Science.gov

Sample records for air-conditioning energy consumption

  1. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  2. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    NASA Astrophysics Data System (ADS)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  3. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Suwono, A.; Indartono, Y. S.; Irsyad, M.; Al-Afkar, I. C.

    2015-09-01

    One way to resolve the energy problem is to increase the efficiency of energy use. Air conditioning system is one of the equipment that needs to be considered, because it is the biggest energy user in commercial building sector. Research currently developing is the use of phase change materials (PCM) as thermal energy storage (TES) in the air conditioning system to reduce energy consumption. Salt hydrates have been great potential to be developed because they have been high latent heat and thermal conductivity. This study has used a salt hydrate from calcium chloride to be tested in air conditioning systems type chiller. Thermal characteristics were examined using temperature history (T-history) test and differential scanning calorimetry (DSC). The test results showed that the thermal characteristics of the salt hydrate has been a high latent heat and in accordance with the evaporator temperature. The use of salt hydrates in air conditioning system type chiller can reduce energy consumption by 51.5%.

  4. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  5. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  6. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  7. Energy Efficiency for Heating, Ventilating, Air-Conditioning Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.; Lay, Gary, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in heating, ventilating, and air-conditioning. The following topics are examined: how energy conservation pays, heating, ventilation, air-conditioning,…

  8. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  9. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  10. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  11. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  12. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  13. Heating, ventilation and air conditioning system optimization: a study of the effect of climate, building design, system selection and control strategy on the energy consumption of a typical office building in London and Athens

    NASA Astrophysics Data System (ADS)

    Spasis, Georgios

    The increasing demand for air conditioning in commercial buildings imposes a serious threat to Europe's CO2 reduction targets. Architects and engineers are therefore in a key position to help reduce the impact of buildings on the environment by taking appropriate decisions concerning the design of the building and the associated heating, ventilation and air conditioning (HVAC) system. The thesis studies the effect of a number of building and HVAC system related design factors on the energy performance of a notional air-conditioned office building employing either a variable air volume (VAV) system with terminal re-heaters, or a four-pipe fan coil unit (FCU) system with fresh air supply from a central plant, using mainly a dynamic simulation tool and the response surface methodology. The evaluation of the energy performance of the HVAC systems is for two types of climate, using typical weather data for London (UK) and Athens (Greece). It has been found that the design variables associated with the solar radiation through the transparent building elements and the internal heat gains should be the main concern of the building designer. On the other hand, the HVAC system engineer should give emphasis to the parameters associated with the plant performance and operation, as well as the temperature control set-points. It has been shown that it is possible to reduce the carbon emissions of the base case scenario by up to 88% depending on the HVAC system and the climate for which it is simulated. The carbon savings, however, are reduced by up to 22% where humidification is provided. This reduction differs depending on the HVAC system and the climatic conditions. The VAV system is more energy efficient than the FCU system, mainly due to the exploitation of the free cooling capacity of the outdoor air. The difference in carbon emissions between the two systems drops when both of them are simulated for the Athens as opposed to the London typical weather conditions. It has

  14. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  15. Efficiency of Energy Use in the United States: Transportation, space heating, and air conditioning provide opportunities for large energy savings.

    PubMed

    Hirst, E; Moyers, J C

    1973-03-30

    We described three uses of energy for which greater efficiency is feasible: transportation, space heating, and air conditioning. Shifts to less energy-intensive transportation modes could substantially reduce energy consumption; the magnitude of such savings would, of course, depend on the extent of such shifts and possible load factor changes. The hypothetical transportation scenario described here results in a 22 percent savings in energy for transportation in 1970, a savings of 2800 trillion Btu. To the homeowner, increasing the amount of building insulation and, in some cases, adding storm windows would reduce energy consumption and provide monetary savings. If all homes in 1970 had the "economic optimum" amount of insulation, energy consumption for residential heating would have been 42 percent less than if the homes were insulated to meet the pre-1971 FHA standards, a savings of 3100 trillion Btu. Increased utilization of energy-efficient air conditioners and of building insulation would provide significant energy savings and help to reduce peak power demands during the summer. A 67 percent increase in energy efficiency for room air conditioners would have saved 15.8 billion kilowatt-hours in 1970. In conclusion, it is possible-from an engineering point of view-to effect considerable energy savings in the United States. Increases in the efficiency of energy use would provide desired end results with smaller energy inputs. Such measures will not reduce the level of energy consumption, but they could slow energy growth rates.

  16. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  17. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  18. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  19. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    PubMed

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  20. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  1. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  2. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  3. Energy studies on central and variable refrigerant flow air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Abdullah, H.; Nitamakwuavan, S.; Jalaludin, A. F.

    2012-06-01

    Air-conditioning is a major contributor to energy end-use in commercial buildings. Different types of airconditioning systems are installed in commercial buildings including packaged systems, split units and central systems. With the advancement in control technology and the demand for energy efficient systems, variable refrigerant flow (VRF) air-conditioning system is seen to be a solution to the load-matching problem for airconditioning systems. In a VRF system, the volume or flow rate of the refrigerant is accurately matched to the required cooling load thereby saving energy and providing more accurate control. This study aims to determine the performance of the VRF system used in an actual building by calculating the Coefficient of Performance (COP) of the system. The COP is then compared to the COP of a centralized chilled water system used in the same building. The results showed that the COPs determined for the VRF and central systems are 3.3 and 2.0 respectively. The results also indicated that replacing older central system with a VRF system could lead to an energy savings of up to 39.5%.

  4. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  5. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  6. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  7. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  8. Energy audits reveal significant energy savings potential in India`s commercial air-conditioned building sector

    SciTech Connect

    Singh, G.; Presny, D.; Fafard, C.

    1997-12-31

    The United States Agency for International Development (USAID) began its Energy Management Consultation and Training (EMCAT) project in India. The EMCAT project began in 1991 as a six-year (1991--1997) project to improve India`s technological and management capabilities for both the supply of energy and its efficient end use. The end-use component of EMCAT aims for efficient energy utilization by industries and other sectors such as the commercial sector. A specific task under the end-use component was to conduct energy surveys/audits in high energy-use sectors, such as air-conditioned (AC) buildings in the commercial sector, and to identify investment opportunities that could improve energy utilization. This article presents results of pre-investment surveys that were conducted at four commercial air-conditioned facilities in 1995. The four facilities included two luxury hotels in New Delhi, and one luxury hotel and a private hospital in Bombay. Energy conservation opportunities (ECOs) were explored in three major energy-using systems in these buildings: air-conditioning, lighting, and steam and domestic hot water systems.

  9. Indoor air quality and energy performance of air-conditioned office buildings in Singapore.

    PubMed

    Sekhar, S C; Tham, K W; Cheong, K W

    2003-12-01

    An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues.

  10. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  11. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  12. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  13. Influence of mobile air-conditioning on vehicle emissions and fuel consumption: a model approach for modern gasoline cars used in Europe.

    PubMed

    Weilenmann, Martin F; Vasic, Ana-Marija; Stettler, Peter; Novak, Philippe

    2005-12-15

    The influence of air-conditioning activity on the emissions and fuel consumption of passenger cars is an important issue, since fleet penetration and use of these systems have reached a high level. Apart from the MOBILE6 study in the United States, little data is available on the impact of air-conditioning devices (A/Cs). Since weather conditions and A/C technologies both differ from those in the U. S., a test series was designed for the European setting. A fleet of six modern gasoline passenger cars was tested in different weather conditions. Separate test series were carried out for the initial cooldown and for the stationary situation of keeping the interior of the vehicle cool. As assumed, CO2 emissions and fuel consumption rise with the thermal load. This also causes a notable rise in CO and hydrocarbons (HCs). Moreover, A/Cs do not stop automatically at low ambient temperatures; if necessary, they produce dry air to demist the windscreen. A model is proposed that shows a constant load for lower temperatures and a linear trend for higher temperatures. The initial cooldown tests highlight significant differences among cars but show that A/C operation for the initial cooling of an overheated passenger compartment does not result in any extra emissions for the fleet as a whole. PMID:16475341

  14. Influence of mobile air-conditioning on vehicle emissions and fuel consumption: a model approach for modern gasoline cars used in Europe.

    PubMed

    Weilenmann, Martin F; Vasic, Ana-Marija; Stettler, Peter; Novak, Philippe

    2005-12-15

    The influence of air-conditioning activity on the emissions and fuel consumption of passenger cars is an important issue, since fleet penetration and use of these systems have reached a high level. Apart from the MOBILE6 study in the United States, little data is available on the impact of air-conditioning devices (A/Cs). Since weather conditions and A/C technologies both differ from those in the U. S., a test series was designed for the European setting. A fleet of six modern gasoline passenger cars was tested in different weather conditions. Separate test series were carried out for the initial cooldown and for the stationary situation of keeping the interior of the vehicle cool. As assumed, CO2 emissions and fuel consumption rise with the thermal load. This also causes a notable rise in CO and hydrocarbons (HCs). Moreover, A/Cs do not stop automatically at low ambient temperatures; if necessary, they produce dry air to demist the windscreen. A model is proposed that shows a constant load for lower temperatures and a linear trend for higher temperatures. The initial cooldown tests highlight significant differences among cars but show that A/C operation for the initial cooling of an overheated passenger compartment does not result in any extra emissions for the fleet as a whole.

  15. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  16. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  17. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  18. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  19. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  20. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-02-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  1. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  2. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  3. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  4. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong

    SciTech Connect

    Li, Yutong; Lu, Lin; Yang, Hongxing

    2010-12-15

    In this article, a transient simulation model and the EnergyPlus were used to study the energy performance and economical feasibility for integrating a solar liquid desiccant dehumidification system with a conventional vapor compression air-conditioning system for the weather condition of Hong Kong. The vapor compression system capacity in the solar assisted air-conditioning system can be reduced to 19 kW from original 28 kW of a conventional air-conditioning system as a case study due to the solar desiccant cooling. The economical performance of the solar desiccant dehumidification system is compared with that of the conventional air-conditioning system. The results show that the energy saving potentials due to incorporation of the solar desiccant dehumidification system in a traditional air-conditioning system is significant for the hot wet weather in Hong Kong due to higher COP resulted from higher supply chilled water temperature from chiller plants. The annual operation energy savings for the hybrid system is 6760 kWh and the payback period of the hybrid system is around 7 years. The study shows that the solar assisted air-conditioning is a viable technology for utilizations in subtropical areas. (author)

  5. Energy and resource consumption

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.

  6. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  7. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  8. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  9. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  10. Building Energy Consumption Analysis

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  11. Building Energy Consumption Analysis

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  12. Community Energy Consumption Analysis

    1992-02-21

    The TDIST3 program performs an analysis of large integrated community total energy systems (TES) supplying thermal and electrical energy from one or more power stations. The program models the time-dependent energy demands of a group of representative building types, distributes the thermal demands within a thermal utility system (TUS), simulates the dynamic response of a group of power stations in meeting the TUS demands, and designs an optimal base-loaded (electrically) power plant and thermal energymore » storage reservoir combination. The capital cost of the TES is evaluated. The program was developed primarily to analyze thermal utility systems supplied with high temperature water (HTW) from more than one power plant. The TUS consists of a transmission loop and secondary loops with a heat exchanger linking each secondary loop to the transmission loop. The power stations electrical output supplies all community buildings and the HTW supplies the thermal demand of the buildings connected through the TUS, a piping network. Basic components of the TES model are one or more power stations connected to the transmission loop. These may be dual-purpose, producing electricity and HTW, or just heating plants producing HTW. A thermal storage reservoir is located at one power station. The secondary loops may have heating plants connected to them. The transmission loop delivers HTW to local districts; the secondary loops deliver the energy to the individual buildings in a district.« less

  13. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  14. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  15. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  16. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  17. Manufacturing consumption of energy 1994

    SciTech Connect

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  18. Projecting household energy consumption within a conditional demand framework

    SciTech Connect

    Teotia, A.; Poyer, D.

    1991-01-01

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  19. Projecting household energy consumption within a conditional demand framework

    SciTech Connect

    Teotia, A.; Poyer, D.

    1991-12-31

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  20. Household vehicles energy consumption 1994

    SciTech Connect

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  1. Energy consumption in thermomechanical pulping

    SciTech Connect

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  2. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  3. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  4. Air conditioning in a tropical climate: Impacts upon European residents in Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Auliciems, A.; Dedear, R.

    1986-09-01

    The efficacy of current practices in air conditioning is investigated in the two monsoonal seasons in Darwin. Assessment is made of atmospheric parameters, clothing, metabolic rate. Some 1000 questionnaires are applied dealing with adaptations, health perceptions and preferences as related to air cooling and ventilation. The findings are discussed with reference to energy balance calculations and current models of psychological control in thermoregulation. The results indicate that Darwin's population is considerably overcooled, and contrary to assumptions and practice, air conditioning is not desired in office buildings during the “Dry”. In the home, air conditioning is not regarded as essential. The indications are that a rationalization of air cooling to comply with natural variability in warmth would lead to a significant reduction in energy consumption, and an overall enhancement to the health and comfort of the population through the greater ventilation rates that would be economically feasible were design temperatures lifted.

  5. Data-driven forecasting algorithms for building energy consumption

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram

    2013-04-01

    This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.

  6. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  7. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  8. State energy data report 1992: Consumption estimates

    SciTech Connect

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  9. Computer Developments in Air Conditioning.

    ERIC Educational Resources Information Center

    Pancoast, Ferendino, Grafton and Skeels, Architects, Miami, FL.

    Proceedings of a conference on the present and future uses of computer techniques in the air conditioning field. The recommendation of this report is, for the most part, negative insofar as it applies to the use of computers for design by the small office. However, there should be an awareness of their usefulness in controlling the environmental…

  10. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  11. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  12. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  13. Household energy consumption and expenditures 1993

    SciTech Connect

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  14. Lighting energy consumption trends and R&D opportunities

    NASA Astrophysics Data System (ADS)

    Brodrick, James R.; Petrow, Edward D.; Scholand, Michael J.

    2002-11-01

    Electric lighting of buildings in the United States consumes over 20% of the nation's primary electricity and is second only in magnitude to heating, ventilation and air conditioning systems. This installed lighting base is generally inefficient and is characterized by relatively low performance especially when compared to other building systems. While substantial opportunities for improving overall lighting system efficiency exist, the pathway to achievement of this goal is less clear. Lighting research and development conducted by the US Department of Energy's (DOE), Office of Energy Efficiency and Renewable Energy's (EERE), Building Technologies Program (BT) addresses this national issue and aggressively pursues a number of broad research areas that promise to yield significant increases in overall lighting system efficiency. Implementation of a successful program in lighting energy conservation depends upon a detailed assessment of energy consumption trends by lighting technology. The results of several years of research are presented that describe electricity consumption by market sector, application and lamp type. Following this lighting market assessment, an overview of the DOE's ongoing lighting research and development (LR&D) program portfolio linked to the market assessments is provided. Individual program contributions toward achieving ambitious lighting energy conservation goals are described. The BTS portfolio includes research in three broad areas: (1) light source and electronics, (2) fixtures, controls and distribution systems, and (3) human factors. An overview of each technical objective is provided, as well as a timeline for achieving specific energy conservation goals.

  15. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  16. Household vehicles energy consumption 1991

    SciTech Connect

    Not Available

    1993-12-09

    The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

  17. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  18. State energy data report 1993: Consumption estimates

    SciTech Connect

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  19. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect

    Not Available

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  20. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  1. State energy data report 1994: Consumption estimates

    SciTech Connect

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  2. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  3. State energy data report 1996: Consumption estimates

    SciTech Connect

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  4. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  5. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  6. Adolescent energy drink consumption: An Australian perspective.

    PubMed

    Costa, Beth M; Hayley, Alexa; Miller, Peter

    2016-10-01

    Caffeinated Energy Drinks (EDs) are not recommended for consumption by children, yet there is a lack of age-specific recommendations and restrictions on the marketing and sale of EDs. EDs are increasingly popular among adolescents despite growing evidence of their negative health effects. In the current study we examined ED consumption patterns among 399 Australian adolescents aged 12-18 years. Participants completed a self-report survey of consumption patterns, physiological symptoms, and awareness of current ED consumption guidelines. Results indicated that ED consumption was common among the sample; 56% reported lifetime ED consumption, with initial consumption at mean age 10 (SD = 2.97). Twenty-eight percent of the sample consumed EDs at least monthly, 36% had exceeded the recommended two standard EDs/day, and 56% of consumers had experienced negative physiological health effects following ED consumption. The maximum number of EDs/day considered appropriate for children, adolescents, and adults varied, indicating a lack of awareness of current consumption recommendations. These findings add to the growing body of international evidence of adolescent ED consumption, and the detrimental impact of EDs to adolescent health. Enforced regulation and restriction of EDs for children's and adolescents' consumption is urgently needed in addition to greater visibility of ED consumption recommendations. PMID:27389033

  7. Estimates of US biomass energy consumption 1992

    SciTech Connect

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  8. State energy data report 1995 - consumption estimates

    SciTech Connect

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  9. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Commercial heating, ventilating, air conditioning (HVAC... Commercial heating, ventilating, air conditioning (HVAC) equipment. (a) Sampling plan for selection of units... each basic model of commercial heating, ventilating, air conditioning (HVAC) equipment, efficiency...

  10. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Commercial heating, ventilating, air conditioning (HVAC... Commercial heating, ventilating, air conditioning (HVAC) equipment. (a) Sampling plan for selection of units... each basic model of commercial heating, ventilating, air conditioning (HVAC) equipment, efficiency...

  11. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  12. Energy: Production, Consumption, and Consequences.

    ERIC Educational Resources Information Center

    Helm, John L., Ed.

    Energy policy in the United States and much of the analysis behind those policies is largely incomplete according to many. Systems for energy production, distribution, and use have traditionally been analyzed by supply sector, yet such analyses cannot capture the complex interplay of technology, economics, public policy, and environmental concerns…

  13. Energy Consumption Monitoring System for Large Complexes

    NASA Astrophysics Data System (ADS)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  14. Commercial Buildings Energy Consumption Survey - Office Buildings

    EIA Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  15. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    ERIC Educational Resources Information Center

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  16. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  17. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  18. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  19. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  20. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  1. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  2. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  3. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  4. Understanding energy consumption: Beyond technology and economics

    SciTech Connect

    Wilhite, H.; Shove, E.

    1998-07-01

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  5. Computer Profile of School Facilities Energy Consumption.

    ERIC Educational Resources Information Center

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  6. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  7. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  8. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    EIA Publications

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administration’s second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  9. Global energy consumption and production in 2000

    NASA Astrophysics Data System (ADS)

    Allen, E. L.; Davison, C.; Dougher, R.; Edmonds, J. A.; Reilly, J.

    1981-02-01

    This study anticipates that global energy demand will continue to expand through 2000, although at a slower pace than in 1965 to 1978. Growth of supply is expected to be largely in conventional, nonrenewable fuels - coal, oil, uranium, and natural gas. Energy growth is also expected to slow down in terms of energy consumption per unit of output as a consequence of continuing efficiency improvements, which, in turn, result from higher energy prices. Slower rates of economic growth are expected in all groups of countries, developed and underdeveloped.

  10. Machining strategies exploring reduction in energy consumption

    NASA Astrophysics Data System (ADS)

    Mamun, Abdullah Al

    The main aim of this thesis is to explore machining strategies, analyzing energy consumption using Design of Experiments (DOE) at the material removal rate (MRR), compare to cutting geometrical trajectories according to CNC parameters such as spindle RPM, feed rate, depth of cut per pass and total depth of cut. Spindle RPM, depth of cut per pass, and feed rate are selected as the main three factors and each factor has two levels: low-level (-) and high-level (+). These experiments have been performed at an end-milling machine by using a concept of a constant volume of material removal processes in the circular and linear geometrical slots in pine wood blocks. Standard energy logger equipment has used to measure energy consumption during end-milling operation. Different statistical analysis, such as ANOVA, regression line, and cause & effect diagram have used to show different energy consumption results in the material removal process. At the end the of data analysis, it is found that a significant amount of electricity demand is associated with machining pre-cutting & post-cutting stage and this significant amount of electricity demand is defined as peripheral energy. This peripheral energy is not involved in the actual performance of material removal process in the end-milling process. In the [Figure 11] end-milling process has been involved with pine wood blocks at constant volume of material removal (2.8 cubic inch) process. Results can be varied using of hard material removal process, such as steel & aluminum metals.

