Science.gov

Sample records for air-coupled ultrasonic transducers

  1. Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers.

    PubMed

    Gómez Álvarez-Arenas, Tomás E; Camacho, Jorge; Fritsch, Carlos

    2016-04-01

    This paper proposes a novel passive focusing system for Air-Coupled Ultrasonic (ACU) piezoelectric transducers which is inspired by the Newtonian-Cassegrain (NC) telescope concept. It consist of a primary spherical mirror with an output hole and a flat secondary mirror, normal to the propagation axis, that is the transducer surface itself. The device is modeled and acoustic field is calculated showing a collimated beam with a symmetrical focus. A prototype according to this design is built and tested with an ACU piezoelectric transducer with center frequency at 400 kHz, high-sensitivity, wideband and 25 mm diameter flat aperture. The acoustic field is measured and compared with calculations. The presented prototype exhibit a 1.5 mm focus width and a collimated beam up to 15 mm off the output hole. In addition, the performance of this novel design is compared, both theoretically and experimentally, with two techniques used before for electrostatic transducers: the Fresnel Zone Plate - FZP and the off-axis parabolic or spherical mirror. The proposed NC arrangement has a coaxial design, which eases the transducers positioning and use in many applications, and is less bulky than off-axis mirrors. Unlike in off-axis mirrors, it is now possible to use a spherical primary mirror with minimum aberrations. FZP provides a more compact solution and is easy to build, but presents some background noise due to interference of waves diffracted at out of focus regions. By contrast, off-axis parabolic mirrors provide a well defined focus and are free from background noise, although they are bulky and more difficult to build. Spherical mirrors are more easily built, but this yields a non symmetric beam and a poorly defined focus. PMID:26799129

  2. Metal cap flexural transducers for air-coupled ultrasonics

    NASA Astrophysics Data System (ADS)

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  3. Application of PMN-32PT Piezoelectric Crystals for Novel Air-coupled Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Kazys, Rymantas Jonas; Sliteris, Reimondas; Sestoke, Justina

    Due to very high piezoelectric properties of PMN-PT crystals they may significantly improve performance of air-coupled ultrasonic transducers. For these purpose vibrations of PMN-PT rectangular plates and strips were investigated. An air-coupled ultrasonic transducer and array consisting of 8 single piezoelectric strips were designed. Operation of the transducer was simulated by the finite element method using ANSYS Mechanical APDL Product Launcher software. Spatial distributions of displacements inside piezoelectric elements and matching strip were obtained. Experimental investigations were carried out by the laser Doppler vibrometer Polytec OFV-5000 and the Bruel&Kjaer microphone 4138 with the measurement amplifier NEXUS WH 3219. It was found that performance of the ultrasonic transducer with PMN-32PT crystals was a few times better than of a PZT based ultrasonic transducer.

  4. An Air-Coupled Multiple Moving Membrane Micromachined Ultrasonic Transducer With Inverse Biasing Functionality.

    PubMed

    Emadi, Arezoo; Buchanan, Douglas A

    2016-08-01

    A novel air-coupled multiple moving membrane-capacitive micromachined ultrasonic transducer ( [Formula: see text]-CMUT) with individually biased deflectable plates has been developed. Unlike the conventional capacitive micromachined ultrasonic transducer, this device cell structure includes an additional deflectable plate that is suspended underneath the transducer top plate. This added flexible plate contributes to the device signal transmission and reception. It is demonstrated that due to the presence of this added moving plate, the transducer is capable of operating under inverse bias condition, where the driving voltage is sandwiched between two grounded electrodes. COMSOL electromechanical simulations were conducted to investigate the influence of the transducer additional moving plate. A set of three individuals and an array of [Formula: see text]-CMUT transducers were fabricated using a sacrificial technique and with resonant frequencies ranging from 0.8 to 2.1 MHz. Electrical, optical, and pitch-catch acoustic measurements were performed to characterize the transducers properties under inverse bias condition. The experimental results are shown to be in good agreement with the simulation results for all of the fabricated transducers. It is shown that these transducers are fully functional under both normal and inverse bias conditions without any degradation in the transducer performance. PMID:27254861

  5. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.

    PubMed

    Satyanarayan, L; Haberman, Michael R; Berthelot, Yves H

    2010-10-01

    Cellular polypropylene polymer foams, also known as ferroelectrets, are compelling candidates for air-coupled ultrasonic transducer materials because of their excellent acoustic impedance match to air and because they have a piezoelectric d(33) coefficient superior to that of PVDF. This study investigates the performance of ferroelectret transducers in the generation and reception of ultrasonic waves in air. As previous studies have noted, the piezoelectric coupling coefficients of these foams depend on the number, size, and distribution of charged voids in the microstructure. The present work studies the influence of these parameters both theoretically and experimentally. First, a three-dimensional model is employed to explain the variation of piezoelectric coupling coefficients, elastic stiffness, and dielectric permittivity as a function of void fraction based on void-scale physics and void geometry. Laser Doppler vibrometer (LDV) measurements of the effective d(33) coefficient of a specially fabricated prototype transmitting transducer are then shown which clearly indicate that the charged voids in the ferroelectret material are randomly distributed in the plane of the foam. The frequency-dependent dynamic d(33) coefficient is then reported from 50 to 500 kHz for different excitation voltages and shown to be largely insensitive to drive voltage. Lastly, two ferroelectret transducers are operated in transmit-receive mode and the received signal is shown to accurately represent the corresponding signal generated by the transmitting transducer as measured using LDV.

