Sample records for air-conditioning engineers ashrae

  1. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, Terry R

    2014-06-01

    The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.

  2. Energy Conservation in New Building Design: An Impact Assessment of ASHRAE Standard 90-75. Conservation and Environment Buildings Programs. Conservation Number 43B.

    ERIC Educational Resources Information Center

    Federal Energy Administration, Washington, DC.

    The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE), has developed a document governing energy usage in all types of new construction: ASHRAE Standard 90-75: Energy Conservation in New Building Design (ASHRAE 90). To lay the foundation for an evaluation of ASHRAE 90, the Federal Energy Administration (FEA)…

  3. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neymark, J.; Kennedy, M.; Judkoff, R.

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  4. ETS levels in hospitality environments satisfying ASHRAE standard 62-1989: "ventilation for acceptable indoor air quality"

    NASA Astrophysics Data System (ADS)

    Moschandreas, D. J.; Vuilleumier, K. L.

    Prior to this study, indoor air constituent levels and ventilation rates of hospitality environments had not been measured simultaneously. This investigation measured indoor Environmental Tobacco Smoke-related (ETS-related) constituent levels in two restaurants, a billiard hall and a casino. The objective of this study was to characterize ETS-related constituent levels inside hospitality environments when the ventilation rates satisfy the requirements of the ASHRAE 62-1989 Ventilation Standard. The ventilation rate of each selected hospitality environment was measured and adjusted. The study advanced only if the requirements of the ASHRAE 62-1989 Ventilation Standard - the pertinent standard of the American Society of Heating, Refrigeration and Air Conditioning Engineers - were satisfied. The supply rates of outdoor air and occupant density were measured intermittently to assure that the ventilation rate of each facility satisfied the standard under occupied conditions. Six ETS-related constituents were measured: respirable suspended particulate (RSP) matter, fluorescent particulate matter (FPM, an estimate of the ETS particle concentrations), ultraviolet particulate matter (UVPM, a second estimate of the ETS particle concentrations), solanesol, nicotine and 3-ethenylpyridine (3-EP). ETS-related constituent levels in smoking sections, non-smoking sections and outdoors were sampled daily for eight consecutive days at each hospitality environment. This study found that the difference between the concentrations of ETS-related constituents in indoor smoking and non-smoking sections was statistically significant. Differences between indoor non-smoking sections and outdoor ETS-related constituent levels were identified but were not statistically significant. Similarly, differences between weekday and weekend evenings were identified but were not statistically significant. The difference between indoor smoking sections and outdoors was statistically significant. Most

  5. ASHRAE and residential ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality createsmore » health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is

  6. ASHRAE's new Chiller Heat Recovery Application Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorgan, C.B.; Dorgan, C.E.

    2000-07-01

    The new Chiller Heat Recovery Application Guide, published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), provides a comprehensive reference manual on the options available for chiller heat recovery. The information in the guide will assist engineers, owners, and system operators in evaluating the potential of integrating chiller heat recovery into their cooling and heating systems. The primary focus is on new construction and applications where a chiller is being replaced due to inefficiency, high operating and maintenance (O and M) costs, or elimination of refrigerants containing ozone-depleting chemicals known as CFC/HCFCs. While chiller systems for commercialmore » buildings are the primary focus of the guide, the information and procedures also apply to industrial heat pumps. The function of this paper is to highlight key information contained in the guide, including the major benefits of chiller heat recovery, primary candidates, and application procedures. A description of the guide's general format and contents is also provided.« less

  7. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engineers (ASHRAE) Standard 16-69, “Method of Testing for Rating Room Air Conditioners.” 2. Test conditions...-1972 and in accordance with ASHRAE Standard 16-69. 4.2Determine the electrical power input (expressed...

  8. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engineers (ASHRAE) Standard 16-69, “Method of Testing for Rating Room Air Conditioners.” 2. Test conditions...-1972 and in accordance with ASHRAE Standard 16-69. 4.2Determine the electrical power input (expressed...

  9. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  10. Practical approaches for health care: Indoor air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turk, A.R.; Poulakos, E.M.

    1996-05-01

    The management of indoor air quality (IAQ) is of interest to building occupants, managers, owners, and regulators alike. Whether by poor design, improper attention, inadequate maintenance or the intent to save energy, many buildings today have significantly degraded IAQ levels. Acceptable IAQ is defined by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) in Standard 62-1989 {open_quotes}Ventilation for Acceptable Indoor Air Quality{close_quotes} as {open_quotes}air in which there are no known contaminants at harmful concentrations as determined by cognizant authorities and with which a substantial majority (80 percent or more) of the people exposed do not express dissatisfaction.{close_quotes}more » ASHRAE`s definition not only addresses the chemical compounds that may be present in the air, but it also recognizes a need to address both physiological and psychosocial comfort. The second step is to conduct a performance review of the HVAC systems based on equipment design specifications and guidelines for acceptable IAQ. And the third step is to identify potential chemical, physical and biological sources that are known to contribute to adverse air quality. Upon completion of these three steps, you will able to identify the more significant contributors to IAQ problems and establish applications for prevention and mitigation.« less

  11. System and method for conditioning intake air to an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellnau, Mark C.

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. Themore » valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.« less

  12. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  13. Ashra (All-sky Survey High Resolution Air-shower detector)Current Status on Mauna Loa, Hawai`i

    NASA Astrophysics Data System (ADS)

    Hamilton, John; Fox, R. A.; Sasaki, M.; Asaoka, Y.; Ashra Collaboration

    2008-09-01

    Now in its third year of on-site activities, Ashra is commencing full testing of its array of Cherenkov and Nitrogen Fluorescence detectors. The All-sky Survey High Resolution Air-shower detector is located on the northern upper slopes of Mauna Loa at the 11,000 ft elevation level. Utilizing a clear view of 80% of the sky and an unobstructed view of Mauna Kea, anglular resolution of 1.2 arcmin, sensitive to the blue to UV light with the use of image intensifier and CMOS technology, Ashra is in a unique position for studying the sources of High Energy Cosmic Ray sources (GRB, etc) as well as potential observations of earth-grazing neutrino interactions. 2004 saw the successful deployment of a prototype detector on Haleakala, with confirmed detection of several GRBs. Since the summer of 2005, steady progress was made in constructing and installation of detectors and their weather-proofed housings. UH-Hilo undergraduate students provided summer interns for this international collaboration between ICRR Univ. Tokyo, Univ. Hawai`i-Hilo, Univ Hawai`i-Manoa, Ibaraki Univ., Toho Univ. Chiba Univ., Kanagawa Univ., Nagoya Univ. & Tokyo Institute of Technology.

  14. 10. Building 105, Facilities Engineering Building, 1830, interior, air condition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Building 105, Facilities Engineering Building, 1830, interior, air condition repair shop, S end of building, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  15. Piston Temperatures in an Air-Cooled Engine for Various Operating Conditions

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J

    1940-01-01

    As part of a program for the study of piston cooling, this report presents the results of tests conducted on a single-cylinder, air-cooled, carburetor engine to determine the effect of engine operating conditions on the temperatures at five locations on the piston.

  16. The Ashra Project

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Aita, Y.; Aoki, T.; Asaoka, Y.; Browder, T.; Chonan, T.; Dye, S.; Eguchi, M.; Fox, R.; Guillian, G.; Hamilton, J.; Kimura, T.; Kohta, N.; Kuze, H.; Learned, J.; Masuda, M.; Matsuno, S.; Morimoto, Y.; Noda, K.; Ogawa, S.; Okumura, A.; Olsen, S.; Shibuya, H.; Shinomiya, K.; Sugiyama, N.; Yamaguchi, Y.; Yasuda, M.; Varner, G.; Watanabe, Y.; Watanabe, Y.

    Ashra (All-sky Survey High Resolution Air-shower detector) is a project to build an unconventional optical telescope complex that images very wide field of view, covering 80% of the sky, yet with the angle pixel resolution of 1.2 arcsin, sensitive to the blue to UV light with the use of image intensifier and CMOS technology. The project primarily aims to observe Cherenkov and fluorescence lights from the lateral and longitudinal developments of very-high energy cosmic rays in the atmosphere. It can also be used to monitor optical transients in the wide field of sky. In 2004 we built prototype telescopes to verify and develop techniques at Haleakala in Hawaii, needed for the development of the full-scale telescopes. Construction of the main detector station has begun at Mauna Loa on the Hawaii Island in the summer of 2005. The pilot observation data have been taken. We will present the project status, and expected scientific impacts on the observational objectives such as optical transients, unidentified TeV gamma- ray and PeV neutrino sources, and the propagation of EeV cosmic rays. The Ashra Collaboration: (a) ICRR, Univ. Tokyo (b) Univ. Hawaii Manoa (c) Univ. Hawaii Hilo (d)Ibaraki Univ. (e) Toho Univ. (f) Chiba Univ. (g) Tokyo Inst. Tech. (h) Nagoya Univ. Y. Aita.^a, T. Aoki^a, Y. Asaoka^a, T. Browder^b, T. Chonan^a, S. Dye^b, M. Eguchi^a, R. Fox^c, G. Guillian^b, J. Hamilton^c, T. Kimura^d, N. Kohta^e, H. Kuze^f, J. Learned^b, M. Masuda^g, S. Matsuno^b, Y. Morimoto^e, K. Noda^a, S. Ogawa^e, A. Okumura^a, S. Olsen^b, M. Sasaki^a, H. Shibuya^e, K. Shinomiya^f, N. Sugiyama^h, Y. Yamaguchi^f, M. Yasuda^g, G. Varner^b, Y. Watanabe^g, Y. Watanabe^e

  17. Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ronald; Neymark, Joel; Kennedy, Mike D.

    This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area ofmore » modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.« less

  18. The effect of environmental parameters to dust concentration in air-conditioned space

    NASA Astrophysics Data System (ADS)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  19. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet the energy standards prescribed by the American Society of Heating, Refrigerating, and Air Conditioning Engineers and the Illuminating Engineering Society of North American in ASHRAE/IES Standard 90A...

  20. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... meet the energy standards prescribed by the American Society of Heating, Refrigerating, and Air Conditioning Engineers and the Illuminating Engineering Society of North American in ASHRAE/IES Standard 90A...

  1. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    PubMed

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 77 FR 16769 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for...-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010... Industrial Equipment, which includes the commercial heating, air-conditioning, and water-heating equipment...

  3. How to be Green and Stay in the Black: Environmental Guideline Document.

    DTIC Science & Technology

    1997-10-01

    of the studies were within the American Society of Heating, Refrigera- tion, and Air conditioning Engineers (ASHRAE) Guidelines. Polaroid plans to...Whitney, Texas Instru- ments-Defense Group, Hughes Missile Systems, Boeing Defense Systems, and General Electric Air - craft Engines . The methodology...boxes, and the need to install space air thermostats. Description For Polaroid’s needs, engineers installed inte- grated, self-contained, thermally

  4. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  5. 10 CFR 420.6 - Reference standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... National Archives and Records Administration (NARA). For information on the availability of this material...) The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 1791 Tullie Circle, N.E., Atlanta, Georgia 30329, (404) 636-8400/The Illuminating Engineering Society of North...

  6. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of Northmore » America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).« less

  7. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), themore » Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.« less

  8. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, Eric; Leach, Matt; Pless, Shanti

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), themore » Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.« less

  9. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  10. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong.

    PubMed

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-03-27

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  11. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    PubMed Central

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-01-01

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO2), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked. PMID:29584686

  12. Search for Pev-Eev Tau Neutrinos and Optical Transients from Violent Objects with ASHRA-1

    NASA Astrophysics Data System (ADS)

    Sasaki, Makoto

    2014-06-01

    Ashra is a project to build an unconventional optical telescope complex that images a very wide field of view (FOV), covering 77% of the sky, yet with the angle resolution of a few arcmin, with the use of image intensifier and CMOS technology. The project primarily aims to observe Cherenkov and fluorescence light from air-shower developments. It can also be used to monitor optical transients in the wide FOV. The detector has great sensitivity in the PeV-EeV region using the Earth-skimming (ES) tau neutrino technique, and can be used to search for neutrinos originating from hadron acceleration in astronomical objects. Additional advantages are perfect shielding of cosmic ray secondaries, precision determination of arrival direction, and negligible atmospheric neutrino background. Ashra-1 completes its 3rd observation period, the first dedicated to taking physics data for PeV-EeV tau neutrinos with the best instantaneous sensitivity and optical transients, in March 2013. From January 2012 until end of March 2013, about 1950 hours of data have been taken out of 2006 hours possible due to light constraints. For optical transients, we have 3763 additional hours of data taken from 2008 until 2011. Ashra-1 has well demonstrated search for PeV-EeV tau neutrinos and optical flashes from a specific violent object in multi time domains with good pointing accuracy.

  13. Performance analysis of air conditioning system and airflow simulation in an operating theater

    NASA Astrophysics Data System (ADS)

    Alhamid, Muhammad Idrus; Budihardjo, Rahmat

    2018-02-01

    The importance of maintaining performance of a hospital operating theater is to establish an adequate circulation of clean air within the room. The parameter of air distribution in a space should be based on Air Changes per Hour (ACH) to maintain a positive room pressure. The dispersion of airborne particles in the operating theater was governed by regulating the air distribution so that the operating theater meets clean room standards ie ISO 14664 and ASHRAE 170. Here, we introduced several input parameters in a simulation environment to observe the pressure distribution in the room. Input parameters were air temperature, air velocity and volumetric flow rate entering and leaving room for existing and designed condition. In the existing operating theatre, several observations were found. It was found that the outlet air velocity at the HEPA filter above the operating table was too high thus causing a turbulent airflow pattern. Moreover, the setting temperature at 19°C was found to be too low. The supply of air into the room was observed at lower than 20 ACH which is under the standard requirement. Our simulation using FloVent 8.2™ program showed that not only airflow turbulence could be reduced but also the amount of particle contamination could also be minimized.