  11. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  12. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOEpatents

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  13. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    PubMed Central

    Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  14. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    PubMed

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  15. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    PubMed

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  16. Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations.

    PubMed

    Jimenez-Relinque, E; Castellote, M

    2014-10-01

    Nowadays, a large proportion of photocatalytic oxidation (PCO) devices are being implemented in heating, ventilation and air-conditioning systems. However, no systematic studies have been carried out regarding the influence of inlet air preconditioning. To analyse the impact of the inlet air-conditions into photocatalytic efficiency, a simulated air-conditioning duct with flowing gas through inside was designed. Isobutylene was chosen as the target VOCs. The concentration in the gas phase was monitored using a photoionization detector. The influence of flow rate, relative humidity and temperature on the VOC removal efficiency was analysed. Experimental results were presented in terms of gas-removal efficiency (η) and clean air delivery rate (CADR) and analysed on a kinetic basis. From them, the weight of each parameter in the global process has been determined, from bigger to smaller contribution, flow>temperature>relative humidity. Also, the relevance of the inlet air conditions has been illustrated in a model room in order to determinate the time necessary to obtain a threshold value accomplishing with enough air quality and the energy consumption of the device. Additionally, the photocatalytic decontamination has been assimilated to the "air exchange rate", a parameter commonly used in indoor air quality studies. The results show that preconditioning of air can improve the efficiency of photocatalytic devices and bring important energy savings.

  17. Alternative non-CFC mobile air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  18. Rat splanchnic net oxygen consumption, energy implications.

    PubMed Central

    Casado, J; Fernández-López, J A; Esteve, M; Rafecas, I; Argilés, J M; Alemany, M

    1990-01-01

    1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage. PMID:2129230

  19. Assessing the Energy Consumption of Smartphone Applications

    NASA Astrophysics Data System (ADS)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  20. Impact of climatic factors on energy consumption during the heating season

    NASA Astrophysics Data System (ADS)

    Ginzburg, A. S.; Reshetar, O. A.; Belova, I. N.

    2016-09-01

    Global and regional climate changes produce a significant effect on energy production and consumption, especially on heating and air conditioning in residential, industrial, commercial, and office rooms. In Russia, with its contracting climate conditions, energy consumption varies a lot in different regions. Thus, we have to review the dynamics of energy consumption during the cold season individually for each region of the country. We analyzed the dynamics of duration and temperature of the heating season in Moscow region and completed a comparative study of heat energy consumption, actual and calculated based on the 'degreedays' concept, in the municipal economy of Moscow during the last decade. Based on the actual data analysis, we proved that conservation of energy resources in a large city relies not so much on a shortening of the heating period as on the growth of atmospheric air temperature in winter. The projected climate warming in the Moscow region in the nearest decades, along with measures of energy conservation, will promote a significant reduction in energy consumption of the municipal economy in winter. The results shown in this article were obtained in the process of preparing and implementing project no. 16-17-00114 by the Russian Science Foundation "Analysis of an impact of the regional climate change on the residential and commercial energy consumption of Russian megacities," within the main area of focus of the Russian Science Foundation, which is "Fundamental Research and Exploration in Main Topical Areas of Focus." The project was implemented within the framework of the scientific area of focus, which is "Reduction of the Risk and Mitigation of Consequences of Natural and Man-made Disasters" ("Studying Economical, Political, and Social Consequences of Global Climate Changes" problem).

  1. Estimating the HVAC energy consumption of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Kambly, Kiran R.; Bradley, Thomas H.

    2014-08-01

    Plug in electric vehicles are vehicles that use energy from the electric grid to provide tractive and accessory power to the vehicle. Due to the limited specific energy of energy storage systems, the energy requirements of heating, ventilation, and air conditioning (HVAC) systems for cabin conditioning can significantly reduce their range between charges. Factors such as local ambient temperature, local solar radiation, local humidity, length of the trip and thermal soak have been identified as primary drivers of cabin conditioning loads and therefore of vehicle range. The objective of this paper is to develop a detailed systems-level approach to connect HVAC technologies and usage conditions to consumer-centric metrics of vehicle performance including energy consumption and range. This includes consideration of stochastic and transient inputs to the HVAC energy consumption model including local weather, solar loads, driving behavior, charging behavior, and regional passenger fleet population. The resulting engineering toolset is used to determine the summation of and geographical distribution of energy consumption by HVAC systems in electric vehicles, and to identify regions of US where the distributions of electric vehicle range are particularly sensitive to climate.

  2. Using LEDs to reduce energy consumption

    NASA Astrophysics Data System (ADS)

    Eweni, Chukwuebuka E.

    The most popularly used light bulb in homes is the incandescent. It is also the least energy efficient. The filament in the bulb is so thin that it causes resistance in the electricity, which in turn causes the electricity's energy to form heat. This causes the incandescent to waste a lot of energy forming heat rather than forming the light. It uses 15 lumens per watt of input power. A recorded MATLAB demonstration showcased LED versatility and how it can be used by an Arduino UNO board. The objective of this thesis is to showcase how LEDs can reduce energy consumption through the use of an Arduino UNO board and MATLAB and to discuss the applications of LED. LED will be the future of lighting homes and will eventually completely incandescent bulbs when companies begin to make the necessary improvements to the LED.

  3. Global energy consumption for direct water use

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.

    2015-12-01

    Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.

  4. Household energy and consumption and expenditures, 1990. Supplement, Regional

    SciTech Connect

    Not Available

    1993-03-02

    The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

  5. The Effect of Computers on School Air-Conditioning.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  6. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  7. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  8. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  9. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  10. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  11. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  12. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  13. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  14. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  15. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  16. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... consumption, but instead calculate the energy use rate (kWh/100 lbs Ice) by dividing the energy...

  17. Public perceptions of energy consumption and savings

    PubMed Central

    Attari, Shahzeen Z.; DeKay, Michael L.; Davidson, Cliff I.; Bruine de Bruin, Wändi

    2010-01-01

    In a national online survey, 505 participants reported their perceptions of energy consumption and savings for a variety of household, transportation, and recycling activities. When asked for the most effective strategy they could implement to conserve energy, most participants mentioned curtailment (e.g., turning off lights, driving less) rather than efficiency improvements (e.g., installing more efficient light bulbs and appliances), in contrast to experts’ recommendations. For a sample of 15 activities, participants underestimated energy use and savings by a factor of 2.8 on average, with small overestimates for low-energy activities and large underestimates for high-energy activities. Additional estimation and ranking tasks also yielded relatively flat functions for perceived energy use and savings. Across several tasks, participants with higher numeracy scores and stronger proenvironmental attitudes had more accurate perceptions. The serious deficiencies highlighted by these results suggest that well-designed efforts to improve the public's understanding of energy use and savings could pay large dividends. PMID:20713724

  18. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    NASA Astrophysics Data System (ADS)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  19. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  20. Energy consumption of personal computer workstations

    SciTech Connect

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-08-01

    A field study directly measured the electric demand of 189 personal computer workstations for 1-week intervals, and a survey recorded the connected equipment at 1,846 workstations in six buildings. Each separate workstation component (e.g., computer, monitor, printer, modem, and other peripheral) was individually monitored to obtain detailed electric demand profiles. Other analyses included comparison of nameplate power rating with measured power consumption and the energy savings potential and cost-effectiveness of a controller that automatically turns off computer workstation equipment during inactivity. An important outcome of the work is the development of a standard workstation demand profile and a technique for estimating a whole-building demand profile. Together, these provide a method for transferring this information to utility energy analysts, design engineers, building energy modelers, and others. A life-cycle cost analysis was used to determine the cost-effectiveness of three energy conservation measures: (1) energy awareness education, (2) retrofit power controller installation, and (3) purchase of energy-efficient PCs.

  1. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Commercial heating, ventilating, air conditioning (HVAC... Commercial heating, ventilating, air conditioning (HVAC) equipment. Link to an amendment published at 78 FR... § 429.11 are applicable to commercial HVAC equipment; and (2) For each basic model of commercial...

  2. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  3. Low energy consumption spintronics using multiferroic heterostructures.

    PubMed

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  4. Energy Consumption of Actively Beating Flagella

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Nicastro, Daniela; Dogic, Zvonimir

    2012-02-01

    Motile cilia and flagella are important for propelling cells or driving fluid over tissues. The microtubule-based core in these organelles, the axoneme, has a nearly universal ``9+2'' arrangement of 9 outer doublet microtubules assembled around two singlet microtubules in the center. Thousands of molecular motor proteins are attached to the doublets and walk on neighboring outer doublets. The motors convert the chemical energy of ATP hydrolysis into sliding motion between adjacent doublet microtubules, resulting in precisely regulated oscillatory beating. Using demembranated sea urchin sperm flagella as an experimental platform, we simultaneously monitor the axoneme's consumption of ATP and its beating dynamics while key parameters, such as solution viscosity and ATP concentration, are varied. Insights into motor cooperativity during beating and energetic consequences of hydrodynamic interactions will be presented.

  5. Revising China's energy consumption and carbon emissions

    NASA Astrophysics Data System (ADS)

    Liu, Z.

    2015-12-01

    China is the world's largest carbon emitter and takes the lion's share of new increased emission since 2000, China's carbon emissions and mitigation efforts have received global attentions (Liu et al., Nature 500, 143-145)1. Yet China's emission estimates have been approved to be greatly uncertain (Guan et al., Nature Climate Change 2, 672-675)2. Accurate estimation becomes even crucial as China has recently pledged to reach a carbon emission peak by 2030, but no quantitative target has been given, nor is it even possible to assess without a reasonable baseline. Here we produced new estimates of Chinese carbon emissions for 1950-2012 based on a new investigation in energy consumption activities and emission factors using extensively surveyed and experimental data from 4243 mines and 602 coal samples. We reported that the total energy consumption is 10% higher than the nationally published value. The investigated emission factors used in China are significantly (40%) different from the IPCC default values which were used in drawing up several previous emission inventories. The final calculated total carbon emissions from China are 10% different than the amount reported by international data sets. The new estimate provides a revision of 4% of global emissions, which could have important implications for global carbon budgets and burden-sharing of climate change mitigation. 1 Liu, Z. et al. A low-carbon road map for China. Nature 500, 143-145 (2013). 2 Guan, D., Liu, Z., Geng, Y., Lindner, S. & Hubacek, K. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 672-675 (2012).

  6. Changes in cotton gin energy consumption apportioned by ten functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  7. Energy consumption of personal computer workstations

    SciTech Connect

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-02-01

    The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

  8. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  9. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  10. Fundamental principles of energy consumption for gene expression.

    PubMed

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  11. Analysis of Final Energy Consumption Patterns in 10 Arab Countries

    NASA Astrophysics Data System (ADS)

    Al-Hinti, I.; Al-Ghandoor, A.

    2009-08-01

    This study presents an analysis of the energy consumption patterns in 10 Arab countries: Saudi Arabia, Kuwait, United Arab Emirates (UAE), Syria, Lebanon, Jordan, Egypt, Libya, Tunisia, and Algeria. Commonalities and variations between these countries are discussed and explained through key economic and energy indicators, and the relationship between the overall final energy consumption per capita and the GDP per capita is examined. The distribution of the final energy consumption across different sectors is also analysed, and the patterns of consumption in the industrial, transportation, and residential sectors are discussed with focus on the types of energy consumed, and the main drivers of this consumption. The findings and the conclusions of this study are believed to be beneficial to the national energy policy planners in identifying possible strengths, weaknesses, and areas of emphasis and improvement in their strategic energy plans.

  12. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.

  13. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  14. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment.

    PubMed

    Krzeminski, Pawel; van der Graaf, Jaap H J M; van Lier, Jules B

    2012-01-01

    This paper provides an overview of current electric energy consumption of full-scale municipal MBR installations based on literature review and case studies. Energy requirements of several MBRs were linked to operational parameters and reactor performance. Total and specific energy consumption data were analysed on a long-term basis with special attention given to treated flow, design capacity, membrane area and effluent quality. The specific energy consumption of an MBR system is dependent on many factors, such as system design and layout, volume of treated flow, membrane utilization and operational strategy. Operation at optimal flow conditions results in a low specific energy consumption and energy efficient process. Energy consumption of membrane related modules was in the range of 0.5-0.7 kWh/m(3) and specific energy consumption for membrane aeration in flat sheet (FS) was 33-37% higher than in a hollow fibre (HF) system. Aeration is a major energy consumer, often exceeding 50% share of total energy consumption. In consequence, coarse bubble aeration applied for continuous membrane cleaning remains the main target for energy saving actions. Also, a certain potential for energy optimization without immediate danger of affecting the quality of the produced effluent was observed.

  15. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  16. Estimation of optimum requirements for indoor air quality and energy consumption in some residences in Kuwait.

    PubMed

    Elkilani, A; Bouhamra, W

    2001-12-01

    Contrasting effects of the dilution of indoor generated pollutants and the energy efficiency of heating and ventilating air conditioning systems (HVAC) for indoor air quality (IAQ) and thermal comfort were studied for 10 Kuwaiti residences. The levels of volatile organic compounds (VOCs) and the calculated cooling load of the HVAC systems were used as indicators for the IAQ and for the energy consumption, respectively. Air exchange rates and VOCs levels (both indoor and outdoor) were measured. It was found that the outdoor VOC concentrations were always less than the indoor values. Therefore reduction of indoor VOC levels can be accomplished either by increasing the ratio of the makeup air to the recirculation air of the HVAC system or by increasing the infiltration airflow rate through openings. A single compartment IAQ model, modified by the authors, was used to test for the variation in the above two dilution modes and to test the performance sensitivity. Hence, the optimum parameters in terms of IAQ and energy consumption were determined. The results indicated that it was necessary to increase the ratio of the makeup air to the recirculation air from its typical design value of 0.5 to a range of 0.7-1.3 in order to reduce indoor VOC to acceptable levels.

  17. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  18. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  19. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1 The Design... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  20. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  1. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  2. Estimates of U.S. Biomass Energy Consumption 1992

    EIA Publications

    1994-01-01

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass derived primary energy used by the U.S. economy. It presents estimates of 1991 and 1992 consumption.

  3. Do residential air-conditioning rebates miss the mark?

    SciTech Connect

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  4. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  5. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  6. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. (a) Scope....

  7. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    PubMed Central

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  8. Optimal energy consumption analysis of natural gas pipeline.

    PubMed

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent.

  9. Simulation of energy consumption for quadruped walking vehicle

    NASA Astrophysics Data System (ADS)

    Lei, Jingtao; Gao, Feng; Xu, Guoyan

    2006-11-01

    Simulation of energy consumption for walking vehicle is one of the basic way to preliminarily estimate the energy that will be consumed before constructing the real vehicle, providing basis for the design of vehicle to minish energy consumption. One of the most influential factors of the accuracy dynamic simulation is the appropriate contact model between leg and ground. In this paper, we adopt virtual prototyping technique to develop the dynamic modeling of a quadruped walking vehicle considering contact force between legs and ground during walking, finish simulation of dynamics and obtain dynamics characteristics, investigate the effects of different contact condition and the energy consumption. The purpose is to analyze the relationship between energy consumption and relevant influence factors, and the energy efficiency during walking is discussed with different walking velocity, strokes, duty factors and different contact material. Moreover contact force is obtained from simulations. Commercial ADAMS package is used.

  10. [Relationships between settlement morphology transition and residents commuting energy consumption].

    PubMed

    Zhou, Jian; Xiao, Rong-Bo; Sun, Xiang

    2013-07-01

    Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition.

  11. Energy consumption analysis for the Mars deep space station

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  12. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    NASA Astrophysics Data System (ADS)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  13. Energy Consumption Series: Assessment of energy use in multibuilding facilities

    SciTech Connect

    Not Available

    1993-08-01

    This study originally had two primary objectives: (1) to improve EIA`s estimates of district heat consumption for commercial buildings in the CBECS sample that lacked individual metering and (2) to provide a basis for estimating primary fuel consumption by central plants serving commercial buildings. These objectives were expanded to include additional questions relating to these central plants. Background information is provided on the CBECS and on district heating and cooling, which is the most important type of energy-related service provided by multibuilding facilities with central physical plants. Chapters 2 and 3 present data results on multibuilding facilities from the 1989 CBECS and the pilot Facility Survey. Chapter 2 presents the characteristics of multibuilding facilities and the individual buildings located on these facilities. Chapter 3 provides estimates of energy inputs and outputs of multibuilding facilities with central physical plants. Chapter 4 assesses the quality of the pilot Facility Survey and includes recommendations for future work in this area. The appendices provide more detailed information on the Facility Survey itself, in particular the limitations on the use of these results. Appendix B, ``Data Quality``, provides detailed information relating to the limitations of the data and the conclusions presented in this report. As a pilot study, the 1989 Facility Survey has some serious flaws and limitations which are recognized in this report.

  14. Zoned heating and air conditioning system

    SciTech Connect

    Beachboard, S.A.

    1987-06-16

    This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

  15. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers...

  16. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  17. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced. PMID:23567705

  18. Investigating energy consumption of coastal vacation rental homes

    NASA Astrophysics Data System (ADS)

    Myers, Sam

    In 2007, vacation rental properties in the United States accounted for more than 22% of the domestic lodging market. These properties are a unique segment of the lodging industry due to their residential design and commercial use. Coastal vacation rental properties represent the largest supply, demand and value of the nation's vacation rental supply. In the case of North Carolina's Outer Banks, tourism is the area's largest source of income, with vacation real estate agencies being the largest accommodation provider. This study uses a multiple regression analysis to investigate the energy consumption of 30 vacation rental homes on Hatteras Island. Hatteras Island's abundant supply of vacation rental homes provided a diverse sample to study energy consumption with a wide range of houses regarding size, age, and location. Since very little research has been conducted on the energy consumption of vacation rental homes, this study aims to contribute detailed information regarding the energy consumption of unique accommodation sector.

  19. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  20. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  1. Wireless network interface energy consumption implications of popular streaming formats

    NASA Astrophysics Data System (ADS)

    Chandra, Surendar

    2001-12-01

    With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.

  2. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  3. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  4. Energy drinks consumption in male construction workers, Chonburi province.

    PubMed

    Pichainarong, Natchaporn; Chaveepojnkamjorn, Wisit; Khobjit, Pattama; Veerachai, Viroj; Sujirarat, Dusit

    2004-12-01

    This unmatched case-control study aimed to determine the relationship among caffeine drinks consumption known as "energy drinks consumption", drug dependence and related factors in male construction workers in Chonburi Province. It was conducted during December 15, 2001 and February 15, 2002. Data were collected using interview questionnaires. The logistic regression was used to control possible confounding factors. The subjects consisted of 186 cases who had consumed energy drinks for more than 3 months and 186 controls who had given up for more than 3 months. They were frequency/group matched by age group. There was statistically significant association among energy drinks consumption and overtime work, motivation from advertisements, positive attitude of energy drinks consumption, alcohol drinks, smoking and ex-taking Kratom behavior. Multivariate analyses revealed that only 5 factors were related to energy drinks consumption: marital status (OR = 1.88, 95%CI: 1.14, 3.11), overtime work (OR = 2.84, 95%CI: 1.73, 4.64), motivation from advertisements (OR = 2.72, 95%CI: 1.67, 4.42), positive attitude of energy drinks consumption (OR = 4.06, 95%CI: 1.65, 10.01) and ex-taking Kratom behavior (OR = 2.77, 95%CI: 1.19, 6.44). As a result, construction workers should be provided with the knowledge of energy drinks consumption, the effect of drug dependence behavior, and the advantages of safe and healthy food that is cheap, readily available, and rich in nutrients. PMID:15822540

  5. Mapping water consumption for energy production around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  6. Energy Consumption Information Services for Smart Home Inhabitants

    NASA Astrophysics Data System (ADS)

    Schwanzer, Michael; Fensel, Anna

    We investigate services giving users an adequate insight on his or her energy consumption habits in order to optimize it in the long run. The explored energy awareness services are addressed to inhabitants of smart homes, equipped with smart meters, advanced communication facilities, sensors and actuators. To analyze the potential of such services, a game at a social network Facebook has been designed and implemented, and the information about players' responses and interactions within the game environment has been collected and analyzed. The players have had their virtual home energy usage visualized in different ways, and had to optimize the energy consumption basing on their own perceptions of the consumption information. Evaluations reveal, in particular, that users are specifically responsive to information shown as a real-time graph and as costs in Euro, and are able to produce and share with each other policies for managing their smart home environments.