  6. Capacitive micromachined ultrasonic transducers based on annular cell geometry for air-coupled applications.

    PubMed

    Na, Shuai; Chen, Albert I H; Wong, Lawrence L P; Li, Zhenhao; Macecek, Mirek; Yeow, John T W

    2016-09-01

    A novel design of an air-coupled capacitive micromachined ultrasonic transducer (CMUT) with annular cell geometry (annular CMUT) is proposed. Finite element analysis shows that an annular cell has a ratio of average-to-maximum displacement (RAMD) of 0.52-0.58 which is 58-76% higher than that of a conventional circular cell. The increased RAMD leads to a larger volume displacement which results in a 48.4% improved transmit sensitivity and 127.3% improved power intensity. Single-cell annular CMUTs were fabricated with 20-μm silicon plates on 13.7-μm deep and 1.35-mm wide annular cavities using the wafer bonding technique. The measured RAMD of the fabricated CMUTs is 0.54. The resonance frequency was measured to be 94.5kHz at 170-V DC bias. The transmit sensitivity was measured to be 33.83Pa/V and 25.85Pa/V when the CMUT was excited by a continuous wave and a 20-cycle burst, respectively. The receive sensitivity at 170-V DC bias was measured to be 7.7mV/Pa for a 20-cycle burst, and 15.0mV/Pa for a continuous incident wave. The proposed annular CMUT design demonstrates a significant improvement in transmit efficiency, which is an important parameter for air-coupled ultrasonic transducers. PMID:27352025

  7. A parallel-architecture parametric equalizer for air-coupled capacitive ultrasonic transducers.

    PubMed

    McSweeney, Sean G; Wright, William M D

    2012-01-01

    Parametric equalization is rarely applied to ultrasonic transducer systems, for which it could be used on either the transmitter or the receiver to achieve a desired response. An optimized equalizer with both bump and cut capabilities would be advantageous for ultrasonic systems in applications in which variations in the transducer performance or the properties of the propagating medium produce a less-than-desirable signal. Compensation for non-ideal transducer response could be achieved using equalization on a device-by-device basis. Additionally, calibration of ultrasonic systems in the field could be obtained by offline optimization of equalization coefficients. In this work, a parametric equalizer for ultrasonic applications has been developed using multiple bi-quadratic filter elements arranged in a novel parallel arrangement to increase the flexibility of the equalization. The equalizer was implemented on a programmable system-on-chip (PSOC) using a small number of parallel 4th-order infinite impulse response switchedcapacitor band-pass filters. Because of the interdependency of the required coefficients for the switched capacitors, particle swarm optimization (PSO) was used to determine the optimum values. The response of a through-transmission system using air-coupled capacitive ultrasonic transducers was then equalized to idealized Hamming function or brick-wall frequencydomain responses. In each case, there was excellent agreement between the equalized signals and the theoretical model, and the fidelity of the time-domain response was maintained. The bandwidth and center frequency response of the system were significantly improved. It was also shown that the equalizer could be used on either the transmitter or the receiver, and the system could compensate for the effects of transmitterreceiver misalignment.

  8. Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz.

    PubMed

    Takahashi, Sadayuki; Ohigashi, Hiroji

    2009-05-01

    A reflection non-contact ultrasonic microscope system working both in amplitude and phase difference modes at 2 MHz has been developed using an air-coupled concave transducer made of piezoelectric polymer films of poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)]. The transducer is composed of three 95 microm-thick P(VDF/TrFE) films stacked together, each of which is activated electrically in parallel by a driving source. The transducer has a wide aperture angle of 140 degrees and a focal length of 10mm. The measured two-way transducer insertion loss is 80 dB at 1.83 MHz. Despite 20 dB higher insertion loss than that estimated from Mason's equivalent circuit, we have obtained clear amplitude acoustic images of a coin with transverse resolution of 150 microm, and clear phase difference acoustic images of the rough surface of a paper currency bill with depth resolution of sub-micrometer. Using two planar transducers of P(VDF/TrFE), we have also successfully measured in through-transmission mode the sound velocity and absorption of a 3mm-thick silicone-rubber plate. The present study proves that, owing to its low acoustic impedance and flexibility, P(VDF/TrFE) piezoelectric film is very useful for high frequency acoustic imaging in air in the MHz range. PMID:19215951

  9. Investigation of a novel polymer foam material for air coupled ultrasonic transducer applications

    NASA Astrophysics Data System (ADS)

    Satyanarayan, L.; Weide, J. M. Vander; Declercq, N. F.; Berthelot, Y.

    This experimental study aims at investigating the use of porous polymer foam piezoelectrets as a potential transducer material for air coupled ultrasonic applications. When a voltage is applied, these materials exhibit a phenomenon similar to the inverse piezoelectric effect. The defining features of the piezo-like polymer foam are small, elliptically shaped and electrically polarized voids located inside the polymers. The sensitivity is related to the effective piezoelectric coupling coefficient d33 which is much higher than in traditional piezoelectric materials. The d33 values of the cellular polypropylene foams were estimated using a laser vibrometer at different input voltages for a continuous wave excitation. It was observed that the effective d33 coefficient strongly depends on the volume fraction of electrically charged voids in the material as the material compliance decreases with increased material voids. The change in acoustic impedance across the surface of the sample was measured with a high-resolution ultrasonic scanning system. Finally, these foams were used as prototype transducers for the transmit-receive mode in air; practical limitations imposed by acoustic attenuation in air were assessed.

  10. Method and apparatus for air-coupled transducer

    NASA Technical Reports Server (NTRS)

    Song, Junho (Inventor); Chimenti, Dale E. (Inventor)

    2010-01-01

    An air-coupled transducer includes a ultrasonic transducer body having a radiation end with a backing fixture at the radiation end. There is a flexible backplate conformingly fit to the backing fixture and a thin membrane (preferably a metallized polymer) conformingly fit to the flexible backplate. In one embodiment, the backing fixture is spherically curved and the flexible backplate is spherically curved. The flexible backplate is preferably patterned with pits or depressions.

  11. Ultrasonic transducer

    SciTech Connect

    Csaszar, G.; Goldman, F.M.; Oehley, G.; Svoboda, E.J.

    1983-08-30

    An ultrasonic transducer is provided substantially at the hot spot in an engine manifold for vaporizing the fuel from the carburetor prior to entry of the fuel-air mixture into the cylinders. Transducer comprises a crystal adapted to be vibrated at a high frequency on the order of at least 1,000,000 Hz and a resonator tuned to the frequency of the crystal and operatively secured to the crystal, said transducer having an active surface adapted to be contacted by the fuel for finely vaporizing same. The fine vaporization or gasification of the fuel (gasoline, for example) prior to entry into the cylinders causes a more complete burning of the fuel. As a result, the engine delivers more power with less fuel, while carbon monoxide and hydrocarbon emissions are reduced. In operation, the ultrasonic transducer enhances cold weather startup and operation, eliminates engine flooding, smooths out engine idle, and improves pick up and acceleration by increasing power at low engine RPM. Engine power is boosted, while saving gasoline. The ultrasonic transducer can be installed into the intake manifold below the carburetor without modifying the structure of the carburetor or the intake manifold.

