained. Unfortunately, the energy consumption of the apparatus was too excessive to be feasible for a flight vehicle. However, other researchers have pyrolyzed hydrocarbons using electric arcs with much less power input per unit mass.

  16. Oxygen and carbon dioxide sensitivity of ventilation in amphibious crabs, Cardisoma guanhumi, breathing air and water.

    PubMed

    Gannon, Andrew T; Henry, Raymond P

    2004-05-01

    Amphibious crabs, Cardisoma guanhumi, were acclimated to breathing either air or water and exposed to altered levels of oxygen and/or carbon dioxide in the medium. Hypercapnia (22, 36 and 73 torr CO(2)) stimulated a significant hypercapnic ventilatory response (HCVR) in both groups of crabs, with a much greater effect on scaphognathite frequency (Deltaf(SC)=+700%) in air-breathing crabs than water-breathing crabs (Deltaf(SC)=+100%). In contrast, hyperoxia induced significant hypoventilation in both sets of crabs. However, simultaneous hyperoxia and hypercapnia triggered a greater than 10-fold increase in f(SC) in air-breathing crabs but no change in water-breathing crabs. For water-breathing crabs hypoxia simultaneous with hypercapnia triggered the same response as hypoxia alone-bradycardia (-50%), and a significant increase in f(SC) at moderate exposures but not at the more extreme levels. The response of air-breathing crabs to hypoxia concurrent with hypercapnia was proportionally closer to the response to hypercapnia alone than to hypoxia. Thus, C. guanhumi were more sensitive to ambient CO(2) than O(2) when breathing air, characteristic of fully terrestrial species, and more sensitive to ambient O(2) when breathing water, characteristic of fully aquatic species. C. guanhumi possesses both an O(2)- and a CO(2)-based ventilatory drive whether breathing air or water, but the relative importance switches when the respiratory medium is altered.

  17. CFD on hypersonic flow geometries with aeroheating

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Chao, Yan; Hui, Zhang Hui; Ullah, Rizwan

    2012-11-01

    The hypersonic flowfield around a blunted cone and cone-flare exhibits some of the major features of the flows around space vehicles, e.g. a detached bow shock in the stagnation region and the oblique shock wave/boundary layer interaction at the cone-flare junction. The shock wave/boundary layer interaction can produce a region of separated flow. This phenomenon may occur, for example, at the upstream-facing corner formed by a deflected control surface on a hypersonic entry vehicle, where the length of separation has implications for control effectiveness. Computational fluid-dynamics results are presented to show the flowfield around a blunted cone and cone-flare configurations in hypersonic flow with separation. This problem is of particular interest since it features most of the aspects of the hypersonic flow around planetary entry vehicles. The region between the cone and the flare is particularly critical with respect to the evaluation of the surface pressure and heat flux with aeroheating. Indeed, flow separation is induced by the shock wave boundary layer interaction, with subsequent flow reattachment, that can dramatically enhance the surface heat transfer. The exact determination of the extension of the recirculation zone is a particularly delicate task for numerical codes. Laminar flow and turbulent computations have been carried out using a full Navier-Stokes solver, with freestream conditions provided by the experimental data obtained at Mach 6, 8, and 16.34 wind tunnel. The numerical results are compared with the measured pressure and surface heat flux distributions in the wind tunnel and a good agreement is found, especially on the length of the recirculation region and location of shock waves. The critical physics of entropy layer, boundary layers, boundary layers and shock wave interaction and flow behind shock are properly captured and elaborated.. Hypersonic flows are characterized by high Mach number and high total enthalpy. An elevated

  18. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    PubMed Central

    Li, Yongli; Lv, Xiao; Zhou, Jing; Shi, Chenchen; Duan, Ting

    2017-01-01

    ABSTRACT The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2) of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air). No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent. PMID:28396489

  19. Hypersonic structures: An aerodynamicist's perspective, or one man's dream is another man's nightmare

    NASA Technical Reports Server (NTRS)

    Watts, J. D.; Jackson, L. R.; Hunt, J. L.

    1978-01-01

    The relationship between hypersonic aerodynamic and structural design is reviewed. The evolution of the hypersonic vehicle design is presented. Propulsion systems, structural materials, and fuels are emphasized.

  20. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  1. Evaluation of on-board hydrogen storage methods for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, J. F.; Adeyiga, A. A.; Perdue, Samara; Northam, G. B.

    1989-01-01

    Hydrogen is the foremost candidate as a fuel for use in high speed transport. Since any aircraft moving at hypersonic speeds must have a very slender body, means of decreasing the storage volume requirements below that for liquid hydrogen are needed. The total performance of the hypersonic plane needs to be considered for the evaluation of candidate fuel and storage systems. To accomplish this, a simple model for the performance of a hypersonic plane is presented. To allow for the use of different engines and fuels during different phases of flight, the total trajectory is divided into three phases: subsonic-supersonic, hypersonic and rocket propulsion phase. The fuel fraction for the first phase is found be a simple energy balance using an average thrust to drag ratio for this phase. The hypersonic flight phase is investigated in more detail by taking small altitude increments. This approach allowed the use of flight profiles other than the constant dynamic pressure flight. The effect of fuel volume on drag, structural mass and tankage mass was introduced through simplified equations involving the characteristic dimension of the plane. The propellant requirement for the last phase is found by employing the basic rocket equations. The candidate fuel systems such as the cryogenic fuel combinations and solid and liquid endothermic hydrogen generators are first screened thermodynamically with respect to their energy densities and cooling capacities and then evaluated using the above model.

  2. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult. © 2015. Published by The Company of Biologists Ltd.

  3. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed:more » benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.« less

  4. Structural analysis and sizing of stiffened, metal matrix composite panels for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.

    1992-01-01

    The present method for strength and stability analyses of stiffened, fiber-reinforced composite panels to be used in hypersonic vehicle structures is of great generality, and can be linked with planar finite-element analysis (FEA). Nonlinear temperature and load-dependent material data for each laminate are used to 'build-up' the stiffened panel's membrane, bending, and membrane-bending coupling stiffness terms, as well as thermal coefficients. The resulting, FEA-solved thermomechanical forces and moments are used to calculate strain at any location in the panel; this allows an effective ply-by-ply orthotropic strength analysis to be conducted, together with orthotropic instability checks for each laminated segment of the cross-section.

  5. CFD analysis of hypersonic, chemically reacting flow fields

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1993-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.

  6. A ceramic matrix composite thermal protection system for hypersonic vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccitiello, S.R.; Love, W.L.; Pitts, W.C.

    1993-07-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bondedmore » to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems. 10 refs.« less

  7. The Syracuse University Center for Training and Research in Hypersonics

    NASA Technical Reports Server (NTRS)

    LaGraff, John; Blankson, Isaiah (Technical Monitor); Robinson, Stephen K. (Technical Monitor); Walsh, Michael J. (Technical Monitor); Anderson, Griffin Y. (Technical Monitor)

    2000-01-01

    In Fall 1993, NASA Headquarters established Centers for Hypersonics at the University of Maryland, the University of Texas-Arlington, and Syracuse University. These centers are dedicated to research and education in hypersonic technologies and have the objective of educating the next generation of engineers in this critical field. At the Syracuse University Center for Hypersonics this goal is being realized by focusing resources to: Provide an environment in which promising undergraduate students can learn the fundamental engineering principles of hypersonics so that they may make a seamless transition to graduate study and research in this field; Provide graduate students with advanced training in hypersonics and an opportunity to interact with leading authorities in the field in both research and instructional capacities; and Perform fundamental research in areas that will impact hypersonic vehicle design and development.

  8. Passive in-vehicle driver breath alcohol detection using advanced sensor signal acquisition and fusion.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Allalou, Amin; Pettersson, Håkan

    2017-05-29

    The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlight the necessary conditions for large-scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the Driver Alcohol Detection System for Safety (DADSS) program aiming at massive deployment of alcohol sensing systems that could potentially save thousands of American lives annually. The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO 2 ) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO 2 . In the present investigation, alcohol and CO 2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver's upper body parts, including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction. Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO 2 and alcohol. From the statistical data, the accuracy of breath alcohol

  9. Benzene and naphthalene in air and breath as indicators of exposure to jet fuel

    PubMed Central

    Egeghy, P; Hauf-Cabalo, L; Gibson, R; Rappaport, S

    2003-01-01

    Aims: To estimate exposures to benzene and naphthalene among military personnel working with jet fuel (JP-8) and to determine whether naphthalene might serve as a surrogate for JP-8 in studies of health effects. Methods: Benzene and naphthalene were measured in air and breath of 326 personnel in the US Air Force, who had been assigned a priori into low, moderate, and high exposure categories for JP-8. Results: Median air concentrations for persons in the low, moderate, and high exposure categories were 3.1, 7.4, and 252 µg benzene/m3 air, 4.6, 9.0, and 11.4 µg benzene/m3 breath, 1.9, 10.3, and 485 µg naphthalene/m3 air, and 0.73, 0.93, and 1.83 µg naphthalene/m3 breath, respectively. In the moderate and high exposure categories, 5% and 15% of the benzene air concentrations, respectively, were above the 2002 threshold limit value (TLV) of 1.6 mg/m3. Multiple regression analyses of air and breath levels revealed prominent background sources of benzene exposure, including cigarette smoke. However, naphthalene exposure was not unduly influenced by sources other than JP-8. Among heavily exposed workers, dermal contact with JP-8 contributed to air and breath concentrations along with several physical and environmental factors. Conclusions: Personnel having regular contact with JP-8 are occasionally exposed to benzene at levels above the current TLV. Among heavily exposed workers, uptake of JP-8 components occurs via both inhalation and dermal contact. Naphthalene in air and breath can serve as useful measures of exposure to JP-8 and uptake of fuel components in the body. PMID:14634191

  10. CFD validation experiments for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.

    1992-01-01

    A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.