  14. Indoor air quality in a middle school, Part I: Use of CO2 as a tracer for effective ventilation.

    PubMed

    Scheff, P A; Paulius, V K; Huang, S W; Conroy, L M

    2000-11-01

    The overall objective of the study was to evaluate the indoor air quality at a middle school with an emphasis on characterizing baseline conditions. The focus of this article is on the relationship between occupancy and measured concentrations of carbon dioxide, and an evaluation of the use of carbon dioxide as a tracer for ventilation in the school. The school was characterized as having no health complaints, good maintenance schedules, no carpeting within the classrooms or hallways, and no significant remodeling, and its officials had agreed to allow the sampling to take place during school hours. Monitoring followed the guidelines recommended in the "Preliminary Draft: Conceptual Standardized EPA Protocol For Characterizing Indoor Air Quality in School Buildings." Four indoor locations including the cafeteria, a science classroom, an art classroom, and the lobby outside the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February 1997. A consistent relationship between hourly occupancy and corresponding carbon dioxide concentrations was seen. Carbon dioxide concentrations in the cafeteria, art room, and lobby were within specified American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) guidelines for comfort (< 1000 ppm). The science room had the highest concentrations (frequently exceeding 1000 ppm) due to high occupancy and non-functioning unit ventilators. Measured ventilation rates were within specified ASHRAE guidelines for the art room, cafeteria, and lobby. The science room, which relied on natural ventilation only, was not able to meet the ASHRAE guideline on one of the three days studied. The use of a completely mixed space, one compartment mass balance model with estimated CO2 generation rates and measured CO2 concentrations is shown to be a useful method for evaluating ventilation. Modeled effective ventilation, air changes per hour, and mixing

  15. Air Intake Performance of Air Breathing Ion Engines

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa

    The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.

  16. New Whole-House Solutions Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania, to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. The team evaluated a market-available through-wall air transfer fan system that provides air to the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability.

  17. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  18. Guide for Indoor Air Quality Surveys

    DTIC Science & Technology

    1992-05-01

    investigations, but is most useful as a tool for the Heating, Ventilating, and Air-Conditioning ( HVAC ) experts. The standard describes two procedures for...providing acceptable air quality and includes design criteria for HVAC systems. Perhaps the most important contribution from ASHRAE 62-1989 is its...Selected Selected Cause Subcauses Subrates(%) Overall Rate(%) A. Inadequate Design or Maintenance of HVAC 70 (32/46) Al. Mold 47 (15/32) 33 (15/46) A2

  19. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  20. 77 FR 28927 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ...The U.S. Department of Energy (DOE) is amending its energy conservation standards for small, large, and very large water-cooled and evaporatively-cooled commercial package air conditioners, and variable refrigerant flow (VRF) water-source heat pumps less than 17,000 Btu/h. DOE is adopting new energy conservation standards for computer room air conditioners and VRF water-source heat pumps with a cooling capacity at or greater than 135,000 Btu/h and less than 760,000 Btu/h. Pursuant to the Energy Policy and Conservation Act of 1975 (EPCA), as amended, DOE must assess whether the uniform national standards for these covered equipment need to be updated each time the corresponding industry standard--the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1 (ASHRAE Standard 90.1)--is amended, which most recently occurred on October 29, 2010. The levels DOE is adopting are the same as the efficiency levels specified in ASHRAE Standard 90.1-2010. DOE has determined that the ASHRAE Standard 90.1- 2010 efficiency levels for the equipment types listed above are more stringent than existing Federal energy conservation standards and will result in economic and energy savings compared existing energy conservation standards. Furthermore, DOE has concluded that clear and convincing evidence does not exist, as would justify more-stringent standard levels than the efficiency levels in ASHRAE Standard 90.1-2010 for any of the equipment classes. DOE is also updating the current Federal test procedures or, for certain equipment, adopting new test procedures to incorporate by reference the most current versions of the relevant industry test procedures specified in ASHRAE Standard 90.1- 2010. Furthermore, DOE is adopting additional test procedure provisions to include with modification certain instructions from Air- Conditioning, Heating

  1. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  2. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation

  3. Energy-Sipping House Receives Technology Award

    Science.gov Websites

    , Refrigerating and Air-Conditioning Engineers (ASHRAE) at its 2001 Winter Meeting in Atlanta. "This design for effective energy management and indoor air quality. For more information, visit Design and Energy Laboratory (NREL), and co-worker Paul Torcellini used computer simulations to design the house for

  4. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Qualitative Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Mark A.; Hart, Reid; Athalye, Rahul A.

    2014-03-01

    Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. When the U.S. Department of Energy (DOE) issues an affirmative determination on Standard 90.1, states are statutorily required to certify within two years that they have reviewed and updated the commercial provisions of their building energy code, with respect to energy efficiency, to meet or exceed the revised standard. This report provides a preliminarymore » qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition).« less

  5. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  6. Analysis of improved criteria for mold growth in ASHRAE standard 160 by comparison with field observations

    Treesearch

    Samuel V. Glass; Stanley D. Gatland II; Kohta Ueno; Christopher J. Schumacher

    2017-01-01

    ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, was published in 2009. The standard sets criteria for moisture design loads, hygrothermal analysis methods, and satisfactory moisture performance of the building envelope. One of the evaluation criteria specifies conditions necessary to avoid mold growth. The current standard requires that...

  7. Simplified Space Conditioning in Low-Load Homes: Results from Pittsburgh, Pennsylvania, New Construction Unoccupied Test House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew; Stecher, Dave

    2014-06-01

    Field testing was performed in a new construction unoccupied test house in Pittsburgh, PA. Four air-based heating, ventilation, and air conditioning distribution systems—a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms—were evaluated during heating, cooling, and midseason conditions. The relative ability of each system was assessed with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  8. Simplified Space Conditioning in Low-Load Homes: Results from Pittsburgh, Pennsylvania, New Construction Unoccupied Test House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, A.; Stecher, D.

    2014-06-01

    Field testing was performed in a new construction unoccupied test house in Pittsburgh, Pennsylvania. Four air-based heating, ventilation, and air conditioning distribution systems--a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms--were evaluated during heating, cooling, and midseason conditions. The relative ability of each system was assessed with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  9. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  10. Heat and moisture production of modern swine

    USDA-ARS?s Scientific Manuscript database

    The heat and moisture production (HP and MP) values that are currently published in the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) standards are from data collected in either the 1970’s (nursery piglets) or the 1950’s (growing-finishing pigs). This series of ...

  11. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  12. Air pollution engineering

    NASA Astrophysics Data System (ADS)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  13. Assessing the optimality of ASHRAE climate zones using high resolution meteorological data sets

    NASA Astrophysics Data System (ADS)

    Fils, P. D.; Kumar, J.; Collier, N.; Hoffman, F. M.; Xu, M.; Forbes, W.

    2017-12-01

    Energy consumed by built infrastructure constitutes a significant fraction of the nation's energy budget. According to 2015 US Energy Information Agency report, 41% of the energy used in the US was going to residential and commercial buildings. Additional research has shown that 32% of commercial building energy goes into heating and cooling the building. The American National Standards Institute and the American Society of Heating Refrigerating and Air-Conditioning Engineers Standard 90.1 provides climate zones for current state-of-practice since heating and cooling demands are strongly influenced by spatio-temporal weather variations. For this reason, we have been assessing the optimality of the climate zones using high resolution daily climate data from NASA's DAYMET database. We analyzed time series of meteorological data sets for all ASHRAE climate zones between 1980-2016 inclusively. We computed the mean, standard deviation, and other statistics for a set of meteorological variables (solar radiation, maximum and minimum temperature)within each zone. By plotting all the zonal statistics, we analyzed patterns and trends in those data over the past 36 years. We compared the means of each zone to its standard deviation to determine the range of spatial variability that exist within each zone. If the band around the mean is too large, it indicates that regions in the zone experience a wide range of weather conditions and perhaps a common set of building design guidelines would lead to a non-optimal energy consumption scenario. In this study we have observed a strong variation in the different climate zones. Some have shown consistent patterns in the past 36 years, indicating that the zone was well constructed, while others have greatly deviated from their mean indicating that the zone needs to be reconstructed. We also looked at redesigning the climate zones based on high resolution climate data. We are using building simulations models like EnergyPlus to develop

  14. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.

    2014-09-04

    This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.

  15. Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abouhashish, Mohamed

    2017-06-01

    The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.

  16. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  17. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity andmore » stability, respectively.« less

  18. Peak Performance for Healthy Schools

    ERIC Educational Resources Information Center

    McKale, Chuck; Townsend, Scott

    2012-01-01

    Far from the limelight of LEED, Energy Star or Green Globes certifications are the energy codes developed and updated by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and the International Code Council (ICC) through the support of the Department of Energy (DOE) as minimum guidelines for building envelope,…

  19. ANSI/ASHRAE/IES Standard 90.1-2010 Performance Rating Method Reference Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Supriya; Rosenberg, Michael I.

    This document is intended to be a reference manual for the Appendix G Performance Rating Method (PRM) of ANSI/ASHRAE/IES Standard 90.1- 2010 (Standard 90.1-2010).The PRM is used for rating the energy efficiency of commercial and high-rise residential buildings with designs that exceed the requirements of Standard 90.1. The procedures and processes described in this manual are designed to provide consistency and accuracy by filling in gaps and providing additional details needed by users of the PRM. It should be noted that this document is created independently from ASHRAE and SSPC 90.1 and is not sanctioned nor approved by either ofmore » those entities . Potential users of this manual include energy modelers, software developers and implementers of “beyond code” energy programs. Energy modelers using ASHRAE Standard 90.1-2010 for beyond code programs can use this document as a reference manual for interpreting requirements of the Performance Rating method. Software developers, developing tools for automated creation of the baseline model can use this reference manual as a guideline for developing the rules for the baseline model.« less

  20. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  1. Higher Education Pushes for Energy Education: GVSU Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP).

  2. The Home Depot Upgrades its Corporate Building Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-03-01

    The Home Depot partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  3. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  4. Air quality and ocular discomfort aboard commercial aircraft.

    PubMed

    Backman, H; Haghighat, F

    2000-10-01

    Aircraft cabin air quality has been a subject of recent public health interest. Aircraft environments are designed according to standards to ensure the comfort and well-being of the occupants. The upper and lower limits of humidity set by ASHRAE standards are based on the maintenance of acceptable thermal conditions established solely on comfort considerations, including thermal sensation, skin wetness, skin dryness, dry eyes and ocular discomfort. The purpose of this study is to investigate the influence of air (carbon dioxide level, relative humidity, and temperature) aboard commercial aircraft on ocular discomfort and dry eye of aircraft personnel and passengers. Measurements of indoor air quality were performed in 15 different aircraft at different times and altitudes. Forty-two measurements of carbon dioxide, temperature, and humidity were performed with portable air samplers every 5 minutes. Passenger loads did not exceed 137 passengers. Thermal comfort rarely met ASHRAE standards. Low humidity levels and high carbon dioxide levels were found on the Airbus 320. The DC-9 had the highest humidity level and the Boeing-767 had the lowest carbon dioxide level. Air quality was poorest on the Airbus 320 aircraft. This poor level of air quality may cause intolerance to contact lenses, dry eyes, and may be a health hazard to both passengers and crew members. Improved ventilation and aircraft cabin micro-environments need to be made for the health and comfort of the occupants.

  5. NREL Employees Honored by Industry Associations | News | NREL

    Science.gov Websites

    Engineer Ian Metzger has been named by the American Society of Heating, Refrigerating and Air Conditioning achievements by ASHRAE members who have successfully applied innovative building design. The RSF project followed the integrated design process and used design tools and concepts developed by the NREL Building

  6. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Texas. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  7. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Minnesota. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  8. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Indiana. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  9. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the District of Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the District of Columbia. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Massachusetts. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  11. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Florida. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  12. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Maine. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  13. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Vermont. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  14. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Michigan. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  15. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Alabama. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  16. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Colorado. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  17. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Washington. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  18. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Oregon. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  19. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Wisconsin. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  20. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Ohio. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  1. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Iowa. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  2. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Montana. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used inmore » the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  3. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  4. Regency Centers Develops Leadership in Energy-Efficient Renovations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Regency Centers (Regency) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  6. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air...

  7. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and newmore » analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.« less

  8. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of New Hampshire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of New Hampshire. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology usedmore » in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  9. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of New Mexico. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology usedmore » in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of South Carolina. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology usedmore » in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  11. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Athalye, Rahul A.; Xie, YuLong

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of North Carolina. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology usedmore » in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.« less

  12. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...

  13. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...

  14. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...

  15. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan

    2008-09-30

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA),more » the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).« less

  16. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  17. Low temperature air with high IAQ for dry climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, C.M.; Des Champs, N.H.

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of themore » lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.« less

  18. Correlation of the Characteristics of Single-Cylinder and Flight Engines in Tests of High-Performance Fuels in an Air-Cooled Engine I : Cooling Characteristics

    NASA Technical Reports Server (NTRS)

    Wilson, Robert W.; Richard, Paul H.; Brown, Kenneth D.

    1945-01-01

    Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.

  19. Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yunzhi; Gowri, Krishnan

    2011-02-28

    This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% tomore » 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.« less

  20. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  1. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  2. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  3. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  4. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  5. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway...

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  10. Improving indoor air quality and thermal comfort in office building by using combination filters

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  11. Generalization of turbojet and turbine-propeller engine performance in windmilling condition

    NASA Technical Reports Server (NTRS)

    Wallner, Ewis E; Welna, Henry J

    1951-01-01

    Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.

  12. Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.

  13. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  14. Engine bleed air reduction in DC-10

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.

    1980-01-01

    An 0.8 percent fuel savings was achieved by a reduction in engine bleed air through the use of cabin air recirculation. The recirculation system was evaluated in revenue service on a DC-10. The cabin remained comfortable with reductions in cabin fresh air (engine bleed air) as much as 50 percent. Flight test verified the predicted fuel saving of 0.8 percent.

  15. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be...

  16. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall...