  12. Ultrasonic transducer

    DOEpatents

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  13. Development of a Fieldable Air-Coupled Ultrasonic Inspection System

    NASA Astrophysics Data System (ADS)

    Peters, J. J.; Barnard, D. J.; Hsu, D. K.

    2004-02-01

    This paper describes the development of a non-mechanically encoded, simple, field-worthy air-coupled ultrasonic scanning system that gives quantitative information about the size of damage and underlying structure in composite and aluminum aerospace structures. The system consists of the AIRSCAN® air-coupled ultrasonic testing system, the Flock of Birds® real-time motion tracking equipment, a lightweight composite yoke, and laptop PC with data acquisition and processing software. Through transmission C-scan images are generated manually by moving transducers attached to a yoke across the part's surface. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Field tests on commercial and military aircraft as well as rotor blades have begun. Initial test results are shown.

  14. PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS

    SciTech Connect

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-22

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.

  15. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  16. Experiments with Ultrasonic Transducers.

    ERIC Educational Resources Information Center

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  17. Review of air-coupled ultrasonic materials characterization.

    PubMed

    Chimenti, D E

    2014-09-01

    This article presents a review of air-coupled ultrasonics employed in the characterization or nondestructive inspection of industrial materials. Developments in air-coupled transduction and electronics are briefly treated, although the emphasis here is on methods of characterization and inspection, and in overcoming limitations inherent in the use of such a tenuous sound coupling medium as air. The role of Lamb waves in plate characterization is covered, including the use of air-coupled acoustic beams to measure the elastic and/or viscoelastic properties of a material. Air-coupled acoustic detection, when other methods are employed to generate high-amplitude sound beams is also reviewed. Applications to civil engineering, acoustic tomography, and the characterization of both paper and wood are dealt with here. A brief summary of developments in air-coupled acoustic arrays and the application of air-coupled methods in nonlinear ultrasonics complete the review. In particular, the work of Professor Bernard Hosten and his collaborators at Bordeaux is carefully examined. PMID:24650685

  18. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  19. Ultrasonic Transducers for Fourier Analysis.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1995-01-01

    Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)

  20. Air-coupled ultrasonic evaluation of food materials.

    PubMed

    Pallav, P; Hutchins, D A; Gan, T H

    2009-02-01

    This research was performed with the aim of detecting foreign bodies and additives within food products, and to measure selected acoustic properties, without contact to the sample. This would allow use in manufacturing plants on production lines, where contacting the product for ultrasonic inspection would not be feasible. Images of internal structure are reported. The air-coupled system uses capacitive devices which are able to provide sufficient bandwidth for many measurements, including the detection of foreign bodies in cheese, the detection of deliberate additives to chocolate, the detection of fill level and content of metallic food cans, and measurements of frozen dough products. The approach demonstrates that ultrasound has the potential for application to many industrial food packaging environments where non-metallic objects within food need to be detected. PMID:18973911

  1. Diffraction aperture non-ideal behaviour of air coupled transducers array elements designed for NDT.

    PubMed

    Prego Borges, J L; Montero de Espinosa, F; Salazar, J; Garcia-Alvarez, J; Chávez, J A; Turó, A; Garcia-Hernandez, M J

    2006-12-22

    Air coupled piezoelectric ultrasonic array transducers are a novel tool that could lead to interesting advances in the area of non-contact laminar material testing using Lamb wave's propagation techniques. A key issue on the development of such transducers is their efficient coupling to air media (impedance mismatch between the piezoelectric material and air is 90 dB or more). Adaptation layers are used in order to attain good matching and avoid possible serious signal degradation. However, the introduction of these matching layers modify the transducer surface behaviour and, consequently, radiation characteristics are altered, making the usual idealization criteria (of uniform surface movement) adopted for field simulation purposes inaccurate. In our system, we have a concave linear-array transducer of 64 elements (electrically coupled by pairs) working at 0.8 MHz made of PZ27 rectangular piezoceramics (15 mm x 0.3 mm) with two matching layers made of polyurethane and porous cellulose bonded on them. Experimental measurements of the acoustic aperture of single excited array elements have shown an increment on the geometrical dimensions of its active surface. A sub-millimeter vibrometer laser scan has revealed an extension of the aperture beyond the supposed physical single array element dimensions. Non-uniform symmetric apodized velocity surface vibration amplitude profile with a concave delay contour indicates the presumed existence of travelling wave phenomena over the surface of the outer array matching layer. Also, asymptotic propagation velocities around 2500 m/s and attenuation coefficient between 15 and 20 dB/mm has been determined for the travelling waves showing clear tendencies. Further comparisons between the experimental measurements of single array element field radiation diagram and simulated equivalent aperture counterpart reveal good agreement versus the ideal (uniform displaced) rectangular aperture. For this purpose an Impulse Response Method

  2. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  3. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  4. Non-contact optoacoustic imaging with focused air-coupled transducers

    SciTech Connect

    Deán-Ben, X. Luís; Pang, Genny A.; Razansky, Daniel; Montero de Espinosa, Francisco

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  5. Non-contact optoacoustic imaging with focused air-coupled transducers

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís; Pang, Genny A.; Montero de Espinosa, Francisco; Razansky, Daniel

    2015-08-01

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  6. Air-coupled piezoelectric transducers with active polypropylene foam matching layers.

    PubMed

    Gómez Alvarez-Arenas, Tomás E

    2013-05-10

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1-3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  7. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of...

  8. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of...

  9. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of...

  10. A correlation of air-coupled ultrasonic and thermal diffusivity data for CFCC materials

    SciTech Connect

    Pillai, T.A.K.; Easler, T.E.; Szweda, A.