  11. Objective vs. Subjective Evaluation of Cognitive Performance During 0.4-MPa Dives Breathing Air or Nitrox.

    PubMed

    Germonpré, Peter; Balestra, Costantino; Hemelryck, Walter; Buzzacott, Peter; Lafère, Pierre

    2017-05-01

    Divers try to limit risks associated with their sport, for instance by breathing enriched air nitrox (EANx) instead of air. This double blinded, randomized trial was designed to see if the use of EANx could effectively improve cognitive performance while diving. Eight volunteers performed two no-decompression dry dives breathing air or EANx for 20 min at 0.4 MPa. Cognitive functions were assessed with a computerized test battery, including MathProc and Ptrail. Measurements were taken before the dive, upon arrival and after 15 min at depth, upon surfacing, and at 30 min postdive. After each dive subjects were asked to identify the gas they had just breathed. Identification of the breathing gas was not possible on subjective assessment alone, while cognitive assessments showed significantly better performance while breathing EANx. Before the dives, breathing air, mean time to complete the task was 1795 ms for MathProc and 1905 ms for Ptrail. When arriving at depth MathProc took 1616 ms on air and 1523 ms on EANx, and Ptrail took 1318 ms on air and and 1356 ms on EANx, followed 15 min later by significant performance inhibition while breathing air during the ascent and the postdive phase, supporting the concept of late dive/postdive impairment. The results suggest that EANx could protect against decreased neuro-cognitive performance induced by inert gas narcosis. It was not possible for blinded divers to identify which gas they were breathing and differences in postdive fatigue between air and EANx diving deserve further investigation.Germonpré P, Balestra C, Hemelryck W, Buzzacott P, Lafère P. Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp Med Hum Perform. 2017; 88(5):469-475.

  12. An engineering code to analyze hypersonic thermal management systems

    NASA Technical Reports Server (NTRS)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  13. NASA's B-52B launch aircraft cruises to a test range over the Pacific Ocean carrying the second X-43A vehicle attached to a Pegasus rocket on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft, attached to a modified Pegasus booster rocket and followed by a chase F-18, was taken to launch altitude by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. In a combined research effort involving Dryden, Langley, and several industry partners, NASA demonstrated the value of its X-43A hypersonic research aircraft, as it became the first air-breathing, unpiloted, scramjet-powered plane to fly freely by itself. The March 27 flight, originating from NASA's Dryden Flight Research Center, began with the Agency's B-52B launch aircraft carrying the X-43A out to the test range over the Pacific Ocean off the California coast. The X-43A was boosted up to its test altitude of about 95,000 feet, where it separated from its modified Pegasus booster and flew freely under its own power. Two very significant aviation milestones occurred during this test flight: first, controlled accelerating flight at Mach 7 under scramjet power, and second, the successful stage separation at high dynamic pressure of two non-axisymmetric vehicles. To top it all off, the flight resulted in the setting of a new aeronautical speed record. The X-43A reached a speed of over Mach 7, or about 5,000 miles per hour faster than any known aircraft powered by an air-breathing engine has ever flown.

  14. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  15. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantlymore » transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.« less

  16. Assessment of nonequilibrium radiation computation methods for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra

    1993-01-01

    The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.

  17. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  18. Power-on performance predictions for a complete generic hypersonic vehicle configuration

    NASA Technical Reports Server (NTRS)

    Bennett, Bradford C.

    1991-01-01

    The Compressible Navier-Stokes (CNS) code was developed to compute external hypersonic flow fields. It has been applied to various hypersonic external flow applications. Here, the CNS code was modified to compute hypersonic internal flow fields. Calculations were performed on a Mach 18 sidewall compression inlet and on the Lewis Mach 5 inlet. The use of the ARC3D diagonal algorithm was evaluated for internal flows on the Mach 5 inlet flow. The initial modifications to the CNS code involved generalization of the boundary conditions and the addition of viscous terms in the second crossflow direction and modifications to the Baldwin-Lomax turbulence model for corner flows.

  19. Calculation of Supersonic Combustion Using Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan (Technical Monitor)

    2003-01-01

    One of the technology goals of NASA for advanced space transportation is to develop highly efficient propulsion systems to reduce the cost of payload for space missions. Developments of rockets for the second generation Reusable Launch Vehicle (RLV) in the past several years have been focused on low-cost versions of conventional engines. However, recent changes in the Integrated Space Transportation Program to build a crew transportation vehicle to extend the life of the Space Shuttle fleet might suggest that air-breathing rockets could reemerge as a possible propulsion system for the third generation RLV to replace the Space Shuttle after 2015. The weight of the oxygen tank exceeds thirty percent of the total weight of the Space Shuttle at launch while the payload is only one percent of the total weight. The air-breathing rocket propulsion systems, which consume oxygen in the air, offer clear advantages by making vehicles lighter and more efficient. Experience in the National Aerospace Plane Program in the late 1980s indicates that scramjet engines can achieve high specific impulse for low hypersonic vehicle speeds. Whether taking a form of Rocket Based Combined Cycle (RBCC) or Turbine Based Combined Cycle (TBCC), the scramjet is an essential mode of operation for air-breathing rockets. It is well known that fuel-air mixing and rapid combustion are of crucial importance for the success of scramjet engines since the spreading rate of the supersonic mixing layer decreases as the Mach number increases. A factored form of the Gauss-Seidel relaxation method has been widely used in hypersonic flow research since its first application to non-equilibrium flows. However, difficulties in stability and convergence have been encountered when there is strong interaction between fluid motion and chemical reaction, such as multiple fuel injection problems. The present paper reports the results from investigation of the effect of modifications to the original algorithm on the

  20. Iodine Tagging Velocimetry and Mechanism in the Hypersonic Near Wake of a MultiPurpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey

    2013-01-01

    This study demonstrates a new molecular tagging velocimetry (MTV) method for velocity measurements of high speed flow. It demonstrates offbody Iodine Tagging Velocimetry (ITV) in the hypersonic near wake of a MultiPurpose Crew Vehicle (MPCV) model. Experiments are performed in the NASA-Langley 31-inch Mach 10 air wind tunnel. A 0.5% I2 / N2 mixture is seeded on the leeward backshell of the model using a pressure tap. I2 laser-induced fluorescence is excited along a 5.5 mm line using an ArF excimer laser near 193 nm. Results indicate I2 absorbs at least 2 photons to produce iodine ions and electrons. These recombine as the tagged region is displaced downstream to produce I (2P3/2) whose emission is monitored at 206 nm. Results at P0 = 2.41 MPa (350 psi), T0 = 990K, and 10 micro-sec transit times produce velocities from 630-820 m/sec across the I2 seeded jet at a distance of 38.2 mm (25.5 jet diameters) downstream from the jet orifice. Maximum wake jet velocities near the shear layer are 59% of freestream velocity.

  1. Advanced vehicle concepts systems and design analysis studies

    NASA Technical Reports Server (NTRS)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  2. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations.

    PubMed

    McCafferty, J B; Bradshaw, T A; Tate, S; Greening, A P; Innes, J A

    2004-08-01

    The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) microl, 1019 (313) microl, and 1358 (364) microl, respectively (p<0.001) and TEW was 1879 (378) microl, 2986 (496) microl, and 4679 (700) microl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 microl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 microl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample.

  3. Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.

    A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.

  4. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  5. Hypersonic transports - Economics and environmental effects.

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Waters, M. H.

    1973-01-01

    An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and flyover noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.

  6. Hypersonic transports - Economics and environmental effects.

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Waters, M. H.

    1972-01-01

    An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and flyover noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.

  7. Hypersonic transports: Economics and environmental effects

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Waters, M. H.

    1972-01-01

    An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and fly-over noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.

  8. X-43C Plans and Status

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.

  9. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Maldonado, Jaime J.

    1994-04-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  10. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Maldonado, Jaime J.

    1994-01-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  11. X43 Hyper-X

    NASA Image and Video Library

    2004-02-11

    NASA's Hyper-x Program Manager, Vince Rausch talks about the upcoming launch of the X43A vehicle over the Pacific Ocean later this month from his office at NASA Langley Research Center in Hampton, VA. Hyper X is a high risk, high payoff program. The flight of the X43 A will demonstrated in flight for the first time, air breathing hypersonic propulsion technology. (Photo by Jeff Caplan)

  12. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Yaeger, L.

    1976-01-01

    A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  13. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 1: Computational technique

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Salas, M.; Yaeger, L.

    1976-01-01

    A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  14. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  15. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    NASA Astrophysics Data System (ADS)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  16. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  17. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.

    PubMed

    Brauner, Colin J; Rombough, Peter J

    2012-12-01

    There are large changes in gill function during development associated with ionoregulation and gas exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoregulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less important in terms of O(2) uptake with expansion of the air-breathing organ, it retains its roles in CO(2) excretion, ion exchange and acid-base balance. The observation that gill morphology and function is strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary implications. In particular, it suggests that the inability of the skin to maintain ion and acid-base balance as protovertebrates increased in size and became more active may have been more important in driving gill development than O(2) insufficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  19. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus.

    PubMed

    Mendez-Sanchez, J F; Burggren, W W

    2014-03-01

    The effect of hypoxia on air-breathing onset and survival was determined in larvae of the air-breathing fishes, the three spot gourami Trichopodus trichopterus and the Siamese fighting fish Betta splendens. Larvae were exposed continuously or intermittently (12 h nightly) to an oxygen partial pressure (PO2 ) of 20, 17 and 14 kPa from 1 to 40 days post-fertilization (dpf). Survival and onset of air breathing were measured daily. Continuous normoxic conditions produced a larval survival rate of 65-75% for B. splendens and 15-30% for T. trichopterus, but all larvae of both species died at 9 dpf in continuous hypoxia conditions. Larvae under intermittent (nocturnal) hypoxia showed a 15% elevated survival rate in both species. The same conditions altered the onset of air breathing, advancing onset by 4 days in B. splendens and delaying onset by 9 days in T. trichopterus. These interspecific differences were attributed to air-breathing characteristics: B. splendens was a non-obligatory air breather after 36 dpf, whereas T. trichopterus was an obligatory air breather after 32 dpf. © 2014 The Fisheries Society of the British Isles.

  20. Vibrational Properties of Zr(Hf)B2-SiC UHTC Composites by Micro-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Donohue, M.; Carpenter, C.; Orlovskaya, N.