  7. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    ERIC Educational Resources Information Center

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  8. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  9. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  10. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  11. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  12. Systems accounting for energy consumption and carbon emission by building

    NASA Astrophysics Data System (ADS)

    Shao, Ling; Chen, G. Q.; Chen, Z. M.; Guo, Shan; Han, M. Y.; Zhang, Bo; Hayat, T.; Alsaedi, A.; Ahmad, B.

    2014-06-01

    The method of systems accounting for overall energy consumption and carbon emission induced by a building is illustrated in terms of a combination of process and input-output analyses with a concrete procedure to cover various material, equipment, energy and manpower inputs. A detailed case study based on raw project data in the Bill of Quantities (BOQ) is performed for the structure engineering of the landmark buildings in E-town, Beijing (Beijing Economic-Technological Development Area). Based on the embodied energy and carbon emission intensity database for the Chinese economy in 2007, the energy consumption and the carbon emission of the structure engineering of the case buildings are quantified as 4.15E+14 J and 4.83E+04 t CO2 Eq., corresponding to intensities of 6.91E+09 J/m2 and 0.81 t CO2 Eq./m2 floor area. Steel and concrete contribute respectively about 50% and 30% of the energy consumption and the carbon emission, as a result of the reinforced-concrete structure of the case buildings. Materials contribute up to about 90% of the total energy consumption and carbon emission, in contrast to manpower, energy and equipment around 8%, 1% and 0.1%, respectively.

  13. Understanding energy consumption of sensor enabled applications on mobile phones.

    PubMed

    Crk, Igor; Albinali, Fahd; Gniady, Chris; Hartman, John

    2009-01-01

    Recent research in ubiquitous and mobile computing uses mobile phones and wearable accelerometers to monitor individuals' physical activities for personalized and proactive health care. The goal of this project is to measure and reduce the energy demand placed on mobile phones that monitor individuals' physical activities for extended periods of time with limited access to battery recharging and mobile phone reception. Many issues must be addressed before mobile phones become a viable platform for remote health monitoring, including: security, reliability, privacy, and, most importantly, energy. Mobile phones are battery-operated, making energy a critical resource that must be carefully managed to ensure the longest running time before the battery is depleted. In a sense, all other issues are secondary, since the mobile phone will simply not function without energy. In this project, we therefore focus on understanding the energy consumption of a mobile phone that runs MIT wockets, physical activity monitoring applications, and consider ways to reduce its energy consumption.

  14. A survey of energy drink consumption patterns among college students

    PubMed Central

    Malinauskas, Brenda M; Aeby, Victor G; Overton, Reginald F; Carpenter-Aeby, Tracy; Barber-Heidal, Kimberly

    2007-01-01

    Background Energy drink consumption has continued to gain in popularity since the 1997 debut of Red Bull, the current leader in the energy drink market. Although energy drinks are targeted to young adult consumers, there has been little research regarding energy drink consumption patterns among college students in the United States. The purpose of this study was to determine energy drink consumption patterns among college students, prevalence and frequency of energy drink use for six situations, namely for insufficient sleep, to increase energy (in general), while studying, driving long periods of time, drinking with alcohol while partying, and to treat a hangover, and prevalence of adverse side effects and energy drink use dose effects among college energy drink users. Methods Based on the responses from a 32 member college student focus group and a field test, a 19 item survey was used to assess energy drink consumption patterns of 496 randomly surveyed college students attending a state university in the Central Atlantic region of the United States. Results Fifty one percent of participants (n = 253) reported consuming greater than one energy drink each month in an average month for the current semester (defined as energy drink user). The majority of users consumed energy drinks for insufficient sleep (67%), to increase energy (65%), and to drink with alcohol while partying (54%). The majority of users consumed one energy drink to treat most situations although using three or more was a common practice to drink with alcohol while partying (49%). Weekly jolt and crash episodes were experienced by 29% of users, 22% reported ever having headaches, and 19% heart palpitations from consuming energy drinks. There was a significant dose effect only for jolt and crash episodes. Conclusion Using energy drinks is a popular practice among college students for a variety of situations. Although for the majority of situations assessed, users consumed one energy drink with a

  15. Research on the optimal energy consumption of oil pipeline.

    PubMed

    Liu, Enbin; Li, Changjun; Yang, Liuting; Liu, Song; Wu, Mingchang; Wang, Di

    2015-07-01

    Most of the Chinese crude oil is easy to curdle and has high viscosity, so heating transportation is usually selected. Energy consumption by this method mainly comes from furnaces and pumps. Currently, operating parameters of these pipelines were determined according to experience of dispatch. It cause high energy consumption and high cost of pipeline running, so it could not adapt to energy conservation policy. The present study focused on consuming lowest energy to operate oil transportation line. To begin with, several optimization variables were set which included pump combinations, suction pressure, discharge pressure, and station temperature. Then constraint conditions were set to establish an optimal mathematical model of running transportation line. Furthermore, genetic algorithm was used to solve the model, in meantime, selection operation, cross operation and mutation operation in the genetic algorithm were improved. Finally, a crude oil pipeline running optimization software was developed. Through optimal analyzing, S-L transportation line and contrasting with the actual working conditions, it was found that optimal operation scheme could reduce energy consumption by 5% - 9%. In addition, optimal operation scheme also considered the effect of seasons and flow on energy consumption of S-L transportation line.

  16. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  17. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2002-10-12

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant investigated for similar concepts in the past. This document reports on the progress made in the program during the past quarter. It reports on projectile development and the development of the electric launch system design.

  18. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2002-01-09

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant considered for similar concepts in the past. This document reports on the progress made in the program during the past quarter. It reports on projectile development experiments and the development of the electric launch system design.

  19. Optimal Energy Consumption Model for Smart Grid Households With Energy Storage

    NASA Astrophysics Data System (ADS)

    Rajasekharan, Jayaprakash; Koivunen, Visa

    2014-12-01

    In this paper, we propose to model the energy consumption of smart grid households with energy storage systems as an intertemporal trading economy. Intertemporal trade refers to transaction of goods across time when an agent, at any time, is faced with the option of consuming or saving with the aim of using the savings in the future or spending the savings from the past. Smart homes define optimal consumption as either balancing/leveling consumption such that the utility company is presented with a uniform demand or as minimizing consumption costs by storing energy during off-peak time periods when prices are lower and use the stored energy during peak time periods when prices are higher. Due to the varying nature of energy requirements of household and market energy prices over different time periods in a day, households face a trade-off between consuming to meet their current energy requirements and/or storing energy for future consumption and/or spending energy stored in the past. These trade-offs or consumption preferences of the household are modeled as utility functions using consumer theory. We introduce two different utility functions, one for cost minimization and another for consumption balancing/leveling, that are maximized subject to respective budget, consumption, storage and savings constraints to solve for the optimum consumption profile. The optimization problem of a household with energy storage is formulated as a geometric program for consumption balancing/leveling, while cost minimization is formulated as a linear programming problem. Simulation results show that the proposed model achieves extremely low peak to average ratio in the consumption balancing/leveling scheme with about 8% reduction in consumption costs and the least possible amount for electricity bill with about 12% reduction in consumption costs in the cost minimization scheme.

  20. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2003-06-06

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant considered for similar concepts in the past. This document reports on the program findings through the first two phases. It presents projectile design and experiment data and the preliminary design for electric launch system. Advanced Power Technologies, Inc., now BAE SYSTEMS Advanced Technologies, Inc., was forced to withdraw from the program with the loss of one of our principal mining partners, however, the experiments conducted suggest that the approach is feasible and can be made cost effective.

  1. Legitimacy of concerns about caffeine and energy drink consumption.

    PubMed

    Wesensten, Nancy J

    2014-10-01

    Whether caffeine and energy drink consumption presents a critical emerging health problem is not currently known. Available evidence suggests that energy drink consumption represents a change in the ways in which individuals in the United States consume caffeine but that the amount of caffeine consumed daily has not appreciably increased. In the present review, the question of whether Americans are sleep deprived (a potential reason for using caffeine) is briefly explored. Reported rates of daily caffeine consumption (based on beverage formulation) and data obtained from both civilian and military populations in the United States are examined, the efficacy of ingredients other than caffeine in energy drinks is discussed, and the safety and side effects of caffeine are addressed, including whether evidence supports the contention that excessive caffeine/energy drink consumption induces risky behavior. The available evidence suggests that the main legitimate concern regarding caffeine and energy drink use is the potential negative impact on sleep but that, otherwise, there is no cause for concern regarding caffeine use in the general population.

  2. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  3. Solar Adoption and Energy Consumption in the Residential Sector

    NASA Astrophysics Data System (ADS)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  4. Developing an Analytical Framework for Argumentation on Energy Consumption Issues

    ERIC Educational Resources Information Center

    Jin, Hui; Mehl, Cathy E.; Lan, Deborah H.

    2015-01-01

    In this study, we aimed to develop a framework for analyzing the argumentation practice of high school students and high school graduates. We developed the framework in a specific context--how energy consumption activities such as changing diet, converting forests into farmlands, and choosing transportation modes affect the carbon cycle. The…

  5. Energy Cost and Consumption Audit Program. 1975-76 Report.

    ERIC Educational Resources Information Center

    Energy Task Force, Washington, DC.

    Results reported in this document were obtained from a questionnaire distributed to higher education business officers and physical plant directors requesting information on total campus and individual building energy cost and consumption for the fiscal year July 1, 1975, through June 30, 1976. Usable reports were received from 330 (22 percent) of…

  6. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  7. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and

  8. Cold water aquifer storage. [air conditioning

    NASA Technical Reports Server (NTRS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  9. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  10. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  11. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  12. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  13. Impact of electric cars on national energy consumption

    NASA Astrophysics Data System (ADS)

    Agarwal, P. D.

    1980-02-01

    Energy utilization of electric vehicles is discussed in terms of energy efficiency in comparison to internal combustion engine automobiles, starting from oil or coal as the prime energy source. It is found that although an electric car does not save primary energy resources, it can transfer some of the transportation fuel needs from petroleum to coal, nuclear, or hydropower. With reference to the impact of electric vehicles on reduction of petroleum consumption, it is shown that the dependence of the United States on foreign oil can be reduced much more quickly and at much lower cost by converting electric utility boilers from oil to coal.

  14. Building and occupant characteristics as determinants of residential energy consumption

    SciTech Connect

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  15. 64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT REPAIR SHOP. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD

  16. 10. Building 105, Facilities Engineering Building, 1830, interior, air condition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Building 105, Facilities Engineering Building, 1830, interior, air condition repair shop, S end of building, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  17. Proceedings of the 1993 Non-Fluorocarbon Insulation, Refrigeration and Air Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Effects of climate change on building energy consumption in cities

    NASA Astrophysics Data System (ADS)

    Matsuura, K.

    1995-03-01

    Sensitivity of building-energy consumption to changing urban environments is examined by simulating building energy loads in hypothetical urban settings. A modified version of an algorithm developed by the U.S. Army Construction Engineering Research Laboratory is used to evaluate energy requirements. Energy loads for two buildings of interest are estimated for changing climatic conditions (air temperature) as well as changing environments around the building. An isolated building and a building surrounded by several other buildings are considered. Results indicate that climate warming may lead to energy savings in a wide range of climates while savings also depend on the nature of the building and its use. In cool climates, climate warming forces net energy-load decreases through reductions of the winter heating loads. For example, a one-degree increase in annual air temperature in Duluth led to a 10 kWh decrease in net energy loads for a small office building. In warm climates, urbanization tends to accelerate energy consumption although shadowing may contribute significantly to decreases in summer cooling loads. In Phoenix, annual mean daily net energy loads decreased by about 10 kWh due to shadowing for the same office building. Even in relatively cool regions, summer cooling-load reductions caused by shadowing are effective.

  20. Factors affecting the energy consumption of two refrigerator-freezers

    SciTech Connect

    Kao, J.Y.; Kelley, G.E.

    1996-12-31

    Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect on energy of different temperature settings was studied. Test results are presented and discussed.

  1. Energy consumption in buildings and female thermal demand

    NASA Astrophysics Data System (ADS)

    Kingma, Boris; van Marken Lichtenbelt, Wouter

    2015-12-01

    Energy consumption of residential buildings and offices adds up to about 30% of total carbon dioxide emissions; and occupant behaviour contributes to 80% of the variation in energy consumption. Indoor climate regulations are based on an empirical thermal comfort model that was developed in the 1960s (ref. ). Standard values for one of its primary variables--metabolic rate--are based on an average male, and may overestimate female metabolic rate by up to 35% (ref. ). This may cause buildings to be intrinsically non-energy-efficient in providing comfort to females. Therefore, we make a case to use actual metabolic rates. Moreover, with a biophysical analysis we illustrate the effect of miscalculating metabolic rate on female thermal demand. The approach is fundamentally different from current empirical thermal comfort models and builds up predictions from the physical and physiological constraints, rather than statistical association to thermal comfort. It provides a substantiation of the thermal comfort standard on the population level and adds flexibility to predict thermal demand of subpopulations and individuals. Ultimately, an accurate representation of thermal demand of all occupants leads to actual energy consumption predictions and real energy savings of buildings that are designed and operated by the buildings services community.

  2. Recent trends of energy consumption and air pollution in China

    SciTech Connect

    Tian, H.Z.; Hao, J.M.; Hu, M.Y.; Nie, Y.F.

    2007-03-15

    The relationship between air pollution and energy consumption is a hot topic that is receiving increased attention by industry, regulatory agencies, as well as the public. China is currently undergoing a profound economic and social transition. Since the late 1990s, China's energy production and consumption have undergone an unexpectedly precipitous up-and-down fluctuation, and the related air pollution has changed dramatically. In this study, energy use and the related air pollution during the past years are analyzed and discussed in detail. Further, suggestions on sustainable energy use, air pollution control, as well as CO{sub 2}, abatement are proposed. By 2003, the total primary energy consumption of China had reached 1678.00 million tons (MT) of standard coal equivalent. As a result, emissions of SO{sub 2}, and NOx increased to 21.58 and 16.13 MT in 2003, respectively. Acid rain pollution worsened nationwide after 2000, with the areas of acid rain remaining stable while some seriously acid rain polluted areas worsened. This implies that more rigorous regulations, standards, and effective economic policies are needed.

  3. Characteristics of sunflower seed drying and microwave energy consumption

    NASA Astrophysics Data System (ADS)

    Darvishi, H.; Hadi Khoshtaghaza, M.; Najafi, G.; Zarein, M.

    2013-03-01

    The effect of the microwave-convective drying technique on the moisture ratio, drying rate, drying time, effective moisture diffusivity, microwave specific energy consumption, and energy efficiency of sunflower seedswere investigated.Drying took place in the falling rate period. Increasing the microwave power caused a significant decrease in the drying time. The drying data were fitted to four thin-layer drying models. The performance of these models was compared using the coefficient of determination, reduced chi-square and root mean square error between the observed and predicted moisture ratios. The results showed that the Page model was found to satisfactorily describe themicrowave-convective drying curves of sunflower seeds. The effective moisture diffusivity values were estimated from Fick diffusion model and varied from 1.73 10-7 to 4.76 10-7m2s-1. Increasing the microwave power resulted in a considerable increase in drying efficiency and a significant decrease in microwave specific energy consumption. The highest energy efficiency and the lowestmicrowave specific energy consumption were obtained at the microwave power of 300 W.

  4. DuPont cuts energy consumption 8% -- for starters

    SciTech Connect

    Wiseman, K.

    1998-07-01

    DuPont`s Corporate Energy Leadership Team (CELT) faced a difficult challenge at its inception in 1991--reducing the industry giant`s $900 million annual domestic energy bill. Seven years later, DuPont`s annual energy costs are down to $800 million, and energy consumption has shrunk by more than 8%. The team is on track toward future reduction goals. Key to persuading the company was the team`s 1992 Jump Start commitment to reduce out-of-pocket energy expenditures immediately. Over a four-month period, the goal was to save $6 million out-of-pocket on energy costs. The company actually ended up doubling that, saving over $12 million. The greatest savings--26% of the total--came from shutting down spare or unneeded equipment. Equipment tune-ups to improve performance and renegotiation of fuel contracts also lowered energy costs. The paper discusses how it was done.

  5. Energy Drink Consumption: Beneficial and Adverse Health Effects

    PubMed Central

    Alsunni, Ahmed Abdulrahman

    2015-01-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carried out to identify and discuss the published articles that examined the beneficial and adverse health effects related to energy drink. It is concluded that although energy drink may have beneficial effects on physical performance, these products also have possible detrimental health consequences. Marketing of energy drinks should be limited or forbidden until independent research confirms their safety, particularly among adolescents. PMID:26715927

  6. Energy Drink Consumption: Beneficial and Adverse Health Effects.

    PubMed

    Alsunni, Ahmed Abdulrahman

    2015-10-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carried out to identify and discuss the published articles that examined the beneficial and adverse health effects related to energy drink. It is concluded that although energy drink may have beneficial effects on physical performance, these products also have possible detrimental health consequences. Marketing of energy drinks should be limited or forbidden until independent research confirms their safety, particularly among adolescents. PMID:26715927

  7. Socioeconomic Factors Affecting Household Energy Consumption in Qom, Iran

    NASA Astrophysics Data System (ADS)

    Mehrzad, Ebrahimi; Masoud, Alizadeh; Mansour, Ebrahimi

    Petrol is heavily subsidized in Iran which has led both to very high consumption levels and a big smuggling problem as petrol is transported out of Iran's border areas for re-sale in neighboring countries, where petrol prices are much higher. Also, a shortage of refineries combined with wasteful consumption means that Iran regularly imports petrol despite being one of the world's biggest oil producers. To look at the different variables contributing to wasteful consumption of fuel in Iran and the effect of governmental gradual increase of fuel prices, this study questioned 600 family warden views in Qom, Iran. The results showed that more than two third of samples have heard or read at least one news about energy saving and quoted TV as main source of their information while 55% mentioned all fossils resources would be finish in near future and urged optimum energy consumption as the best way to tackle energy crisis (82%), with 85% asked for more media propagation to change wrong cultural behaviors in Qom. Nearly half of the people said that governmental plan to increase domestic price of high octane and regular gasoline annually had little or no effect on fuel consumption and majority of them mentioned cultural changes as the best tools and nearly the same rate were worried about air pollution as the immediate result of uncontrolled fuel consumption in Qom. The results also showed that with increase in each year education of family warden, decreases fuel expenses 11.2% in hot seasons and 1240000 Iranian Rials (IR-R) in cold seasons while increase in family members' size adds 288660 (IR-R) per member to base family size (2) and for each member of family which works outside the house, family energy expenses increase 234470 IR-R. And finally the results showed fuel (or energy) expenses in cold months in Qom is higher than other months and family warden education showed more effect to reduce those expenses during mild months but less during hot months. Therefore it is

  8. An analysis of residential energy consumption in a temperate climate

    SciTech Connect

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  9. Cardiovascular complications from consumption of high energy drinks: recent evidence.

    PubMed

    Chrysant, S G; Chrysant, G S

    2015-02-01

    The energy drinks (ED) are caffeinated beverages that are popular among teenagers and young adults. They are aggressively marketed as providing alertness, energy and sex prowess. The EDs in addition to caffeine contain several plant stimulants and simple sugars, which increase their caloric content. The caffeine concentration in these drinks is high and their overconsumption could lead to insomnia, agitation, tremors and cardiovascular complications including sudden death. Alcohol is often mixed with EDs (AMEDs) in the wrong perception that the caffeine in the EDs will prevent the drowsiness and sleepiness from alcohol and allow the person to consume more alcohol. This false perception, could lead to alcohol intoxication and the taking of risky decisions, like driving under the influence of alcohol and the risk of serious physical harm to themselves and others. To prevent the problem of consumption of EDs and AMEDs, the caring physician could help by advising the parents and his young patients about the serious health risks from the consumption of these drinks. In order to grasp the extend of the problem of ED and AMED consumption, we did a Medline search of the English language literature from January 2010 to December 2013, using the terms EDs and alcohol-mixed EDs. All the findings from the recent studies regarding the cardiovascular complications from the consumption of EDs and AMEDs together with collateral literature will be discussed in this review.