    1997-01-01

    An air-coupled (non contact) through-transmission ultrasonic investigation has been conducted on 2D multiple ply Nicalon{trademark} SiC fiber/SiNC CFCC panels as a function of number of processing cycles. Corresponding thermal diffusivity imaging was also conducted. The results of the air-coupled ultrasonic investigation correlated with thermal property variations determined via infrared methods. Areas of delaminations were detected and effects of processing cycles were also detected.

  11. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  12. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    PubMed

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode.

  13. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  14. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  15. Air-coupled ultrasonic resonant spectroscopy for the study of the relationship between plant leaves' elasticity and their water content.

    PubMed

    Sancho-Knapik, Domingo; Calás, Hector; Peguero-Pina, Jose Javier; Ramos Fernández, Antonio; Gil-Pelegrín, Eustaquio; Gómez Álvarez-Arenas, Tomas E

    2012-02-01

    Air-coupled wideband ultrasonic piezoelectric transducers are used in the frequency range 0.3 to 1.3 MHz to excite and sense first-order thickness resonances in the leaves of four different tree species at different levels of hydration. The phase and magnitude spectra of these resonances are measured, and the inverse problem solved; that is, leaf thickness and density, ultrasound velocity, and the attenuation coefficient are obtained. The elastic constant in the thickness direction (c33) is then determined from density and velocity data. The paper focuses on the study of c33, which provides a unique, fast, and noninvasive ultrasonic method to determine leaf elasticity and leaf water content.

  16. Non-contact optoacoustic imaging by raster scanning a piezoelectric air-coupled transducer

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Pang, Genny A.; Montero de Espinosa, Francisco; Razansky, Daniel

    2016-03-01

    Optoacoustic techniques rely on ultrasound transmission between optical absorbers within tissues and the measurement location. Much like in echography, commonly used piezoelectric transducers require either direct contact with the tissue or through a liquid coupling medium. The contact nature of this detection approach then represents a disadvantage of standard optoacoustic systems with respect to other imaging modalities (including optical techniques) in applications where non-contact imaging is needed, e.g. in open surgeries or when burns or other lesions are present in the skin. Herein, non-contact optoacoustic imaging using raster-scanning of a spherically-focused piezoelectric air-coupled ultrasound transducer is demonstrated. When employing laser fluence levels not exceeding the maximal permissible human exposure, it is shown possible to attain detectable signals from objects as small as 1 mm having absorption properties representative of blood at near-infrared wavelengths with a relatively low number of averages. Optoacoustic images from vessel-mimicking tubes embedded in an agar phantom are further showcased. The initial results indicate that the air-coupled ultrasound detection approach can be potentially made suitable for non-contact biomedical imaging with optoacoustics.

  17. Hidden disbond detection in spent nuclear fuel storage systems using air-coupled ultrasonics

    NASA Astrophysics Data System (ADS)

    Song, Homin; Popovics, John S.

    2016-04-01

    This paper studies an air-coupled ultrasonic scanning approach for damage assessment in steel-clad concrete structures. An air-coupled ultrasonic sender generates guided plate waves in the steel cladding and a small contact-type receiver measures the corresponding wave responses. A frequency-wavenumber (f-k) domain signal filtering technique is used to isolate the behavior of the fundamental symmetric (S0) mode of the guided plate waves. The behavior of the S0 mode is sensitive to interface bonding conditions. The proposed inspection approach is verified by a series of experiments performed on laboratory-scale specimens. The experimental results demonstrate that hidden disbond between steel cladding and underlying concrete substrate can be successfully detected with the ultrasonic test setup and the f-k domain signal filtering technique.

  18. Characterizing ultrasonic transducers using pattern recognition techniques

    SciTech Connect

    Ekis, J.W.

    1992-04-01

    This project's goal was to develop an automated ultrasonic transducer characterization system. A computer-based test system collected the test data for each of the given transducers. This data set was then processed by a number of pattern recognition algorithms. The results from these classifications placed the transducers into groups of similar units. All the transducers in a group will have similar performance characteristics. Each group was isolated from the others. 49 refs.

  19. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  20. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  1. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  2. In sodium tests of ultrasonic transducers

    SciTech Connect

    Lhuillier, C.; Descombin, O.; Baque, F.; Marchand, B.; Saillant, J. F.

    2011-07-01

    Ultrasonic techniques are seen as suitable candidates for the in-service inspection and for the continuous surveillance of sodium cooled reactors (SFR). These techniques need the development and the qualification of immersed ultrasonic transducers, and materials. This paper presents some developments performed by CEA (DTN and LIST) and AREVA (NDE Solutions), and some results. (authors)

  3. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    PubMed Central

    Khuri-Yakub, Butrus T.; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications. PMID:21860542

  4. Transducers for ultrasonic limb plethysmography

    NASA Technical Reports Server (NTRS)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  5. Measurement methods of ultrasonic transducer sensitivity.

    PubMed

    Xiao, Dingguo; Fan, Qiong; Xu, Chunguang; Zhang, Xiuhua

    2016-05-01

    Sensitivity is an important parameter to describe the electro-acoustic energy conversion efficiency of ultrasonic transducer. In this paper, the definition of sensitivity and reciprocity of ultrasonic transducer is studied. The frequency response function of a transducer is the spectrum of its sensitivity, which reflects the response sensitivity of the transducer for input signals at different frequencies. Four common methods which are used to measure the disc-vibrator transducer sensitivity are discussed in current investigation. The reciprocity method and the pulse-echo method are based on the reciprocity of the transducer. In the laser vibrometer method measurement, the normal velocity on the transducer radiating surface is directly measured by a laser vibrometer. In the measurement process of the hydrophone method, a calibrated hydrophone is used to measure the transmitted field. The validity of these methods is checked by experimental test. All of the four methods described are sufficiently accurate for transducer sensitivity measurement, while each method has its advantages and limitations. In practical applications, the appropriate method to measure transducer sensitivity should be selected based on actual conditions. PMID:26953638

  6. Ultrasonic transducer for extreme temperature environments

    DOEpatents

    Light, Glenn M.; Cervantes, Richard A.; Alcazar, David G.

    1993-03-23

    An ultrasonic piezoelectric transducer that is operable in very high and very low temperatures. The transducer has a dual housing structure that isolates the expansion and contraction of the piezoelectric element from the expansion and contraction of the housing. Also, the internal components are made from materials having similar coefficients of expansion so that they do not interfere with the motion of the piezoelectric element.