  17. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  18. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  19. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  20. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  2. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device...

  3. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel...

  4. Occupant perception of indoor air and comfort in four hospitality environments.

    PubMed

    Moschandreas, D J; Chu, P

    2002-01-01

    This article reports on a survey of customer and staff perceptions of indoor air quality at two restaurants, a billiard hall, and a casino. The survey was conducted at each environment for 8 days: 2 weekend days on 2 consecutive weekends and 4 weekdays. Before and during the survey, each hospitality environment satisfied ventilation requirements set in ASHRAE Standard 62-1999, Ventilation for Acceptable Indoor Air. An objective of this study was to test the hypothesis: If a hospitality environment satisfies ASHRAE ventilation requirements, then the indoor air is acceptable, that is, fewer than 20% of the exposed occupants perceive the environment as unacceptable. A second objective was to develop a multiple regression model that predicts the dependent variable, the environment is acceptable, as a function of a number of independent perception variables. Occupant perception of environmental, comfort, and physical variables was measured using a questionnaire. This instrument was designed to be efficient and unobtrusive; subjects could complete it within 3 min. Significant differences of occupant environment perception were identified among customers and staff. The dependent variable, the environment is acceptable, is affected by temperature, occupant density, and occupant smoking status, odor perception, health conditions, sensitivity to chemicals, and enjoyment of activities. Depending on the hospitality environment, variation of independent variables explains as much as 77% of the variation of the dependent variable.

  5. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools.

    PubMed

    Sá, Juliana P; Branco, Pedro T B S; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2017-05-31

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO₂, CO, NO₂, O₃, CH₂O, total volatile organic compounds (VOC), PM₁, PM 2.5 , PM 10 , Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM 2.5 , PM 10 , CO₂ and CH₂O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO₂. However, mitigation measures were not always sufficient to decrease the pollutants' concentrations till values considered safe to protect human health.

  6. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  9. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  12. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components,more » initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.« less

  13. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it

  14. Air pollution in Boston bars before and after a smoking ban.

    PubMed

    Repace, James L; Hyde, James N; Brugge, Doug

    2006-10-27

    We quantified the air quality benefits of a smoke-free workplace law in Boston Massachusetts, U.S.A., by measuring air pollution from secondhand smoke (SHS) in 7 pubs before and after the law, comparing actual ventilation practices to engineering society (ASHRAE) recommendations, and assessing SHS levels using health and comfort indices. We performed real-time measurements of respirable particle (RSP) air pollution and particulate polycyclic aromatic hydrocarbons (PPAH), in 7 pubs and outdoors in a model-based design yielding air exchange rates for RSP removal. We also assessed ventilation rates from carbon dioxide concentrations. We compared RSP air pollution to the federal Air Quality Index (AQI) and the National Ambient Air Quality Standard (NAAQS) to assess health risks, and assessed odor and irritation levels using published SHS-RSP thresholds. Pre-smoking-ban RSP levels in 6 pubs (one pub with a non-SHS air quality problem was excluded) averaged 179 microg/m3, 23 times higher than post-ban levels, which averaged 7.7 microg/m3, exceeding the NAAQS for fine particle pollution (PM2.5) by nearly 4-fold. Pre-smoking ban levels of fine particle air pollution in all 7 of the pubs were in the Unhealthy to Hazardous range of the AQI. In the same 6 pubs, pre-ban indoor carcinogenic PPAH averaged 61.7 ng/m3, nearly 10 times higher than post-ban levels of 6.32 ng/m3. Post-ban particulate air pollution levels were in the Good AQI range, except for 1 venue with a defective gas-fired deep-fat fryer, while post-ban carcinogen levels in all 7 pubs were lower than outdoors. During smoking, although pub ventilation rates per occupant were within ASHRAE design parameters for the control of carbon dioxide levels for the number of occupants present, they failed to control SHS carcinogens or RSP. Nonsmokers' SHS odor and irritation sensory thresholds were massively exceeded. Post-ban air pollution measurements showed 90% to 95% reductions in PPAH and RSP respectively, differing

  15. Crowne Plaza Renovation Retrofit Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    InterContinental Hotels Group (IHG) and its franchise partner B.F. Saul Company Hospitality Group (B.F. Saul Co.) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  16. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  17. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-06-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  18. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  19. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  20. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  1. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  2. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  3. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  4. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...

  5. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components,more » initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.« less

  6. 76 FR 19913 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... covered under ASHRAE Standard 37, generally do not have this feature and operate primarily with dry... performance. It is the air mass flow rate that transfers heat between cooler coils or condensers and...

  7. Tuned intake air system for a rotary engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, W.D.

    This patent describes a rotary internal combustion engine for an outboard board motor. It comprises a plenum chamber attached to the rear of the engine; and the plenum chamber including an inner wall attached to the exhaust manifold; an inlet conduit connecting the cooling air exit passage and the inlet air opening; an outlet conduit connecting the outlet air opening and the combustion air inlet; and the outlet conduit terminating in a combustion air outlet in the inner wall of the plenum chamber.

  8. Tuned intake air inlet for a rotary engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, W.D.; Sheaffer, B.L.

    This patent describes, in a rotary internal combustion engine, an improved assembly for providing a balanced flow of combustion air to the fuel supply inlet. It comprises: a plenum chamber attached to the engine block, the plenum chamber including an air inlet adapted to receive air from the cooling air exit passage and an air outlet for the discharge of air; and an outlet conduit connecting the air outlet and the fuel supply inlet. The conduit disposed to partially surround the plenum chamber to provide a conduit length substantially greater than the distance from the cooling air exit passage totmore » he fuel supply inlet.« less

  9. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  10. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools

    PubMed Central

    Sá, Juliana P.; Branco, Pedro T. B. S.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2017-01-01

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO2, CO, NO2, O3, CH2O, total volatile organic compounds (VOC), PM1, PM2.5, PM10, Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM2.5, PM10, CO2 and CH2O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO2. However, mitigation measures were not always sufficient to decrease the pollutants’ concentrations till values considered safe to protect human health. PMID:28561795

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  12. Assessing indoor air quality in New York City nail salons.

    PubMed

    Pavilonis, Brian; Roelofs, Cora; Blair, Carly

    2018-05-01

    Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO 2 ) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO 2 concentrations were strongly positively correlated (ρ = 0.81; p < 0.01) suggesting that CO 2 measurements could potentially be used to provide an initial determination of acceptable indoor air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO 2 concentration of 850 ppm was exceeded compared to when this target was met.

  13. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  14. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  16. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniquesmore » that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.« less

  17. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  18. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  19. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  20. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  1. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  2. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  3. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  4. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  9. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  10. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  11. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    PubMed

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  12. Relation of Fuel-Air Ratio to Engine Performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.

  13. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.

    PubMed

    Burke, Martin; Wong, Larry; Gonzales, Ben A; Knutson, Gerhard

    2014-01-01

    ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the "breathing zone" of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110

  14. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004,more » the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.« less

  15. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  16. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Fourmore » of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.« less

  17. Air Leakage Measurements in Navy Family Housing Units at Norfolk, Virginia.

    DTIC Science & Technology

    1983-04-01

    80-4233), Prepared for Naval Construction Battalion Center (1980). 17. Lagus, P.L., "Air Leakage Measurements in Support of the Johns Manville Corporation...in the Advanced Energy Utilization Test Bed, Pt. Hueneme, California," Systems, Science and Software Report (SSS-R-78-3533), Prepared for Johns ... Manville Corporation (1978). 18. Weidt, J.L., J. Weidt, S. Selkowitz, "Field Air Leakage of Newly Installed Residential Windows," Proceedings of ASHRAE

  18. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Conditioning Engineers and the Illuminating Engineering Society of North American in ASHRAE/IES Standard 90A-1980, as amended by the Department of Energy. Federal agencies must apply these energy standards where...

  19. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conditioning Engineers and the Illuminating Engineering Society of North American in ASHRAE/IES Standard 90A-1980, as amended by the Department of Energy. Federal agencies must apply these energy standards where...

  20. Energy Modeling for the Artisan Food Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Supriya

    2013-05-01

    The Artisan Food Center is a 6912 sq.ft food processing plant located in Dayton, Washington. PNNL was contacted by Strecker Engineering to assist with the building’s energy analysis as a part of the project’s U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) submittal requirements. The project is aiming for LEED Silver certification, one of the prerequisites to which is a whole building energy model to demonstrate compliance with American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) 90.1 2007 Appendix G, Performance Rating Method. The building incorporates a number of energy efficiency measures as part ofmore » its design and the energy analysis aimed at providing Strecker Engineering with the know-how of developing an energy model for the project as well as an estimate of energy savings of the proposed design over the baseline design, which could be used to document points in the LEED documentation. This report documents the ASHRAE 90.1 2007 baseline model design, the proposed model design, the modeling assumptions and procedures as well as the energy savings results in order to inform the Strecker Engineering team on a possible whole building energy model.« less

  1. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    PubMed

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  2. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  3. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  4. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  5. Stirling engine with air working fluid

    DOEpatents

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  6. Thermal storage HVAC system retrofit provides economical air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.F.

    1993-03-01

    This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation includedmore » installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.« less

  7. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  8. Visualization of Air Particle Dynamics in an Engine Inertial Particle Separator

    NASA Astrophysics Data System (ADS)

    Wolf, Jason; Zhang, Wei

    2015-11-01

    Unmanned Aerial Vehicles (UAVs) are regularly deployed around the world in support of military, civilian and humanitarian efforts. Due to their unique mission profiles, these advanced UAVs utilize various internal combustion engines, which consume large quantities of air. Operating these UAVs in areas with high concentrations of sand and dust can be hazardous to the engines, especially during takeoff and landing. In such events, engine intake filters quickly become saturated and clogged with dust particles, causing a substantial decrease in the UAVs' engine performance and service life. Development of an Engine Air Particle Separator (EAPS) with high particle separation efficiency is necessary for maintaining satisfactory performance of the UAVs. Inertial Particle Separators (IPS) have been one common effective method but they experience complex internal particle-laden flows that are challenging to understand and model. This research employs an IPS test rig to simulate dust particle separation under different flow conditions. Soda lime glass spheres with a mean diameter of 35-45 microns are used in experiments as a surrogate for airborne particulates encountered during flight. We will present measurements of turbulent flow and particle dynamics using flow visualization techniques to understand the multiphase fluid dynamics in the IPS device. This knowledge can contribute to design better performing IPS systems for UAVs. Cleveland State University, Cleveland, Ohio, 44115.

  9. Electrostatic fuel conditioning of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  10. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  11. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  12. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  13. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  14. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  15. The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1939-01-01

    The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.

  16. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  17. Heat exchanger design for hot air ericsson-brayton piston engine

    NASA Astrophysics Data System (ADS)

    Ďurčanský, P.; Lenhard, R.; Jandačka, J.

    2014-03-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  18. An engineering approach to controlling indoor air quality.

    PubMed

    Woods, J E

    1991-11-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. An engineering approach to controlling indoor air quality.

    PubMed Central

    Woods, J E

    1991-01-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821369

  20. Influence of thermodynamic mechanism of inter- facial adsorption on purifying air-conditioning engineering under intensification of electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yun-Yu

    2016-12-01

    As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.

  1. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  2. 40 CFR 86.162-00 - Approval of alternative air conditioning test simulations and descriptions of AC1 and AC2.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioning system compressor, converted to an equivalent roadload component, to the normal dynamometer... driving the SC03 cycle with the air conditioning system operating. (1) Engine revolutions/minute (ERPMt...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...

  3. Design type air engine Di Pietro

    NASA Astrophysics Data System (ADS)

    Zwierzchowski, Jaroslaw

    The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  4. Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Earle, Sherod L; Dutee, Francis J

    1937-01-01

    An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.

  5. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  6. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systemsmore » work, and describes a refrigerant free liquid desiccant based cooling system.« less

  7. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oilmore » and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a

  8. Achieving Energy Savings in Municipal Construction in Long Beach California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program. The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAEmore » baseline by about 45%.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Settlemyre, Kevin

    The University of South Carolina (USC), a public university in Columbia, South Carolina, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy educational building. The new Darla Moore School of Business (DMSB) will consume at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE's Commerical Building Partnerships (CBP) program. 4 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise inmore » support of this DOE program.« less

  10. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-05-12

    Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in themore » DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.« less

  11. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  12. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  13. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    NASA Astrophysics Data System (ADS)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in

  14. Reducing emissions by using special air filters for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S. A.; Alexa, V.; Crăciun, A. L.; Josan, A.; Budiul-Berghian, A.

    2017-05-01

    This paper presents the experimental methodology to carry out functional performance tests for an air filter with a particular design of its housing, generically named Super absorbing YXV „Air by Corneliu”, patented and homologated by the Romanian Automotive Registry, to which numerous prizes and medals were awarded at national and international innovations salons. The tests were carried out in the Internal Combustion Engines Laboratory, within the specialization “Road vehicles” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timisoara. The scope of the study is to optimise the air intake into the engine cylinders by reducing the gas-dynamic resistances caused by the air filter and, therefore, to achieve higher energy efficiency, i.e. fuel consumption reduction and engine performance increase. We present some comparative values of various operating parameters of the engine fitted, in the first measuring session, with the original filter, and then with the studied filter. The data collected shows a reduction in fuel consumption by using this type of filter, which leads to lower emissions.

  15. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  16. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  17. Fault tree analysis for exposure to refrigerants used for automotive air conditioning in the United States.