    Development and characterization of novel materials that are lightweight, possess high mechanical properties, can withstand high temperatures, and provide superior thermal properties are crucial to meet the future demands of Air Force, Army, Navy, Missile Defense Agency (MDA), and other military and space agencies. Materials for such applications (hypersonic air-breathing vehicles, including Single-To-Orbit vehicles and Two-Stage-To-Orbit aerospace planes, fully reusable space transport vehicles, hypersonic cruise missiles) experience severe aero-thermal loads with nose-cone and nozzle temperatures in excess of 2,000°F and 4,000°F, respectively. High G acceleration is also a problem. Even the most advanced materials, such as Ti, Inconel X, carbon-carbon, and silicon carbide based composites cannot withstand the excessive heat generated, especially during re-entry, and they cannot meet the guidelines for future high performance aircrafts, kinetic energy interceptors and reusable space planes. Thus, the demand for low-cost, light weight high temperature materials for thermal protection systems (TPS) is expected to be on the significant rise in the near future.

  1. Hypersonic airframe structures: Technology needs and flight test requirements

    NASA Technical Reports Server (NTRS)

    Stone, J. E.; Koch, L. C.

    1979-01-01

    Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.

  2. The Use of Steady and Unsteady Detonation Waves for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)

    1995-01-01

    Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.

  3. Damage accumulation in titanium matrix composites under generic hypersonic vehicle flight simulation and sustained loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.S.; Mirdamadi, M.; Bakuckas, J.G. Jr.

    1996-12-31

    Titanium matrix composites (TMC), such as Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6), are being evaluated for use in hypersonic vehicles and advanced gas turbine engines where high strength-to-weight and high stiffness-to-weight ratios at elevated temperatures are critical. Such applications expose the composite to mechanical fatigue loading as well as thermally induced cycles. The damage accumulation behavior of a [0/90]2s laminate made of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a simulated generic hypersonic flight profile, portions of the flight profile, and sustained loads was evaluated experimentally. Portions of the flight profile were used separately tomore » isolate combinations of load and time at temperature that influenced the fatigue behavior of the composite. Sustained load tests were also conducted and the results were compared with the fatigue results under the flight profile and its portions. The test results indicated that the fatigue strength of this materials system is considerably reduced by a combination of load and time at temperature.« less

  4. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations

    PubMed Central

    McCafferty, J; Bradshaw, T; Tate, S; Greening, A; Innes, J

    2004-01-01

    Background: The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Methods: Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. Results: The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) µl, 1019 (313) µl, and 1358 (364) µl, respectively (p<0.001) and TEW was 1879 (378) µl, 2986 (496) µl, and 4679 (700) µl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 µl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 µl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. Conclusion: These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample. PMID:15282391

  5. Air-breathing during activity in the fishes amia calva and lepisosteus oculatus

    PubMed

    Farmer; d

    1998-04-01

    Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air and water was measured during mild activity in bowfin (Amia calva) and spotted gar (Lepisosteus oculatus) by sealing a fish in an acrylic flume that contained an air-hole. At 19-23 degreesC, the rate of oxygen consumption from air in both species was modest at rest. During low-level exercise, more than 50 % of the oxygen consumed by both species was from the air (53.0+/-22.9 % L. oculatus; 66.4+/-8.3 % A. calva).

  6. The Need for Speed. Hypersonic Aircraft and the Transformation of Long Range Airpower

    DTIC Science & Technology

    2005-06-01

    lxxii Heppenheimer , Thomas A . “Origins of Hypersonic Propulsion: A Personal History.” Air Power History 47, no. 3 (Fall 2000), 14-27. Hicks, John W...early Aerospace plane research. 59 Thomas A . Heippenheimer, “Origins of Hypersonic Propulsion: A Personal History,” Air Power History 47, no. 3 (Fall...experiments with hypersonic engines. 65 Ibid. 66 Thomas A . Heippenheimer, 15. 67 Ibid., 17-18. Lockheed and General Applied Science Laboratories

  7. Flap effectiveness appraisal for winged re-entry vehicles

    NASA Astrophysics Data System (ADS)

    de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio

    2016-05-01

    The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.

  8. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure

  9. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  10. An Overview of the Role of Systems Analysis in NASA's Hypersonics Project

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.; Bowles, Jeffrey V> ; Mehta, Unmeel B.; Snyder, CHristopher A.

    2006-01-01

    NASA's Aeronautics Research Mission Directorate recently restructured its Vehicle Systems Program, refocusing it towards understanding the fundamental physics that govern flight in all speed regimes. Now called the Fundamental Aeronautics Program, it is comprised of four new projects, Subsonic Fixed Wing, Subsonic Rotary Wing, Supersonics, and Hypersonics. The Aeronautics Research Mission Directorate has charged the Hypersonics Project with having a basic understanding of all systems that travel at hypersonic speeds within the Earth's and other planets atmospheres. This includes both powered and unpowered systems, such as re-entry vehicles and vehicles powered by rocket or airbreathing propulsion that cruise in and accelerate through the atmosphere. The primary objective of the Hypersonics Project is to develop physics-based predictive tools that enable the design, analysis and optimization of such systems. The Hypersonics Project charges the systems analysis discipline team with providing it the decision-making information it needs to properly guide research and technology development. Credible, rapid, and robust multi-disciplinary system analysis processes and design tools are required in order to generate this information. To this end, the principal challenges for the systems analysis team are the introduction of high fidelity physics into the analysis process and integration into a design environment, quantification of design uncertainty through the use of probabilistic methods, reduction in design cycle time, and the development and implementation of robust processes and tools enabling a wide design space and associated technology assessment capability. This paper will discuss the roles and responsibilities of the systems analysis discipline team within the Hypersonics Project as well as the tools, methods, processes, and approach that the team will undertake in order to perform its project designated functions.

  11. A CFD validation roadmap for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.

    1992-01-01

    A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.

  12. A CFD validation roadmap for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.

    1993-01-01

    A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.

  13. Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish.

    PubMed

    Belão, T C; Leite, C A C; Florindo, L H; Kalinin, A L; Rantin, F T

    2011-10-01

    The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f (R)) monitored and were subjected to normoxic water (PwO(2) = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f (R), confirming that this species is a facultative air-breather. Its aquatic O(2) uptake ([Formula: see text]) was maintained constant down to a critical PO(2) (PcO(2)) of 60 mmHg, below which [Formula: see text] declined linearly with further reductions of inspired O(2) tension (PiO(2)). Just above the PcO(2) the ventilatory tidal volume (V (T)) increased significantly along with gill ventilation ([Formula: see text]), while f (R) changed little. Consequently, the water convection requirement [Formula: see text] increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO(2) = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO(2) tensions below the PcO(2). Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.

  14. Laser-energized MHD generator for hypersonic electric air-turborockets

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Rosa, R. J.; Moder, J. P.; Blandino, J. S.; Frazier, S. R.

    1987-01-01

    The analysis and design of an open cycle Faraday MHD generator suitable for use in an electric air-turborocket cycle, the MHD-fanjet, is presented. The working fluid for the generators is unseeded high temperature hydrogen, generated by a standing, laser-supported combustion wave. This study also examines the performance of an advanced combined-cycle engine, powered by beamed energy, proposed for use in future SSTO aerospacecraft. This innovative engine incorporates the MHD-fanjet for the acceleration role within the hypersonic flight regime, from about Mach 11 to above Mach 25. Performance results indicate that specific impulses could fall in the range of 10,000 to 16,000 seconds. This would enable propellant mass fractions as low as 6 percent to 9 percent for such advanced shuttlecraft flying SSTO missions to low earth orbit.

  15. Issues Associated with a Hypersonic Maglev Sled

    NASA Technical Reports Server (NTRS)

    Haney, Joseph W.; Lenzo, J.

    1996-01-01

    Magnetic levitation has been explored for application from motors to transportation. All of these applications have been at velocities where the physics of the air or operating fluids are fairly well known. Application of Maglev to hypersonic velocities (Mach greater than 5) presents many opportunities, but also issues that require understanding and resolution. Use of Maglev to upgrade the High Speed Test Track at Holloman Air Force Base in Alamogordo New Mexico is an actual hypersonic application that provides the opportunity to improve test capabilities. However, there are several design issues that require investigation. This paper presents an overview of the application of Maglev to the test track and the issues associated with developing a hypersonic Maglev sled. The focus of this paper is to address the issues with the Maglev sled design, rather than the issues with the development of superconducting magnets of the sled system.

  16. Breaking wind to survive: fishes that breathe air with their gut.

    PubMed

    Nelson, J A

    2014-03-01

    Several taxonomically disparate groups of fishes have evolved the ability to extract oxygen from the air with elements of their gut. Despite perceived difficulties with balancing digestive and respiratory function, gut air breathing (GAB) has evolved multiple times in fishes and several GAB families are among the most successful fish families in terms of species numbers. When gut segments evolve into an air-breathing organ (ABO), there is generally a specialized region for exchange of gases where the gut wall has diminished, vascularization has increased, capillaries have penetrated into the luminal epithelium and surfactant is produced. This specialized region is generally separated from digestive portions of the gut by sphincters. GAB fishes tend to be facultative air breathers that use air breathing to supplement aquatic respiration in hypoxic waters. Some hindgut breathers may be continuous, but not obligate air breathers (obligate air breathers drown if denied access to air). Gut ABOs are generally used only for oxygen uptake; CO₂ elimination seems to occur via the gills and skin in all GAB fishes studied. Aerial ventilation in GAB fishes is driven primarily by oxygen partial pressure of the water (PO₂) and possibly also by metabolic demand. The effect of aerial ventilation on branchial ventilation and the cardiovascular system is complex and generalizations across taxa or ABO type are not currently possible. Blood from GAB fishes generally has a low blood oxygen partial pressure that half saturates haemoglobin (p50) with a very low erythrocytic nucleoside triphosphate concentration [NTP]. GAB behaviour in nature depends on the social and ecological context of the animal as well as on physiological factors. © 2014 The Fisheries Society of the British Isles.

  17. Sustained periodic terrestrial locomotion in air-breathing fishes.

    PubMed

    Pace, C M; Gibb, A C

    2014-03-01

    While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes. © 2014 The Fisheries Society of the British Isles.

  18. Respiratory responses of the air-breathing fish Hoplosternum littorale to hypoxia and hydrogen sulfide.

    PubMed

    Affonso, E G; Rantin, F T

    2005-07-01

    The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.