  7. High energy, low frequency, ultrasonic transducer

    SciTech Connect

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  8. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  9. Non-bonded piezoelectric ultrasonic transducer

    DOEpatents

    Eoff, James M.

    1985-01-01

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  10. Precise Measurement of Pipe Wall Thickness in Noncontact Manner Using a Circumferential Lamb Wave Generated and Detected by a Pair of Air-Coupled Transducers

    NASA Astrophysics Data System (ADS)

    Nishino, Hideo; Asano, Tadashi; Taniguchi, Yuta; Yoshida, Kenichi; Ogawa, Hitoshi; Takahashi, Masakazu; Ogura, Yukio

    2011-07-01

    In this paper, we present a novel method of accurately estimating pipe wall thickness by detecting the minute difference in the angular wave number of a circumferential (C-) Lamb wave. A C-Lamb wave circling along a circumference of a pipe is transmitted and received by a pair of noncontact air-coupled ultrasonic transducers. For the accurate detection of the angular wave number, a large number of tone-burst cycles are used so as to superpose the C-Lamb wave on itself along its circumferential orbit. In this setting, the amplitude of the superposed region changes considerably with the angular wave number, from which the wall thickness can be estimated. This method is very useful to monitor the integrity of piping in high-temperature environments because of its noncontact nature. The principle of the method and experimental verification are shown.

  11. Characterization of waviness in wind turbine blades using air coupled ultrasonics

    SciTech Connect

    Chakrapani, Sunil Kishore; Dayal, Vinay; Hsu, David K.; Barnard, Daniel J.; Gross, Andrew

    2011-06-23

    Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air-coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effect of waviness in thick composites, and how it affects the life and performance of the composite.

  12. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  13. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  14. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  15. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    SciTech Connect

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  16. Bonded ultrasonic transducer and method for making

    DOEpatents

    Dixon, Raymond D.; Roe, Lawrence H.; Migliori, Albert

    1995-01-01

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  17. Bonded ultrasonic transducer and method for making

    DOEpatents

    Dixon, R.D.; Roe, L.H.; Migliori, A.

    1995-11-14

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

  18. Load characteristics of high power sandwich piezoelectric ultrasonic transducers.

    PubMed

    Shuyu, Lin

    2005-03-01

    Based on the equivalent circuit theory, the load characteristics of high power piezoelectric ultrasonic sandwich transducers are studied. Two types of loads are studied. One is liquid load as in ultrasonic cleaning, and the other is solid load as in ultrasonic drilling and machining. The effect of load and structure of the transducer on the resonance frequency of the transducer is analyzed. It is shown that the effect of load on the resonance frequency of sandwich transducers with different structures is different. For liquid load as in ultrasonic cleaning, the effect of the load on the resonance frequency of the sandwich transducer with symmetrical structure is the largest. It is the smallest for the transducer with its displacement node in the back metal cylinder. For solid load as in ultrasonic drilling and machining, the effect of the load on the resonance frequency of the sandwich transducer with its displacement node in the front metal cylinder is the largest. It is also the smallest for the transducer with its displacement node in the back metal cylinder. On the other hand, for some applications, such as ultrasonic drilling, when the lateral dimension of the tool is much less than that of the transducer, its effect on the resonance frequency of the transducer is small. The conclusions are useful in designing vibrating systems for different ultrasonic applications.

  19. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate.

  20. Capacitive micromachined ultrasonic transducers: fabrication technology.

    PubMed

    Ergun, Arif Sanli; Huang, Yongli; Zhuang, Xuefeng; Oralkan, Omer; Yaralioglu, Goksen G; Khuri-Yakub, Butrus T

    2005-12-01

    Capacitive micromachined ultrasonic transducer (cMUT) technology is a prime candidate for next generation imaging systems. Medical and underwater imaging and the nondestructive evaluation (NDE) societies have expressed growing interest in cMUTs over the years. Capacitive micromachined ultrasonic transducer technology is expected to make a strong impact on imaging technologies, especially volumetric imaging, and to appear in commercial products in the near future. This paper focuses on fabrication technologies for cMUTs and reviews and compares variations in the production processes. We have developed two main approaches to the fabrication of cMUTs: the sacrificial release process and the recently introduced wafer-bonding method. This paper gives a thorough review of the sacrificial release processes, and it describes the new wafer-bonding method in detail. Process variations are compared qualitatively and quantitatively whenever possible. Through these comparisons, it was concluded that wafer-bonded cMUT technology was superior in terms of process control, yield, and uniformity. Because the number of steps and consequent process time were reduced (from six-mask process to four-mask process), turn-around time was improved significantly. PMID:16463490

  1. Defect detection performance of the UCSD non-contact air-coupled ultrasonic guided wave inspection of rails prototype

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Sternini, Simone; Lanza di Scalea, Francesco; Fateh, Mahmood; Wilson, Robert

    2016-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. The prototype based on this technology was tested in October 2014 at the Transportation Technology Center (TTC) in Pueblo, Colorado, and again in November 2015 after incorporating changes based on lessons learned. Results from the 2015 field test are discussed in this paper.

  2. 21 CFR 884.2960 - Obstetric ultrasonic transducer and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Obstetric ultrasonic transducer and accessories. 884.2960 Section 884.2960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Monitoring Devices § 884.2960 Obstetric ultrasonic transducer and accessories. (a) Identification....

  3. New Methods and Transducer Designs for Ultrasonic Diagnostics and Therapy

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.; Sapozhnikov, O. A.; Khokhlova, V. A.

    Recent advances in the field of physical acoustics, imaging technologies, piezoelectric materials, and ultrasonic transducer design have led to emerging of novel methods and apparatus for ultrasonic diagnostics, therapy and body aesthetics. The paper presents the results on development and experimental study of different high intensity focused ultrasound (HIFU) transducers. Technological peculiarities of the HIFU transducer design as well as theoretical and numerical models of such transducers and the corresponding HIFU fields are discussed. Several HIFU transducers of different design have been fabricated using different advanced piezoelectric materials. Acoustic field measurements for those transducers have been performed using a calibrated fiber optic hydrophone and an ultrasonic measurement system (UMS). The results of ex vivo experiments with different tissues as well as in vivo experiments with blood vessels are presented that prove the efficacy, safety and selectivity of the developed HIFU transducers and methods.