    PubMed

    Jetter, J J; Forte, R; Rubenstein, R

    2001-02-01

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servicing. The number of refrigerant exposures of service technicians was estimated to be 135,000 per year. Exposures of vehicle occupants can occur when refrigerant enters passenger compartments due to sudden leaks in air-conditioning systems, leaks following servicing, or leaks caused by collisions. The total number of exposures of vehicle occupants was estimated to be 3,600 per year. The largest number of exposures of vehicle occupants was estimated for leaks caused by collisions, and the second largest number of exposures was estimated for leaks following servicing. Estimates used in the fault tree analysis were based on a survey of automotive air-conditioning service shops, the best available data from the literature, and the engineering judgement of the authors and expert reviewers from the Society of Automotive Engineers Interior Climate Control Standards Committee. Exposure concentrations and durations were estimated and compared with toxicity data for refrigerants currently used in automotive air conditioners. Uncertainty was high for the estimated numbers of exposures, exposure concentrations, and exposure durations. Uncertainty could be reduced in the future by conducting more extensive surveys, measurements of refrigerant concentrations, and exposure monitoring. Nevertheless, the analysis indicated that the risk of exposure of service technicians and vehicle occupants is significant, and it is recommended that no refrigerant that is substantially more toxic than currently available substitutes be accepted for use in vehicle air-conditioning systems, absent a means of mitigating exposure.

  18. The Effect of Computers on School Air-Conditioning.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  19. Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    The Clean Air Act requires new engines and equipment sold or distributed in the United States to be certified to meet EPA-established emissions requirements to protect public health and the environment from air pollution.

  20. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  1. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  2. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  3. The air-conditioning capacity of the human nose.

    PubMed

    Naftali, Sara; Rosenfeld, Moshe; Wolf, Michael; Elad, David

    2005-04-01

    The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.

  4. Comparison of Microclimate Simulated weather data to ASHRAE Clear Sky Model and Measured Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Mahabir S.

    In anticipation of emerging global urbanization and its impact on microclimate, a need exists to better understand and quantify microclimate effects on building energy use. Satisfaction of this need will require coordinated research of microclimate impacts on and from “human systems.” The Urban Microclimate and Energy Tool (Urban-MET) project seeks to address this need by quantifying and analyzing the relationships among climatic conditions, urban morphology, land cover, and energy use; and using these relationships to inform energy-efficient urban development and planning. Initial research will focus on analysis of measured and modeled energy efficiency of various building types in selected urbanmore » areas and temporal variations in energy use for different urban morphologies under different microclimatic conditions. In this report, we analyze the differences between microclimate weather data sets for the Oak Ridge National Laboratory campus produced by ENVI-met and Weather Research Forecast (WRF) models, the ASHRAE clear sky which defines the maximum amounts of solar radiation that can be expected, and measured data from a weather station on campus. Errors with climate variables and their impact on building energy consumption will be shown for the microclimate simulations to help prioritize future improvement for use in microclimate simulation impacts to energy use of buildings.« less

  5. Variable speed gas engine-driven air compressor system

    NASA Astrophysics Data System (ADS)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  6. Engineering with uncertainty: monitoring air bag performance.

    PubMed

    Wetmore, Jameson M

    2008-06-01

    Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.

  7. Rotary vane type IC engine with built-in scavenging air blower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, V.

    This patent describes a rotary internal combustion engine. This engine consists of: a housing assembly including three sections and having a single common power shaft, the three sections being integrally connected together and operatively connected together into a unitary self-contained engine, air and fuel mixture intake conduit means communicatively connected to a first of the three sections, means in the first section to perform admission and compression of the air and fuel mixture admitted from the conduit means, means to convey the compressed air and fuel mixture to a second of the three sections. A single internal partition wall meansmore » between the first and second sections, and the air and fuel mixture conveys means consisting of a port formed in the partition wall means. In the second section the compressed air is ignited with a fuel mixture and to permit expansion of the ignited air and fuel mixture to thereby furnish power strokes to the power shaft. In the second section for exhausting the gaseous products of combustion, air blower in the third of the three sections driven by the power shaft.« less

  8. Customer Management Skills for Effective Air Force Civil Engineering Customer Service.

    DTIC Science & Technology

    1986-09-01

    advertise --competence. (1) Craftsmen working closely with customer service -doing what is promised when it’s promised -if return to job site required, tell...RD-RI74 1 4 CUSTOMER MANAGEMENT SKILLS FOR EFFECTIVE AIR FORCE / I CIVIL ENGINEERING CUST (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON RFS ON...I93 -A CUSTOMER MANAGEMENT SKILLS FOR EFFECTIVE AIR FORCE CIVIL ENGINEERING CUSTOMER SERVICE THESIS Danny S.- Long Captain, USAF AFIT/GEM/DEM/86S-1 7

  9. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. Copyright © 2015 the American Physiological Society.

  10. Apparatus for controlling air/fuel ratio for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Mizuno, T.

    1986-07-08

    This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less

  11. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  12. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  13. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  14. Application of solar energy to air-conditioning

    NASA Technical Reports Server (NTRS)

    Harstad, A. J.; Nash, J. M.

    1978-01-01

    Results of survey of application of solar energy to air-conditioning systems are summarized in report. Survey reviewed air-conditioning techniques that are most likely to find residential applications and that are compatible with solar-energy systems being developed.

  15. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  16. Air conditioning system and component therefore distributing air flow from opposite directions

    NASA Technical Reports Server (NTRS)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  17. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  18. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  19. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  20. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  1. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  2. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  3. The microbiological quality of air improves when using air conditioning systems in cars.

    PubMed

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  4. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    PubMed

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter < 10 μm (PM 10 ), which were verified by experimental results. The results revealed poor air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  5. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Supriya; Rosenberg, Michael I.; Eley, Charles

    This document is intended to be a reference manual for the Appendix G Performance Rating Method (PRM) of ANSI/ASHRAE/IES Standard 90.1-2016 (Standard 90.1-2016). The PRM can be used to demonstrate compliance with the standard and to rate the energy efficiency of commercial and high-rise residential buildings with designs that exceed the requirements of Standard 90.1. Use of the PRM for demonstrating compliance with Standard 90.1 is a new feature of the 2016 edition. The procedures and processes described in this manual are designed to provide consistency and accuracy by filling in gaps and providing additional details needed by users ofmore » the PRM.« less

  7. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  8. Profile of a Successful Civil Engineering Career in the United States Air Force.

    DTIC Science & Technology

    1984-09-01

    Introduction ........ * * ........... 7 Career Success .. .. .. . .. . . ... 4- . .. ....... 8 Research Methods . .. . .. a.. . .. .. ............ it III...Definition of Terms I The following terms, for the purpose of this study, were defined as: Career success refers to an Air Force civil engineering officer...discussion of career success . An Air Force civil engineer is an officer currently possessing a 55XX duty Air Force . Specialty Code (AFSC). Statement of

  9. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  10. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a ten-minute period at idle when CO2 emissions are measured with the air conditioning system operating... section, turn on the vehicle's air conditioning system. Set automatic air conditioning systems to a...

  11. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  12. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  13. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G

    2012-11-02

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.

  14. Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanabe, T.; Asakura, M.; Shina, T.

    1987-09-01

    An air intake side secondary air supply system is described for an internal combustion engine having an air intake passage with a carburetor and an exhaust passage, comprising: an air intake side secondary air supply passage communicating with the air intake passage on the downstream side of the carburetor; an open/close valve disposed in the air intake side secondary air supply passage; an oxygen concentration sensor disposed in the exhaust passage; and detection and control means for detecting whether an air-fuel ratio of mixture to be supplied to the engine is leaner or richer with respect to a target air-fuelmore » ratio through a level of an output signal of the oxygen concentration sensor and for periodically actuating the open/close valve, the detection and control means decreasing a valve open period of the open/close valve within each cyclic period by a first predetermined amount when a detected air-fuel ratio of mixture is leaner than the target air-fuel ratio and increasing the valve open period by a second predetermined amount when the detected air-fuel ratio of mixture is richer than the target air-fuel ratio. The second predetermined amount is different from the first predetermined amount.« less

  15. Leveraging Leadership for Better Business: A Look at Civil Engineering in the Air Force

    DTIC Science & Technology

    1999-12-05

    What does it all mean ?" CE Quarterly Magazine article dated Winter 98 - "The Air Force Civil Engineer...Future" CE Quarterly Magazine article dated Winter 98 - "Civil Engineering Outsourcing: What does it all mean ?" CE Quarterly Magazine article dated...Engineering Outsourcing: What does it all mean ?" CE Quarterly Magazine article dated Winter 98 - "The Air Force Civil Engineer

  16. Strategies for Limiting Engineers' Potential Liability for Indoor Air Quality Problems.

    PubMed

    von Oppenfeld, Rolf R; Freeze, Mark E; Sabo, Sean M

    1998-10-01

    Engineers face indoor air quality (IAQ) issues at the design phase of building construction as well as during the investigation and mitigation of potential indoor air pollution problems during building operation. IAQ issues that can be identified are "building-related illnesses" that may include problems of volatile organic compounds (VOCs). IAQ issues that cannot be identified are termed "sick building syndrome." Frequently, microorganism-caused illnesses are difficult to confirm. Engineers who provide professional services that directly or indirectly impact IAQ face significant potential liability to clients and third parties when performing these duties. Potential theories supporting liability claims for IAQ problems against engineers include breach of contract and various common law tort theories such as negligence and negligent misrepresentation. Furthermore, an increasing number of federal, state, and local regulations affect IAQ issues and can directly increase the potential liability of engineers. A duty to disclose potential or actual air quality concerns to third parties may apply for engineers in given circumstances. Such a duty may arise from judicial precedent, the Model Guide for Professional Conduct for Engineers, or the Code of Ethics for Engineers. Practical strategies engineers can use to protect themselves from liability include regular training and continuing education in relevant regulatory, scientific, and case law developments; detailed documentation and recordkeeping practices; adequate insurance coverage; contractual indemnity clauses; contractual provisions limiting liability to the scope of work performed; and contractual provisions limiting the extent of liability for engineers' negligence. Furthermore, through the proper use of building materials and construction techniques, an engineer or other design professional can effectively limit the potential for IAQ liability.

  17. Producing air-stable monolayers of phosphorene and their defect engineering

    PubMed Central

    Pei, Jiajie; Gai, Xin; Yang, Jiong; Wang, Xibin; Yu, Zongfu; Choi, Duk-Yong; Luther-Davies, Barry; Lu, Yuerui

    2016-01-01

    It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen plasma dry etching to thin down thick-exfoliated phosphorene flakes, layer by layer with atomic precision. Moreover, in a stabilized phosphorene monolayer, we were able to precisely engineer defects for the first time, which led to efficient emission of photons at new frequencies in the near infrared at room temperature. In addition, we demonstrate the use of an electrostatic gate to tune the photon emission from the defects in a monolayer phosphorene. This could lead to new electronic and optoelectronic devices, such as electrically tunable, broadband near infrared lighting devices operating at room temperature. PMID:26794866

  18. Research of some operating parameters and the emissions level variation in a spark ignited engine through on-board investigation methods in different loading conditions

    NASA Astrophysics Data System (ADS)

    Iosif, Ferenti; Baldean, Doru Laurean

    2014-06-01

    The present paper shows research made on a spark ignited engine with port fuel injection in different operation conditions in order to improve the comprehension about the cold start sequence, acceleration when changing the gear ratios, quality of combustion process and also any measures to be taken for pollutant reduction in such cases. The engineering endeavor encompasses the pollutants investigation during the operation time of gasoline supplied engine with four inline cylinders in different conditions. The temperature and any other parameters were measured with specific sensors installed on the engine or in the exhaust pipes. All the data collected has been evaluated using electronic investigation systems and highly developed equipment. In this manner it has enabled the outline of the idea of how pollutants of engine vary in different operating conditions. Air quality in the everyday environment is very important for the human health, and thus the ambient air quality has a well-known importance in the European pollution standards and legislation. The high level of attention directed to the pollution problem in the European lifestyle is a driving force for all kinds of studies in the field of the reduction of engine emission.

  19. Boeing engineers perform air flow balance testing.

    NASA Image and Video Library

    2017-10-05

    Boeing engineers, Chris Chapman, left, Greg Clark, center, and Ashesh Patel, right, perform air flow balance testing on NASA's new Basic Express Racks. The racks, developed at Marshall, will expand the capabilities for science research aboard the International Space Station. Delivery to the station is scheduled for late 2018.

  20. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  1. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.

    1984-01-01

    Significant improvements in engine readiness with reductions in maintenance costs and turn-around times can be achieved with an engine condition monitoring systems (CMS). The CMS provides health status of critical engine components, without disassembly, through monitoring with advanced sensors. Engine failure reports over 35 years were categorized into 20 different modes of failure. Rotor bearings and turbine blades were determined to be the most critical in limiting turbopump life. Measurement technologies were matched to each of the failure modes identified. Three were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiberoptic deflectometer (bearings), and the fiberoptic pyrometer (blades). Signal processing algorithms were evaluated for their ability to provide useful health data to maintenance personnel. Design modifications to the Space Shuttle Main Engine (SSME) high pressure turbopumps were developed to incorporate the sensors. Laboratory test fixtures have been designed for monitoring the rotor bearings and turbine blades in simulated turbopump operating conditions.

  2. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  3. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  4. Premix fuels study applicable to duct burner conditions for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Venkataramani, K. S.

    1978-01-01

    Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.

  5. Multiple pure tone elimination strut assembly. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Burcham, F. W. (Inventor)

    1981-01-01

    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise.

  6. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  7. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  8. Clean Air Act Standards and Guidelines for Energy, Engines, and Combustion

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the energy, engines, and combustion industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  9. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  10. Residential air-conditioning and climate change: voices of the vulnerable.

    PubMed

    Farbotko, Carol; Waitt, Gordon

    2011-12-01

    Decreasing the risk of heat-stress is an imperative in health promotion, and is widely accepted as necessary for successful adaptation to climate change. Less well understood are the vulnerabilities that air-conditioning use exacerbates, and conversely, the need for the promotion of alternative strategies for coping with heat wave conditions. This paper considers these issues with a focus on the role of air-conditioning in the everyday life of elderly public housing tenants living alone, a sector of the population that has been identified as being at high risk of suffering heat stress. A vulnerability analysis of domestic air-conditioning use, drawing on literature and policy on air-conditioning practices and ethnographic research with households. Residential air-conditioning exacerbated existing inequities. Case studies of two specifically selected low-income elderly single person households revealed that such households were unlikely to be able to afford this 'solution' to increasing exposure to heat waves in the absence of energy subsidies. Residential air-conditioning use during heat waves caused unintended side-effects, such as system-wide blackouts, which, in turn, led to escalating electricity costs as power companies responded by upgrading infrastructure to cope with periods of excess demand. Air-conditioning also contributed to emissions that cause climate change. Residential air-conditioning is a potentially maladaptive technology for reducing the risk of heat stress.