  19. -----SPACE TRANSPORTATION

    NASA Image and Video Library

    1998-10-07

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  20. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    DTIC Science & Technology

    2013-01-01

    coupled with combustor – Combustor, component for subsonic or supersonic combustion – Nozzle , expands flow for high thrust and may provide lift... supersonic solution method that is used for both the inlet and nozzle components. The supersonic model SAMURI is a substantial improvement over previous models...purely supersonic inviscid flow. As a result, the model is also appropriate for other applications, including the nozzle , which is important 19 Figure

  1. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  2. Analytical solutions of hypersonic type IV shock - shock interactions

    NASA Astrophysics Data System (ADS)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  3. Hypersonic aeroheating test of space shuttle vehicle configuration 3 (model 22-OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The results of hypersonic wind tunnel testing of an 0.0175 scale version of the vehicle 3 space shuttle configuration are presented. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster alone to provide heat transfer data. The test was conducted at free-stream Mach numbers of 5.3 and 7.3 and at free-stream Reynolds numbers of 1.5 million, 3.7 million, 5.0 million, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  4. Wind Tunnel Test of Mach 5 Class Hypersonic Airplane

    NASA Astrophysics Data System (ADS)

    Nakatani, Hiroki; Taguchi, Hideyuki; Fujita, Kazuhisa; Shindo, Shigemi; Honami, Shinji

    JAXA is currently performing studies on a Hypersonic Turbojet Experimental Vehicle, which involve a hypersonic flight test of a Small Pre-cooled Turbojet Engine. The aerodynamic performance of this airplane was examined at the JAXA hypersonic, supersonic, and transonic wind tunnel facilities. The 6-degrees-of-freedom forces and pressure distribution around the model were measured and evaluated. This airplane satisfies the lift-to-drag ratio requirement for a flight test at Mach 5. In addition, the results indicate that this airplane has longitudinal and directional static stability if the moment reference point is x/l smaller than 0.35. A separation occurs at the external expanding nozzle. Therefore, a redesign is necessary to solve these problems.

  5. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  6. Body weight of hypersonic aircraft, part 1

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1988-01-01

    The load bearing body weight of wing-body and all-body hypersonic aircraft is estimated for a wide variety of structural materials and geometries. Variations of weight with key design and configuration parameters are presented and discussed. Both hot and cool structure approaches are considered in isotropic, organic composite, and metal matrix composite materials; structural shells are sandwich or skin-stringer. Conformal and pillow-tank designs are investigated for the all-body shape. The results identify the most promising hypersonic aircraft body structure design approaches and their weight trends. Geometric definition of vehicle shapes and structural analysis methods are presented in appendices.

  7. The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus.

    PubMed

    McKenzie, D J; Campbell, H A; Taylor, E W; Micheli, M; Rantin, F T; Abe, A S

    2007-12-01

    The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (fH) during air-breathing events, and it is believed that these may facilitate oxygen uptake (MO2) from the ABO. The current study employed power spectral analysis (PSA) of fH patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total MO2 (MtO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water PO2)=1 kPa) the jeju increased the frequency of air breathing (fAB) tenfold and maintained MtO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These fH changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in fH typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of fH around each AB. Pharmacological blockade of all variations in fH associated with air breathing in deep hypoxia did not, however, have a significant effect upon fAB or the regulation of MtO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.

  8. An overview of research on waverider design methodology

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Liu, Jun; Shen, Chi-bing; Liu, Zhen; Chen, Shao-hua; Fu, Xiang

    2017-11-01

    A waverider is any supersonic or hypersonic lifting body that is characterized by an attached, or nearly attached, bow shock wave along its leading edge. As a waverider can possess a high lift-to-drag ratio as well as an ideal precompression surface of the inlet system, it has become one of the most promising designs for air-breathing hypersonic vehicles. This paper reviews and classifies waverider design methodologies developed by local and foreign scholars up until 2016. The design concept of a waverider can be summarized as follows: modeling of the basic flow field is used to design the waverider in the streamwise direction and the osculating theory is used to design the waverider in the spanwise direction.

  9. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  10. Natural ventilation without air breathing in the top openings of highway tunnels

    NASA Astrophysics Data System (ADS)

    Jin, Sike; Jin, Jiali; Gong, Yanfeng

    2017-05-01

    A number of urban shallow-buried highway tunnels have been built in China. Despite much better internal air quality compared to the traditional tunnels, there is no sufficient theoretical ground or experimental support for the construction of such tunnels. Most researchers hold that natural ventilation in such tunnels depends on air breathing in the top openings, but some others are skeptical about this conclusion. By flow visualization technology on a tunnel experiment platform, we tested the characteristics of airflow in the top openings of highway tunnels. The results showed that air always flowed from outside to inside in all top openings above a continuous traffic stream, and the openings did not breathe at all. In addition, intake air in the top openings reached its maximum velocity at the tunnel entrance, and then gradually slowed down with tunnel depth increasing.

  11. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context. © 2015

  12. Development and Validation of a Supersonic Helium-Air Coannular Jet Facility

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.; Cutler, Andrew D.

    1999-01-01

    Data are acquired in a simple coannular He/air supersonic jet suitable for validation of CFD (Computational Fluid Dynamics) codes for high speed propulsion. Helium is employed as a non-reacting hydrogen fuel simulant, constituting the core of the coannular flow while the coflow is composed of air. The mixing layer interface between the two flows in the near field and the plume region which develops further downstream constitute the primary regions of interest, similar to those present in all hypersonic air breathing propulsion systems. A computational code has been implemented from the experiment's inception, serving as a tool for model design during the development phase.

  13. Revolutionary Materials for Hypersonic Flight

    DTIC Science & Technology

    2011-10-01

    Transactions A (in preparation ). 16. M.D. Novak, CG. Levi, " Silicide Coatings on Niobium Substrates II: Thermodynamic Analysis and Mechanism of...These conditions impose significant challenges to material selection. While metallic materials are favored for their durability to thermal distortion...those of even the most highly-conducting engineering materials. While metallic systems are desirable for use in hypersonic vehicles for durability and

  14. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.

    1989-01-01

    The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.

  15. Vortex lattice prediction of subsonic aerodynamics of hypersonic vehicle concepts

    NASA Technical Reports Server (NTRS)

    Pittman, J. L.; Dillon, J. L.

    1977-01-01

    The vortex lattice method introduced by Lamar and Gloss (1975) was applied to the prediction of subsonic aerodynamic characteristics of hypersonic body-wing configurations. The reliability of the method was assessed through comparison of the calculated and observed aerodynamic performances of two National Hypersonic Flight Research Facility craft at Mach 0.2. The investigation indicated that a vortex lattice model involving 120 or more panel elements can give good results for the lift and induced drag coefficients of the craft, as well as for the pitching moment at angles of attack below 10 to 15 deg. Automated processes for calculating the local slopes of mean-camber surfaces may also render the method suitable for use in preliminary design phases.

  16. Impact of cabin environment on thermal protection system of crew hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui

    2016-05-01

    Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.

  17. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  18. Air breathing in Magadi tilapia Alcolapia grahami, under normoxic and hyperoxic conditions, and the association with sunlight and reactive oxygen species.

    PubMed

    Johannsson, O E; Bergman, H L; Wood, C M; Laurent, P; Kavembe, D G; Bianchini, A; Maina, J N; Chevalier, C; Bianchini, L F; Papah, M B; Ojoo, R O

    2014-03-01

    Observations of the Magadi tilapia Alcolapia grahami in hot, highly alkaline Lake Magadi revealed that they air breathe not only during hypoxia, as described previously, but also during normoxia and hyperoxia. Air breathing under these latter conditions occurred within distinct groupings of fish (pods) and involved only a small proportion of the population. Air breathing properties (duration and frequency) were quantified from video footage. Air breathing within the population followed a diel pattern with the maximum extent of pod formation occurring in early afternoon. High levels of reactive oxygen species (ROS) in the water may be an irritant that encourages the air-breathing behaviour. The diel pattern of air breathing in the field and in experiments followed the diel pattern of ROS concentrations in the water which are amongst the highest reported in the literature (maximum daytime values of 2.53 – 8.10 μM H₂O₂). Interlamellar cell masses (ILCM) occurred between the gill lamellae of fish from the lagoon with highest ROS and highest oxygen levels, while fish from a normoxic lagoon with one third the ROS had little or no ILCM. This is the first record of air breathing in a facultative air-breathing fish in hyperoxic conditions and the first record of an ILCM in a cichlid species. © 2013 The Fisheries Society of the British Isles.

  19. Conceptual design of two-stage-to-orbit hybrid launch vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object of this design class was to design an earth-to orbit vehicle to replace the present NASA space shuttle. The major motivations for designing a new vehicle were to reduce the cost of putting payloads into orbit and to design a vehicle that could better service the space station with a faster turn-around time. Another factor considered in the design was that near-term technology was to be used. Materials, engines and other important technologies were to be realized in the next 10 to 15 years. The first concept put forth by NASA to meet these objectives was the National Aerospace Plane (NASP). The NASP is a single-stage earth-to-orbit air-breathing vehicle. This concept ran into problems with the air-breathing engine providing enough thrust in the upper atmosphere, among other things. The solution of this design class is a two-stage-to-orbit vehicle. The first stage is air-breathing and the second stage is rocket-powered, similar to the space shuttle. The second stage is mounted on the top of the first stage in a piggy-back style. The vehicle takes off horizontally using only air-breathing engines, flies to Mach six at 100,000 feet, and launches the second stage towards its orbital path. The first stage, or booster, will weigh approximately 800,000 pounds and the second stage, or orbiter will weigh approximately 300,000 pounds. The major advantage of this design is the full recoverability of the first stage compared with the present solid rocket booster that are only partially recoverable and used only a few times. This reduces the cost as well as providing a more reliable and more readily available design for servicing the space station. The booster can fly an orbiter up, turn around, land, refuel, and be ready to launch another orbiter in a matter of hours.

  20. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    PubMed

    Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.

  1. Airbreathing Hypersonic Systems Focus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Rausch, Vincent L.

    1998-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vehicle design matrix, reflects on the synergies and issues, and indicates the thrust of the effort to resolve the design matrix and to focus/advance systems technology maturation. Priority is given to the design of the vision operational vehicles followed by flow-down requirements to flight demonstrator vehicles and their design for eventual consideration in the Future-X Program.

  2. Approach to solution of coupled heat transfer problem on the surface of hypersonic vehicle of arbitrary shape

    NASA Astrophysics Data System (ADS)

    Bocharov, A. N.; Bityurin, V. A.; Golovin, N. N.; Evstigneev, N. M.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.; Fortov, V. E.