  10. Question 7: Optimized Energy Consumption for Protein Synthesis

    NASA Astrophysics Data System (ADS)

    Szaflarski, Witold; Nierhaus, Knud H.

    2007-10-01

    In our previous contribution (Nierhaus, Orig Life Evol Biosph, this volume, 2007) we mentioned that life had solved the problem of energy supply in three major steps, and that these steps also mark major stages during the development of life. We further outlined a possible scenario concerning a minimal translational apparatus focusing on the essential components necessary for protein synthesis. Here we continue that consideration by addressing on one of the main problems of early life, namely avoiding wasteful energy loss. With regard to the limiting energy supply of early living systems, i.e. those of say more than 3,000 Ma, a carefully controlled and product oriented energy consumption was in demand. In recent years we learned how a bacterial cell avoids energy drain, thus being able to pump most of the energy into protein synthesis. These lessons must be followed by the design of a minimal living system, which is surveyed in this short article.

  11. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  12. Model of US Army Materiel Command (AMC) energy consumption. Volume 1. Development of monthly energy-consumption equations. Final report

    SciTech Connect

    Sliwinski, B.J.

    1986-03-01

    This report describes the development of equations to relate monthly energy consumption at U.S. Army Materiel Command (AMC) installations to weather and process parameters. Equations were developed using multiple linear regression analysis for the Armament Munitions and Chemical Command (AMCCOM) and Depot Systems Command (DESCOM) major subcommands of AMC. Multiple regression analysis is the process of fitting a curve to a set of data points. This technique, commonly known as least-squares curve fitting, is based on minimizing the sum of the squares of the errors between the data and the fitted equation. Once the regression analysis is performed, it is possible to generate confidence limits about the fitted equation. For example, the 95% confidence limits determine the range of data values that will fall within the limits 95% of the time. The confidence limits are useful in making statistically valid statements about the meaning of future observations. Accuracies of both the individual and the command-level equations are described, and examples for calculating confidence limits of the equations are given. Results in using the equations to predict AMCCOM and DESCOM total energy consumption indicate they provide a useful tool for managing AMC energy use. Lumped data regression was used to analyze energy-consumption data for AMCCOM, and the efforts are now under way to apply it to DESCOM data.

  13. Energy consumption quota management of Wanda commercial buildings in China

    NASA Astrophysics Data System (ADS)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  14. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    NASA Technical Reports Server (NTRS)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  15. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for measuring energy consumption of distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  16. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for measuring energy consumption of distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  17. Solar Adoption and Energy Consumption in the Residential Sector

    NASA Astrophysics Data System (ADS)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  18. Air-conditioning in the human nasal cavity.

    PubMed

    Elad, David; Wolf, Michael; Keck, Tilman

    2008-11-30

    Healthy humans normally breathe through their nose even though its complex geometry imposes a significantly higher resistance in comparison with mouth breathing. The major functional roles of nasal breathing are defense against infiltrating particles and conditioning of the inspired air to nearly alveolar conditions in order to maintain the internal milieu of the lung. The state-of-the-art of the existing knowledge on nasal air-conditioning will be discussed in this review, including in vivo measurements in humans and computational studies on nasal air-conditioning capacity. Areas where further studies will improve our understanding and may help medical diagnosis and intervention in pathological states will be introduced. PMID:18565805

  19. Three essays in energy consumption: Time series analyses

    NASA Astrophysics Data System (ADS)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on

  20. Controlled cooling of an electronic system for reduced energy consumption

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  1. Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps

    SciTech Connect

    Not Available

    1993-03-02

    The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

  2. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  3. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  4. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  5. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  6. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  7. Air Conditioning. Trade and Industrial Education Trade Preparatory Training Guide.

    ERIC Educational Resources Information Center

    Nebraska State Dept. of Education, Lincoln. Div. of Vocational Education.

    One of a series of curriculum guides prepared for the building occupations cluster of the construction/fabrication occupational group, this guide identifies the essentials of the air conditioning trade as recommended by the successful air conditioner. An instructional program based upon the implementation of the guide is expected to prepare a…

  8. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  9. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  10. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  11. The Sensing Technology for Air-Conditioning Equipments

    NASA Astrophysics Data System (ADS)

    Matsuzaka, Takashi

    Various kinds of sensor are used for control of air-conditioning equipments. In this paper, examples of control system using some kinks of sensor about improvement of amenity are introduced. Humidity control methods using ceramic humidity sonsor, temperature-radiation-air flow control methods using amenity sensor, zone control methods using human detecting sensor and IAQ control methods using gas sensor, are discussed.

  12. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  13. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  14. Sample design for the residential energy consumption survey

    SciTech Connect

    Not Available

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  15. Development of the multi-scale model for urban climate analysis and evaluation of urban greening effects on energy consumption

    NASA Astrophysics Data System (ADS)

    Hamano, H.; Nakayama, T.; Fujita, T.; Hori, H.; Tagami, H.

    2009-12-01

    consisting of mixing urban and natural land covers. The urban greening effect was estimated by comparison with the vertical air temperature difference to derive air-conditioning load change against each building between present condition and urban greening condition. By using this model, it estimated that about 14 MWh/day and 197MWh/day of air conditioning energy consumption energy for the household and business sectors without the effect of building inner load were reduced by introducing the greening regulation of Kawasaki city and ideal maximum greening area during August 2006.

  16. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  17. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  18. Energy in rural Ethiopia: Consumption patterns, associated problems, and prospects for a sustainable energy strategy

    SciTech Connect

    Mulugetta, Y.

    1999-07-01

    This paper provides a picture of energy resources and their current use in rural Ethiopia and presents an analysis of energy supply patterns and consumption trends. This exercise aims to build an empirical knowledge of real energy systems in the country and also to synthesize and analyze the general and specific problems that exist within the current energy system. Based on these lines of analysis, a series of technical and policy-oriented recommendations for rural energy development are discussed.

  19. Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey

    EIA Publications

    2015-01-01

    As part of an effort to make EIA’s energy consumption surveys as accurate and efficient as possible, EIA invited the National Research Council (NRC) to review the Commercial Buildings Energy Consumption Survey (CBECS) data-gathering process and make recommendations for improvements. The NRC suggested sending professional energy assessors to some sites and comparing the data obtained from the survey to the data collected by the assessors. Results from the energy assessment data collection have largely confirmed the quality of data gathered by CBECS interviewers.

  20. Energy Drink Consumption and Cardiac Complications: A Case for Caution.

    PubMed

    Sattari, Maryam; Sattari, Anahita; Kazory, Amir

    2016-01-01

    We present a case of atrial fibrillation with rapid ventricular response in a 28-year-old previously healthy man in the context of daily consumption of 2 Monster energy drinks and 2 to 3 beers. We have obtained consent from this patient to present his case. Our observation adds to the developing literature describing an association between highly caffeinated drinks and adverse cardiovascular events. The previous cases in the literature and the proposed underlying mechanisms of this association are briefly discussed in this article. With the rising popularity of energy drinks, clinicians should be aware of their arrhythmogenic potential and consider screening for these products in patients who present with otherwise unexplained arrhythmias. PMID:27471919

  1. Baseline projections of transportation energy consumption by mode: 1981 update

    SciTech Connect

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  2. Drivers of U.S. Household Energy Consumption, 1980-2009

    EIA Publications

    2015-01-01

    In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy consumption in this sector. The analysis is based on the U.S. Energy Information Administration's (EIA) residential energy consumption surveys (RECS) 1980-2009.

  3. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  4. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  5. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  6. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  7. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  8. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    EIA Publications

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  9. Power consumption monitoring using additional monitoring device

    SciTech Connect

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  10. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  11. A Local Energy Consumption Prediction-Based Clustering Protocol for Wireless Sensor Networks

    PubMed Central

    Yu, Jiguo; Feng, Li; Jia, Lili; Gu, Xin; Yu, Dongxiao

    2014-01-01

    Clustering is a fundamental and effective technique for utilizing sensor nodes' energy and extending the network lifetime for wireless sensor networks. In this paper, we propose a novel clustering protocol, LECP-CP (local energy consumption prediction-based clustering protocol), the core of which includes a novel cluster head election algorithm and an inter-cluster communication routing tree construction algorithm, both based on the predicted local energy consumption ratio of nodes. We also provide a more accurate and realistic cluster radius to minimize the energy consumption of the entire network. The global energy consumption can be optimized by the optimization of the local energy consumption, and the energy consumption among nodes can be balanced well. Simulation results validate our theoretical analysis and show that LECP-CP has high efficiency of energy utilization, good scalability and significant improvement in the network lifetime. PMID:25479330

  12. Use of absorption refrigerating machines in mine air-conditioning systems

    SciTech Connect

    Duganov, G.V.; Rozhko, V.F.; Shtompel, A.I.; Timofeevskii, L.S.

    1984-07-01

    This article describes lithium bromide absorption refrigerating machines (LBARMs) designed for use in mine air-conditioning systems (MACS). The application of LBARMs in MACS is difficult due to the elevation of temperature of the cold carrier when supplied to the mine air refrigerants. A thermodynamic and thermoeconomic analysis was conducted to determine the principal lines of LBARM design for creating a suitable microclimate in underground mines. The MACS will maintain the temperature in the mines at a horizon of 913 m at 24-26/sup 0/C. A scheme is proposed for stage-by-stage cooling by connecting two machines in succession. It is concluded that the use of absorption refrigerating machines in coal mine air-conditioning systems facilitates the integrated and economic use of heat energy as well as of secondary heat resources for cold generation.

  13. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong.

    PubMed

    Guo, H; Lee, S C; Chan, L Y

    2004-05-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM(10) (particulate matters with aerodynamic diameter less than 10 microm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO(2)) and sulfur dioxide (SO(2)). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM(10), TBC, CO and NO(2) at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM(10) and TBC. The elevated PM(10) concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM(10) concentration at poultry stalls was higher than the HKIAQO standard of 180 microg/m(3), and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m(3), which was above the HKIAQO standard of 1000 CFU/m(3). The bacteria levels at other three stalls were all below the

  14. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  15. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    EIA Publications

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  16. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.

  17. Household Energy Consumption: Community Context and the Fuelwood Transition*

    PubMed Central

    Link, Cynthia F.; Axinn, William G.; Ghimire, Dirgha J.

    2012-01-01

    We examine the influence of community context on change over time in households’ use of non-wood fuels. Our theoretical framework builds on sociological concepts in order to study energy consumption at the micro-level. The framework emphasizes the importance of nonfamily organizations and services in the local community as determinants of the transition from use of fuelwood to use of alternative fuels. We use multilevel longitudinal data on household fuel choice and community context from rural Nepal to provide empirical tests of our theoretical model. Results reveal that increased exposure to nonfamily organizations in the local community increases the use of alternative fuels. The findings illustrate key features of human impacts on the local environment and motivate greater incorporation of social organization into research on environmental change. PMID:23017795

  18. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  19. The determinants and trends in household energy consumption in United States during 2001-2009

    NASA Astrophysics Data System (ADS)

    Karuppusamy, Sadasivan

    Objective: The focus of this study is a broad examination of household energy consumption for appliance use, space heating, space cooling, and water heating in United States over the period 2001-2009 using Residential Energy Consumption Survey (RECS) from the years 2001 and 2009. Methods: Linear Regression Analysis is used to identfy determinants of household energy consumption for each of the end uses. Regression based decomposition analysis is used to identify trends in residential energy consumption for each of the end uses. Results: The study identified current determinants of household energy consumption for each of the end uses. These determinants are employed in the study to predict trends in household energy consumption for each of the end uses. Based on the results policy interventions at local and federal level for energy conservation are suggested.

  20. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  1. An Integrated Geovisual Analytics Framework for Analysis of Energy Consumption Data and Renewable Energy Potentials

    SciTech Connect

    Omitaomu, Olufemi A; Kramer, Ian S; Kodysh, Jeffrey B; Bhaduri, Budhendra L; Steed, Chad A; Karthik, Rajasekar; Nugent, Philip J; Myers, Aaron T

    2012-01-01

    We present an integrated geovisual analytics framework for utility consumers to interactively analyze and benchmark their energy consumption. The framework uses energy and property data already available with the utility companies and county governments respectively. The motivation for the developed framework is the need for citizens to go beyond the conventional utility bills in understanding the patterns in their energy consumption. There is also a need for citizens to go beyond one-time improvements that are often not monitored and measured over time. Some of the features of the framework include the ability for citizens to visualize their historical energy consumption data along with weather data in their location. The quantity of historical energy data available is significantly more than what is available from utility bills. An overlay of the weather data provides users with a visual correlation between weather patterns and their energy consumption patterns. Another feature of the framework is the ability for citizens to compare their consumption on an aggregated basis to that of their peers other citizens living in houses of similar size and age and within the same or different geographical boundaries, such as subdivision, zip code, or county. The users could also compare their consumption to others based on the size of their family and other attributes. This feature could help citizens determine if they are among the best in class . The framework can also be used by the utility companies to better understand their customers and to plan their services. To make the framework easily accessible, it is developed to be compatible with mobile consumer electronics devices.

  2. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  3. Modeling energy consumption in the Defense Logistics Agency. Final report, November 1986-December 1987

    SciTech Connect

    Hobson, J.J.

    1988-05-01

    The Defense Logistics Agency (DLA) Office of Installation Services and Environmental Protection was tasked with developing goals for energy consumption at each of the DLA-managed facilities. These goals could be based on factors that beyond the control of the organization and can vary from month to month, such as weather conditions and workload. This report presents the results of an analysis that mathematically modeled energy consumption and then attempted to use these models to assist in setting consumption goals for the agency. The DLA facilities identified the factors they considered to be predictors of energy consumption. Three years of monthly data were submitted for each factor. The data were screened to identify possible problems and to determine which factors had some relationship with energy consumption. Regression models were developed to predict total consumption, electric consumption, and non-electric consumption at each location. These models showed a definite relationship between weather and workload factors and energy consumption. However, the models were not accurate enough to be used to set consumption goals in DLA due to the impact of extraneous factors that were not quantifiable. Goals for energy consumption should be flexible to allow changes when unusual weather or workload conditions exist. However, these goals cannot be derived through a precise mathematical formula given the existing detail of available data.

  4. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  5. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  6. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  7. Analysis of non-CFC automotive air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Sullivan, R.A. )

    1991-01-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in searching for alternative non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential (GWP), which could result in their eventual phase-out. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This study discusses the advantages and the limits of some of the alternative automotive cooling methodologies. 19 refs., 6 figs.

  8. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  9. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  10. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating. PMID:26360762

  11. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  12. Analysis of electric energy consumption of automatic milking systems in different configurations and operative conditions.

    PubMed

    Calcante, Aldo; Tangorra, Francesco M; Oberti, Roberto

    2016-05-01

    Automatic milking systems (AMS) have been a revolutionary innovation in dairy cow farming. Currently, more than 10,000 dairy cow farms worldwide use AMS to milk their cows. Electric consumption is one of the most relevant and uncontrollable operational cost of AMS, ranging between 35 and 40% of their total annual operational costs. The aim of the present study was to measure and analyze the electric energy consumption of 4 AMS with different configurations: single box, central unit featuring a central vacuum system for 1 cow unit and for 2 cow units. The electrical consumption (daily consumption, daily consumption per cow milked, consumption per milking, and consumption per 100L of milk) of each AMS (milking unit + air compressor) was measured using 2 energy analyzers. The measurement period lasted 24h with a sampling frequency of 0.2Hz. The daily total energy consumption (milking unit + air compressor) ranged between 45.4 and 81.3 kWh; the consumption per cow milked ranged between 0.59 and 0.99 kWh; the consumption per milking ranged between 0.21 and 0.33 kWh; and the consumption per 100L of milk ranged between 1.80 to 2.44 kWh according to the different configurations and operational contexts considered. Results showed that AMS electric consumption was mainly conditioned by farm management rather than machine characteristics/architectures.

  13. Energy consumption program: A computer model simulating energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  14. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency and standby mode energy consumption of metal halide lamp ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  15. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency and standby mode energy consumption of metal halide lamp ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  16. Energy consumption and usage characteristics from field measurements of residential dishwashers, clothes washers and clothes dryers

    SciTech Connect

    Chang, Y.L.; Grot, R.A.

    1980-10-01

    The measured energy consumption and usage characteristics for household dishwashers, clothes washers, and clothes dryers for ten townhouses at Twin Rivers, N.J., are presented. Whenever the dishwashers and/or clothes washers were in use, the energy consumption, water consumption, frequency of usage, and water temperature were measured by a data acquisition system. The electrical energy of electric clothes dryers and the gas consumption of gas clothes dryers were measured, as well as their frequency and duration of use, and exhaust temperature. Typical household usage patterns of these major appliances are included.

  17. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  18. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... per cycle for water softener regeneration, in kilowatt-hours and determined according to section 5.1.3... paragraph (c)(1)(i) of this section, W = the water energy consumption per cycle for the normal cycle as... defined in section 1.12 of appendix C1 to this subpart, and the water energy consumption per cycle...

  19. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... paragraph (c)(1)(i) of this section, and W = the total water energy consumption per cycle for the normal..., and Wg = the total water energy consumption per cycle for the normal cycle as defined in section 1.6... or oil-heated water is used, the product of: the representative average-use of 392 cycles per...

  20. A US-China Interview Study: Biology Students' Argumentation and Explanation about Energy Consumption Issues

    ERIC Educational Resources Information Center

    Jin, Hui; Hokayem, Hayat; Wang, Sasha; Wei, Xin

    2016-01-01

    As China and the United States become the top two carbon emitters in the world, it is crucial for citizens in both countries to construct a sophisticated understanding of energy consumption issues. This interview study examines how U.S. and Chinese students compare in explaining and arguing about two critical energy consumption issues: burning…

  1. A US-China Interview Study: Biology Students' Argumentation and Explanation about Energy Consumption Issues

    ERIC Educational Resources Information Center

    Jin, Hui; Hokayem, Hayat; Wang, Sasha; Wei, Xin

    2015-01-01

    As China and the United States become the top two carbon emitters in the world, it is crucial for citizens in both countries to construct a sophisticated understanding of energy consumption issues. This interview study examines how U.S. and Chinese students compare in explaining and arguing about two critical energy consumption issues: burning…

  2. Consumption of Energy in New York State: 1972 (with Estimates for 1973).

    ERIC Educational Resources Information Center

    Hausgaard, Olaf

    This report contains tabular data on energy consumption for the calendar year 1972 and a forecast of natural gas requirements for the period 1973 to 1976. Broad sector categories used in the tables are electric utilities, residential commercial, industrial, and transportation. Tables show energy consumption by primary source and major sector for…

  3. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  4. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  5. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  6. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    PubMed Central

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  7. Comparison of Real World Energy Consumption to Models and Department of Energy Test Procedures

    SciTech Connect

    Goetzler, William; Sutherland, Timothy; Kar, Rahul; Foley, Kevin

    2011-09-01

    This study investigated the real-world energy performance of appliances and equipment as it compared with models and test procedures. The study looked to determine whether the U.S. Department of Energy and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether installation patterns and procedures differ from the ideal procedures. The study first identified and prioritized appliances to be evaluated. Then, the study determined whether real world energy consumption differed substantially from predictions and also assessed whether performance degrades over time. Finally, the study recommended test procedure modifications and areas for future research.

  8. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  9. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  10. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  11. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  12. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Optional equipment and air conditioning for test vehicles. For test vehicles selected under §§ 86.1822-01... be expected to influence emissions include, but are not limited to: air conditioning, power steering...) Except for air conditioning, where it is expected that 33 percent or less of a car line, within a...

  13. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning idle test procedure... Complete Heavy-Duty Vehicles; Test Procedures § 86.165-12 Air conditioning idle test procedure. (a) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions...

  14. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  15. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  16. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a ten-minute period at idle when CO2 emissions are measured with the air conditioning system...

  17. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a ten-minute period at idle when CO2 emissions are measured with the air conditioning system...

  18. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  19. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  20. [Energy Consumption Comparison and Energy Saving Approaches for Different Wastewater Treatment Processes in a Large-scale Reclaimed Water Plant].