  4. Torsional ultrasonic transducer computational design optimization.

    PubMed

    Melchor, J; Rus, G

    2014-09-01

    A torsional piezoelectric ultrasonic sensor design is proposed in this paper and computationally tested and optimized to measure shear stiffness properties of soft tissue. These are correlated with a number of pathologies like tumors, hepatic lesions and others. The reason is that, whereas compressibility is predominantly governed by the fluid phase of the tissue, the shear stiffness is dependent on the stroma micro-architecture, which is directly affected by those pathologies. However, diagnostic tools to quantify them are currently not well developed. The first contribution is a new typology of design adapted to quasifluids. A second contribution is the procedure for design optimization, for which an analytical estimate of the Robust Probability Of Detection, called RPOD, is presented for use as optimality criteria. The RPOD is formulated probabilistically to maximize the probability of detecting the least possible pathology while minimizing the effect of noise. The resulting optimal transducer has a resonance frequency of 28 kHz.

  5. Evaluation of several ultrasonic flowmeter transducers in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Moughon, W. C.

    1981-04-01

    Eighteen piezoelectric ultrasonic flowmeter transducers were laboratory tested to determine their suitability and long range reliability for use by the National Transonic Facility (NTF) to measure the flow rate of 450 Kg/sec of liquid nitrogen (LN2). Tests included thermally cycling each transducer 50 to 150 times over a temperature range of 295 K (ambient) to 77 K (LN2). The transducers were submerged in liquid nitrogen for 1 to 4 hours and the signal strength and quality noted. Results disclose that the current state-of-the-art ultrasonic flow transducers are very reliable and will meet the stringent requirements of the NTF.

  6. Evaluation of several ultrasonic flowmeter transducers in cryogenic environment

    NASA Technical Reports Server (NTRS)

    Moughon, W. C.

    1981-01-01

    Eighteen piezoelectric ultrasonic flowmeter transducers were laboratory tested to determine their suitability and long range reliability for use by the National Transonic Facility (NTF) to measure the flow rate of 450 Kg/sec of liquid nitrogen (LN2). Tests included thermally cycling each transducer 50 to 150 times over a temperature range of 295 K (ambient) to 77 K (LN2). The transducers were submerged in liquid nitrogen for 1 to 4 hours and the signal strength and quality noted. Results disclose that the current state-of-the-art ultrasonic flow transducers are very reliable and will meet the stringent requirements of the NTF.

  7. Focused high frequency needle transducer for ultrasonic imaging and trapping

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng; Zheng, Fan; Li, Ying; Lee, Changyang; Zhou, Qifa; Kirk Shung, K.

    2012-07-01

    A miniature focused needle transducer (<1 mm) was fabricated using the press-focusing technique. The measured pulse-echo waveform showed the transducer had center frequency of 57.5 MHz with 54% bandwidth and 14 dB insertion loss. To evaluate the performance of this type of transducer, invitro ultrasonic biomicroscopy imaging on the rabbit eye was obtained. Moreover, a single beam acoustic trapping experiment was performed using this transducer. Trapping of targeted particle size smaller than the ultrasonic wavelength was observed. Potential applications of these devices include minimally invasive measurements of retinal blood flow and single beam acoustic trapping of microparticles.

  8. Development of a 3D finite element model evaluating air-coupled ultrasonic measurements of nonlinear Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.

    2016-02-01

    This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.

  9. Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications.

    PubMed

    Song, Jinlong; Xue, Chenyang; He, Changde; Zhang, Rui; Mu, Linfeng; Cui, Juan; Miao, Jing; Liu, Yuan; Zhang, Wendong

    2015-01-01

    A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V) characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The -6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20 Vpp excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system. PMID:26389902

  10. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intended for use in diagnostic ultrasonic medical devices. Accessories of this generic type of device may include transmission media for acoustically coupling the transducer to the body surface, such as...

  11. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... intended for use in diagnostic ultrasonic medical devices. Accessories of this generic type of device may include transmission media for acoustically coupling the transducer to the body surface, such as...

  12. Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications

    PubMed Central

    Song, Jinlong; Xue, Chenyang; He, Changde; Zhang, Rui; Mu, Linfeng; Cui, Juan; Miao, Jing; Liu, Yuan; Zhang, Wendong

    2015-01-01

    A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V) characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The −6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20 Vpp excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system. PMID:26389902

  13. Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications.

    PubMed

    Song, Jinlong; Xue, Chenyang; He, Changde; Zhang, Rui; Mu, Linfeng; Cui, Juan; Miao, Jing; Liu, Yuan; Zhang, Wendong

    2015-09-15

    A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V) characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The -6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20 Vpp excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system.

  14. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  15. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  16. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed.

  17. In-die ultrasonic and off-line air-coupled monitoring and characterization techniques for drug tablets

    NASA Astrophysics Data System (ADS)

    Stephens, J. D.; Kowalczyk, B. R.; Hancock, B. C.; Kaul, G.; Akseli, I.; Cetinkaya, C.

    2012-05-01

    Mechanical integrity and properties of drug tablets may adversely affect their therapeutic and structural functions. An embedded ultrasound monitoring system for tablet mechanical property monitoring during compaction and a non-contact/non-destructive off-line air-coupled technique for determining the mechanical properties of coated drug tablets are presented. In the compaction monitoring system, the change of ToF and the reflection coefficient for the upper-punch surface interface as a function of compaction pressure has been studied. In the air-coupled measurement approach, air-coupled excitation and laser interferometric detection are utilized and their effectiveness in characterizing the mechanical properties of a drug tablet by examining its vibrational resonance frequencies is demonstrated. An iterative computational procedure based on the finite element method and Newton's method is developed to extract the mechanical properties of the coated tablet from a subset of its measured resonance frequencies. The mechanical properties characterized by this technique are compared to those obtained by a contact ultrasonic method.