    2016-11-01

    In this paper, an approach to solve conjugate heat- and mass-transfer problems is considered to be applied to hypersonic vehicle surface of arbitrary shape. The approach under developing should satisfy the following demands. (i) The surface of the body of interest may have arbitrary geometrical shape. (ii) The shape of the body can change during calculation. (iii) The flight characteristics may vary in a wide range, specifically flight altitude, free-stream Mach number, angle-of-attack, etc. (iv) The approach should be realized with using the high-performance-computing (HPC) technologies. The approach is based on coupled solution of 3D unsteady hypersonic flow equations and 3D unsteady heat conductance problem for the thick wall. Iterative process is applied to account for ablation of wall material and, consequently, mass injection from the surface and changes in the surface shape. While iterations, unstructured computational grids both in the flow region and within the wall interior are adapted to the current geometry and flow conditions. The flow computations are done on HPC platform and are most time-consuming part of the whole problem, while heat conductance problem can be solved on many kinds of computers.

  3. Evaluation of BAUER High Pressure Breathing Air P-2 Purification System

    DTIC Science & Technology

    1991-08-01

    and is a coalescing type separator that removes oil and water vapors suspended in the compressed air . The molecular sieve is made to adsorb oil and...filtering, moisture separation, and prevents compressed air return from the charged air storage flasks to the compressor during unit shutdown. A manual...1111111111111 1111 IE IH fil91i C NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 10-91 EVALUATION OF BAUER HIGH PRESSURE BREATHING AIR P-2 PURIFICATION SYSTEM GEORGE D

  4. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  5. Overview of X-38 Hypersonic Aerothermodynamic Wind Tunnel Data and Comparison with Numerical Results

    NASA Technical Reports Server (NTRS)

    Campbell, C.; Caram, J.; Berry, S.; Horvath, T.; Merski, N.; Loomis, M.; Venkatapathy, E.

    2004-01-01

    A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic aerothermodynamic characteristics of the X-23/X-24A derived X-38 crew return vehicle are being evaluated in various wind tunnels in support of this effort. Aerothermodynamic data from two NASA hypersonic tunnels at Mach 6 and Mach 10 has been obtained with cast ceramic models and a thermographic phosphorus digital imaging system. General windward surface heating features are described based on experimental surface heating images and surface oil flow patterns for the nominal hypersonic aerodynamic orientation. Body flap reattachment heating levels are examined. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with this data.

  6. Aerodynamic prediction techniques for hypersonic configuration design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Potential theory was examined in detail to meet this objective. Numerical pilot codes were developed for relatively simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body, and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one.

  7. Computational and experimental aftbody flow fields for hypersonic, airbreathing configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1991-01-01

    Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.

  8. The NASA-sponsored Maryland center for hypersonic education and research

    NASA Technical Reports Server (NTRS)

    Lewis, Mark J.; Gupta, Ashwani K.

    1995-01-01

    The Office of Aeronautics of the National Aeronautics and Space Administration has established a program to support university programs in the field of hypersonic flight. Beginning in the fall of 1993, three universities, including the University of Maryland at College Park, were selected to participate in this activity. The program at the University of Maryland includes faculty in the Department of Aerospace Engineering and Department of Mechanical Engineering, and provides a multidisciplinary environment for graduate and undergraduate students to study and conduct research in the field of hypersonic flight. Ongoing projects cover the range of applications from cruisers through transatmospheric and reentry vehicles. Research activities, focused on propulsion, fluid dynamics, inverse design, and vehicle optimization and integration, are conducted in conjuntion with industrial partners and government laboratories.

  9. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air. Copyright © 2012. Published by Elsevier Inc.

  10. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  11. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods

    NASA Astrophysics Data System (ADS)

    Graham, Jeffrey B.; Wegner, Nicholas C.; Miller, Lauren A.; Jew, Corey J.; Lai, N. Chin; Berquist, Rachel M.; Frank, Lawrence R.; Long, John A.

    2014-01-01

    The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.

  12. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods.

    PubMed

    Graham, Jeffrey B; Wegner, Nicholas C; Miller, Lauren A; Jew, Corey J; Lai, N Chin; Berquist, Rachel M; Frank, Lawrence R; Long, John A

    2014-01-01

    The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.

  13. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. © 2014. Published by The Company of Biologists Ltd.

  14. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey

    2005-05-01

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.

  15. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  16. Prediction of forces and moments for flight vehicle control effectors: Workplan

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.

    1989-01-01

    Two research activities directed at hypersonic vehicle configurations are currently underway. The first involves the validation of a number of classical local surface inclination methods commonly employed in preliminary design studies of hypersonic flight vehicles. Unlike studies aimed at validating such methods for predicting overall vehicle aerodynamics, this effort emphasizes validating the prediction of forces and moments for flight control studies. Specifically, several vehicle configurations for which experimental or flight-test data are available are being examined. By comparing the theoretical predictions with these data, the strengths and weaknesses of the local surface inclination methods can be ascertained and possible improvements suggested. The second research effort, of significance to control during take-off and landing of most proposed hypersonic vehicle configurations, is aimed at determining the change due to ground effect in control effectiveness of highly swept delta planforms. Central to this research is the development of a vortex-lattice computer program which incorporates an unforced trailing vortex sheet and an image ground plane. With this program, the change in pitching moment of the basic vehicle due to ground proximity, and whether or not there is sufficient control power available to trim, can be determined. In addition to the current work, two different research directions are suggested for future study. The first is aimed at developing an interactive computer program to assist the flight controls engineer in determining the forces and moments generated by different types of control effectors that might be used on hypersonic vehicles. The first phase of this work would deal in the subsonic portion of the flight envelope, while later efforts would explore the supersonic/hypersonic flight regimes. The second proposed research direction would explore methods for determining the aerodynamic trim drag of a generic hypersonic flight vehicle

  17. Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.

    2005-02-01

    Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.

  18. Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.

    2017-08-01

    Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.

  19. Hypersonic propulsion: Status and challenge

    NASA Technical Reports Server (NTRS)

    Guy, R. Wayne

    1990-01-01

    Scientists in the U.S. are again focusing on the challenge of hypersonic flight with the proposed National Aerospace Plane (NASP). This renewed interest has led to an expansion of research related to high speed airbreathing propulsion, in particular, the supersonic combustion ramjet, or scramjet. The history is briefly traced of scramjet research in the U.S., with emphasis on NASA sponsored efforts, from the Hypersonic Research Engine (HRE) to the current status of today's airframe integrated scramjets. The challenges of scramjet technology development from takeover to orbital speeds are outlined. Existing scramjet test facilities such as NASA Langley's Scramjet Test Complex as well as new high Mach number pulse facilities are discussed. The important partnership role of experimental methods and computational fluid dynamics is emphasized for the successful design of single stage to orbit vehicles.

  20. A new computational method for reacting hypersonic flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.

    2017-07-01

    Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.

  1. Rekindled vision of hypersonic travel

    NASA Technical Reports Server (NTRS)

    Colladay, Raymond S.

    1987-01-01

    NASA has joined with the DOD to conduct the National Aerospace Plane (NASP) program, whose experimental test vehicle will be designated the X-30. NASP will study the X-30's takeoff from a runway under its own power, acceleration to high Mach number on the basis of airbreathing propulsion, emergence into LEO, reentry into the earth atmosphere, and descent to a powered horizontal landing. NASP will thereby generate technology base data for three distinct types of aircraft: upper-atmosphere hypersonic-cruise aircraft, LEO space transports, and military transatmospheric vehicles. The current concept-validation phase of NASP focuses on airbreathing propulsion, lightweight/high-strength heat-resistant materials, and computational fluid dynamics.

  2. Evidence for membrane-bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish.

    PubMed

    Gervais, M R; Tufts, B L

    1998-07-01

    The purpose of this study was to examine the subcellular distribution and isoenzyme characteristics of carbonic anhydrase from the gills and respiratory air bladder of bowfin Amia calva, a primitive air-breathing fish. Separation of subcellular fractions by differential centrifugation revealed that the vast majority of carbonic anhydrase from the gills of bowfin originated from the cytoplasmic fraction. Washing of the gill microsomal pellet also indicated that the carbonic anhydrase originally associated with this pellet was largely due to contamination from the cytoplasmic fraction. Experiments with a carbonic anhydrase inhibitor, sulphanilamide, and the plasma carbonic anhydrase inhibitor from this species confirmed that the bowfin gill probably contains only one carbonic anhydrase isoenzyme which had properties resembling those of CA II. In contrast to the situation in the gills, a relatively large percentage (27%) of the total air bladder carbonic anhydrase was associated with the microsomal fraction. Washing of the air bladder microsomal pellet removed little of the carbonic anhydrase activity, indicating that most of the carbonic anhydrase in the microsomal fraction was associated with the membranes. Like the mammalian pulmonary CA IV isoenzyme, microsomal carbonic anhydrase from the bowfin air bladder was less sensitive to the bowfin plasma carbonic anhydrase inhibitor, sodium dodecylsulphate (SDS) and sulphanilamide than was cytoplasmic carbonic anhydrase from the air bladder. Microsomal carbonic anhydrase from the bowfin air bladder also resembled CA IV in that it appears to be anchored to the membrane via a phosphatidylinositol-glycan linkage which could be cleaved by phosphatidylinositol-specific phospholipase C. Taken together, these results suggest that a membrane-bound carbonic anhydrase isoenzyme resembling mammalian CA IV in terms of inhibition characteristics and membrane attachment is present in the air-breathing organ of one of the most primitive

  3. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  4. Airborne rotary air separator study

    NASA Technical Reports Server (NTRS)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  5. X-43A Project Overview: Adventures in Hypersonics

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Grindle, Laurie

    2007-01-01

    A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks

  6. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  7. Computational effects of inlet representation on powered hypersonic, airbreathing models

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    Computational results are presented to illustrate the powered aftbody effects of representing the scramjet inlet on a generic hypersonic vehicle with a fairing, to divert the external flow, as compared to an operating flow-through scramjet inlet. This study is pertinent to the ground testing of hypersonic, airbreathing models employing scramjet exhaust flow simulation in typical small-scale hypersonic wind tunnels. The comparison of aftbody effects due to inlet representation is well-suited for computational study, since small model size typically precludes the ability to ingest flow into the inlet and perform exhaust simulation at the same time. Two-dimensional analysis indicates that, although flowfield differences exist for the two types of inlet representations, little, if any, difference in surface aftbody characteristics is caused by fairing over the inlet.