    PubMed

    Yang, Min; Li, Ya-ming; Wei, Yuan-song; Lü, Jian; Yu, Da-wei; Liu, Ji-bao; Fan, Yao-bo

    2015-06-01

    Energy consumption is the main performance indicator of reclaimed water plant (RWP) operation. Methods of specific energy consumption analysis, unit energy consumption analysis and redundancy analysis were applied to investigate the composition and spatio-temporal distribution of energy consumption in Qinghe RWP with inverted A2/O, A2/O and A2/O-MBR processes. And the A2/ O-MBR process was mainly analyzed to identify the main nodes and causes for high energy consumption, approaches for energy saving were explored, and the energy consumption before and after upgrading for energy saving was compared. The results showed that aeration was the key factor affecting energy consumption in both conventional and A2/O-MBR processes, accounting for 42.97% and 50.65% of total energy consumption, respectively. A pulsating aeration allowed an increasing membrane flux and remarkably reduced the energy consumption of the A2/O-MBR process while still meeting the effluent standard, e.g., the membrane flux was increased by 20%, and the energy consumptions per kiloton wastewater and kilogram COD(removed) were decreased by 42.39% to 0.53 kW-h-kg-3 and by 54.74% to 1.29 kW x h x kg(-1), respectively. The decrease of backflow ratio in the A2/O-MBR process within a certain range would not deteriorate the effluent quality due to its insignificant correlation with the effluent quality, and therefore may be considered as one of the ways for further energy saving. PMID:26387326

  1. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  2. Understanding Teenagers' Personal Contexts to Design Technology That Supports Learning about Energy Consumption

    ERIC Educational Resources Information Center

    Avramides, Katerina; Craft, Brock; Luckin, Rosemary

    2016-01-01

    Energy sustainability is prevalent in political and popular rhetoric and yet energy consumption is rising. Teenagers are an important category of future energy consumers, but little is known of their conceptions about energy and energy saving. We report on empirical research with two groups of teenagers. This is part of ongoing work to design…

  3. Energy consumption in personal computer attached laser printers: Past, present, future

    SciTech Connect

    Green, T.

    1995-12-01

    Personal computer (PC) printers have been criticized in recent years for their energy consumption, with criticism especially targeted at laser printers. The popular view, largely correct, has been that inkjet printers were energy-efficient, while lasers were power {open_quotes}hogs.{close_quotes} it will be shown, however, that laser printer energy consumption has dramatically improved in the last few years, thanks largely to prompting by the U.S. Environmental Protection Agency`s (EPA`s) Energy Star program. Two years ago laser printers idled drawing 70 to 100 W; most now idle drawing 5 to 30 W. The inkjet printer`s energy efficiency has been widely publicized, so it will be used as a benchmark throughout this paper. When idle, an inkjet printer draws 5 to 10 W. Some laser printers` total energy consumption has now dropped to a level such that their energy consumption, for similar performance machines, now approaches that of inkjet printers.

  4. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  5. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-01-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  6. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-11-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  7. Is the Consumption of Energy Drinks Associated With Academic Achievement Among College Students?

    PubMed

    Champlin, Sara E; Pasch, Keryn E; Perry, Cheryl L

    2016-08-01

    Despite widely reported side effects, use of energy drinks has increased among college students, who report that they consume energy drinks to help them complete schoolwork. However, little is known about the association between energy drink use and academic performance. We explored the relationship between energy drink consumption and current academic grade point average (GPA) among first-year undergraduate students. Participants included 844 first-year undergraduates (58.1 % female; 50.7 % White). Students reported their health behaviors via an online survey. We measured energy drink consumption with two measures: past month consumption by number of drinks usually consumed in 1 month and number consumed during the last occasion of consumption. We used multiple linear regression modeling with energy drink consumption and current GPA, controlling for gender, race, weekend and weekday sleep duration, perceived stress, perceived stress management, media use, and past month alcohol use. We found that past month energy drink consumption quantity by frequency (p < 0.001), and energy drinks consumed during the last occasion (p < 0.001), were associated with a lower GPA. Energy drinks consumed during the last occasion of consumption (p = 0.01) remained significantly associated with a lower GPA when controlling for alcohol use. While students report using energy drinks for school-related reasons, our findings suggest that greater energy drink consumption is associated with a lower GPA, even after controlling for potential confounding variables. Longitudinal research is needed that addresses whether GPA declines after continued use of energy drinks or if students struggling academically turn to energy drinks to manage their schoolwork.

  8. Is the Consumption of Energy Drinks Associated With Academic Achievement Among College Students?

    PubMed

    Champlin, Sara E; Pasch, Keryn E; Perry, Cheryl L

    2016-08-01

    Despite widely reported side effects, use of energy drinks has increased among college students, who report that they consume energy drinks to help them complete schoolwork. However, little is known about the association between energy drink use and academic performance. We explored the relationship between energy drink consumption and current academic grade point average (GPA) among first-year undergraduate students. Participants included 844 first-year undergraduates (58.1 % female; 50.7 % White). Students reported their health behaviors via an online survey. We measured energy drink consumption with two measures: past month consumption by number of drinks usually consumed in 1 month and number consumed during the last occasion of consumption. We used multiple linear regression modeling with energy drink consumption and current GPA, controlling for gender, race, weekend and weekday sleep duration, perceived stress, perceived stress management, media use, and past month alcohol use. We found that past month energy drink consumption quantity by frequency (p < 0.001), and energy drinks consumed during the last occasion (p < 0.001), were associated with a lower GPA. Energy drinks consumed during the last occasion of consumption (p = 0.01) remained significantly associated with a lower GPA when controlling for alcohol use. While students report using energy drinks for school-related reasons, our findings suggest that greater energy drink consumption is associated with a lower GPA, even after controlling for potential confounding variables. Longitudinal research is needed that addresses whether GPA declines after continued use of energy drinks or if students struggling academically turn to energy drinks to manage their schoolwork. PMID:27236788

  9. 10 CFR Appendix B1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Freezers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Freezers 1... temperature, then these test results shall be used to determine energy consumption. If the...

  10. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  11. [Analysis of China's energy consumption and its impact on the environment in the future].

    PubMed

    Zheng, Bo-fu; Deng, Hong-bing; Yan, Yan; Zhao, Jing-zhu

    2005-05-01

    With the development of economy and urbanization, energy consumption and its impact on the environment in the future have become a focal point in China. Based on briefly reviewing energy consumption during 1980-2000 and analyzing its impact, three scenarios are assumed to forecast energy consumption status and analyze its impact on the environment in the future. The results indicate that the emissions of SO2, NOx, CO2 and soot dust caused by energy consumption would keep a high level in the future, and there are significant differences among the three scenarios' estimates. Improving energy efficiency and strengthening the exploitation and utilization of clean and renewable energy are suggested to mitigate the environmental pollution.

  12. [Method for grading industrial sectors in energy consumption and its application].

    PubMed

    Mao, Jian-Su; Ma, Lan

    2013-04-01

    Energy is mainly consumed by the urban industry system, thus grading industrial sectors for their energy consumption may help to identify the concerned industrial sectors and provide necessary information for industrial energy management in China's industrialization and urbanization. In present article, based on a review of the fundamental relationships between energy consumption and industrial sectors, the contribution rates and energy efficiency of industrial sectors are chosen as typical parameters for energy consumption. The concept of distance index of industrial sectors for energy consumption is defined through China's average level as a reference base. The grade of industrial sectors in energy consumption is classed into 9 types from extreme advantage to extreme disadvantage according to the scope of distance index values, and the types of industrial sectors that need to be more concerned are pointed out. Taking Chongqing as a case study, the application for grading industrial sectors for their energy consumption was exhibited, by which, the main industrial sectors are grated and the industrial sectors that should be special concerned in energy management are determined.

  13. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  14. Reduction in Energy Consumption & Variability in Steel Foundry Operations

    SciTech Connect

    Frank Peters

    2005-05-04

    large process variation. This indicates the need for ongoing monitoring of the process and system to quantify the effort being expended. A system to measure the grinding effort was investigated but did not prove to be successful. A weld wire counting system was shown to be very successful in tracking casting quality by monitoring the quantity of weld wire being expended on a per casting basis. Further use of such systems is highly recommended. The field studies showed that the visual inspection process for the casting surface was a potentially large source of process variation. Measurement system analysis studies were conducted at three steel casting producers. The tests measured the consistency of the inspectors in identifying the same surface anomalies. The repeatability (variation of the same operator inspecting the same casting) was found to be relatively consistent across the companies at about 60-70%. However, this is still are very large amount of variation. Reproducibility (variation of different operators inspecting the same casting) was worse, ranging between 20 to 80% at the three locations. This large amount of variation shows that there is a great opportunity for improvement. Falsely identifying anomalies for reworking will cause increased expense and energy consumption. This is particularly true if a weld repair and repeated heat treatment is required. However, not identifying an anomaly could also result in future rework processing, a customer return, or scrap. To help alleviate this problem, casting surface comparator plates were developed and distributed to the industry. These plates are very inexpensive which enables them to be provided to all those involved with casting surface quality, such as operators, inspectors, sales, and management.

  15. Building environmental performance model for variable air volume systems in air-conditioned high-rise buildings in sub-tropical climates

    NASA Astrophysics Data System (ADS)

    Mui, Kwok Wai

    2002-01-01

    As Hong Kong's economy prospered in the 1950s, air-conditioning became the norm as part of the building services designs for office buildings. Unfortunately, Cantonese speakers translated the term 'air conditioning system' into something which literally meant 'cold air system'. The concept of indoor environmental quality (IEQ) was never properly rooted in the minds of users. Since the energy crisis of 1973, engineers have endeavoured to implement energy conservation in buildings. Unfortunately, the effort has often resulted in energy saving which ignores the fundamental delivery of indoor satisfaction. Hence, either energy is conserved sacrificing IEQ, or additional energy is consumed for cooling of occupant. These misconceptions prompt the development of an integrated design and operation protocol based on a so-called Building Environmental Performance Model (BEPM). This project started with a concept of integrating the four basic indoor environmental qualities namely, thermal comfort, indoor air quality, visual and aural comfort. An overall indoor environmental quality index is derived to describe the state of the mind of a user in a balanced state with the indoor environment. A new portable instrument was designed for the purpose of assessment on site. This instrument was used to sample over 400 workstations in air-conditioned office premises. The results were validated by comparing with results obtained from a large scale IEQ study conducted in Hong Kong by the Department of Building Services Engineering prior to this project. The Building Environmental Performance Model then links the IEQ and the building energy consumption together. It treats a building as a system. Energy consumption in the building services systems is the input to this system with the IEQ as the output. The BEP model incorporates two main modules: an adaptive comfort temperature control module (ACT), and a new CO2 demand control module (nDCV). These two modules take an innovative approach

  16. Short-Term Energy Outlook Model Documentation: Natural Gas Consumption and Prices

    EIA Publications

    2015-01-01

    The natural gas consumption and price modules of the Short-Term Energy Outlook (STEO) model are designed to provide consumption and end-use retail price forecasts for the residential, commercial, and industrial sectors in the nine Census districts and natural gas working inventories in three regions. Natural gas consumption shares and prices in each Census district are used to calculate an average U.S. retail price for each end-use sector.

  17. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  18. Predictors of changes in adolescents' consumption of fruits, vegetables and energy-dense snacks.

    PubMed

    Pearson, Natalie; Ball, Kylie; Crawford, David

    2011-03-01

    Understanding the predictors of developmental changes in adolescent eating behaviours is important for the design of nutrition interventions. The present study examined associations between individual, social and physical environmental factors and changes in adolescent eating behaviours over 2 years. Consumption of fruits, vegetables and energy-dense snacks was assessed using a Web-based survey completed by 1850 adolescents from years 7 and 9 of secondary schools in Victoria, Australia, at baseline and 2 years later. Perceived value of healthy eating, self-efficacy for healthy eating, social modelling and support, and home availability and accessibility of foods were assessed at baseline. Self-efficacy for increasing fruit consumption was positively associated with the change in fruit and vegetable consumption, while self-efficacy for decreasing junk food consumption was inversely associated with the change in energy-dense snack consumption. Home availability of energy-dense foods was inversely associated with the change in fruit consumption and positively associated with the change in energy-dense snack consumption, while home availability of fruits and vegetables was positively associated with the change in vegetable consumption. Perceived value of healthy eating and modelling of healthy eating by mothers were positively associated with the change in fruit consumption. Support of best friends for healthy eating was positively associated with the change in vegetable consumption. Self-efficacy and home availability of foods appear to be consistent predictors of change in fruit, vegetable and energy-dense snack consumption. Future study should assess the effectiveness of methods to increase self-efficacy for healthy eating and to improve home availability of healthy food options in programmes promoting healthy eating among adolescents.

  19. 76 FR 72872 - Rule Concerning Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... CFR Part 305 Rule Concerning Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other Products Required Under the Energy Policy and Conservation Act (``Appliance Labeling... Rule, issued pursuant to the Energy Policy and Conservation Act (EPCA),\\1\\ requires energy labeling...

  20. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    SciTech Connect

    DOE / EERE / NEED Project

    2011-06-07

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  1. Energy Consumption in Schools and Homes. Technical Report No. 2 of a Study of School Calendars.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Research.

    In this, the second in a series of reports, a study of school and home energy consumption in New York was undertaken to determine if schools would save energy by closing for an extended period during cold weather; if more energy is used in homes when schools are closed than when schools are in session; and, if energy savings by schools during a…

  2. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  3. An effective silencer design for artificially air conditioned environment.

    PubMed

    Fujiwara, Kyoji; Pang, Li Feng

    2004-11-01

    An effective silencer for an air conditioning duct is studied. A duct with an acoustically soft boundary is employed as an effective silencer. On the acoustically soft boundary the sound pressure is zero and it is impossible to realize such boundary in the air-borne sound field, because of the non-existence of a much lighter medium than the air. In this study, the arrangement of one-quarter wave-length acoustic tubes is employed as a soft boundary. This acoustic tube has frequency dependence, but the sound pressure becomes nearly zero at the tube mouth around the odd resonance frequency. The relation between the noise reduction efficiency and this acoustically soft boundary is examined experimentally and more than 40 dB noise reduction is obtained in a one-half octave band around the first resonance frequency. It is also made clear that more than one wave length of soft boundary is required to get enough reduction compared with the reduction obtained in the case of quite a long soft boundary.

  4. Bioaerosol deposition on an air-conditioning cooling coil

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  5. Development of cold seawater air conditioning systems for application as a demand side management tool for Hawaii and other subtropical climates

    SciTech Connect

    Kaya, M.H.

    1996-10-01

    Because of the proximity to deep cold seawater for many coastal regions in Hawaii and the high demand for air conditioning in large buildings, seawater air conditioning (SWAC) is a major potential sustainable energy resource for Hawaii and other subtropical regions of the world. The basic concept of seawater air conditioning is the use deep cold seawater to cool the chilled water in one or more air conditioned buildings as opposed to using energy intensive refrigeration systems. The economic viability of the seawater air conditioning is determined by comparing the construction and operating costs of the seawater supply system to the construction and operating costs of conventional air conditioning systems. The State of Hawaii commissioned an analysis to identify the technical and economic opportunities and limitations in the use of SWAC in Hawaii. The result of this work is a feasibility analysis of SWAC systems in the state and the potential associated energy savings. The study looked at the prospects of installing such a system at a major new resort development on Oahu called West Beach.

  6. The impact of state energy programs and other contextual factors on U.S. buildings energy consumption

    NASA Astrophysics Data System (ADS)

    Ofori-Boadu, Andrea N. Y. A.

    High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption

  7. A new procedure to analyze the effect of air changes in building energy consumption

    PubMed Central

    2014-01-01

    Background Today, the International Energy Agency is working under good practice guides that integrate appropriate and cost effective technologies. In this paper a new procedure to define building energy consumption in accordance with the ISO 13790 standard was performed and tested based on real data from a Spanish region. Results Results showed that the effect of air changes on building energy consumption can be defined using the Weibull peak function model. Furthermore, the effect of climate change on building energy consumption under several different air changes was nearly nil during the summer season. Conclusions The procedure obtained could be the much sought-after solution to the problem stated by researchers in the past and future research works relating to this new methodology could help us define the optimal improvement in real buildings to reduce energy consumption, and its related carbon dioxide emissions, at minimal economical cost. PMID:24456655

  8. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    EIA Publications

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  9. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  10. Territorial approach to increased energy consumption of water extraction from depletion of a highlands Mexican aquifer.

    PubMed

    Fonseca, Carlos Roberto; Esteller, María Vicenta; Díaz-Delgado, Carlos

    2013-10-15

    This work proposes a method to estimate increased energy consumption of pumping caused by a drawdown of groundwater level and the equivalent energy consumption of the motor-pump system in an aquifer under intensive exploitation. This method has been applied to the Valley of Toluca aquifer, located in the Mexican highlands, whose intensive exploitation is reflected in a decline in the groundwater level of between 0.10 and 1.6 m/year. Results provide a summary of energy consumption and a map of energy consumption isopleths showing the areas that are most susceptible to increases in energy consumption due to pumping. The proposed method can be used to estimate the effect of the intensive exploitation of the Valley of Toluca aquifer on the energy consumption of groundwater extraction. Finding reveals that, for the year 2006, groundwater extraction in the urban zone required 2.39 times more energy than the conditions observed 38 years earlier. In monetary terms, this reflects an increase of USD$ 3 million annually, according to 2005 energy production costs.

  11. Is more always better? The nonlinear relationship between energy consumption and wellbeing

    NASA Astrophysics Data System (ADS)

    Vaughan Winfrey, Elise Marie

    Policymakers today face rapidly expanding world populations, increasing evidence of environmental degradation and climate change, and mounting economic crises. In this context, they are grappling with the challenge of balancing environmental concerns, economic viability, and the wellbeing of their citizens. Because energy consumption has both positive and negative wellbeing implications, it is unclear whether societal goals to raise standards of living through energy-intensive lifestyles conflict with the social, economic, environmental, and health dimensions of broader wellbeing aspirations. Though there has been a significant amount of research on the long-run environmental consequences of increasing aggregate world energy demand, there is a lack of direct evidence on the relationship between energy consumption and wellbeing. This paper attempts to improve our understanding of the net wellbeing consequences of energy consumption. Specifically, it examines whether there is a nonlinear relationship between per capita energy consumption, as measured alternatively by CO2 emissions (metric tons per capita), electricity consumption (kWh per capita), and total energy consumption (kg of oil equivalent per capita), and wellbeing, as measured by individual life satisfaction aggregated at the country level. Panel and cross-sectional regression analyses are conducted using data from the Gallup World Poll (GWP), integrated European and World Values Surveys (WVS-EVS), and the World Bank DataBank (WBDB). Despite the classic economic assumption that more is always better, this analysis indicates that increasing energy consumption is not always associated with wellbeing improvements. The empirical results provide some suggestive evidence that life satisfaction gains associated with energy consumption may eventually be counterbalanced by the related human and environmental costs. This is valuable information for policymakers trying to balance environmental, energy-security, and

  12. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    PubMed

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system. PMID:27398277

  13. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    PubMed

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system.

  14. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    SciTech Connect

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  15. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix Y to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Battery... consumption. 2. Definitions: The following definitions are for the purposes of understanding...

  16. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy... method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator... energy consumption in kilowatt hours per day (kWh/day) for a given product category and volume or...

  17. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy... method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator... energy consumption in kilowatt hours per day (kWh/day) for a given product category and volume or...

  18. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption...

  19. 10 CFR 431.204 - Uniform test method for the measurement of energy consumption of illuminated exit signs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy consumption of illuminated exit signs. 431.204 Section 431.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Procedures § 431.204 Uniform test method for the measurement of energy consumption of illuminated exit...

  20. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room...

  1. 10 CFR 431.204 - Uniform test method for the measurement of energy consumption of illuminated exit signs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption of illuminated exit signs. 431.204 Section 431.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Procedures § 431.204 Uniform test method for the measurement of energy consumption of illuminated exit...