  18. Apparatus for acoustically coupling an ultrasonic transducer with a body

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1993-01-01

    An apparatus for acoustically coupling an ultrasonic transducer with a body along whose surface waves are to be transmitted includes a wedge having a first surface for acoustically contacting a subject surface area of a body to be measured, on which surface waves are to be transmitted, and a second surface for accoustically contacting an ultrasonic transducer. The wedge includes a cylinder in which the second surface is present and which is movably disposed in a recess in a block in which the first surface is present, for orienting the first surface and the second surface relative to each other so that ultrasonic waves emitted by the ultrasonic transducer generate surface waves which travel on the subject surface area of the body when the ultrasonic transducer is in acoustic contact with the second surface and the first surface is in acoustic contact with the subject surface area of the body. In the preferred embodiment, there is a third surface which is orientable relative to the first surface so that ultrasonic waves emitted by an ultrasonic transducer in contact with the third surface generate surface waves which travel on the subject surface area of the body when the first surface is an acoustic contact with the subject surface area of the body.

  19. A rotary ultrasonic motor using bending vibration transducers.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-10-01

    A rotary ultrasonic motor using bending vibration transducers is proposed. In each transducer, two orthogonal bending vibrations are superimposed and an elliptical trajectory is generated at the driving foot. Typical output of the prototype is a no-load speed of 58 rpm and maximum torque of 9·5 Nm under an exciting voltage of 200 V(rms).

  20. Detection of defect parameters using nonlinear air-coupled emission by ultrasonic guided waves at contact acoustic nonlinearities.

    PubMed

    Delrue, Steven; Van Den Abeele, Koen

    2015-12-01

    Interaction of ultrasonic guided waves with kissing bonds (closed delaminations and incipient surface breaking cracks) gives rise to nonlinear features at the defect location. This causes higher harmonic frequency ultrasonic radiation into the ambient air, often referred to as Nonlinear Air-Coupled Emission (NACE), which may serve as a nonlinear tag to detect the defects. This paper summarizes the results of a numerical implementation and simulation study of NACE. The developed model combines a 3D time domain model for the nonlinear Lamb wave propagation in delaminated samples with a spectral solution for the nonlinear air-coupled emission. A parametric study is conducted to illustrate the potential of detecting defect location, size and shape by studying the NACE acoustic radiation patterns in different orientation planes. The simulation results prove that there is a good determination potential for the defect parameters, especially when the radiated frequency matches one of the resonance frequencies of the delaminated layer, leading to a Local Defect Resonance (LDR). PMID:26208725

  1. Highly reproducible Bragg grating acousto-ultrasonic contact transducers

    NASA Astrophysics Data System (ADS)

    Saxena, Indu Fiesler; Guzman, Narciso; Lieberman, Robert A.

    2014-09-01

    Fiber optic acousto-ultrasonic transducers offer numerous applications as embedded sensors for impact and damage detection in industrial and aerospace applications as well as non-destructive evaluation. Superficial contact transducers with a sheet of fiber optic Bragg gratings has been demonstrated for guided wave ultrasound based measurements. It is reported here that this method of measurement provides highly reproducible guided ultrasound data of the test composite component, despite the optical fiber transducers not being permanently embedded in it.

  2. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  3. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  4. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    NASA Astrophysics Data System (ADS)

    Kramb, V. A.

    2005-04-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy.

  5. An analytical model of a longitudinal-torsional ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Al-Budairi, Hassan; Lucas, Margaret

    2012-08-01

    The combination of longitudinal and torsional (LT) vibrations at high frequencies finds many applications such as ultrasonic drilling, ultrasonic welding, and ultrasonic motors. The LT mode can be obtained by modifications to the design of a standard bolted Langevin ultrasonic transducer driven by an axially poled piezoceramic stack, by a technique that degenerates the longitudinal mode to an LT motion by a geometrical alteration of the wave path. The transducer design is developed and optimised through numerical modelling which can represent the geometry and mechanical properties of the transducer and its vibration response to an electrical input applied across the piezoceramic stack. However, although these models can allow accurate descriptions of the mechanical behaviour, they do not generally provide adequate insights into the electrical characteristics of the transducer. In this work, an analytical model is developed to present the LT transducer based on the equivalent circuit method. This model can represent both the mechanical and electrical aspects and is used to extract many of the design parameters, such as resonance and anti-resonance frequencies, the impedance spectra and the coupling coefficient of the transducer. The validity of the analytical model is demonstrated by close agreement with experimental results.

  6. Radiation endurance of piezoelectric ultrasonic transducers--a review.

    PubMed

    Sinclair, A N; Chertov, A M

    2015-03-01

    A literature survey is presented on the radiation endurance of piezoelectric ultrasonic transducer components and complete transducer assemblies, as functions of cumulative gamma dose and neutron fluence. The most extensive data on this topic has been acquired in CANDU electrical generating stations, which use piezoelectric ultrasonic transducers manufactured commercially with minor accommodation for high radiation fields. They have been found to be reliable for cumulative gamma doses of up to approximately 2 MegaGrays; a brief summary is made of the associated accommodations required to the transducer design, and the ultimate expected failure modes. Outside of the CANDU experience, endurance data have been acquired under a diverse spectrum of operating conditions; this can impede a direct comparison of the information from different sources. Much of this data is associated with transducers immersed in liquid metal coolants associated with advanced reactor designs. Significant modifications to conventional designs have led to the availability of custom transducers that can endure well over 100 MegaGrays of cumulative gamma dose. Published data on transducer endurance against neutron fluence are reviewed, but are either insufficient, or were reported with inadequate description of test conditions, to make general conclusions on transducer endurance with high confidence. Several test projects are planned or are already underway by major laboratories and research consortia to augment the store of transducer endurance data with respect to both gamma and neutron radiation.

  7. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  8. Simulation of transducer-couplant effects on broadband ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  9. Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J.; Gil-Pelegrín, E.; Álvarez-Arenas, T. E. G.