  8. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  9. Development of Supersonic Vehicle for Demonstration of a Precooled Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Sawai, Shujiro; Fujita, Kazuhisa; Kobayashi, Hiroaki; Sakai, Shin'ichiro; Bando, Nobutaka; Kadooka, Shouhei; Tsuboi, Nobuyuki; Miyaji, Koji; Uchiyama, Taku; Hashimoto, Tatsuaki

    JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.

  10. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  11. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minucci, M. A. S.

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat fluxmore » measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.« less

  12. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    NASA Astrophysics Data System (ADS)

    Minucci, M. A. S.

    2008-04-01

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  13. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.

    2017-07-01

    In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.

  14. Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.

    PubMed

    Ott, Wayne; Klepeis, Neil; Switzer, Paul

    2008-05-01

    The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.

  15. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

  16. Hypersonic Shock/Boundary-Layer Interaction Database

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Dodson, L. J.

    1991-01-01

    Turbulence modeling is generally recognized as the major problem obstructing further advances in computational fluid dynamics (CFD). A closed solution of the governing Navier-Stokes equations for turbulent flows of practical consequence is still far beyond grasp. At the same time, the simplified models of turbulence which are used to achieve closure of the Navier-Stokes equations are known to be rigorously incorrect. While these models serve a definite purpose, they are inadequate for the general prediction of hypersonic viscous/inviscid interactions, mixing problems, chemical nonequilibria, and a range of other phenomena which must be predicted in order to design a hypersonic vehicle computationally. Due to the complexity of turbulence, useful new turbulence models are synthesized only when great expertise is brought to bear and considerable intellectual energy is expended. Although this process is fundamentally theoretical, crucial guidance may be gained from carefully-executed basic experiments. Following the birth of a new model, its testing and validation once again demand comparisons with data of unimpeachable quality. This report concerns these issues which arise from the experimental aspects of hypersonic modeling and represents the results of the first phase of an effort to develop compressible turbulence models.

  17. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  18. A comparison of upwind schemes for computation of three-dimensional hypersonic real-gas flows

    NASA Technical Reports Server (NTRS)

    Gerbsch, R. A.; Agarwal, R. K.

    1992-01-01

    The method of Suresh and Liou (1992) is extended, and the resulting explicit noniterative upwind finite-volume algorithm is applied to the integration of 3D parabolized Navier-Stokes equations to model 3D hypersonic real-gas flowfields. The solver is second-order accurate in the marching direction and employs flux-limiters to make the algorithm second-order accurate, with total variation diminishing in the cross-flow direction. The algorithm is used to compute hypersonic flow over a yawed cone and over the Ames All-Body Hypersonic Vehicle. The solutions obtained agree well with other computational results and with experimental data.

  19. Studies of scramjet/airframe integration techniques for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1975-01-01

    New design and analysis techniques for engine-airframe integration were applied in a recent hypersonic vehicle design study. A new technique was developed to design the vehicle's forebody so that uniform precompressed flow was produced at the inlet entrance. Results are verified with three-dimensional characteristic calculations. Results from a new three-dimensional method for calculating nozzle flows show that the entire lower afterbody of the vehicle can be used as a scramjet exhaust nozzle to achieve efficient, controlled, and stable flight over a wide range of flight conditions.

  20. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  1. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  2. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    DTIC Science & Technology

    2015-06-22

    were transmitted/received over an air vehicle powered and glide flight range of approximately 350 nm from the point of release from the B-52. The X...Aeronautics and Astronautics Aviation 2015, 22-26 June 2015, Dallas, Texas 8 C. Experimental Spaceplane ( XS -1) The Experimental Spaceplane ( XS ...TM data collection and relay systems. Figure 6 Artist Concept of Experimental Spaceplance ( XS -1) American Institute of Aeronautics and Astronautics

  3. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants*

    PubMed Central

    Mochalski, P; Filipiak, A; Bajtarevic, A; Ager, C; Denz, H; Hilbe, W; Jamnig, H; Hackl, M; Dzien, A; Amann, A

    2013-01-01

    Non-invasive disease monitoring on the basis of volatile breath markers is a very attractive but challenging task. Several hundreds of compounds have been detected in exhaled air using modern analytical techniques (e.g. proton-transfer reaction mass spectrometry, gas chromatography-mass spectrometry) and have even been linked to various diseases. However, the biochemical background for most of compounds detected in breath samples has not been elucidated; therefore, the obtained results should be interpreted with care to avoid false correlations. The major aim of this study was to assess the effects of smoking on the composition of exhaled breath. Additionally, the potential origin of breath volatile organic compounds (VOCs) is discussed focusing on diet, environmental exposure and biological pathways based on other’s studies. Profiles of VOCs detected in exhaled breath and inspired air samples of 115 subjects with addition of urine headspace derived from 50 volunteers are presented. Samples were analyzed with GC-MS after preconcentration on multibed sorption tubes in case of breath samples and solid phase micro-extraction (SPME) in the case of urine samples. Altogether 266 compounds were found in exhaled breath of at least 10% of the volunteers. From these, 162 compounds were identified by spectral library match and retention time (based on reference standards). It is shown that the composition of exhaled breath is considerably influenced by exposure to pollution and indoor-air contaminants and particularly by smoking. More than 80 organic compounds were found to be significantly related to smoking, the largest group comprising unsaturated hydrocarbons (29 dienes, 27 alkenes and 3 alkynes). On the basis of the presented results, we suggest that for the future understanding of breath data it will be necessary to carefully investigate the potential biological origin of volatiles, e.g., by means of analysis of tissues, isolated cell lines or other body fluids. In

  4. The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Willis, Brian P.

    2001-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.

  5. Adaptive computations of multispecies mixing between scramjet nozzle flows and hypersonic freestream

    NASA Technical Reports Server (NTRS)

    Baysa, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.; Pittman, James L.

    1989-01-01

    The objective of this paper is to compute the expansion of a supersonic flow through an internal-external nozzle and its viscous mixing with the hypersonic flow of air. The supersonic jet may be that of a multispecies gas other than air. Calculations are performed for one case where both flows are those of air, and another case where a mixture of freon-12 and argon is discharged supersonically to mix with the hypersonic airflow. Comparisons are made between these two cases with respect to gas compositions, and fixed versus flow-adaptive grids. All the computational results are compared successfully with the wind-tunnel tests results.

  6. Optical skin friction measurement technique in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  7. Multiscale Computational Analysis of Nitrogen and Oxygen Gas-Phase Thermochemistry in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Bender, Jason D.

    Understanding hypersonic aerodynamics is important for the design of next-generation aerospace vehicles for space exploration, national security, and other applications. Ground-level experimental studies of hypersonic flows are difficult and expensive; thus, computational science plays a crucial role in this field. Computational fluid dynamics (CFD) simulations of extremely high-speed flows require models of chemical and thermal nonequilibrium processes, such as dissociation of diatomic molecules and vibrational energy relaxation. Current models are outdated and inadequate for advanced applications. We describe a multiscale computational study of gas-phase thermochemical processes in hypersonic flows, starting at the atomic scale and building systematically up to the continuum scale. The project was part of a larger effort centered on collaborations between aerospace scientists and computational chemists. We discuss the construction of potential energy surfaces for the N4, N2O2, and O4 systems, focusing especially on the multi-dimensional fitting problem. A new local fitting method named L-IMLS-G2 is presented and compared with a global fitting method. Then, we describe the theory of the quasiclassical trajectory (QCT) approach for modeling molecular collisions. We explain how we implemented the approach in a new parallel code for high-performance computing platforms. Results from billions of QCT simulations of high-energy N2 + N2, N2 + N, and N2 + O2 collisions are reported and analyzed. Reaction rate constants are calculated and sets of reactive trajectories are characterized at both thermal equilibrium and nonequilibrium conditions. The data shed light on fundamental mechanisms of dissociation and exchange reactions -- and their coupling to internal energy transfer processes -- in thermal environments typical of hypersonic flows. We discuss how the outcomes of this investigation and other related studies lay a rigorous foundation for new macroscopic models for

  8. -----SPACE TRANSPORTATION

    NASA Image and Video Library

    2000-05-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  9. Application of CFD to a generic hypersonic flight research study

    NASA Technical Reports Server (NTRS)

    Green, Michael J.; Lawrence, Scott L.; Dilley, Arthur D.; Hawkins, Richard W.; Walker, Mary M.; Oberkampf, William L.

    1993-01-01

    Computational analyses have been performed for the initial assessment of flight research vehicle concepts that satisfy requirements for potential hypersonic experiments. Results were obtained from independent analyses at NASA Ames, NASA Langley, and Sandia National Labs, using sophisticated time-dependent Navier-Stokes and parabolized Navier-Stokes methods. Careful study of a common problem consisting of hypersonic flow past a slightly blunted conical forebody was undertaken to estimate the level of uncertainty in the computed results, and to assess the capabilities of current computational methods for predicting boundary-layer transition onset. Results of this study in terms of surface pressure and heat transfer comparisons, as well as comparisons of boundary-layer edge quantities and flow-field profiles are presented here. Sensitivities to grid and gas model are discussed. Finally, representative results are presented relating to the use of Computational Fluid Dynamics in the vehicle design and the integration/support of potential experiments.

  10. Effects of shock on hypersonic boundary layer stability

    NASA Astrophysics Data System (ADS)

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  11. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  12. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus).

    PubMed

    Joyce, William; Gesser, Hans; Bayley, Mark; Wang, Tobias

    2015-01-01

    Air breathing has evolved repeatedly in fishes and may protect the heart during stress. We investigated myocardial performance in the air-breathing catfish Pangasianodon hypophthalmus, a species that can withstand prolonged exposure to severe hypoxia and acidosis. Isometric ventricular preparations were exposed to anoxia, lactic acidosis, hypercapnic acidosis, and combinations of these treatments. Ventricular preparations were remarkably tolerant to anoxia, exhibiting an inotropic reduction of only 40%, which fully recovered during reoxygenation. Myocardial anoxia tolerance was unaffected by physiologically relevant elevations of bicarbonate concentration, in contrast to previous results in other fishes. Both lactic acidosis (5 mM; pH 7.10) and hypercapnic acidosis (10% CO2; pH 6.70) elicited a biphasic response, with an initial and transient decrease in force followed by overcompensation above control values. Spongy myocardial preparations were significantly more tolerant to hypercapnic acidosis than compact myocardial preparations. While ventricular preparations were tolerant to the isolated effects of anoxia and acidosis, their combination severely impaired myocardial performance and contraction kinetics. This suggests that air breathing may be a particularly important myocardial oxygen source during combined anoxia and acidosis, which may occur during exercise or environmental stress.