  2. Embodied energy consumption and carbon emissions evaluation for urban industrial structure optimization

    NASA Astrophysics Data System (ADS)

    Ji, Xi; Chen, Zhanming; Li, Jinkai

    2014-03-01

    Cities are the main material processors associated with industrialization. The development of urban production based on fossil fuels is the major contributor to the rise of greenhouse gas density, and to global warming. The concept of urban industrial structure optimization is considered to be a solution to urban sustainable development and global climate issues. Enforcing energy conservation and reducing carbon emissions are playing key roles in addressing these issues. As such, quantitative accounting and the evaluation of energy consumption and corresponding carbon emissions, which are by-products of urban production, are critical, in order to discover potential opportunities to save energy and to reduce emissions. Conventional evaluation indicators, such as "energy consumption per unit output value" and "emissions per unit output value", are concerned with immediate consumptions and emissions; while the indirect consumptions and emissions that occur throughout the supply chain are ignored. This does not support the optimization of the overall urban industrial system. To present a systematic evaluation framework for cities, this study constructs new evaluation indicators, based on the concepts of "embodied energy" and "embodied carbon emissions", which take both the immediate and indirect effects of energy consumption and emissions into account. Taking Beijing as a case, conventional evaluation indicators are compared with the newly constructed ones. Results show that the energy consumption and emissions of urban industries are represented better by the new indicators than by conventional indicators, and provide useful information for urban industrial structure optimization.

  3. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  4. An analysis of household energy use by racial/ethnic composition: Consumption, efficiency, and lifestyles

    NASA Astrophysics Data System (ADS)

    Valenzuela, Carlos

    The goal of this dissertation is to provide the most recent household energy consumption analysis by racial/ethnic household composition. This dissertation found that significant differences in behavior, energy consumption, and energy efficiency exist by racial/ethnic household composition. The models suggest that behavioral energy intensity is lower among households led by racial/ethnic minorities. Energy consumption and efficiency models suggest that Hispanic households consume less energy and are more efficient, while Black households consume more energy and are less efficient, than White households. However, when stratifying the models by housing vintage, the differences between Hispanic and White households are not consistent. Differences between Black and White households are evident only among those in housing units built before 1980, indicating that Black households in older vintages live in less efficient housing units and could be at a disadvantage that could result in having to pay a higher share of household income on energy use. Results also point towards evidence that energy efficiency standards since the late 1970s could have actually mitigated potential inequality associated with excess energy use by race/ethnicity. Improving energy efficiency of housing units may be beneficial not only to reduce total energy consumption levels, but also have the potential to lessen the burden of energy costs that lower income households (irrespective of race/ethnicity) might experience otherwise.

  5. [Trend of "zero energy consumption and wastewater" in fuel ethanol production].

    PubMed

    Mao, Zhonggui; Zhang, Jianhua

    2008-06-01

    The energy consumption in a Chinese ethanol manufacturer with cassava as the feedstock, has been reduced to a zero-closed level. If the R & D on technical integration of high ethanol concentration fermentation, methane fermentation technique, steam and electricity co-generation system, new distillation technology, and the wastewater reutilization, is carried out continuously, the proposed "zero energy consumption and wastewater" technique could be realized in fuel ethanol production process.

  6. Measuring the Efficacy of an Energy and Environmental Awareness Campaign to Effectively Reduce Water Consumption

    ERIC Educational Resources Information Center

    Miller, Laura Little

    2010-01-01

    Increased energy costs and a move toward environmental stewardship are driving many organizations, including universities, to engage in awareness efforts to reduce both energy consumption and their carbon footprint. The purpose of this paper is to determine whether organizational programs aimed at energy and environmental awareness have a…

  7. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures for measuring the energy efficiency of distribution transformers for purposes of EPCA are... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures... 10 Energy 3 2013-01-01 2013-01-01 false Test procedures for measuring energy consumption...

  8. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures for measuring the energy efficiency of distribution transformers for purposes of EPCA are... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures... 10 Energy 3 2012-01-01 2012-01-01 false Test procedures for measuring energy consumption...

  9. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures for measuring the energy efficiency of distribution transformers for purposes of EPCA are... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures... 10 Energy 3 2014-01-01 2014-01-01 false Test procedures for measuring energy consumption...

  10. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.

    PubMed

    Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

    2014-03-01

    Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.

  11. A Model for Education: Energy-Water Consumption Decision Making.

    ERIC Educational Resources Information Center

    Bontrager, Ralph L.; Hubbard, Charles W.

    Public schools are in a position to convince society-at-large of the national energy problem. There is a direct relationship between energy costs to the schools and the type of educational programs they can provide. While waiting for a national energy policy with a section devoted to schools, districts can calculate the amount and cost of energy…

  12. Video game console usage and US national energy consumption: Results from a field-metering study

    SciTech Connect

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; Ganeshalingam, Mohan

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates. We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.

  13. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE PAGES

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; et al

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  14. Francisella guangzhouensis sp. nov., isolated from air-conditioning systems.

    PubMed

    Qu, Ping-Hua; Chen, Shou-Yi; Scholz, Holger C; Busse, Hans-Jürgen; Gu, Quan; Kämpfer, Peter; Foster, Jeffrey T; Glaeser, Stefanie P; Chen, Cha; Yang, Zhi-Chong

    2013-10-01

    Four strains (08HL01032(T), 09HG994, 10HP82-6 and 10HL1960) were isolated from water of air-conditioning systems of various cooling towers in Guangzhou city, China. Cells were Gram-stain-negative coccobacilli without flagella, catalase-positive and oxidase-negative, showing no reduction of nitrate, no hydrolysis of urea and no production of H2S. Growth was characteristically enhanced in the presence of l-cysteine, which was consistent with the properties of members of the genus Francisella. The quinone system was composed of ubiquinone Q-8 with minor amounts of Q-9. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids (PL2, PL3), an unidentified aminophospholipid and an unidentified glycolipid (GL2). The polyamine pattern consisted of the major compounds spermidine, cadaverine and spermine. The major cellular fatty acids were C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 1 3-OH. A draft whole-genome sequence of the proposed type strain 08HL01032(T) was generated. Comparative sequence analysis of the complete 16S and 23S rRNA genes confirmed affiliation to the genus Francisella, with 95 % sequence identity to the closest relatives in the database, the type strains of Francisella philomiragia and Francisella noatunensis subsp. orientalis. Full-length deduced amino acid sequences of various housekeeping genes, recA, gyrB, groEL, dnaK, rpoA, rpoB, rpoD, rpoH, fopA and sdhA, exhibited similarities of 67-92 % to strains of other species of the genus Francisella. Strains 08HL01032(T), 09HG994, 10HP82-6 and 10HL1960 exhibited highly similar pan-genome PCR profiles. Both the phenotypic and molecular data support the conclusion that the four strains belong to the genus Francisella but exhibit considerable divergence from all recognized Francisella species. Therefore, we propose the name Francisella guangzhouensis sp

  15. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  16. Numerical prediction of energy consumption in buildings with controlled interior temperature

    SciTech Connect

    Jarošová, P.; Št’astník, S.

    2015-03-10

    New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.

  17. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  18. Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast

    SciTech Connect

    Poyer, D.A.; Allison, T.

    1998-03-01

    This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

  19. Prey consumption and energy transfer by marine birds in the Gulf of Alaska

    USGS Publications Warehouse

    Hunt, G.L.; Drew, G.S.; Jahncke, J.; Piatt, J.F.

    2005-01-01

    We investigated prey consumption by marine birds and their contribution to cross-shelf fluxes in the northern Gulf of Alaska. We utilized data from the North Pacific Pelagic Seabird Database for modeling energy demand and prey consumption. We found that prey consumption by marine birds was much greater over the continental shelf than it was over the basin. Over the shelf, subsurface-foraging marine birds dominated food consumption, whereas over the basin, surface-foraging birds took the most prey biomass. Daily consumption by marine birds during the non-breeding season ("winter") from September through April was greater than daily consumption during the breeding season, between May and August. Over the shelf, shearwaters, murres and, in winter, sea ducks, were the most important consumers. Over the basin, northern fulmars, gulls and kittiwakes predominated in winter and storm-petrels dominated in May to August. Our results suggest that marine birds contribute little to cross-shelf fluxes of energy or matter, but they do remove energy from the marine system through consumption, respiration and migration. ?? 2005 Elsevier Ltd. All rights reserved.

  20. Systems and methods for controlling energy use in a building management system using energy budgets

    DOEpatents

    Wenzel, Michael J; Drees, Kirk H

    2014-09-23

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  1. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  2. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    SciTech Connect

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  3. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  4. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    PubMed Central

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  5. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  6. Alcoa Teams with DOE to Reduce Energy Consumption

    SciTech Connect

    2004-05-01

    This is the first in a series of DOE Industrial Technologies Program case studies on corporate energy management. The case study highlights Alcoa Aluminum's successful results and activities through its corporate energy management approach and collaboration with DOE. Case studies in this series will be used to encourage other energy-intensive industrial plants to adopt a corporate strategy, and to promote the concept of replicating results with a company or industry.

  7. Bacteriology of Air-Conditioning Ducts with Special Reference to Operating Rooms

    PubMed Central

    Warner, Peter; Doherty, Jane

    1963-01-01

    The number of bacteria in air, before filtration with five different easily available filters in the low positive-pressure type of airconditioning system of the Winnipeg General Hospital, was between 3 and 4/cu. ft., and after filtration between 1 and 2/cu. ft. with all types of filters. Cl. welchii contributed about 1% and Staph. pyogenes about 0.1% of this total. Sampling the exhaust air from an operating room during an operation showed that the bacterial count fluctuated with the degree of activity in the room and was from two to 10 times as high as in the air delivered to the room. Atlhough every reasonable attempt should be made to diminish the bacterial count of air in hospitals, if much energy and money is to be spent it would probably be wiser to investigate sources of hospital infection other than the type of air-conditioning system described in this report. PMID:13998955

  8. Safe Upper-Bounds Inference of Energy Consumption for Java Bytecode Applications

    NASA Technical Reports Server (NTRS)

    Navas, Jorge; Mendez-Lojo, Mario; Hermenegildo, Manuel V.

    2008-01-01

    Many space applications such as sensor networks, on-board satellite-based platforms, on-board vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often critical for the scientific mission. Transmitting such large amounts of data to the remote control station for analysis is usually too expensive for time-critical applications. Instead, modern space applications are increasingly relying on autonomous on-board data analysis. All these applications face many resource constraints. A key requirement is to minimize energy consumption. Several approaches have been developed for estimating the energy consumption of such applications (e.g. [3, 1]) based on measuring actual consumption at run-time for large sets of random inputs. However, this approach has the limitation that it is in general not possible to cover all possible inputs. Using formal techniques offers the potential for inferring safe energy consumption bounds, thus being specially interesting for space exploration and safety-critical systems. We have proposed and implemented a general frame- work for resource usage analysis of Java bytecode [2]. The user defines a set of resource(s) of interest to be tracked and some annotations that describe the cost of some elementary elements of the program for those resources. These values can be constants or, more generally, functions of the input data sizes. The analysis then statically derives an upper bound on the amount of those resources that the program as a whole will consume or provide, also as functions of the input data sizes. This article develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy consumption of Java bytecode applications. We first use a resource model that describes the cost of each bytecode instruction in terms of the joules it consumes. With this resource model, we then generate energy consumption cost relations, which are then used to infer safe upper bounds. How

  9. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    PubMed

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in

  10. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  11. Household energy consumption in the United States, 1987 to 2009: Socioeconomic status, demographic composition, and energy services profiles

    NASA Astrophysics Data System (ADS)

    Kemp, Robert J.

    This dissertation examines household energy consumption in the United States over the period of 1987 to 2009, specifically focusing on the role of socioeconomic status, demographic composition, and energy services profiles. The dissertation makes use of four cross-sections from the Residential Energy Consumption Survey data series to examine how household characteristics influence annual energy consumption overall, and by fuel type. Chapter 4 shows that household income is positively related to energy consumption, but more so for combustible fuel consumption than for electricity consumption. Additionally, results for educational attainment suggest a less cross-sectional association and more longitudinal importance as related to income. Demographic composition matters, as predicted by the literature; household size and householder age show predicted effects, but when considered together, income explains any interaction between age and household size. Combustible fuels showed a far greater relationship to housing unit size and income, whereas electricity consumption was more strongly related to educational attainment, showing important differences in the associations by fuel type. Taken together, these results suggest a life course-based model for understanding energy consumption that may be strongly linked to lifestyles. Chapter 5 extends the findings in Chapter 4 by examining the patterning of physical characteristics and behaviors within households. The chapter uses Latent Class Analysis to examine a broad set of energy significant behaviors and characteristics to discover five unique energy services profiles. These profiles are uniquely patterned across demographic and socioeconomic compositions of households and have important effects on energy consumption. These profiles are likely byproducts of the lifestyles in which the household takes part, due to factors such as their socioeconomic status and household demographic composition. Overall, the dissertation

  12. Causality between energy consumption, emissions of CO{sub 2} and surface air temperature

    SciTech Connect

    Mariam, Y.K.G.; Barre, M.

    1998-12-31

    Climate research has been one of the focal points of the scientific community for the past few decades. However, most of the studies tended to examine the scientific basis to understand the mechanisms that resulted in changes in global climate. There was less emphasis on issues of mitigating the causes of climate change. Due to the fact that climate change is primarily the result of emission of green houses gases, especially carbon dioxide, and due to the fact that most these emissions are anthropogenic, social scientists have to address strategies in which emissions are reduced. Of particular significance is that global climate is a common good. Private companies and individuals, in an effort to maximize income or welfare, dump increased emission to the atmosphere. As a typical example of the classic work of the tragedy of the commons, there is a desperate need for all disciplines of the social and natural sciences to develop ways of mitigating the dangers of changes in the global common climate. Energy consumption, particularly fossil fuels, has been attributed as the driving force for the increased emission of CO{sub 2} and rise in global surface air temperature. While many studies have been carried out regarding the relationship between global energy consumption, emissions of CO{sub 2} and indicators of climate change such as temperature, there are only a few studies that have examined linkages between these factors at the level of individual countries. Increased consumption of carbon-intensive sources of energy will continue to exacerbate existing climate change problems. On the other hand, not only will energy consumption influence climate change but also changes in climate change may influence the patterns of energy consumption. The objectives of this research are to examine trends in energy consumption and emissions of CO{sub 2}, and causal linkages between energy consumption, emission of CO{sub 2} and mean annual surface temperature for 21 OECD countries.

  13. Effect of irrigation scheduling on energy consumption. Final report

    SciTech Connect

    Not Available

    1981-04-01

    The objective of this study was to determine the potential for a reduction in water use and, therefore, energy use through computerized irrigation scheduling. Water and energy were used interchangeably in this study through the use of energy multipliers, 605 kWh/ac-ft for surface and 857 kWh/ac-ft for sprinkler irrigation systems. These energy figures were used as the energy in the water at the edge of the field where the use of scheduling could have an impact on the quantities used. The study was based on agricultural conditions as they exist in the San Joaquin Valley of California. Study sites were selected in this area for monitoring and analysis. These study sites were monitored for various production factors, gross applied amounts of water and crop yields. These data were collected for the 1978/79 and 1979/80 growing seasons. Scheduled and non-scheduled fields were paired based on factors other than gross applied water and yield. This permitted the identification of the effect of computerized irrigation scheduling on water and energy use. For the energy use analysis in the study an energy per unit yield (EUY) value was developed. Data collected in the course of this study showed a reduction in EUY between scheduled and non-scheduled fields on sprinkler irrigated grain, sprinkler irrigated cotton and furrow irrigated tomatoes of 32%, 7% and 25% respectively, in the study area. Results of the data analysis showed that computerized scheduling affected water and energy use most where irrigation systems with a high degree of water control are used. Percent change in EUY values were used to extrapolate these data to the seventeen (17) major agricultural energy using states. This analysis showed the potential to save, through irrigation scheduling, 0.031 QUAD Btu on systems as they currently exist and are currently managed. 15 figures, 21 tables.

  14. Analysis and clustering of natural gas consumption data for thermal energy use forecasting

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Fantozzi, Fabio

    2015-11-01

    In this paper, after a brief analysis of the connections between the uses of natural gas and thermal energy use, the natural gas consumption data related to Italian market are analyzed and opportunely clustered in order to compute the typical consumption profile in different days of the week in different seasons and for the different class of users: residential, tertiary and industrial. The analysis of the data shows that natural gas consumption profile is mainly related to seasonality pattern and to the weather conditions (outside temperature, humidity and wind chiller). There is also an important daily pattern related to industrial and civil sector that, at a lower degree than the previous one, does affect the consumption profile and have to be taken into account for defining an effective short and mid term thermal energy forecasting method. A possible mathematical structure of the natural gas consumption profile is provided. Due to the strong link between thermal energy use and natural gas consumption, this analysis could be considered the first step for the development of a model for thermal energy forecasting.

  15. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  16. Balancing Energy Consumption with Hybrid Clustering and Routing Strategy in Wireless Sensor Networks †

    PubMed Central

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-01-01

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k=1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in gradient k=1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime. PMID:26492248

  17. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    PubMed

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-01-01

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  18. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  19. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  20. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  1. Preliminary Analysis of Energy Consumption for Cool Roofing Measures

    SciTech Connect

    Mellot, Joe; Sanyal, Jibonananda; New, Joshua Ryan

    2013-01-01

    The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

  2. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  3. Energy drinks consumption practices among medical students of a Private sector University of Karachi, Pakistan.

    PubMed

    Usman, Asma; Bhombal, Swaleha Tariq; Jawaid, Ambreen; Zaki, Samar

    2015-09-01

    Consumption of energy drinks has become popular among students and athletes over the past few years. To explore the phenomenon, a cross-sectional survey was conducted through a self-administered pilot-tested questionnaire. Frequency of energy drinks consumption was found to be 121(52%) in a sample of 233 medical students. Red bull was the most common brand consumed 101(43%). The major reasons reported for its usage were to gain/replenish energy by 36(15.4%), and studying for examination by 34(14.6%). Television was reported as the major source of information 153(66%) followed by friends 113(48%). There was a high frequency of energy drinks' consumption among medical students of a private university. There is a strong need to create awareness regarding these drinks, especially among adolescents and teenagers. PMID:26338750

  4. Energy drinks consumption practices among medical students of a Private sector University of Karachi, Pakistan.

    PubMed

    Usman, Asma; Bhombal, Swaleha Tariq; Jawaid, Ambreen; Zaki, Samar

    2015-09-01

    Consumption of energy drinks has become popular among students and athletes over the past few years. To explore the phenomenon, a cross-sectional survey was conducted through a self-administered pilot-tested questionnaire. Frequency of energy drinks consumption was found to be 121(52%) in a sample of 233 medical students. Red bull was the most common brand consumed 101(43%). The major reasons reported for its usage were to gain/replenish energy by 36(15.4%), and studying for examination by 34(14.6%). Television was reported as the major source of information 153(66%) followed by friends 113(48%). There was a high frequency of energy drinks' consumption among medical students of a private university. There is a strong need to create awareness regarding these drinks, especially among adolescents and teenagers.

  5. Energy consumption and economic development in West Africa

    SciTech Connect

    Chima, C.M.

    1987-01-01

    This study evaluates the commercial energy sector of the Economic Community of West African States (ECOWAS). Presently, an economic union exists between the 16 countries of West Africa that are members of ECOWAS. Although the ECOWAS region has plentiful resources of commercial energy, it faces problems in this sector for two reasons. First is the problem resulting from the diminishing traditional energy resources such as wood fuel and charcoal. Second, most ECOWAS members, except Nigeria, are net importers of commercial energy, and hence face a high import burden for oil. Liquid petroleum is the dominant form of commercial energy used in the ECOWAS despite the availability of other resources. This author basically argues that the best policy and strategy solution for dealing with energy problems is through a combination of regional cooperative effort, and a more-intensive country level. The intensity-of-use hypothesis is tested with case studies of Ghana, the Ivory Coast, and Nigeria. The results indicate that newly developing countries can deviate from the expectations of the hypothesis.