  11. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  12. Indoor air quality at nine shopping malls in Hong Kong.

    PubMed

    Li, W M; Lee, S C; Chan, L Y

    2001-06-12

    Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.

  13. Highly integrated system solutions for air conditioning.

    PubMed

    Bartz, Horst

    2002-08-01

    Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

  14. 40 CFR 91.311 - Test conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine air at the inlet to the engine and the dry atmospheric pressure (designated as p s and expressed... rates at standard conditions for temperature and pressure. Use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine...

  15. The regimes of twin-fluid jet-in-crossflow at atmospheric and jet-engine operating conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zu Puayen; Bibik, Oleksandr; Shcherbik, Dmitriy; Zinn, Ben T.; Patel, Nayan

    2018-02-01

    The "Twin-Fluid Jet-in-Crossflow (TF-JICF)" is a nascent variation of the classical JICF, in which a liquid jet is co-injected with an annular sleeve of gas into a gaseous crossflow. Jet-engine designers are interested in using TF-JICF for liquid-fuel injection and atomization in the next-generation combustors because it is expected to minimize combustor-damaging auto-ignition and fuel-coking tendencies. However, experimental data of TF-JICF are sparse. Furthermore, a widely accepted TF-JICF model that correlates the spray's penetration to the combined liquid-gas momentum-flux ratio (Jeff) is increasingly showing discrepancy with emerging results, suggesting a gap in the current understanding of TF-JICF. This paper describes an investigation that addressed the gap by experimentally characterizing the TF-JICF produced by a single injector across wide ranges of operating conditions (i.e., jet-A injectant, crossflow of air, crossflow Weber number = 175-1050, crossflow pressure Pcf = 1.8-9.5 atm, momentum-flux ratio J = 5-40, and air-nozzle dP = 0%-150% of Pcf). These covered the conditions previously used to develop the Jeff model, recently reported conditions that produced Jeff discrepancies, and high-pressure conditions found in jet-engines. Dye-based shadowgraph was used to acquire high-resolution (13.52 μm/pixel) images of the TF-JICF, which revealed wide-ranging characteristics such as the disrupted Rayleigh-Taylor jet instabilities, air-induced jet corrugations, spray-bifurcations, and prompt-atomization. Analyses of the data showed that contrary to the literature, the TF-JICF's penetration is not monotonically related to Jeff. A new conceptual framework for TF-JICF is proposed, where the flow configuration is composed of four regimes, each having different penetration trends, spray structures, and underlying mechanisms.

  16. Reusable rocket engine optical condition monitoring

    NASA Technical Reports Server (NTRS)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  17. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-08-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  18. Prototype of a computer method for designing and analyzing heating, ventilating and air conditioning proportional, electronic control systems

    NASA Astrophysics Data System (ADS)

    Barlow, Steven J.

    1986-09-01

    The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.

  19. 40 CFR 90.311 - Test conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pressure, and use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine test conditions. Measure the absolute temperature (designated as T and expressed in Kelvin) of the engine air at the inlet to the engine and the dry atmospheric...

  20. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  1. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  2. Rotary internal combustion engine with integrated supercharged fuel-air induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southard, A.A.

    This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less

  3. Design and demonstration of a storage assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avril, F.; Irvine, T.F.

    1982-04-01

    The report describes the design and demonstration of a storage-assisted air conditioning system for residential central air conditioning applications. The system was designed to reduce peak air conditioning loads by storing coolness to fulfill daytime air conditioning requirements. The system design analyses, as well as performance data obtained from a residential installation on Long Island, are presented, along with an economic evaluation of the system. The results of the study indicate that such a system can reduce air conditioning peak load requirements while maintaining house temperature and humidity within prescribed limits. However, further system optimization is required, as well asmore » either equipment costs reduction or increased incentives, to make this system economically attractive for use in New York State.« less

  4. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  5. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  6. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  7. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  8. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  9. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  10. Engine starting and stopping

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.

  11. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less

  12. Measurement of Civil Engineering Customer Satisfaction in Tactical Air Command: A Prototype Evaluation Program.

    DTIC Science & Technology

    1986-09-01

    customers . The article states that in response to a White House Office of Consumer Affairs study and with the wide use of minicomputers: Companies are...D-A174 l16 MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SRTISFACTIbN 1/ IN TACTICAL AIR CO (U) AIR FORCE INST OF TECH ...... RIGHT-PATTERSON AFB ON...BUREAU OF STANDARDS- 1963-A_ . -_- ’II I-F MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SATISFACTION IN TACTICAL AIR COMMAND: A PROTOTYPE EVALUATION PROGRAM

  13. Development of Engines for Unmanned Air Vehicles: Some Factors to be Considered

    DTIC Science & Technology

    2003-01-01

    discussions, Honeywell Engines & Systems , Phoenix, AZ, December 14, 2001 [8] Jane’s Aero- Engines , Issue 11, Bill Gunston, Ed., pp. 93–97 (PW300, PW500...Weight/Thrust Reduction Compared to Engine Development Cost—UCAVs................................................................. 24 11. System ... engines are not candidate propulsion systems . The majority of Department of Defense (DoD) efforts (Global Hawk, Air Force UCAV, and Navy UCAV) are

  14. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  15. Engine Air Intake Manifold Having Built In Intercooler

    DOEpatents

    Freese, V, Charles E.

    2000-09-12

    A turbocharged V type engine can be equipped with an exhaust gas recirculation cooler integrated into the intake manifold, so as to achieve efficiency, cost reductions and space economization improvements. The cooler can take the form of a tube-shell heat exchanger that utilizes a cylindrical chamber in the air intake manifold as the heat exchanger housing. The intake manifold depends into the central space formed by the two banks of cylinders on the V type engine, such that the central space is effectively utilized for containing the manifold and cooler.

  16. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  17. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  18. Methodology for Evaluating Cost-effectiveness of Commercial Energy Code Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Philip R.; Liu, Bing

    This document lays out the U.S. Department of Energy’s (DOE’s) method for evaluating the cost-effectiveness of energy code proposals and editions. The evaluation is applied to provisions or editions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 and the International Energy Conservation Code (IECC). The method follows standard life-cycle cost (LCC) economic analysis procedures. Cost-effectiveness evaluation requires three steps: 1) evaluating the energy and energy cost savings of code changes, 2) evaluating the incremental and replacement costs related to the changes, and 3) determining the cost-effectiveness of energy code changes based on those costs andmore » savings over time.« less

  19. 10 CFR 431.75 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-Conditioning Engineers, Inc., 1971 Tullie Circle, NE., Atlanta, GA 30329, or http://www.ashrae.org/book..., CO 80112, or http://global.ihs.com/, or http://webstore.ansi.org/ansidocstore/. (iii) The UL Standard... 07922, or http://www.gamanet.org/publist/hydroordr.htm. ...

  20. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  1. Air Force Institute of Technology, Civil Engineering School: Environmental Protection Course.

    ERIC Educational Resources Information Center

    Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

    This document contains information assembled by the Civil Engineering School to meet the initial requirements of NEPA 1969 and Executive Orders which required the Air Force to implement an effective environmental protection program. This course presents the various aspects of Air Force environmental protection problems which military personnel…

  2. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  3. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database

    NASA Astrophysics Data System (ADS)

    Garcia, Fausto; Shendell, Derek G.; Madrigano, Jaime

    2017-03-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  4. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database.

    PubMed

    Garcia, Fausto; Shendell, Derek G; Madrigano, Jaime

    2017-03-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  5. Engine restart aid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedewa, Andrew

    A system is disclosed comprising an engine having coolant passages defined therethrough, a first coolant pump, and a first radiator. The system additionally comprises a second coolant pump, a second radiator, and a liquid-to-air heat exchanger configured to condition the temperature of intake air to the engine. The system further includes a coolant valve means. For a first configuration of the coolant valve means the first coolant pump is configured to urge coolant through the coolant passages in the engine and through the first radiator, and the second coolant pump is configured to urge coolant through the liquid-to-air heat exchangermore » and through the second radiator. For a second configuration of the coolant valve means the second coolant pump is configured to urge coolant through the coolant passages in the engine and through the liquid-to-air heat exchanger. A method for controlling the system is also disclosed.« less

  6. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  7. Developing Performance Cost Index Targets for ASHRAE Standard 90.1 Appendix G – Performance Rating Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.

    2016-02-16

    Appendix G, the Performance Rating Method in ASHRAE Standard 90.1 has been updated to make two significant changes for the 2016 edition, to be published in October of 2016. First, it allows Appendix G to be used as a third path for compliance with the standard in addition to rating beyond code building performance. This prevents modelers from having to develop separate building models for code compliance and beyond code programs. Using this new version of Appendix G to show compliance with the 2016 edition of the standard, the proposed building design needs to have a performance cost index (PCI)more » less than targets shown in a new table based on building type and climate zone. The second change is that the baseline design is now fixed at a stable level of performance set approximately equal to the 2004 code. Rather than changing the stringency of the baseline with each subsequent edition of the standard, compliance with new editions will simply require a reduced PCI (a PCI of zero is a net-zero building). Using this approach, buildings of any era can be rated using the same method. The intent is that any building energy code or beyond code program can use this methodology and merely set the appropriate PCI target for their needs. This report discusses the process used to set performance criteria for compliance with ASHRAE Standard 90.1-2016 and suggests a method for demonstrating compliance with other codes and beyond code programs.« less

  8. Air Force seal activities

    NASA Astrophysics Data System (ADS)

    Mayhew, Ellen R.

    1994-07-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  9. Some Problems of Exploitation of Jet Turbine Aircraft Engines of Lot Polish Air Lines,

    DTIC Science & Technology

    1977-04-26

    CI ‘AD~AOII6 221 FOREIGN TECHNOLOGY DIV WR IGHT—PATTERSON AFB OHIO F/I 21/5SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES O—CTC(U...EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINE S By: Andrzej Slodownik English pages: 1~ Source: Technika Lotnicza I Astronautyczna...SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINES Andrzej Slodownik , M. Eng . FTD— ID ( RS) I— 0 1475 — 77 I

  10. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  11. Experimental investigation of in-cylinder air flow to optimize number of helical guide vanes to enhance DI diesel engine performance using mamey sapote biodiesel

    NASA Astrophysics Data System (ADS)

    Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.

    2018-03-01

    The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  13. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  14. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  15. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  16. The Engineering Technician.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    Occupational and educational information concerning 12 categories of engineering technicians and engineering technology is presented. This information covers the role of the technicians, student qualifications, typical job titles, and typical educational programs. The categories presented are (1) air conditioning, heating, and refrigeration, (2)…

  17. Summary report on effects at temperature, humidity, and fuel-air ratio on two air-cooled light aircraft engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    Five different engine models were tested to experimentally characterize emissions and to determine the effects of variation in fuel-air ratio and spark timing on emissions levels and other operating characteristics such as cooling, misfiring, roughness, power acceleration, etc. The results are given of two NASA reports covering the Avco Lycoming 0-320-D engine testing and the recently obtained results on the Teledyne Continental TSIO-360-C engine.

  18. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  19. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  20. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  1. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  2. U.S. Air Force Engineering and Services Hardware Requirements

    DOT National Transportation Integrated Search

    1991-04-01

    This document proposes a path to meet the communications-computer systems (CSC) requirements of Air Force Engineering and Services (E and S) in the mid-to-late 1990s. It reflects the philosophies that guide E and S upper- level management as it carri...

  3. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  4. Self-balancing air riding seal for a turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Jacob A.

    A turbine of a gas turbine engine has an air riding seal that forms a seal between a rotor and a stator of the turbine, the air riding seal including an annular piston movable in an axial direction under the influence of a pressure on one side with a pressure acting on an opposite side that self-balances the air riding seal during the steady state condition of the engine and lifts off the seal during engine transients.

  5. [Simulation and air-conditioning in the nose].

    PubMed

    Keck, T; Lindemann, J

    2010-05-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted extent, only providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations only calculate predictions in a computational model, e. g. realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this report is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning.

  6. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo

    PubMed Central

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-01-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved “Out of Africa” to explore the more severe climates of

  7. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    PubMed

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of

  8. Effects of suspension of air-conditioning on airtight-type racks.

    PubMed

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  9. Study on the design schemes of the air-conditioning system in a gymnasium

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin; Wu, Xinwei; Zhang, Jing; Pan, Zhixin

    2017-08-01

    In view of designing the air conditioning project for a gymnasium successfully, the cooling and heating source schemes are fully studied by analyzing the surrounding environment and energy conditions of the project, as well as the analysis of the initial investment and operating costs, which indicates the air source heat pump air conditioning system is the best choice for the project. The indoor air conditioning schemes are also studied systematically and the optimization of air conditioning schemes is carried out in each area. The principle of operating conditions for the whole year is followed and the quality of indoor air and energy-saving are ensured by the optimized design schemes, which provide references for the air conditioning system design in the same kinds of building.

  10. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and themore » informative example results.« less

  11. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  12. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    PubMed

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  13. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  14. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  15. Small photovoltaic setup for the air conditioning system

    NASA Astrophysics Data System (ADS)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  16. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  17. Air Conditioning Modifications to AMG Buses

    DOT National Transportation Integrated Search

    1983-12-01

    This report presents the documentation and evaluation of air conditioning system modifications devised by Miami (Florida) Metrobus and Los Angeles SCRTD for the AM General Model B bus. The objective of these modifications was to reduce the frequency ...

  18. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  19. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  20. High speed variable delivery helical screw compressor/expander automotive air conditioning and waste heat energy recovery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.