  13. Measurement uncertainty and feasibility study of a flush airdata system for a hypersonic flight experiment

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1994-01-01

    Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.

  14. Study of heat sink thermal protection systems for hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Edwards, C. L. W.

    1978-01-01

    The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates

  15. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  16. An air-breathing enzymatic cathode with extended lifetime by continuous laccase supply.

    PubMed

    Kipf, Elena; Sané, Sabine; Morse, Daniel; Messinger, Thorsten; Zengerle, Roland; Kerzenmacher, Sven

    2018-04-22

    We present a novel concept of an air-breathing enzymatic biofuel cell cathode combined with continuous supply of unpurified laccase-containing supernatant of the white-rot fungus Trametes versicolor for extended lifetime. The air-breathing cathode design obviates the need for energy-intensive active aeration. In a corresponding long-term experiment at a constant current density of 50 µA cm -2 , we demonstrated an increased lifetime of 33 days (cathode potential above 0.430 V vs. SCE), independent of enzyme degradation. The obtained data suggest that theoretically a longer lifetime is feasible. However, further engineering efforts are required to prevent clogging and fouling of the supply tubes. These results represent an important step towards the realization of enzymatic biofuel cell cathodes with extended lifetime and enhanced performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Large calculation of the flow over a hypersonic vehicle using a GPU

    NASA Astrophysics Data System (ADS)

    Elsen, Erich; LeGresley, Patrick; Darve, Eric

    2008-12-01

    Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.

  18. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  19. Configuration development study of the X-24C hypersonic research airplane, phase 3

    NASA Technical Reports Server (NTRS)

    Combs, H. G.

    1977-01-01

    The conclusion evolved from the three phased study on the configuration development of the X-24C Hypersonic Research Airplane makes it evident that it is practical to design and build the high performance National Hypersonic Flight Research Facility airplane with today's state of the art within the cost and operational constraints established by NASA. The vehicle launched at 31.75 Mg from the B-52 can cruise for 40 seconds at Mach 6.78 on scramjets. Without scramjets it can approach Mach 8 with a 453.6 Kg payload or do 70 seconds of cruise at Mach 6 with a 2.27 Mg payload. Reduction in cost is possible with a vehicle scaled to a lesser mass and capability.

  20. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  1. Lifting Body Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1998-01-01

    NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.

  2. Effects of Cavities and Protuberances on Transition over Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei; Venkatachari, Balaji

    2011-01-01

    Surface protuberances and cavities on a hypersonic vehicle are known to cause several aerodynamic or aerothermodynamic issues. Most important of all, premature transition due to these surface irregularities can lead to a significant rise in surface heating. To help understand laminar-turbulent transition induced by protuberances or cavities on a Crew Exploration Vehicle (CEV) surface, high-fidelity numerical simulations are carried out for both types of trips on a CEV wind tunnel model. Due to the large bluntness, these surface irregularities reside in an accelerating subsonic boundary layer. For the Mach 6 wind tunnel conditions with a roughness Reynolds number Re(sub kk) of 800, it was found that a protuberance with a height to boundary layer thickness ratio of 0.73 leads to strong wake instability and spontaneous vortex shedding, while a cavity with identical geometry only causes a rather weak flow unsteadiness. The same cavity with a larger Reynolds number also leads to similar spontaneous vortex shedding and wake instability. The wake development and the formation of hairpin vortices for both protuberance and cavity were found to be qualitatively similar to that observed for an isolated hemisphere submerged in a subsonic, low speed flat-plate boundary layer. However, the shed vortices and their accompanying instability waves were found to be slightly stabilized downstream by the accelerating boundary layer along the CEV surface. Despite this stabilizing influence, it was found that the wake instability spreads substantially in both wall-normal and azimuthal directions as the flow is evolving towards a transitional state. Similarities and differences between the wake instability behind a protuberance and a cavity are investigated. Computations for the Mach 6 boundary layer over a slender cylindrical roughness element with a height to the boundary layer thickness of about 1.1 also shows spontaneous vortex shedding and strong wake instability. Comparisons of

  3. Computational method to predict thermodynamic, transport, and flow properties for the modified Langley 8-foot high-temperature tunnel

    NASA Technical Reports Server (NTRS)

    Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.

    1992-01-01

    The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.

  4. PECASE: Soaring Mechanisms for Flapping-Wing Micro Air Vehicles

    DTIC Science & Technology

    2015-03-31

    2015 2. REPORT TYPE Final 4. TITLE AND SUBTITLE PECASE: Soaring mechanisms for flapping - wing micro air vehicles 6. AUTHOR(S) Robert J. Wood 3...N00014-10-1-0684 Award Title: "PECASE: Soaring mechanisms for flapping - wing micro air vehicles" [previous award: N00014-08-1-0919, "Hovering Control for...Insect-Inspired Flapping - Wing Micro Air Vehicles"] Final report a. Scientific and Technical Objectives The Harvard Microrobotics Lab has

  5. Effect of dry-cleaned clothes on tetrachloroethylene levels in indoor air, personal air, and breath for residents of several New Jersey homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, K.W.; Pellizzari, E.D.; Perritt, R.L.

    1991-10-01

    Several volatile organic compounds, including tetrachloroethylene, have been found to be nearly ubiquitous in residential indoor environments during previous TEAM studies. Eleven homes in New Jersey were monitored over three or five days to examine the effect of bringing freshly dry-cleaned clothes into the home on indoor air levels and personal exposures to tetrachloroethylene. Indoor air, personal air, and breath concentrations were measured over multiple 12-hrs periods before and after dry-cleaned clothes were introduced into nine of the homes. No dry-cleaned clothes were introduced into the two remaining homes. Outdoor air tetrachloroethylene concentrations were measured at six of the elevenmore » homes. Indoor/outdoor concentration ratios and source strengths were calculated at the six homes with outdoor measurements. Elevated indoor air levels and human exposures to tetrachloroethylene were measured at seven of the nine homes with dry-cleaned clothes. Indoor air concentrations reached 300 micrograms/m3 in one home and elevated indoor levels persisted for at least 48 hrs in all seven homes. Indoor/outdoor tetrachloroethylene concentration ratios exceeded 100 for the four homes with both dry-cleaned clothes and outdoor measurements. Maximum source strengths ranged from 16 to 69 mg/hr in these homes and did not directly correspond to the number of dry-cleaned garments brought into the home. Breath levels of tetrachloroethylene increased two to six-fold for participants living in seven homes with increased indoor air levels. Indoor air, personal air, and breath tetrachloroethylene concentrations were significantly related (0.05 level) to the number of garments introduced divided by the home volume.« less

  6. Multiple pure tone elimination strut assembly. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Burcham, F. W. (Inventor)

    1981-01-01

    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise.

  7. Hypersonic Boost Glider

    NASA Image and Video Library

    1957-04-15

    Hypersonic Boost Glider in 11 Inch Hypersonic Tunnel L57-1681 In 1957 Langley tested its HYWARDS design in the 11 Inch Hypersonic Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 369.

  8. Hyper-X Engine Design and Ground Test Program

    NASA Technical Reports Server (NTRS)

    Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.

    1998-01-01

    The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.

  9. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Fourmore » of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.« less

  10. Experimental and computational flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1989-01-01

    A comprehensive test program is defined which is being implemented in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel for obtaining data on a generic all-body hypersonic vehicle for computational fluid dynamics (CFD) code validation. Computational methods (approximate inviscid methods and an upwind parabolized Navier-Stokes code) currently being applied to the all-body model are outlined. Experimental and computational results on surface pressure distributions and Pitot-pressure surveys for the basic sharp-nose model (without control surfaces) at a free-stream Mach number of 7 are presented.

  11. Potential air pollutant emission from private vehicles based on vehicle route

    NASA Astrophysics Data System (ADS)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  12. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    PubMed

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  13. Principles of Air Defense and Air Vehicle Penetration

    DTIC Science & Technology

    2000-03-01

    Range For reliable dateetien, the target signal must reach some minimum or threshold value called S . . When internal noise is the only interfer...analyze air defense and air vehicle penetration. Unique expected value models are developed with frequent numerical examples. Radar...penetrator in the presence of spurious returns from internal and external noise will be discussed. Tracking With sufficient sensor information to determine

  14. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine

  15. Permanent-Change Thermal Paints for Hypersonic Flight-Test

    DTIC Science & Technology

    2010-09-24

    thermochromic liquid crystals (Ireland et al. 1999, Ireland & Jones 2000), and temperature sensitive paints (Liu & Sullivan 2005), thermal paints are...surfaces and fin-fuselage junctions, shock boundary layer interactions, scramjet combustion chambers and around control thrusters. Thermal paints can...use of discrete wired sensors may also not practical on some locations on a hypersonic vehicle. Thermochromic liquid crystals Coatings of

  16. An Upgrade of the Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Rufer, Shann J.

    2015-01-01

    The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) code is used at NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used to design thermal protection systems to mitigate the risks due to the aeroheating loads on hypersonic vehicles, such as re-entry vehicles during descent and landing procedures. This code was originally written in the PV-WAVE programming language to analyze phosphor thermography data from the two-color, relativeintensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the code was migrated to MATLAB syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to batch process all of the data from a wind tunnel run, to map the two-dimensional heating distribution to a three-dimensional computer-aided design model of the vehicle to be viewed in Tecplot, and to extract data from a segmented line that follows an interesting feature in the data. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy code to validate the program. The differences between the two codes were on the order of 10-5 to 10-7. IHEAT 4.0 replaces the PV-WAVE version as the production code for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.

  17. Design, calibration and testing of a force balance for a hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Vadassery, Pravin

    The forces acting on a flight vehicle are critical for determining its performance. Of particular interest is the hypersonic regime. Force measurements are much more complex in hypersonic flows, where those speeds are simulated in shock tunnels. A force balance for such facilities contains sensitive gages that measure stress waves and ultimately determine the different components of force acting on the model. An external force balance was designed and fabricated for the UTA Hypersonic shock tunnel to measure drag at Mach 10. Static and dynamic calibrations were performed to find the transfer function of the system. Forces were recovered using a deconvolution procedure. To validate the force balance, experiments were conducted on a blunt cone. The measured forces were compared to Newtonian theory.