  6. Caffeine consumption around an exercise bout: effects on energy expenditure, energy intake, and exercise enjoyment.

    PubMed

    Schubert, Matthew M; Hall, Susan; Leveritt, Michael; Grant, Gary; Sabapathy, Surendran; Desbrow, Ben

    2014-10-01

    Combining an exercise and nutritional intervention is arguably the optimal method of creating energy imbalance for weight loss. This study sought to determine whether combining exercise and caffeine supplementation was more effective for promoting acute energy deficits and manipulations to substrate metabolism than exercise alone. Fourteen recreationally active participants (mean ± SD body mass index: 22.7 ± 2.6 kg/m2) completed a resting control trial (CON), a placebo exercise trial (EX), and a caffeine exercise trial (EX+CAF, 2 × 3 mg/kg of caffeine 90 min before and 30 min after exercise) in a randomized, double-blinded design. Trials were 4 h in duration with 1 h of rest, 1 h of cycling at ∼65% power at maximum O2 consumption or rest, and a 2-h recovery. Gas exchange, appetite perceptions, and blood samples were obtained periodically. Two hours after exercise, participants were offered an ad libitum test meal where energy and macronutrient intake were recorded. EX+CAF resulted in significantly greater energy expenditure and fat oxidation compared with EX (+250 kJ; +10.4 g) and CON (+3,126 kJ; +29.7 g) (P < 0.05). A trend for reduced energy and fat intake compared with CON (-718 kJ; -8 g) (P = 0.055) was observed. Consequently, EX+CAF created a greater energy deficit (P < 0.05). Caffeine also led to exercise being perceived as less difficult and more enjoyable (P < 0.05). Combining caffeine with exercise creates a greater acute energy deficit, and the implications of this protocol for weight loss or maintenance over longer periods of time in overweight/obese populations should be further investigated. PMID:25123196

  7. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  8. Using acceleration characteristics in air quality and energy consumption analyses. Technical report

    SciTech Connect

    Eisele, W.L.; Turner, S.M.; Benz, R.J.

    1996-08-01

    This research investigated the effects of detailed speed and acceleration characteristics on energy consumption utilizing several fuel consumption models. The relationships between speed and acceleration characteristics, geometric characteristics (e.g., number of lanes, signal density, driveway density), and traffic flow variability for various roadways were also investigated. Finally, distributions were produced that summarize the operating characteristics of freeway and arterial streets in Houston, Texas using an electronic distance-measuring instrument (DMI) and the floating car technique.

  9. Changes in Natural Gas Monthly Consumption Data Collection and the Short-Term Energy Outlook

    EIA Publications

    2010-01-01

    Beginning with the December 2010 issue of the Short-Term Energy Outlook (STEO), the Energy Information Administration (EIA) will present natural gas consumption forecasts for the residential and commercial sectors that are consistent with recent changes to the Form EIA-857 monthly natural gas survey.

  10. Application of advanced methods for the prognosis of production energy consumption

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Witczak, P.; Staiger, B.; Spindler, C.; Hertel, J.

    2014-12-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process.

  11. Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II

    EPA Science Inventory

    The long-term dynamic changes in the triad, energy consumption, economic development, and Greenhouse gas (GHG) emissions, in Japan after World War II were quantified, and the interactions among them were analyzed based on an integrated suite of energy, emergy and economic indices...

  12. 78 FR 1779 - Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... proposes to include a new range for instantaneous electric water heaters (Appendix D6). \\7\\ 77 FR 29940... CFR Part 305 Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other Products Required Under the Energy Policy and Conservation Act (``Appliance Labeling...

  13. Energy consumption and the unexplained winter warming over northern Asia and North America

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Cai, Ming; Hu, Aixue

    2013-05-01

    The worldwide energy consumption in 2006 was close to 498 exajoules. This is equivalent to an energy convergence of 15.8TW into the populated regions, where energy is consumed and dissipated into the atmosphere as heat. Although energy consumption is sparsely distributed over the vast Earth surface and is only about 0.3% of the total energy transport to the extratropics by atmospheric and oceanic circulations, this anthropogenic heating could disrupt the normal atmospheric circulation pattern and produce a far-reaching effect on surface air temperature. We identify the plausible climate impacts of energy consumption using a global climate model. The results show that the inclusion of energy use at 86 model grid points where it exceeds 0.4Wm-2 can lead to remote surface temperature changes by as much as 1K in mid- and high latitudes in winter and autumn over North America and Eurasia. These regions correspond well to areas with large differences in surface temperature trends between observations and global warming simulations forced by all natural and anthropogenic forcings. We conclude that energy consumption is probably a missing forcing for the additional winter warming trends in observations.

  14. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    PubMed

    Williams, Daniel R; Tang, Yinshan

    2013-05-01

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  15. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  16. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  17. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... environmental cell test data for the range of vehicles to be covered by the simulation including items such as the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  18. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  19. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  20. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... environmental cell test data for the range of vehicles to be covered by the simulation including items such as the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  1. Energy consumption and conservation psychology: A review and conceptual analysis

    NASA Astrophysics Data System (ADS)

    Shippee, Glenn

    1980-07-01

    The burgeoning literature devoted to “the psychology of energy consumption” is categorized by specific methodological approach, is critically reviewed, and is conceptually analyzed. Three main categories of energy research are discerned, these categories corresponding to the traditional methodological typology of the survey study, the field experiment, and the laboratory investigation. For each of these major approaches, several subcategories and special topic areas are noted and discussed. The intention of these conceptual analyses is to stimulate research interest and to provide directions for future research activities. The review concludes with the encouraging observation that several directions can be generalized from the literature. More importantly, these generalizations are corroborated across experiments conducted within each major methodological approach. The importance of behavioral approaches to energy issues and the necessity for additional governmental support for these activities is also emphasized.

  2. Analysis of changes in residential energy consumption, 1973-1980

    SciTech Connect

    King, M.J.; Belzer, D.B.; Callaway, J.M.; Adams, R.C.

    1982-09-01

    The progress of energy conservation in the residential sector since the 1973 to 1974 Arab oil embargo is assessed. To accomplish this goal, the reduction in residential energy use per household since 1973 is disaggregated into six possible factors. The factors considered were: (1) building shell efficiencies, (2) geographic distribution of households, (3) appliance efficiency, (4) size of dwelling units, (5) fuel switching, and (6) consumer attitudes. The most important factor identified was improved building shell efficiency, although the impact of appliance efficiency is growing rapidly. Due to data limitations, PNL was not able to quantify the effects of two factors (size of dwelling units and fuel switching) within the framework of this study. The total amount of the energy reduction explained ranged from 18 to 46% over the years 1974 to 1980.

  3. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  4. Effectiveness of In-Home Feedback Devices in Conjunction with Energy Use Information on Residential Energy Consumption

    NASA Astrophysics Data System (ADS)

    Rungta, Shaily

    Residential energy consumption accounts for 22% of the total energy use in the United States. The consumer's perception of energy usage and conservation are very inaccurate which is leading to growing number of individuals who try to seek out ways to use energy more wisely. Hence behavioral change in consumers with respect to energy use, by providing energy use feedback may be important in reducing home energy consumption. Real-time energy information feedback delivered via technology along with feedback interventions has been reported to produce up to 20 percent declines in residential energy consumption through past research and pilot studies. There are, however, large differences in the estimates of the effect of these different types of feedback on energy use. As part of the Energize Phoenix Program, (a U.S. Department of Energy funded program), a Dashboard Study was conducted by the Arizona State University to estimate the impact of real-time, home-energy displays in conjunction with other feedback interventions on the residential rate of energy consumption in Phoenix, while also creating awareness and encouragement to households to reduce energy consumption. The research evaluates the effectiveness of these feedback initiatives. In the following six months of field experiment, a selected number of low-income multi-family apartments in Phoenix, were divided in three groups of feedback interventions, where one group received residential energy use related education and information, the second group received the same education as well as was equipped with the in-home feedback device and the third was given the same education, the feedback device and added budgeting information. Results of the experiment at the end of the six months did not lend a consistent support to the results from literature and past pilot studies. The data revealed a statistically insignificant reduction in energy consumption for the experiment group overall and inconsistent results for

  5. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  6. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.

    PubMed

    Inouye, Joshua M; Valero-Cuevas, Francisco J

    2016-02-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms

  7. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  8. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    PubMed

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  9. User-needs study for the 1993 residential energy consumption survey

    SciTech Connect

    Not Available

    1993-09-24

    During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

  10. Energy consumption in the manufacture of reformulated fuels

    SciTech Connect

    Brown, R.

    1996-03-01

    California`s RFG program, now underway, places new processing demands on the state`s refiners,particularly in sulfur and aromatics reduction in gasoline, diesel and benzene; olefins; vapor pressure and distillation T{sub 50}/T{sub 90} control in gasoline. The study provides a unique look at the energy-use impact of the new rules and gives detailed insight into the process decisions refiners must make.

  11. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    PubMed

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  12. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    PubMed

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA. PMID:27335019

  13. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    NASA Astrophysics Data System (ADS)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  14. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    NASA Astrophysics Data System (ADS)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  15. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  16. Correlates of University Students' Soft and Energy Drink Consumption According to Gender and Residency.

    PubMed

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-08-01

    This study assessed personal and environmental correlates of Belgian university students' soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students' beverage choices. PMID:26258790

  17. Correlates of University Students’ Soft and Energy Drink Consumption According to Gender and Residency

    PubMed Central

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-01-01

    This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790

  18. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test Procedures § 431.324 Uniform test method for the... fixtures at this time. The above statement will be removed as part of the rulemaking to amend the energy conservation standards for metal halide lamp fixtures to account for standby mode energy consumption, and...

  19. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test Procedures § 431.324 Uniform test method for the... fixtures at this time. The above statement will be removed as part of the rulemaking to amend the energy conservation standards for metal halide lamp fixtures to account for standby mode energy consumption, and...

  20. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  1. A thirst for power: A global analysis of water consumption for energy production

    NASA Astrophysics Data System (ADS)

    Spang, Edward

    Producing energy resources requires significant quantities of freshwater. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. A number of reports exist that specify water consumption by discrete energy production technologies. This research synthesizes and expands this previous work by examining the global distribution of water consumption intensity of national-level energy portfolios. By defining and calculating indicators to quantify the relative water use intensity of national energy systems, it was possible to highlight potentially problematic areas of high water use intensity while also providing examples of water-efficient energy production. The results of the research show a high variability in the national water consumption of energy production (WCEP) for the 158 countries that were assessed. However, looking across the indicators for WCEP internationally, the countries that were heavily producing fossil fuel or biofuels demonstrated the greatest intensity of energy-based water consumption. The economic imperative to develop fossil fuels drives high water consumption in countries that already lack sufficient water supplies. Meanwhile, biofuels require so much water over their lifecycle per unit of produced energy that any modest commitment to producing biofuels has significant water consumption ramifications for the country. While these results are based on a comprehensive review of available data, future research in this area could be significantly enhanced through better data and widespread adoption of consistent reporting mechanisms. Additional opportunities to expand the field include increasing the resolution of the study regions, tracking these indicators over time, and exploring innovative policy approaches to managing national WCEP effectively. For nations facing the greatest limitations in the availability of local water and energy

  2. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  3. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    NASA Astrophysics Data System (ADS)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  4. Formal Model for the Reduction of the Dynamic Energy Consumption in Multi-Layer Memory Subsystems

    NASA Astrophysics Data System (ADS)

    Zhu, Hongwei; Luican, Ilie I.; Balasa, Florin; Pradhan, Dhiraj K.

    In real-time data-dominated communication and multimedia processing applications, a multi-layer memory hierarchy is typically used to enhance the system performance and also to reduce the energy consumption. Savings of dynamic energy can be obtained by accessing frequently used data from smaller on-chip memories rather than from large background memories. This paper focuses on the reduction of the dynamic energy consumption in the memory subsystem of multidimensional signal processing systems, starting from the high-level algorithmic specification of the application. The paper presents a formal model which identifies those parts of arrays more intensely accessed, taking also into account the relative lifetimes of the signals. Tested on a two-layer memory hierarchy, this model led to savings of dynamic energy from 40% to over 70% relative to the energy used in the case of flat memory designs.

  5. Sociodemographic Correlates of Energy Drink Consumption With and Without Alcohol: Results of a Community Survey

    PubMed Central

    Berger, Lisa K.; Fendrich, Michael; Chen, Han-Yang; Arria, Amelia M.; Cisler, Ron A.

    2010-01-01

    Objective We examined the sociodemographic correlates of energy drink use and the differences between those who use them with and without alcohol in a representative community sample. Methods A random-digit-dial landline telephone survey of adults in the Milwaukee, Wisconsin area responded to questions about energy drink and alcohol plus energy drink use. Results Almost one-third of respondents consumed at least one energy drink in their lifetime, while slightly over 25% used energy drinks in the past year and 6% were past-year alcohol plus energy drink users. There were important racial/ethnic differences in consumption patterns. Compared to non-users, past-year energy drink users were more likely to be non-Black minorities; and past-year alcohol plus energy drink users when compared to energy drink users only were more likely to be White and younger. Alcohol plus energy drink users also were more likely to be hazardous drinkers. Conclusions Our results which are among the first from a community sample suggest a bifurcated pattern of energy drink use highlighting important population consumption differences between users of energy drinks only and those who use alcohol and energy drinks together. PMID:21276661

  6. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... employed, in Btu/h. 4.3Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heaters, EAE, is expressed in Btu and defined as... (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if...

  7. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... employed, in Btu/h. 4.3Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heaters, EAE, is expressed in Btu and defined as... (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if...

  8. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy... reference; see § 430.3) and the fossil fuel energy consumption during the standby test, Qp, in Btu. Ambient... switch, the average electric power consumption during the off mode, PW,OFF = 0, and the fossil...

  9. An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage

    SciTech Connect

    Poyer, D.A.

    1992-01-01

    In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

  10. An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage

    SciTech Connect

    Poyer, D.A.

    1992-06-01

    In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

  11. Potential impact of doubling atmospheric carbon dioxide on energy consumption in the US

    SciTech Connect

    Munoz, J.R.; Sailor, D.J.

    1997-11-01

    This paper uses models of monthly electricity and natural gas per capita demand to forecast the effects of a global warming scenario. An extensive study of energy consumption sensitivity to climate in eight of the most energy intensive states of the US is briefly summarized. Models of statewide monthly per capita electricity consumption as a function of cooling degree days, heating degree days, enthalpy latent days and wind speed were developed. Similar models were developed for natural gas using temperature as the only independent variable. Population weighted statewide monthly cooling and heating degree days were calculated using the base climatic year and the general circulation model (GCM) predictions for California, Texas, New York, and Illinois. The expected changes were clearly dependent on the model chosen for the global warming forecast. The effects of the predicted changes in cooling degree days and heating degree days generated the typical saddle shape of the estimated changes in per capita electricity use. This is attributed to shifts from predominant heating requirements to predominant cooling requirements in certain months. The shape of the climatically induced decrease in natural gas consumption was expected and also highly dependent on the GCM chosen. It appears that per capita energy consumption could be affected significantly under global warming. Since heating and cooling are provided by different energy sources, there could be significant consequences for energy delivery systems. 8 refs., 2 figs.

  12. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption

    PubMed Central

    Inouye, Joshua M.; Valero-Cuevas, Francisco J.

    2016-01-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies—correlated muscle activations—to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption—when available—can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the

  13. Development of a commercial building/site evaluation framework for minimizing energy consumption and greenhouse gas emissions of transportation and building systems

    NASA Astrophysics Data System (ADS)

    Weigel, Brent A.

    In urbanized areas, building and transportation systems generally comprise the majority of energy consumption and greenhouse gas (GHG) emissions. Realization of global environmental sustainability depends upon efficiency improvements of building and transportation systems in the built environment. The selection of efficient buildings and locations can help to improve the efficient utilization of transportation and building systems. Green building design and rating frameworks provide some guidance and incentive for the development of more efficient building and transportation systems. However, current frameworks are based primarily on prescriptive, component standards, rather than performance-based, whole-building evaluations. This research develops a commercial building/site evaluation framework for the minimization of energy consumption and GHG emissions of transportation and building systems through building/site selection. The framework examines, under uncertainty, multiple dimensions of building/site operation efficiencies: transportation access to/from a building site; heating, ventilation, air conditioning, and domestic hot water; interior and exterior lighting; occupant conveyances; and energy supply. With respect to transportation systems, the framework leverages regional travel demand model data to estimate the activity associated with home-based work and non-homebased work trips. A Monte Carlo simulation approach is used to quantify the dispersion in the estimated trip distances, travel times, and mode choice. The travel activity estimates are linked with a variety of existing calculation resources for quantifying energy consumption and GHG emissions. With respect to building systems, the framework utilizes a building energy simulation approach to estimate energy consumption and GHG emissions. The building system calculation procedures include a sensitivity analysis and Monte Carlo analysis to account for the impacts of input parameter uncertainty on

  14. [Transfer of organisms during exchange of heat and moisture in air conditioning installations (author's transl)].

    PubMed

    Beckert, J; Sinner, G

    1975-07-01

    With the exhaust air from ventilation and air conditioning installations escaping into the open, the heat content is also lost which fresh air from outside obtains at considerable expense of energy and technical equipment. The heat content, on the other hand, consists of about equal proportions of sensible heat and latent heat which is associated with the moisture content of the air. In order to regain the heat content of the escaping air so as to be able to use it again - and this is becoming increasingly important with rising energy costs - heat exchangers are necessary which remove the heat content from the exhaust air and transfer it to the fresh air from outside. With the high proportion of latent heat, this energy exchange is only effective if the latent heat can also be regained. For this purpose it is essential to have exchange surfaces which store and transfer both heat and moisture. To achieve this they must come into contact with the exhaust air stream and the fresh air stream alternately. Technically, this is done in a simple way by resolving rotor-like storage material. But a rigid separation of the air streams is no longer possible. Even if it is known that there are very highly developed sealing elements between the fixed and moving parts, the question whether particles from the exhaust air can get into the newly introduced outside air through the rotating storage material still gains in importance in certain types of usuage. For example, this is of importance for hospitals, especially in the operation areas in which air conditioning is desirable for 24 hours daily on hygienic grounds, but also in schools and offices where the present normal practice, for economic reasons, of recirculating air is to be avoided to stop the transference of infections pathogens and odours. In various places, experiments have been carried out earlier with heat exchangers consisting of asbestos board and with rotating storage material coated with lithium chloride and a

  15. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  16. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  17. Transportation vehicle energy intensities. A joint DOT/NASA reference paper. [energy consumption of air and ground vehicles

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Paullin, R. L.

    1974-01-01

    A compilation of data on the energy consumption of air and ground vehicles is presented. The ratio BTU/ASM, British Thermal Units/Available Seat Mile, is used to express vehicle energy intensiveness, and related to the energy consumed directly in producing seat-mile or ton-mile productivity. Data is presented on passenger and freight vehicles which are in current use or which are about to enter service, and advanced vehicles which may be operational in the 1980's and beyond. For the advanced vehicles, an estimate is given of the date of initial operational service, and the performance characteristics. Other key considerations in interpreting energy intensiveness for a given mode are discussed, such as: load factors, operations, overhead energy consumption, and energy investments in new structure and equipment.

  18. Impact of Energy Policy Act of 2005 Section 206 Rebates on Consumers and Renewable Energy Consumption, With Projections to 2010

    EIA Publications

    2006-01-01

    The Energy Information Administration (EIA), with the agreement of the Department, interpreted section 206(d) as calling for a listing of the types of renewable fuels available today, and a listing of those that will be available in the future based on the incentives provided in section 206(d). This report provides that information, and also provides information concerning renewable energy equipment and renewable energy consumption.