    1980-09-02

    A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less

  1. Performance and Operational Characteristics of a Python Turbine-propeller Engine at Simulated Altitude Conditions / Carl L. Meyer and Lavern A. Johnson

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L; Johnson, Lavern A

    1952-01-01

    The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.

  2. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  3. Thermal comfort in naturally ventilated buildings in Maceio, Brazil

    NASA Astrophysics Data System (ADS)

    Djamila, Harimi

    2017-11-01

    This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects' vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects' vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects' response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects' response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.

  4. Heavy metals found in the breathing zone, toenails and lung function of welders working in an air-conditioned welding workplace.

    PubMed

    Hariri, Azian; Mohamad Noor, Noraishah; Paiman, Nuur Azreen; Ahmad Zaidi, Ahmad Mujahid; Zainal Bakri, Siti Farhana

    2017-09-22

    Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.

  5. 78 FR 56622 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines With Superior Air Parts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... records instead of the steps listed in paragraphs (f)(1) and (f)(2) of this AD, to see if the engine..., Inc. Reciprocating Engines With Superior Air Parts, Inc. (SAP) Cylinder Assemblies Installed AGENCY... Continental Motors, Inc. (CMI) IO-520, TSIO-520, and IO-550 series reciprocating engines, with certain...

  6. Uncertainty Evaluation of Residential Central Air-conditioning Test System

    NASA Astrophysics Data System (ADS)

    Li, Haoxue

    2018-04-01

    According to national standards, property tests of air-conditioning are required. However, test results could be influenced by the precision of apparatus or measure errors. Therefore, uncertainty evaluation of property tests should be conducted. In this paper, the uncertainties are calculated on the property tests of Xinfei13.6 kW residential central air-conditioning. The evaluation result shows that the property tests are credible.

  7. Use of an air-assisted fuel nozzle to reduce idle emissions of a jt8d engine combustor

    NASA Technical Reports Server (NTRS)

    Papathakos, L. C.; Jones, R. E.

    1973-01-01

    Tests were performed at typical engine idle conditions on a single-can JT8D combustor installed in a 24 centimeter (9.45 in.) housing to evaluate the effect of an air-assist nozzle on reducing exhaust emissions. By injecting high-pressure air through the secondary-flow passage of a standard duplex fuel nozzle, it was possible to reduce hydrocarbon emissions from 840 parts per million to 95 parts per million and carbon monoxide emissions from 873 parts per million to 258 parts per million. NOX emissions increased slightly from 18 parts per million to 22 parts per million. An air-assist differential pressure of only 20.1 newtons per square centimeter (29.1 psi) and an airflow rate of only 0.22 percent of the total combustor airflow was required.

  8. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  9. Developing Performance Cost Index Targets for ASHRAE Standard 90.1 Appendix G – Performance Rating Method - Rev.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.

    2016-03-01

    Appendix G, the Performance Rating Method in ASHRAE Standard 90.1 has been updated to make two significant changes for the 2016 edition, to be published in October of 2016. First, it allows Appendix G to be used as a third path for compliance with the standard in addition to rating beyond code building performance. This prevents modelers from having to develop separate building models for code compliance and beyond code programs. Using this new version of Appendix G to show compliance with the 2016 edition of the standard, the proposed building design needs to have a performance cost index (PCI)more » less than targets shown in a new table based on building type and climate zone. The second change is that the baseline design is now fixed at a stable level of performance set approximately equal to the 2004 code. Rather than changing the stringency of the baseline with each subsequent edition of the standard, compliance with new editions will simply require a reduced PCI (a PCI of zero is a net-zero building). Using this approach, buildings of any era can be rated using the same method. The intent is that any building energy code or beyond code program can use this methodology and merely set the appropriate PCI target for their needs. This report discusses the process used to set performance criteria for compliance with ASHRAE Standard 90.1-2016 and suggests a method for demonstrating compliance with other codes and beyond code programs.« less

  10. Feasibility of CO/sub 2/ monitoring to assess air quality in mines using diesel equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, J.H. Jr.

    1987-01-01

    The methodology includes: (1) establishing pollutant to CO/sub 2/ ratios for in-service equipment, (2) estimating pollutant concentrations from the ratios and in-mine CO/sub 2/ measurements, and (3) using an air quality index to combine the pollutants into a single number, which indicates the health hazard associated with the pollutants. For the methodology to be valid, the pollutant to CO/sub 2/ ratios must remain constant if engine operating conditions do not significantly change. However, due to the complex dynamics of the fuel injection system, the fuel-air combustion process, and the engine speed-load governing system, the pollutant to CO/sub 2/ ratios maymore » vary during repetitive, but transient engine speed-and-load operation. These transient effects were investigated. In addition, the influence of changing engine conditions due to engine maladjustment, and a practical means to evaluate engine condition were investigated to advance the methodology. The laboratory investigation determined that CO/sub 2/ is an effective indicator of engine exhaust pollutants. It was shown that the exhaust concentrations of carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter do not significantly vary among repetitive, but transient engine speed-and-load duty cycles typical of in-service equipment. Based on an air quality index and threshold limit values, particulate matter exhibited the greatest adverse effect on air quality. Particulate mass was separated into volatile (organic soluble fraction) and nonvolatile (insoluble carbon fraction) components. Due to particulate concentrations, the engine operating conditions of overfueling and advanced injector timing had greater adverse effects on air quality than the conditions of retarded injector timing, intake air restriction, and Federal certification specifications.« less

  11. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  12. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  13. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and themore » informative example results.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M.; Lee, S.C.

    The indoor and outdoor levels of VOCs and PM{sub 2.5} were measured at two classrooms of two schools; one is naturally ventilated, while the other had two window type air-conditioners and four exhaust fans. The ventilation rates at the two classrooms were 0.937 ACH (Classroom A) and 0.217 ACH (Classroom B). Both classrooms had ventilation requirements below the ASHRAE Standard 62-1989 assuming that the outdoor contaminant levels were within the ASHRAE requirements. The abundance and concentration of volatile organic species found indoors and outdoors of Classroom B were higher than Classroom A since Classroom B is located in a heavilymore » trafficked area. The classroom without air-conditioner (A) had higher I/O ratios than Classroom B due to the higher ventilation rates. The air-conditioner, though not providing enough fresh air to the classroom, might act as a barrier for outdoor pollutants. The reduction of PM2.5 levels Classroom A was 30% and at Classroom B was 67%. The air-conditioning system in Classroom B could be removing some of the fine particulate matter from the outdoor supply air before entering the classroom. The use of air-conditioners can keep outdoor pollutants from entering the classroom, but could increase the level of indoor produced pollutant. From this study, air-conditioning systems in classroom somehow prevent pollutants from entering, and besides used to lowering environmental noise should be encouraged at schools located in heavily polluted environments.« less

  15. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    PubMed

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  16. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

    EPA Pesticide Factsheets

    This page contains the current National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines and additional information regarding rule compliance and implementation.

  17. Allergies to molds caused by fungal spores in air conditioning equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schata, M.; Jorde, W.; Elixmann, J.H.

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  18. New method of calculating the power at altitude of aircraft engines equipped with superchargers on the basis of tests made under sea-level conditions

    NASA Technical Reports Server (NTRS)

    Sarracino, Marcello

    1941-01-01

    The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.

  19. [Biological contamination in office buildings related to ventilation/air conditioning system].

    PubMed

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  20. Flight Investigation of the Cooling Characteristics of a Two-row Radial Engine Installation III : Engine Temperature Distribution

    NASA Technical Reports Server (NTRS)

    Rennak, Robert M; Messing, Wesley E; Morgan, James E

    1946-01-01

    The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)

  1. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... group, will be equipped with an item (whether that item is standard equipment or an option), the full...

  2. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... group, will be equipped with an item (whether that item is standard equipment or an option), the full...

  3. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... group, will be equipped with an item (whether that item is standard equipment or an option), the full...

  4. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... group, will be equipped with an item (whether that item is standard equipment or an option), the full...

  5. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  6. Exhaust emission survey of an F100 afterburning turbofan engine at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E.; Cullom, R. R.

    1981-01-01

    Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.

  7. Influence of cooling face masks on nasal air conditioning and nasal geometry.

    PubMed

    Lindemann, J; Hoffmann, T; Koehl, A; Walz, E M; Sommer, F

    2017-06-01

    Nasal geometries and temperature of the nasal mucosa are the primary factors affecting nasal air conditioning. Data on intranasal air conditioning after provoking the trigeminal nerve with a cold stimulus simulating the effects of an arctic condition is still missing. The objective was to investigate the influence of skin cooling face masks on nasal air conditioning, mucosal temperature and nasal geometry. Standardized in vivo measurements of intranasal air temperature, humidity and mucosal temperature were performed in 55 healthy subjects at defined detection sites before and after wearing a cooling face mask. Measurements of skin temperature, rhinomanometry and acoustic rhinometry were accomplished. After wearing the face mask the facial skin temperature was significantly reduced. Intranasal air temperature did not change. Absolute humidity and mucosal temperature increased significantly. The acoustic rhinometric results showed a significant increase of the volumes and the cross-sectional areas. There was no change in nasal airflow. Nasal mucosal temperature, humidity of inhaled air, and volume of the anterior nose increased after application of a cold face mask. The response is mediated by the trigeminal nerve. Increased mucosal temperatures as well as changes in nasal geometries seem to guarantee sufficient steady intranasal nasal air conditioning.

  8. 10 CFR 430.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, SW... B. (8) ASHRAE 103-1993, Methods of Testing for Annual Fuel Utilization Efficiency of Residential...) ASHRAE 116-1995 (RA 2005), Methods of Testing for Rating Seasonal Efficiency of Unitary Air Conditioners...

  9. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  10. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  11. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  12. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  13. Method and apparatus for controlling the solenoid current of a solenoid valve which controls the amount of suction of air in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiuchi, T.; Yasuoka, A.

    1988-05-24

    A method of controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine, is described comprising the steps of: calculating a solenoid current control value as a function of engine operating conditions; detecting an engine coolant temperature corresponding to the solenoid temperature; determining a temperature correction value in accordance with the solenoid temperature; and calculating a driving signal for controlling the operation of the solenoid as a function of the solenoid current control value and the temperature correction value.

  14. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  15. Job Prospects in HVAC Engineering.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Although heating, ventilation, and air conditioning (HVAC) engineering degrees are not offered, there is a serious need for specialists and consultants in this area (since most have been trained as mechanical engineers). Opportunities exist for individuals possessing a customer-oriented attitude, with knowledge in computerized controls, innovative…

  16. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  17. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  18. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  19. Design and demonstration of a storage-assisted air conditioning system

    NASA Astrophysics Data System (ADS)

    Rizzuto, J. E.

    1981-03-01

    The system is a peak-shaving system designed to provide a levelized air conditioning load. The system also requires minimum air conditioner and thermal storage capacity. The storage-assisted air conditioning system uses a Glauber's salt-based phase change material in sausage like containers called CHUBS. The CHUBS are two (2) inches in diameter and 20 inches long. They are stacked in modules of 64 CHUBS which are appropriately spaced and oriented in the storage system so that air may pass perpendicular to the long axis of the CHUBS. The phase change material, has a thermal storage capacity in the range of 45 to 50 Btu/lb and a transition temperature of approximately 55 F.

  20. Wing-Nacelle-Propeller Tests - Comparative Tests of Liquid-Cooled and Air-Cooled Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Wood, Donald H.

    1934-01-01

    This report gives the results of measurements of the lift, drag, and propeller characteristics of several wing and nacelle combinations with a tractor propeller. The nacelles were so located that the propeller was about 31% of the wing chord directly ahead of the leading edge of the wing, a position which earlier tests (NASA Report No. 415) had shown to be efficient. The nacelles were scale models of an NACA cowled nacelle for a radial air-cooled engine, a circular nacelle with the V-type engine located inside and the radiator for the cooling liquid located inside and the radiator for the type, and a nacelle shape simulating the housing which would be used for an extension shaft if the engine were located entirely within the wing. The propeller used in all cases was a 4-foot model of Navy No. 4412 adjustable metal propeller. The results of the tests indicate that, at the angles of attack corresponding to high speeds of flight, there is no marked advantage of one type of nacelle over the others as far as low drag is concerned, since the drag added by any of the nacelles in the particular location ahead of the wing is very small. The completely cowled nacelle for a radial air-cooled engine appears to have the highest drag, the liquid-cooled engine appears to have the highest drag, the liquid-cooled engine nacelle with external radiator slightly less drag. The liquid-cooled engine nacelle with radiator in the cowling hood has about half the drag of the cowled radial air-cooled engine nacelle. The extension-shaft housing shows practically no increase in drag over that of the wing alone. A large part of the drag of the liquid-cooled engine nacelle appears to be due to the external radiator. The maximum propulsive efficiency for a given propeller pitch setting is about 2% higher for the liquid-cooled engine nacelle with the radiator in the cowling hood than that for the other cowling arrangements.

  1. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  2. STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.

    DTIC Science & Technology

    VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE

  3. Air Force Civil Engineer, Winter 2001, Volume 9, Number 4

    DTIC Science & Technology

    2001-01-01

    we don’t mind the TDYs, provided Colombian guerillas keep their distance,” said Coby Davis, Real Estate Branch chief. A heavy TDY commitment is just...The Civil Engineer HQ AFSPC Brackett, James S. (sel) Peterson AFB Chief, Programs Division ODUSD/I&E Bradshaw, Joel C. III Pentagon Chief, Air Force

  4. Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells

    DTIC Science & Technology

    1989-06-01

    the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx

  5. Analysis of Performance of Jet Engine from Characteristics of Components I : Aerodynamic and Matching Characteristics of Turbine Component Determined with Cold Air

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1947-01-01

    The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.