  18. The interaction of oblique shocks in a shock layer in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Baird, John P.; Thomas, J.; Joe, W. S.

    1990-07-01

    A new generation of spacecraft is currently being designed. Some of the proposed concepts involve the use of air breathing engines during part of the earth to orbit flight phase. In the case of the HOTOL concept studies, the engine intakes will be covered for the re-entry phase, and will protrude through the windward surface shock layer during re-entry. An understanding of the complex flow which will occur over the closed intakes during the hypersonic re-entry is important for at least two reasons. Firstly, the heat transfer on the surfaces has to be estimated to allow for suitable intake cover design. Secondly, the wake of the intakes interacts with the underside of the wings and control surfaces, and could possibly cause handling anomalies. The present paper describes a study in which a simplified model involving a double wedge mounted on a flat plate at incidence (Fig. 1) was tested in the Free Piston Shock Tunnel T3 at the Australian National University. Heat transfer measurements and shock luminosity photographs were recorded at two operating conditions, one with a stagnation enthalpy of 22 MJ/kg and the other with 2.8 MJ/kg. A flow analysis which identified a number of significantly different flow regimes was also performed. Heat transfer measurements indicate that heating rates well in excess of those expected at the stagnation point on the nose of the spacecraft can be expected. The results also highlighted a compromise which is a necessary feature of this type of design. The compromise involves a trade off between intake efficiency during the air breathing phase of operation and the reduction of heat transfer during the re-entry phase.

  19. The computation of thermo-chemical nonequilibrium hypersonic flows

    NASA Technical Reports Server (NTRS)

    Candler, Graham

    1989-01-01

    Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.

  20. Effects of fresh and aged vehicular exhaust emissions on breathing pattern and cellular responses--pilot single vehicle study.

    PubMed

    Diaz, Edgar A; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J

    2012-04-01

    The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O₃, OH and other radicals. Sprague Dawley rats were exposed for 5 h to either filtered room air (sham) or one of two different atmospheres: (i) diluted car exhaust (P)+Mt. Saint Helens Ash (MSHA); (ii) P+MSHA+secondary organic aerosol (SOA, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a nonselective diffusion denuder. Continuous respiratory data was collected during the exposure, and bronchoalveolar lavage (BAL) and complete blood counts (CBC) were performed 24 h after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363 ± 66 μg/m³ P+MSHA and 212 ± 95 µg/m³ P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in total cells, macrophages and neutrophils in the BAL and in vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions.

  1. Computation of hypersonic flows with finite rate condensation and evaporation of water

    NASA Technical Reports Server (NTRS)

    Perrell, Eric R.; Candler, Graham V.; Erickson, Wayne D.; Wieting, Alan R.

    1993-01-01

    A computer program for modelling 2D hypersonic flows of gases containing water vapor and liquid water droplets is presented. The effects of interphase mass, momentum and energy transfer are studied. Computations are compared with existing quasi-1D calculations on the nozzle of the NASA Langley Eight Foot High Temperature Tunnel, a hypersonic wind tunnel driven by combustion of natural gas in oxygen enriched air.

  2. Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Wadawadigi, G.

    1992-01-01

    Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the

  3. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  4. A Fixed-Wing Micro Air Vehicle with Hovering Capability

    DTIC Science & Technology

    2010-12-01

    AFRL-AFOSR-UK-TR-2010-0001 A Fixed-Wing Micro Air Vehicle with Hovering Capability Jean-Marc Moschetta SUPAERO Dept of...06 July 2010 Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and...To) 06 July 2007 - 06 July 2010 4. TITLE AND SUBTITLE A Fixed-Wing Micro Air Vehicle with Hovering Capability 5a. CONTRACT NUMBER FA8655-07

  5. Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1993-01-01

    This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.

  6. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  7. An assessment of laser velocimetry in hypersonic flow

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Although extensive progress has been made in computational fluid mechanics, reliable flight vehicle designs and modifications still cannot be made without recourse to extensive wind tunnel testing. Future progress in the computation of hypersonic flow fields is restricted by the need for a reliable mean flow and turbulence modeling data base which could be used to aid in the development of improved empirical models for use in numerical codes. Currently, there are few compressible flow measurements which could be used for this purpose. In this report, the results of experiments designed to assess the potential for laser velocimeter measurements of mean flow and turbulent fluctuations in hypersonic flow fields are presented. Details of a new laser velocimeter system which was designed and built for this test program are described.

  8. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability.

    PubMed

    Cummings, Kevin J; Frappell, Peter B

    2009-07-01

    The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability

  9. Hypersonic, nonequilibrium flow over the FIRE 2 forebody at 1634 sec

    NASA Technical Reports Server (NTRS)

    Chambers, Lin Hartung

    1994-01-01

    The numerical simulation of hypersonic flow in thermochemical nonequilibrium over the forebody of the FIRE 2 vehicle at 1634 sec in its trajectory is described. The simulation was executed on a Cray C90 with the program Langley Aerodynamic Upwind Relaxation Algorithm (LAURA) 4.0.2. Code setup procedures and sample results, including grid refinement studies, are discussed. This simulation relates to a study of radiative heating predictions on aerobrake type vehicles.

  10. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort

  11. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may

  12. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  13. Determination of ethane, pentane and isoprene in exhaled air--effects of breath-holding, flow rate and purified air.

    PubMed

    Lärstad, M A E; Torén, K; Bake, B; Olin, A-C

    2007-01-01

    Exhaled ethane, pentane and isoprene have been proposed as biomarkers of oxidative stress. The objectives were to explore whether ethane, pentane and isoprene are produced within the airways and to explore the effect of different sampling parameters on analyte concentrations. The flow dependency of the analyte concentrations, the concentrations in dead-space and alveolar air after breath-holding and the influence of inhaling purified air on analyte concentrations were investigated. The analytical method involved thermal desorption from sorbent tubes and gas chromatography. The studied group comprised 13 subjects with clinically stable asthma and 14 healthy controls. Ethane concentrations decreased slightly, but significantly, at higher flow rates in subjects with asthma (P = 0.0063) but not in healthy controls. Pentane levels were increased at higher flow rates both in healthy and asthmatic subjects (P = 0.022 and 0.0063 respectively). Isoprene levels were increased at higher flow rates, but only significantly in healthy subjects (P = 0.0034). After breath-holding, no significant changes in ethane levels were observed. Pentane and isoprene levels increased significantly after 20 s of breath-holding. Inhalation of purified air before exhalation resulted in a substantial decrease in ethane levels, a moderate decrease in pentane levels and an increase in isoprene levels. The major fractions of exhaled ethane, pentane and isoprene seem to be of systemic origin. There was, however, a tendency for ethane to be flow rate dependent in asthmatic subjects, although to a very limited extent, suggesting that small amounts of ethane may be formed in the airways.

  14. A study of air breathing rockets. 3: Supersonic mode combustors

    NASA Astrophysics Data System (ADS)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  15. Formulation of aerodynamic prediction techniques for hypersonic configuration design

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Supersonic second order potential theory was examined in detail to meet this objective. Shock layer integral techniques were considered as an alternative means of predicting gross aerodynamic characteristics. Several numerical pilot codes were developed for simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the second order computations indicated good agreement with higher order solutions and experimental results for a variety of wing like shapes and values of the hypersonic similarity parameter M delta approaching one.

  16. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.

  17. Air cushion vehicles: A briefing

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Finnegan, P. M.

    1971-01-01

    Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described.

  18. Radiographic evaluation of positional atelectasis in sedated dogs breathing room air versus 100% oxygen.

    PubMed

    Barletta, Michele; Almondia, Donna; Williams, Jamie; Crochik, Sonia; Hofmeister, Erik

    2014-10-01

    This study documents the degree of positional atelectasis in sedated dogs receiving 100% oxygen (O(2)) versus room air. Initial lateral recumbency was determined by an orthopedic study and initial treatment (O(2) or room air) was randomized. Each dog was maintained in lateral recumbency for 15 min, at which time ventrodorsal (VD) and opposite lateral thoracic radiographs were obtained. Each dog was then maintained in the opposite lateral recumbency and received the other treatment for 15 min, followed by a VD and opposite lateral radiograph. Radiographs were scored for severity of pulmonary pattern and mediastinal shift by 3 radiologists. Dogs breathing O(2) had significantly higher scores than dogs breathing room air. If radiographically detectable dependent atelectasis is present, repeat thoracic images following manual positive ventilation and/or position change to the opposite lateral recumbency should be made to rule out the effect of O(2) positional atelectasis and avoid misdiagnosis.

  19. Radiographic evaluation of positional atelectasis in sedated dogs breathing room air versus 100% oxygen

    PubMed Central

    Barletta, Michele; Almondia, Donna; Williams, Jamie; Crochik, Sonia; Hofmeister, Erik

    2014-01-01

    This study documents the degree of positional atelectasis in sedated dogs receiving 100% oxygen (O2) versus room air. Initial lateral recumbency was determined by an orthopedic study and initial treatment (O2 or room air) was randomized. Each dog was maintained in lateral recumbency for 15 min, at which time ventrodorsal (VD) and opposite lateral thoracic radiographs were obtained. Each dog was then maintained in the opposite lateral recumbency and received the other treatment for 15 min, followed by a VD and opposite lateral radiograph. Radiographs were scored for severity of pulmonary pattern and mediastinal shift by 3 radiologists. Dogs breathing O2 had significantly higher scores than dogs breathing room air. If radiographically detectable dependent atelectasis is present, repeat thoracic images following manual positive ventilation and/or position change to the opposite lateral recumbency should be made to rule out the effect of O2 positional atelectasis and avoid misdiagnosis. PMID:25320389

  20. Aluminum Rich Epoxy Primer for Ground and Air Vehicles

    DTIC Science & Technology

    2017-03-01

    UNCLASSIFIED DOCUMENT Aluminum Rich Epoxy Primer for Ground and Air Vehicles Monthly Technical Report for the Period: January 20, 2017...Objective: To further develop the Aluminum Rich Epoxy Primer systems for Air and Ground Vehicles while addressing the objective requirements