  19. Energy consumption behavior in the commercial sector: An ethnographic analysis of utility bill information and customer comprehension in the workplace

    NASA Astrophysics Data System (ADS)

    Payne, Christopher Todd

    The commercial and industrial sectors of the United States compose roughly one-third of total United States energy consumption. Many studies have suggested that significant cost-effective energy savings opportunities exist in this sector, but there is a gap between predictions of potential and actual investment in energy-efficient technologies. Very few studies have been conducted to examine the decision-making environment of the business sector. In particular, there is essentially no information about how small-business decision-makers make choices about energy consumption. My research is intended to begin the process of understanding this important arena of energy consumption behavior. Using semi-structured interview techniques, I interviewed forty-four businesses in ten states. The focus of the interviews was the business decision-maker's handling and use of the utility bill---the main (often sole) piece of information that links energy consumption to cost. Through the interviews, I collected information about how utility bills are understood and misunderstood, what components of the bill are seen as useful or confusing, and how energy consumption was seen in the context of larger business decision-making. In addition, I collected data on two forms of energy consumption feedback: historic consumption feedback, in which informants compared their current energy use to patterns of their own energy consumption over time; and group comparison consumption feedback, in which informants compared their energy consumption to the consumption of a group of similar energy consumers. Finally, I collected data on sources of information to which decision-makers turned when they wanted to seek more information about energy consumption alternatives. Overall, my findings suggest that the current utility bill format is often misunderstood. In many cases, particularly in the small-business and medium-size-business categories, the link between energy consumption and energy cost is

  20. The Consumption of Energy Drinks Among a Sample of College Students and College Student Athletes.

    PubMed

    Gallucci, Andrew R; Martin, Ryan J; Morgan, Grant B

    2016-02-01

    To assess energy drink (ED) consumption, potential ED correlates, and ED-related motivations among a sample of college students to determine differences based on athlete status (student athlete vs. non-athlete). Six hundred and ninety-two college students completed surveys at a large private university in the United States. Participants completed a paper based questionnaire assessing ED and ED-related variables. Over thirty-six percent (197 non-athletes, 58 student athletes) of participants reported ED consumption in the preceding 30 days. Multivariately, there was no difference in ED consumption based on athlete status. Heavy episodic drinking and prescription stimulant misuse were both correlated with increased ED consumption. ED motivations differed based on the frequency of ED consumption. ED use was common among student athletes and non-athletes in our sample. It is important to be aware of the correlation between heavy episodic drinking, prescription stimulant misuse, and ED consumption among college student populations because of the adverse consequences associated with these behaviors. PMID:26255272

  1. Future U.S. water consumption : The role of energy production.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  2. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  3. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    NASA Astrophysics Data System (ADS)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  4. Economic analysis of air-conditioning systems with off-peak chilled-water storage. Master's thesis

    SciTech Connect

    McMullen, B.J.; Papaprokopiou, N.D.

    1981-09-01

    This thesis investigates current methods of chilled-water storage for air conditioning applications and the economics of chilled-water storage with time-of-use electric utility rates. Current methods of chilled-water storage are investigated by comparing costs of construction materials for storage tanks and effectiveness and costs of anti-blending systems. The economics of chilled-water storage are analyzed by computing total life cycle costs of alternative air conditioning systems for two different sized buildings. Computer simulation is used to determine electric consumption for the buildings. The simulation of each building contains three options: no chilled-water storage, chiller operated only at night, and a small chiller supplemented by stored chilled-water. A gunite or Styrofoam tank with a moving partition anti-blending system is the least expensive and most effective storage system. The economics of chilled-water storage are sensitive to the size of the building analyzed. Operating the small chiller with supplemental chilled-water is economical in the smaller building. No chilled-water storage is the most economical option in the larger building. Operation of the chiller only at night was never economical.

  5. Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students

    ERIC Educational Resources Information Center

    Pettit, Michele L.; DeBarr, Kathy A.

    2011-01-01

    Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…

  6. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Federal Register on October 15, 2010 (75 FR 63404), announcing a public meeting and seeking comments... received, please refer to the October 15, 2010, notice (75 FR 63404). Issued in Washington, DC, on October... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New...

  7. Diel dualism in the energy consumption of the European catfish Silurus glanis.

    PubMed

    Slavík, O; Horký, P

    2012-12-01

    Twenty individuals of the largest European freshwater predator, the European catfish Silurus glanis, were tagged with electromyogram (EMG) physiological telemetry sensors. The fish were observed during diel cycles during the spring and summer in the Elbe and Berounka Rivers, Czech Republic. The purpose of this study was to determine whether diel dualism in the activity of S. glanis occurs naturally or is induced by the laboratory environment and by the conditions occurring in aquaculture. The results obtained from the riverine environment tended to show dualism in the use of the light and dark phases of the day because 35% of the individuals varied from a site-specific common diel activity pattern. The EMG values increased in accordance with the mass (M) of the fish. To eliminate the influence of M on individual energy consumption, the EMG records were analysed in terms of the EMG:M ratios. High individual variability was found in these ratios. The diel activity pattern of the individuals with relatively high energy consumption differed from the common diel activity pattern. In contrast, the fish that adopted the common diel activity pattern displayed relatively low energy consumption. The results of this study indicated that dualism and energy consumption are related. The EMG values also varied with the values of the environmental variables. Increasing temperature was associated with high EMG values, whereas the EMG values decreased with increasing flow.

  8. Renewable energy rebound effect?: Estimating the impact of state renewable energy financial incentives on residential electricity consumption

    NASA Astrophysics Data System (ADS)

    Stephenson, Beth A.

    Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.

  9. Docmentation of newly developed methods to assess material compatibility in refrigeration and air-conditioning applications. Final report, 1 October 1993--31 August 1994

    SciTech Connect

    Hawley, M.

    1994-08-01

    This document summarizes the experimental methods used during the materials compatibility and lubricants research program (MCLR). The MCLR program was jointly sponsored by the U.S. Department of Energy and the air-conditioning and refrigeration industry. The individual projects were managed by the Air-Conditioning and Refrigeration Technology Institute. The projects presented in this report are: Chemical and Thermal Stability of Refrigerant/Lubricant Mixtures with Metals, Miscibility of Lubricants with Refrigerants, Compatibility of Refrigerants and Lubricants with Motor Materials, Compatibility of Refrigerants and Lubricants with Elastomers, Compatibility of Refrigerants and Lubricants with Engineering Plastics and Sealed Tube Comparisons of the Compatibility of Desiccants with Refrigerants and Lubricants.

  10. Energy Consumption Analysis Procedure for Robotic Applications in different task motion

    NASA Astrophysics Data System (ADS)

    Ahmed, Iman; Aris, Ishak b.; Hamiruce Marhaban, Mohammad; Juraiza Ishak, Asnor

    2015-11-01

    This work proposes energy analysis method for humanoid robot, seen from simple motion task to complex one in energy chain. The research developed a procedure suitable for analysis, saving and modelling of energy consumption not only in this type of robot but also in most robots that based on electrical power as an energy source. This method has validated by an accurate integration using Matlab software for the power consumption curve to calculate the energy of individual and multiple servo motors. Therefore, this study can be considered as a procedure for energy analysis by utilizing the laboratory instruments capabilities to measure the energy parameters. We performed a various task motions with different angular speed to find out the speed limits in terms of robot stability and control strategy. A battery capacity investigation have been searched for several types of batteries to extract the power modelling equation and energy density parameter for each battery type, Matlab software have been built to design the algorithm and to evaluate experimental amount of the energy which is represented by area under the curve of the power curves. This will provide a robust estimation for the required energy in different task motions to be considered in energy saving (i.e., motion planning and real time scheduling).

  11. Anticipation Driving Behavior and Related Reduction of Energy Consumption in Traffic Flow

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wei, Yan-Fang; Song, Tao; Dai, Shi-Qiang; Dong, Li-Yun

    In view that drivers would pay attention to the variation of headway on roads, an extended optimal velocity model is proposed by considering anticipation driving behavior. A stability criterion is given through linear stability analysis of traffic flows. The mKdV equation is derived with the reductive perturbation method for headway evolution which could be used to describe the stop-and-go traffic phenomenon. The results show a good effect of anticipation driving behavior on the stabilization of car flows and the anticipation driving behavior can improve the numerical stability of the model as well. In addition, the fluctuation of kinetic energy and the consumption of average energy in congested traffic flows are systematically analyzed. The results show that the reasonable level of anticipation driving behavior can save energy consumption in deceleration process effectively and lead to an associated relation like a "bow-tie" between the energy-saving and the value of anticipation factor.

  12. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    A gas engine-driven heat pump (GHP) uses a natural gas-or LPG-powered engine to drive the compressor in a vapor-compression refrigeration cycle. The GHP has the benefits of being able to use the fuel energy effectively by recovering waste heat from the engine jacket coolant and exhaust gas and also to keep high efficiency even at part-load operation by varying the engine speed with relative ease. Hence, energy-efficient heat source systems for air-conditioning and hot water supply may be constructed with GHP chillers in place of conventional electrical-driven heat pump chillers. GHPs will necessarily contribute to the peak shaving of electrical demand in summer. In this study, the performance characteristics of a 457kW GHP chiller have been investigated by a simulation model analysis, for both cooling and heating modes. From the results of the analysis, it has been found that the part-load characteristics of the GHP chiller are fairly well. The evaluation of the heat source systems using GHP chillers will be described in Part 2.

  13. Something to buy paraffin with: an investigation into domestic energy consumption in rural Kenya

    SciTech Connect

    Hosier, R.H.

    1982-01-01

    Recently, two government agencies have surveyed energy consumption in Kenya. These two studies yielded conflicting results, necessitating that a third, more carefully conducted survey be used as the basis for this study. The survey instrument used was designed by the author and included questions regarding the types and quantities of fuels used, income information, and demographic data; 572 households were surveyed. The results are first aggregated by ecological zone and compared with the responses of the same households from the 1979 energy survey. Two findings emerge. First, wood consumption is lower in the high and medium potential lands. Fuelwood scarcity appears to be caused by high population density, not low ecological potential. Second, consumption of fuelwood and paraffin (i.e., kerosene) has decreased significantly over the past two years, due mainly to the increased price of the latter and the increased scarcity of the former. Next, the survey results are analyzed by way of a farm-type classification system which classifies the respondents into five groups: non-surplus farmers, surplus farmers, cash-surplus farmers, cash crop farmers, and wage workers. Finally, the analysis takes a relational perspective relying upon regression analysis. Income serves as a determinant of kerosene consumption, but not of fuelwood consumption.

  14. Reduction potentials of total energy consumption and GHG emissions in Xiamen

    NASA Astrophysics Data System (ADS)

    Bin, C.; Cui, S.

    2009-12-01

    Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China’s energy uses and CO2 emissions. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying effects of energy-saving policies and finding solution to GHG emissions in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from Xiamen city. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2007-2020 and GHG emissions are estimated. Two scenarios have been designed to describe the future strategies relating to the development of Xiamen city. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of urban energy demand. The ‘Integrated’ scenario is considered to be the most optimized case where a series of available reduction measures such as clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control and new and renewable energy development and utilization are assumed to be implemented. Energy demand and GHG emissions in Xiamen up to 2020 are estimated in these two scenarios. The total reduction potentials in the ‘Integrated’ scenario and the relative contribution rate of reduction potentials of each measure have been estimated.

  15. Energy consumption analysis for various memristive networks under different learning strategies

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Dong; Zhang, Ziyang; Tang, Pei; Li, Guoqi; Pei, Jing

    2016-02-01

    Recently, various memristive systems emerge to emulate the efficient computing paradigm of the brain cortex; whereas, how to make them energy efficient still remains unclear, especially from an overall perspective. Here, a systematical and bottom-up energy consumption analysis is demonstrated, including the memristor device level and the network learning level. We propose an energy estimating methodology when modulating the memristive synapses, which is simulated in three typical neural networks with different synaptic structures and learning strategies for both offline and online learning. These results provide an in-depth insight to create energy efficient brain-inspired neuromorphic devices in the future.

  16. Thermostats with attitudes: A sociological analysis of assumptions underlying common approaches to reducing residential energy consumption

    NASA Astrophysics Data System (ADS)

    Nevius, Monica Josefina

    2001-12-01

    This dissertation contributes to the emerging literature in the sociology of energy consumption by answering three important questions about the assumptions underlying popular approaches to reducing energy consumption behavior. The answers are gleaned from data on Wisconsin households gathered in 1998 and 1999. The first question has to do with the efficacy of a "cognitive fix" approach of attempting to change attitudes in hopes of changing behavior, and asks whether energy-related attitudes can predict actual energy savings. The results of a regression analysis of heating energy intensity revealed that a variable measuring respondents' attitudes toward energy conservation predict heating energy intensity, but the effect was overwhelmed by control variables for insulation and draftiness. These and other results offer some support for the cognitive fix approach of attitudinal change as a means of reducing energy consumption. The second question concerns a popular "technological fix" of subsidizing the replacement of manual thermostats with programmable ones, and asks whether programmable thermostats actually save significant home heating energy. The data show that households with programmable thermostats appear to use no less energy than do households with manual thermostats, and that it is behavioral norms, not the type of thermostat, that determine thermostat setting behavior. The results suggest strongly that in aggregate, the installation of programmable thermostats in residential households cannot be expected to deliver promised energy savings. The third question addressed is whether popular knowledge about global warming or the connection between energy use and global environmental change is growing, and if so, what is the likelihood that these prospective socio-cultural shifts might result in increased residential energy conservation. The analysis suggests that, compared to the findings of earlier studies, awareness of the environmental consequences of energy

  17. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  18. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  19. How effective is group feedback in encouraging occupants of an office building to reduce energy consumption?

    NASA Astrophysics Data System (ADS)

    Shah, Ushik D.

    Lighting contributes to a high percentage of the total energy use in office buildings. The lack of financial incentive often dissuades office workers from trying to save electricity at their work place. This thesis aims at reducing the total power consumed by an office building by using persuasive technologies on the occupants to promote environmentally conscious and energy saving behavior. A three week field study was conducted by providing occupants of an office building feedback about their energy consumption along with messages to encourage them to save energy. Feedback was provided via television screens and flyers placed strategically at the study location, the fourth floor of the Knoy Hall of Technology, Purdue University, West Lafayette campus. The results obtained from the analysis of data showed no change in energy consumption post intervention. Group feedback thus proved to be ineffective in encouraging occupants of this office building to reduce their energy consumption. This thesis presents the findings of the study and discusses recommendations and future scope for similar studies.

  20. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.

    PubMed

    Zhu, J Y; Pan, X J

    2010-07-01

    This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed to significantly reduce mechanical energy consumption. Because the ultimate goal of biofuel production is net energy output, a concept of pretreatment energy efficiency (kg/MJ) based on the total sugar recovery (kg/kg wood) divided by the energy consumption in pretreatment (MJ/kg wood) is defined. It is then used to evaluate the performances of three of the most promising pretreatment technologies: steam explosion, organosolv, and sulfite pretreatment to overcome lignocelluloses recalcitrance (SPORL) for softwood pretreatment. The present study found that SPORL is the most efficient process and produced highest sugar yield. Other important issues, such as the effects of lignin on substrate saccharification and the effects of pretreatment on high-value lignin utilization in woody biomass pretreatment, are also discussed.

  1. Predictive models of energy consumption in multi-family housing in College Station, Texas

    NASA Astrophysics Data System (ADS)

    Ali, Hikmat Hummad

    Patterns of energy consumption in apartment buildings are different than those in single-family houses. Apartment buildings have different physical characteristics, and their inhabitants have different demographic attributes. This study develops models that predict energy usage in apartment buildings in College Station. This is accomplished by analyzing and identifying the predictive variables that affect energy usage, studying the consumption patterns, and creating formulas based on combinations of these variables. According to the hypotheses and the specific research context, a cross-sectional design strategy is adopted. This choice implies analyses across variations within a sample of fourplex apartments in College Station. The data available for analysis include the monthly billing data along with the physical characteristics of the building, climate data for College Station, and occupant demographic characteristics. A simple random sampling procedure is adopted. The sample size of 176 apartments is drawn from the population in such a way that every possible sample has the same chance of being selected. Statistical methods used to interpret the data include univariate analysis (mean, standard deviation, range, and distribution of data), correlation analysis, regression analysis, and ANOVA (analyses of variance). The results show there are significant differences in cooling efficiency and actual energy consumption among different building types, but there are no significant differences in heating consumption. There are no significant differences in actual energy consumption between student and non-student groups or among ethnic groups. The findings indicate that there are significant differences in actual energy consumption among marital status groups and educational level groups. The multiple regression procedures show there is a significant relationship between normalized annual consumption and the combined variables of floor area, marital status, dead band

  2. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers X1 Appendix X1 to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App....

  3. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  4. 10 CFR Appendix N to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers N Appendix N to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App....

  5. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Pool Heaters P Appendix P to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. P Appendix P...

  6. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  7. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  8. 10 CFR 431.134 - Uniform test methods for the measurement of energy and water consumption of automatic commercial...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test methods for the measurement of energy and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test Procedures §...

  9. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    NASA Astrophysics Data System (ADS)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  10. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    SciTech Connect

    Schaaf, Rebecca E.; Evans, Meredydd

    2010-05-01

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  11. Systems and methods for controlling energy use during a demand limiting period

    DOEpatents

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  12. Energy Conservation Study on Simplot Potato Processing Plant Heyburn, Idaho, Appendices.

    SciTech Connect

    Seton, Johnson & Odell, Inc.

    1985-03-01

    This group of appendices, B--G, of the ''Simplot Potato Processing Plant Energy Conservation Study'', covers processing equipment, refrigeration equipment, water systems, air conditioning systems and lighting systems. Data on these systems related to cost and energy consumption are given. (JF)

  13. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    SciTech Connect

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  14. Energy consumption and performance models of small Philippine-built rice mills

    SciTech Connect

    Paras, A.S. Jr.

    1984-01-01

    Two simulation models were developed for small rice mills of the conventional disc-cone and rubber-roll equipped designs that range from 0.3 to 1.8 tons-per-hour capacity. These sizes comprise a large proportion of the rice mills in the Philippines. The first, a computer model, evaluated these two types of mills with regard to energy consumption, total and head grain recovery, and processing time. Field and laboratory data taken by research workers and direct measurements by the author were compiled and employed in the development of equations and distribution functions for the variables that make up the subroutines for the models. The results indicated that the energy consumption of small rice mills in the Philippines could be reduced by 5 to 19%, depending on size, without loss of quality in good-performance mills by using one bigger huller and an adjustable separator, and that the output quality of poor performance mills could be improved with just 4% increase in energy consumption by adding a second stage whitener. The second model estimated the cost of milled rice by utilizing Kirchoff's current and voltage laws and energy conservation principles to derive a cost equation involving the material energy and processing cost.

  15. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions. PMID:26282441

  16. Modeling of rotary cement kilns: Applications to reduction in energy consumption

    SciTech Connect

    Mujumdar, K.S.; Arora, A.; Ranade, V.V.

    2006-03-29

    We discuss and evaluate possible ways of reducing energy consumption in rotary cement kilns. A comprehensive one-dimensional model was developed to simulate complex processes occurring in rotary cement kilns. A modeling strategy comprising three submodels, viz. a model for simulating the variation of bed height in the kiln, a model for simulating reactions and heat transfer in the bed region, and a model for simulating coal combustion and heat transfer in the freeboard region, was developed. Melting and formation of coating within the kiln were accounted for. Combustion of coal in the freeboard region was modeled by accounting for devolatilization, finite-rate gas-phase combustion, and char reaction. The simulated results were validated with the available data from three industrial kilns. The model was then used to understand the influence of various design and operating parameters on kiln performance. Several ways of reducing energy consumption in kilns were then computationally investigated. The model was also used to propose and to evaluate a practical solution of using a secondary shell to reduce energy consumption in rotary cement kilns. Simulation results indicate that varying kiln operating variables, viz. solid flow rate or RPM, can result only in small changes in kiln energetics. Use of a secondary shell over the kiln and energy recovery by passing air through the annular gap between the two appears to be a promising way to achieve significant energy savings. The developed model and the presented results will be useful for enhancing the performance of rotary cement kilns.

  17. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.

  18. 10 CFR 431.134 - Uniform test methods for the measurement of energy and water consumption of automatic commercial...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF... Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy and water consumption of automatic commercial ice makers. (a) Scope. This section provides the...

  19. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... traffic signal modules and pedestrian modules. For purposes of 10 CFR part 431 and EPCA, the test... consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF... measurement of energy consumption for traffic signal modules and pedestrian modules. (a) Scope. This...

  20. Mode shift strategies in intercity transportation and their effect on energy consumption

    NASA Technical Reports Server (NTRS)

    Sokolsky, S.

    1975-01-01

    Policies are examined which, if implemented, could lead to significant energy savings in intercity travel in the northeast corridor arena, without restricting the traveler's freedom of mode choice. The effects on arena energy consumption of introducing new, more energy-efficient aircraft are investigated; and several strategies unrelated to the implementation of new aircraft are introduced to yield reductions in overall intercity energy use. In both parts of this analysis, resulting changes in patronage (modal share) and energy use are demonstrated, leading to new insights into the effectiveness of different potential policies for achieving energy conservation. Some observations on induced demand trends that could be associated with certain strategies and the resultant potential effect on energy conservation are provided.