  6. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less

  7. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  8. Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design

    DTIC Science & Technology

    1974-08-30

    1.3 ENGINE REPLACEMENT .............. ......................... 8-1 8-1.4 ENGINE AIR INDUCTION SYSTEM .............................. 8-2 8-1.5 ENGINE ...8-5 8-2.2 ENGINE AIR INDUCTION SYSTEM .............................. 8-5 8-2.2.1 G eneral Design...8-5 8-2.2.2 Air Induction System Inlet Location ............................... 8-6 8-2.2.3 Engine Air Induction System Pressure Losses

  9. Systems engineering for Air Force C3I systems

    NASA Astrophysics Data System (ADS)

    Monahan, John H.

    1993-06-01

    Each day, sophisticated information systems provide the U.S. with crucial capabilities both to understand the world situation and to react effectively as required by our nation's decision makers. These systems attest to the success of the cooperative efforts of government and industry. Over the last 35 years, to help provide those capabilities, The MITRE Corporation has been privileged to fulfill the role of systems engineer on more than 100 different command, control, communications, and intelligence (C3I) systems for the Air Force and other elements of the Department of Defense (DOD). A long history of successful performance in this broad role provides MITRE with detailed knowledge of the systems' operational capabilities and needs, proficiency in their systems engineering, and a C3I-related corporate memory unmatched by any other organization. That background is the foundation of this book on systems engineering at MITRE.

  10. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor

  11. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  12. Data characteristic analysis of air conditioning load based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  13. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    NASA Astrophysics Data System (ADS)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  14. Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.

  15. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light...-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test group, will be...

  16. 78 FR 37958 - Special Conditions: Cessna Aircraft Company, Model J182T; Electronic Engine Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) Engines, Inc. SR305-230E-C1 which is a four-stroke, air cooled, diesel cycle engine that uses turbine (jet...

  17. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  18. The effect of alcohol blends on the performance of an air cooled Rotary Trochoidal Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, M.; Iuster, I.

    Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.

  19. The effect of alcohol blends on the performance of an air cooled rotary trochoidal engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, M.; Iuster, I.

    Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.

  20. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  1. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on the authority of all direct U.S. and foreign carriers to operate in air transportation that they have...

  2. Thermal comfort study of hospital workers in Malaysia.

    PubMed

    Yau, Y H; Chew, B T

    2009-12-01

    This article presents findings of the thermal comfort study in hospitals. A field survey was conducted to investigate the temperature range for thermal comfort in hospitals in the tropics. Thermal acceptability assessment was conducted to examine whether the hospitals in the tropics met the ASHRAE Standard-55 80% acceptability criteria. A total of 114 occupants in four hospitals were involved in the study. The results of the field study revealed that only 44% of the examined locations met the comfort criteria specified in ASHRAE Standard 55. The survey also examined the predicted percentage of dissatisfied in the hospitals. The results showed that 49% of the occupants were satisfied with the thermal environments in the hospitals. The field survey analysis revealed that the neutral temperature for Malaysian hospitals was 26.4 degrees C. The comfort temperature range that satisfied 90% of the occupants in the space was in the range of 25.3-28.2 degrees C. The results from the field study suggested that a higher comfort temperature was required for Malaysians in hospital environments compared with the temperature criteria specified in ASHRAE Standard (2003). In addition, the significant deviation between actual mean vote and predicted mean vote (PMV) strongly implied that PMV could not be applied without errors in hospitals in the tropics. The new findings on thermal comfort temperature range in hospitals in the tropics could be used as an important guide for building services engineers and researchers who are intending to minimize energy usage in heating, ventilating and air conditioning systems in hospitals operating in the tropics with acceptable thermal comfort level and to improve the performance and well-being of its workers.

  3. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  4. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    PubMed

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  5. A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.

  6. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  7. Enabling Smart Air Conditioning by Sensor Development: A Review

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2016-01-01

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. PMID:27916906

  8. Design of a solar energy assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlet, J.L.P.; Johnson, B.R.; Vora, J.N.

    1976-03-24

    Energy consumption in air conditioning systems can be reduced by reducing the water content of air before cooling. This reduction in humidity can be accomplished by contacting the humid air with a hygroscopic solution in a spray tower. The hydroscopic solution, diluted by water from the air, can be reconcentrated in a solar evaporator. A solar evaporator for this purpose was evaluated by formulating simultaneous energy and mass balances for forced air convection through the evaporator. Temperatures in the evaporator were calculated by numerical integration of the mathematical model. The calculations indicated that the salt solution cannot be reconcentrated inmore » a forced convection evaporator because of the large energy losses associated with the air stream passing through the evaporator.« less

  9. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...

  10. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...

  11. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...

  12. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test...

  13. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  14. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  15. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  16. The characteristics of welded joints for air conditioning application

    NASA Astrophysics Data System (ADS)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  17. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  18. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  19. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to

  20. Effect of Several Factors on the Cooling of a Radial Engine in Flight

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin

    1936-01-01

    Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.

  1. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less

  2. Does the air condition system in busses spread allergic fungi into driver space?

    PubMed

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  3. 40 CFR 85.1504 - Conditional admission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Conditional admission. 85.1504 Section 85.1504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines § 85...

  4. 40 CFR 86.000-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... family, the Administrator will limit selections to engine codes which have air conditioning available and...

  5. Sound quality evaluation of air conditioning sound rating metric

    NASA Astrophysics Data System (ADS)

    Hodgdon, Kathleen K.; Peters, Jonathan A.; Burkhardt, Russell C.; Atchley, Anthony A.; Blood, Ingrid M.

    2003-10-01

    A product's success can depend on its acoustic signature as much as on the product's performance. The consumer's perception can strongly influence their satisfaction with and confidence in the product. A metric that can rate the content of the spectrum, and predict its consumer preference, is a valuable tool for manufacturers. The current method of assessing acoustic signatures from residential air conditioning units is defined in the Air Conditioning and Refrigeration Institute (ARI 270) 1995 Standard for Sound Rating of Outdoor Unitary Equipment. The ARI 270 metric, and modified versions of that metric, were implemented in software with the flexibility to modify the features applied. Numerous product signatures were analyzed to generate a set of synthesized spectra that targeted spectral configurations that challenged the metric's abilities. A subjective jury evaluation was conducted to establish the consumer preference for those spectra. Statistical correlations were conducted to assess the degree of relationship between the subjective preferences and the various metric calculations. Recommendations were made for modifications to improve the current metric's ability to predict subjective preference. [Research supported by the Air Conditioning and Refrigeration Institute.

  6. Multiyear Plan for Validation of EnergyPlus Multi-Zone HVAC System Modeling using ORNL's Flexible Research Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Bhandari, Mahabir S.; New, Joshua Ryan

    This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that canmore » be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.« less

  7. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  8. ASSESSMENT of POTENTIAL CARBON DIOXIDE-BASED DEMAND CONTROL VENTILATION SYSTEM PERFORMANCE in SINGLE ZONE SYSTEMS

    DTIC Science & Technology

    2013-03-21

    and timers use a time-based estimate to predict how many people are in a facility at a given point in the day. CO2-based DCV systems measure CO2...energy and latent energy from the outside air when the coils’ surface temperature is below the dew point of the air passing over the coils (ASHRAE...model assumes that the dew point water saturation pressure is the same as the dry-bulb water vapor pressure, consistent with a typical ASHRAE

  9. Research and application of an intelligent control system in central air-conditioning based on energy consumption simulation

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Che, Wenbin

    2018-05-01

    For the central air-conditioning energy-saving, it is common practice to use a wide range of PTD controllers in engineering to optimize energy savings. However, the shortcomings of the PTD controller have also been magnified on this issue, such as: calculation accuracy is not enough, the calculation time is too long. Particle swarm optimization has the advantage of fast convergence. This paper is based on Particle Swarm Optimization apply in PTD controller tuning parameters in order to achieve the purpose of saving energy while ensuring comfort. The algorithm proposed in this paper can adjust the weight according to the change of population fitness, reduce the weights of particles with lower fitness and enhance the weights of particles with higher fitness in the population, and fully release the population vitality. The method in this paper is validated by the TRNSYS model based on the central air-conditioning system. The experimental results show that the room temperature fluctuation is small, the overshoot is small, the adjustment speed is fast, and the energy-saving fluctuates at 10%.

  10. Air Force Civil Engineer, Volume 12, Number 2, 2004

    DTIC Science & Technology

    2004-01-01

    Volume 12 • No. 2 • 2004 CIVIL ENGINEERAir Force Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...Section: USAF Facility Energy Management Program. (Air Force Civil Engineer, Volume 12 , Number 02, 2004) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT

  11. Air Force Civil Engineer, Volume 12, Number 1, 2004

    DTIC Science & Technology

    2004-01-01

    Building the ARRK Volume 12 • No. 1 • 2004 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Air Force Civil Engineer, Volume 12 , Number 01, 2004) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution

  12. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  13. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  14. Biosensors engineered from conditionally stable ligand-binding domains

    DOEpatents

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  15. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  16. Persistence of initial conditions in continental scale air quality simulations

    EPA Science Inventory

    This study investigates the effect of initial conditions (IC) for pollutant concentrations in the atmosphere and soil on simulated air quality for two continental-scale Community Multiscale Air Quality (CMAQ) model applications. One of these applications was performed for springt...

  17. Measurements of the air conditioning capacity of the nose during normal and pathological conditions and pharmacological influence.

    PubMed

    Drettner, B; Falck, B; Simon, H

    1977-01-01

    A simple method is introduced for measuring the air conditioning capacity of the nose. A flow of 8 1/min dry air is introduced by a catheter into the nasopharynx, while 5 1/min is sucked out from the investigated nasal cavity through a psychrometer. The additional 3 1/min passes down into the pharynx, thus reducing the intermingling with expiratory air. By using CO2 as a tracer, this error was found to be maximally 15% and often about 1%. The three different enthalpy factors: increase in enthalpy of dry air, vaporization, and increase in enthalpy of water vapour, were calculated separately and the vaporization was found to be the dominant factor. The calculated total supply of humidity showed that the method presented causes at least a slight stress on the humidifying capacity. Pharmacological studies have shown that subcutaneously injected atropine decreased the total enthalpy and that of water vapour, while nasal administration of oximetazoline also decreased the total enthalpy. Nasal administration of homatropine or pilocarpine had no effect on the air conditioning. In comparison with normal subjects, those with vasomotor rhinitis had an increased enthalpy of the air, while the same enthalpy factor was reduced in cases with atrophic rhinitis. Laryngectomized patients had no significant difference in the air conditioning capacity of the nose in relation to normal subjects, while patients operated with partial maxillectomy had a considerable reduction in vaporization and total enthalpy.

  18. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  19. Keeping cool: use of air conditioning by australians with multiple sclerosis.

    PubMed

    Summers, Michael P; Simmons, Rex D; Verikios, George

    2012-01-01

    Despite the known difficulties many people with MS have with high ambient temperatures, there are no reported studies of air conditioning use and MS. This study systematically examined air conditioner use by Australians with MS. A short survey was sent to all participants in the Australian MS Longitudinal Study cohort with a response rate of 76% (n = 2,385). Questions included hours of air-conditioner use, areas cooled, type and age of equipment, and the personal effects of overheating. Air conditioners were used by 81.9% of respondents, with an additional 9.6% who could not afford an air conditioner. Regional and seasonal variation in air conditioning use was reported, with a national annual mean of 1,557 hours running time. 90.7% reported negative effects from overheating including increased fatigue, an increase in other MS symptoms, reduced household and social activities, and reduced work capacity. Households that include people with MS spend between 4 and 12 times more on keeping cool than average Australian households.

  20. Rotary piston engine equipped with an improved air or fuel injection opening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Y.

    An improved air or fuel injection opening is described for a rotary piston engine having a trochoidal inner surface of a center housing and an eccentrically rotating polygonal rotor. The air or fuel injection opening provided in a side housing wall is confined within a region limited so as to be outside of an outer envelope of traces of a side seal and inside an outer corner seal, with the opening having a contour smaller than that of the corner seal.

  1. 40 CFR 1066.845 - AC17 air conditioning efficiency test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solar heating is disabled for certain test intervals as described in this section. (d) Interior air... vehicle's windows and operate the vehicle over a preconditioning UDDS with no solar heating and with the... cooling fans. (3) Turn on solar heating within one minute after turning off the engine. Once the solar...

  2. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, T.; Chaney, L.; Meyer, J.

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less

  3. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  4. Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines

    NASA Astrophysics Data System (ADS)

    MacLeod, C.

    This paper describes some innovative methods for achieving enhanced fuel-air mixing and combustion in Scramjet-like spaceplane engines. A multimodal approach to the problem is discussed; this involves using several concurrent methods of forced mixing. The paper concentrates on Electromagnetic Activation (EMA) and Electrostatic Attraction as suitable techniques for this purpose - although several other potential methods are also discussed. Previously published empirical data is used to draw conclusions about the likely effectiveness of the system and possible engine topologies are outlined.

  5. Air Force Civil Engineer, Volume 16, Number 2, 2008

    DTIC Science & Technology

    2008-01-01

    HORSE and Prime BEEF work together to put up a legal complex for JTF Guantanamo 11 Building Information Modeling in the Air Force Going beyond CADD 14...construction team. Engineers from the 823rd RED HORSE Squadron, Hurlburt Field, Fla., were responsible for most of the design work. The 474th...BEEF construction team and a RED HORSE design team, we quickly became known as the “Red Bulls.” The advance party — consisting of the first sergeant

  6. Building America Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2015-01-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, thus driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  7. Effect of propeller slipstream on the drag and performance of the engine cooling system for a general aviation twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Katz, J.; Corsiglia, V. R.; Barlow, P. R.

    1980-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was investigated experimentally. The semispan model was mounted vertically in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-flow configuration. It was found that the propeller slipstream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slipstream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack, that is, climb condition. For the cruise condition those improvements were more moderate.

  8. Thermodynamic performance analysis of ramjet engine at wide working conditions

    NASA Astrophysics Data System (ADS)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  9. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  10. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  11. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.7...

  12. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.7...

  13. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.7...

  14. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.7...

  15. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.7...

  16. Discussion on fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolong; Liu, Jinxiang; Wang, Yu; Yuan, Xiaolei; Jin, Hui

    2018-05-01

    The fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System(THIC) of a typical office was comfirmed, under the premise of adopting the refrigeration dehumidifying fresh air unit(7°C/12°C). By detailed calculating the space moisture load and the fresh air volume required for dehumidification in 120 selected major cities in China, it can be inferred that the minimum fresh air volume required for dehumidification in THIC is mainly determined by the local outdoor air moisture and the outdoor wind speed; Then the mathematical fitting software Matlab was used to fit the three parameters, and a simplified formula for calculating the minimum per capita fresh air volume required for dehumidification was obtained; And the indoor relative humidity was simulated by the numerical software Airpak and the results by using the formula data and the data for hygiene were compared to verify the relibility of the simplified formula.

  17. Compression-ignition engine tests of several fuels

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1932-01-01

    The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.

  18. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  19. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    PubMed

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  20. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  1. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  2. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  3. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  4. Cooling system with compressor bleed and ambient air for gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Marra, John J.

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less

  5. Performance and operational improvements made to the Waukesha AT27-GL engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbold, E.O.

    1996-12-31

    This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less

  6. The comparison of vernacular residences' thermal comfort in coastal with that in mountainous regions of tropical areas

    NASA Astrophysics Data System (ADS)

    Hermawan, Prianto, Eddy; Setyowati, Erni; Sunaryo

    2017-11-01

    Adaptive thermal comfort is the latest theory used to analyze thermal acceptability of the naturally ventilated buildings for occupants in tropical areas. Vernacular residences are considered capable to meet the thermal comfort for the occupants. The combination between adaptive and passive theory is still rarely conducted. This study aims to compare the adaptive and passive thermal comfort for occupants of vernacular residences in mountainous and coastal regions using AMV (Actual Mean Vote) and PMV (Predicted Mean Vote). This research uses a quantitative method with a statistical analysis on variables of air temperature, globe temperature, velocity, relative humidity, age, weight, and height. AMV data are collected based on questionnaires with ASHRAE (American Society of Heating, Refrigeration, Air conditioning Engineering) standards. The samples consist of 100 vernacular residences of both coastal and mountainous regions. The results show that there are AMV and PMV differences in each region. The AMV values in those vernacular residences in mountainous and coastal regions are respectively -0.4982 and 0.1673. It indicates that the occupants of vernacular residences in coastal regions accept the thermal conditions better. Thus, it can be concluded that vernacular residences in coastal areas comfort the occupants more.

  7. A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control.

    PubMed

    AbdulHalim, Rasha G; Bhatt, Prashant M; Belmabkhout, Youssef; Shkurenko, Aleksander; Adil, Karim; Barbour, Leonard J; Eddaoudi, Mohamed

    2017-08-09

    Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of the dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, have yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly connected rare-earth-based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45%-65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness, and unique humidity-control performance, as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single-crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g·g -1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces, such as space shuttles, aircraft cabins, and air-conditioned buildings.

  8. Keeping Cool: Use of Air Conditioning by Australians with Multiple Sclerosis

    PubMed Central

    Summers, Michael P.; Simmons, Rex D.; Verikios, George

    2012-01-01

    Despite the known difficulties many people with MS have with high ambient temperatures, there are no reported studies of air conditioning use and MS. This study systematically examined air conditioner use by Australians with MS. A short survey was sent to all participants in the Australian MS Longitudinal Study cohort with a response rate of 76% (n = 2,385). Questions included hours of air-conditioner use, areas cooled, type and age of equipment, and the personal effects of overheating. Air conditioners were used by 81.9% of respondents, with an additional 9.6% who could not afford an air conditioner. Regional and seasonal variation in air conditioning use was reported, with a national annual mean of 1,557 hours running time. 90.7% reported negative effects from overheating including increased fatigue, an increase in other MS symptoms, reduced household and social activities, and reduced work capacity. Households that include people with MS spend between 4 and 12 times more on keeping cool than average Australian households. PMID:22548176

  9. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOEpatents

    Geisbrecht, Rodney A [New Alexandria, PA; Holcombe, Norman T [McMurray, PA

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  10. Microbial Risk Assessment of Air Conditioning Condensate Reuse

    EPA Science Inventory

    Air conditioning condensate can provide a substantial water source for building-scale collection and non-potable use. Although produced water is anticipated to be of generally high quality, the potential for microbial contamination by biofilm-associated opportunistic pathogens t...

  11. Air Conditioning. Trade and Industrial Education Trade Preparatory Training Guide.

    ERIC Educational Resources Information Center

    Nebraska State Dept. of Education, Lincoln. Div. of Vocational Education.

    One of a series of curriculum guides prepared for the building occupations cluster of the construction/fabrication occupational group, this guide identifies the essentials of the air conditioning trade as recommended by the successful air conditioner. An instructional program based upon the implementation of the guide is expected to prepare a…

  12. 78 FR 19982 - Special Conditions: Turbomeca Ardiden 3K Turboshaft Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... novel or unusual design feature that is a 30-minute all engines operating (AEO) power rating for... appropriate safety standards for this design feature. These special conditions contain the additional safety... Ardiden 3K engine is the first variant in the new Ardiden 3 series. This engine incorporates a two-stage...

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIV, I--MAINTAINING THE AIR SYSTEM, CUMMINS DIESEL ENGINE, II--UNIT REMOVAL--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND THE PROCEDURES FOR TRANSMISSION REMOVAL. TOPICS ARE (1) DEFINITION OF TERMS RELATED TO THE DIESEL AIR SYSTEM, (2) PRNCIPLES OF DIESEL AIR COMPRESSORS, (3) PRINCIPLES OF AIR STARTING MOTORS, (4)…

  14. Mechanical model for simulating the conditioning of air in the respiratory tract.

    PubMed

    Bergonse Neto, Nelson; Von Bahten, Luiz Carlos; Moura, Luís Mauro; Coelho, Marlos de Souza; Stori Junior, Wilson de Souza; Bergonse, Gilberto da Fontoura Rey

    2007-01-01

    To create a mechanical model that could be regulated to simulate the conditioning of inspired and expired air with the same normal values of temperature, pressure, and relative humidity as those of the respiratory system of a healthy young man on mechanical ventilation. Using several types of materials, a mechanical device was built and regulated using normal values of vital capacity, tidal volume, maximal inspiratory pressure, positive end-expiratory pressure, and gas temperature in the system. The device was submitted to mechanical ventilation for a period of 29.8 min. The changes in the temperature of the air circulating in the system were recorded every two seconds. The statistical analysis of the data collected revealed that the device was approximately as efficient in the conditioning of air as is the respiratory system of a human being. By the study endpoint, we had developed a mechanical device capable of simulating the conditioning of air in the respiratory tract. The device mimics the conditions of temperature, pressure, and relative humidity seen in the respiratory system of healthy individuals.

  15. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  16. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  18. Design and demonstration of a storage assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-01

    One phase-change material, sodium sulfate decahydrate, has generated considerable interest for thermal storage. A form of this material containing salts to adjust the transition point to approximately 55/sup 0/F and a gelling agent to prevent segregation of the salts has been developed. This material is packaged in the form of a CHUB, (a cylinder two inches in diameter and twenty inches long) having a weight of 3.25 pounds and a thermal storage capability of 50 Btu per pound. Under this project, a storage-assisted (partial storage) air conditioning system was designed, installed, monitored and evaluated in a typical residential application. Thismore » feasibility demonstration was conducted under the direction of the Long Island Lighting Company in a single family residence in Melville, Long Island, New York. The demonstration system consisted of a CHUB thermal storage system utilized in conjunction with a one and one-half ton air conditioning unit to cool a house that would normally require a two and one half ton air conditioning unit.« less

  19. U.S. Air Force Spent Billions on F117 Engine Sustainment Without Knowing What a Fair Price Was

    DTIC Science & Technology

    2016-03-11

    repair, or overhaul, as compared to the PW2000 commercial-derivative engine sustainment price for these services in the private sector.17 The House ... sustainment costs. The House committee was also concerned that the Air Force could not determine whether it is paying a fair and reasonable price for...administration. The House committee encouraged the Air Force to seek a competitive strategy to obtain F117 engine sustainment services and also encouraged it to

  20. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    PubMed

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  1. Air Force Officers Visit Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A group of 60 Army Air Forces officers visited the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 27, 1945. The laboratory enacted strict security regulations throughout World War II. During the final months of the war, however, the NACA began opening its doors to groups of writers, servicemen, and aviation industry leaders. These events were the first exposure of the new engine laboratory to the outside world. Grandstands were built alongside the Altitude Wind Tunnel specifically for group photographs. George Lewis, Raymond Sharp, and Addison Rothrock (right to left) addressed this group of officers in the Administration Building auditorium. Lewis was the NACA’s Director of Aeronautical Research, Sharp was the lab’s manager, and Rothrock was the lab’s chief of research. Abe Silverstein, Jesse Hall and others watch from the rear of the room. The group toured several facilities after the talks, including the Altitude Wind Tunnel and a new small supersonic wind tunnel. The visit concluded with a NACA versus Army baseball game and cookout.

  2. Potential Uses of Occupational Analysis Data By Air Force Management Engineering Teams.

    ERIC Educational Resources Information Center

    McFarland, Barry P.

    Both the occupational analysis program and the management engineering program are primarily concerned with task level descriptions of time spent to perform tasks required in the Air Force, the first being personnel specialty code oriented and the second being work center oriented. However two separate and independent techniques have been developed…

  3. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    good distribution of cooling air, as well as minimum drag for the installation. The fact that these tests showed that the front recovery decreased...installations on engine cooling-air distribution indicates that good coin-elation of the cooling results of like engines in different installations...tests indicate that an important consider- ation in the design of cowlings and cowl flaps should be the obtaining of good distribution of cooling air

  4. VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE

    EPA Science Inventory

    The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...

  5. Measurement of horizontal air showers with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  6. A Review of Engine Seal Performance and Requirements for Current and Future Army Engine Platforms

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2008-01-01

    Sand ingestion continues to impact combat ground and air vehicles in military operations in the Middle East. The T-700 engine used in Apache and Blackhawk helicopters has been subjected to increased overhauls due to sand and dust ingestion during desert operations. Engine component wear includes compressor and turbine blades/vanes resulting in decreased engine power and efficiency. Engine labyrinth seals have also been subjected to sand and dust erosion resulting in tooth tip wear, increased clearances, and loss in efficiency. For the current investigation, a brief overview is given of the history of the T-700 engine development with respect to sand and dust ingestion requirements. The operational condition of labyrinth seals taken out of service from 4 different locations of the T-700 engine during engine overhauls are examined. Collaborative efforts between the Army and NASA to improve turbine engine seal leakage and life capability are currently focused on noncontacting, low leakage, compliant designs. These new concepts should be evaluated for their tolerance to sand laden air. Future R&D efforts to improve seal erosion resistance and operation in desert environments are recommended

  7. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  8. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  9. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    PubMed

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  10. Air-conditioning vs. presence of pathogenic fungi in hospital operating theatre environment.

    PubMed

    Gniadek, Agnieszka; Macura, Anna B

    2011-01-01

    Infections related to modern surgical procedures present a difficult problem for contemporary medicine. Infections acquired during surgery represent a risk factor related to therapeutical interventions. Eradication of microorganisms from hospital operating theatre environment may contribute to reduction of infections as the laminar flow air-conditioning considerably reduces the number of microorganisms in the hospital environment. The objective of the study was to evaluate the occurrence of fungi in air-conditioned operating theatre rooms. The study was carried out in one of the hospitals in Krak6w during December 2009. Indoor air samples and imprints from the walls were collected from five operating theatre rooms. A total of fifty indoor air samples were collected with a MAS-100 device, and twenty five imprints from the walls were collected using a Count Tact method. Fungal growth was observed in 48 air samples; the average numbers of fungi were within the range of 5-100 c.f.u. in one cubic metre of the air. Fungi were detected only in four samples of the wall imprints; the number of fungi was 0.01 c.f.u. per one square centimetre of the surface. The mould genus Aspergillus was most frequently isolated, and the species A. fumigatus and A. versicolor were the dominating ones. To ensure microbiological cleanness of hospital operating theatre, the air-conditioning system should be properly maintained. Domination of the Aspergillus fungi in indoor air as well as increase in the number of moulds in the samples taken in evenings (p < 0.05) may suggest that the room decontamination procedures were neglected.

  11. Transitioning to Low-GWP Alternatives in Unitary Air Conditioning

    EPA Pesticide Factsheets

    This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.

  12. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... potential overcharge conditions to the train brake system are avoided, the yard air test device may be... section, when yard air is used the train air brake system must be charged and tested as prescribed by...

  13. Effect of Propeller on Engine Cooling System Drag and Performance

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was Investigated experimentally. The semispan model was mounted vertically in the 40 x 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-now configuration. It was found that the propeller slip-stream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slip-stream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack; that is, climb condition. For the cruise condition those improvements were more moderate.

  14. Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Russey, Robert E.

    1955-01-01

    An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.

  15. Estimation of thermal sensation during varied air temperature conditions.

    PubMed

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  16. Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio

    2013-09-01

    The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.

  17. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  18. Modeling air concentration over macro roughness conditions by Artificial Intelligence techniques

    NASA Astrophysics Data System (ADS)

    Roshni, T.; Pagliara, S.

    2018-05-01

    Aeration is improved in rivers by the turbulence created in the flow over macro and intermediate roughness conditions. Macro and intermediate roughness flow conditions are generated by flows over block ramps or rock chutes. The measurements are taken in uniform flow region. Efficacy of soft computing methods in modeling hydraulic parameters are not common so far. In this study, modeling efficiencies of MPMR model and FFNN model are found for estimating the air concentration over block ramps under macro roughness conditions. The experimental data are used for training and testing phases. Potential capability of MPMR and FFNN model in estimating air concentration are proved through this study.

  19. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  20. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.