    This work presents the application of a technique based on the excitation, sensing and spectral analysis of leaves thickness resonances using air-coupled and wide-band ultrasound to monitor variations in leaves properties due to the plant response along light/dark cycles. The main features of these resonances are determined by the tautness of the cells walls in such a way that small modifications produced by variations in the transpiration rate, stomata aperture or water potential have a direct effect on the thickness resonances that can be measured in a completely non-invasive and contactless way. Results show that it is possible to monitor leaves changes due to variations in light intensity along the diurnal cycle, moreover, the technique reveals differences in the leaf response for different species and also within the same species but for specimens grown under different conditions that present different cell structures at the tissue level.

  10. Thermal dispersion method for an ultrasonic phased-array transducer

    NASA Astrophysics Data System (ADS)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  11. Modeling of functionally graded piezoelectric ultrasonic transducers.

    PubMed

    Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli

    2009-05-01

    The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.

  12. Nonlinear behaviour of power ultrasonic transducers for food processing

    NASA Astrophysics Data System (ADS)

    Riera, E.; Cardoni, A.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    Power ultrasonic systems at laboratory and semi-industrial scale are currently investigated to demonstrate the suitability of ultrasonic waves of high-intensity to industrial applications. It has been shown that intense ultrasonic fields trigger a series of mechanisms in the irradiated media that may enhance and/or accelerate a variety of processes in the food sector. Ultrasonic radiators driven by piezoelectric vibrators have been specifically developed for assisting in drying and extraction operations. Successful industrial scale-up of such tuned systems significantly depends on the control of their nonlinear vibration behaviour at high operational power levels. In this paper we investigated experimentally the nonlinear dynamics of two power ultrasonic transducers: a grooved-plate transducer and a cylindrical radiator transducer. Nonlinear mechanisms affecting the dynamic behaviour of both assemblies such as the appearance of harmonics, combination of resonances, or modal interactions, and response saturation are presented. In particular, energy transfers among system modes that may produce the excitation of nontuned resonant frequencies causing heating, noise and even failures of the transducers are identified and characterised.

  13. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  14. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  15. 21 CFR 884.2960 - Obstetric ultrasonic transducer and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Obstetric ultrasonic transducer and accessories. 884.2960 Section 884.2960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., amplifiers, signal conditioners with their power supply, connecting cables, and component parts. This...

  16. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    NASA Astrophysics Data System (ADS)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  17. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  18. Ultrasonic waveguide transducer for high temperature testing of ceramic honeycomb

    NASA Astrophysics Data System (ADS)

    Wang, N.; An, C. P.; Nickerson, S. T.; Gunasekaran, N.; Shi, Z.

    2013-01-01

    This paper describes the development of a practical ultrasonic waveguide transducer designed for in situ material property characterization of ceramic honeycomb at high temperatures (>1200°C) and under fast thermal cycles (>1000°C/min). The low thermal conductivity MACOR waveguide allows the use of conventional transducer (max temp. 50°C) at one end and guides ultrasonic waves into the high temperature region where the characterization is carried out. The impact of time, temperature, and heating/cooling rates on the material behavior was studied. It was demonstrated that the same transducer could also be used for in-situ crack detection during the thermal shock testing of ceramic honeycomb.

  19. Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids.

    PubMed

    Cantrell, J H; Heyman, J S; Yost, W T; Torbett, M A; Breazeale, M A

    1979-01-01

    A broadband capacitive electrostatic acoustic transducer (ESAT) has been developed for use in a liquid environment at megahertz frequencies. The ESAT basically consists of a thin conductive membrane stretched over a metallic housing. The membrane functions as the ground plate of a parallel plate capacitor, the other plate being a dc biased electrode recessed approximately 10 mum from the electrically grounded membrane. An ultrasonic wave incident on the membrane varies the membrane-electrode gap spacing and generates an electrical signal proportional to the wave amplitude. The entire assembly is sealed for immersion in a liquid environment. Calibration of the ESAT with incident ultrasonic waves of constant displacement amplitude from 1 to 15 MHz reveals a decrease in signal response with increasing frequency independent of membrane tension. The use of the ESAT as a broadband ultrasonic transducer in liquids with a predictable frequency response is promising.

  20. Analytical modeling and experimental validation of a V-shape piezoelectric ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Li, Xiaoniu; Yao, Zhiyuan

    2016-07-01

    In this paper, an analytical model of a V-shape piezoelectric ultrasonic transducer is presented. The V-shape piezoelectric ultrasonic transducer has been widely applied to the piezoelectric actuator (ultrasonic motor), ultrasonic aided fabrication, sensor, and energy harvesting device. The V-shape piezoelectric ultrasonic transducer consists of two Langevin-type transducers connected together through a coupling point with a certain coupling angle. Considering the longitudinal and lateral movements of a single beam, the symmetrical and asymmetrical modals of the V-shape piezoelectric ultrasonic transducer are calculated. By using Hamilton-Lagrange equations, the electromechanical coupling model of the V-shape piezoelectric ultrasonic transducer is proposed. The influence of the coupling angle and cross-section on modal characteristics and electromechanical coupling coefficient are analyzed by the analytical model. A prototype of the V-shape piezoelectric ultrasonic transducer is fabricated, and the results of the experiments are in good agreement with the analytical model.

  1. Analytical modeling and experimental validation of a V-shape piezoelectric ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Li, Xiaoniu; Yao, Zhiyuan

    2016-07-01

    In this paper, an analytical model of a V-shape piezoelectric ultrasonic transducer is presented. The V-shape piezoelectric ultrasonic transducer has been widely applied to the piezoelectric actuator (ultrasonic motor), ultrasonic aided fabrication, sensor, and energy harvesting device. The V-shape piezoelectric ultrasonic transducer consists of two Langevin-type transducers connected together through a coupling point with a certain coupling angle. Considering the longitudinal and lateral movements of a single beam, the symmetrical and asymmetrical modals of the V-shape piezoelectric ultrasonic transducer are calculated. By using Hamilton–Lagrange equations, the electromechanical coupling model of the V-shape piezoelectric ultrasonic transducer is proposed. The influence of the coupling angle and cross-section on modal characteristics and electromechanical coupling coefficient are analyzed by the analytical model. A prototype of the V-shape piezoelectric ultrasonic transducer is fabricated, and the results of the experiments are in good agreement with the analytical model.

  2. Liquid-immersible electrostatic ultrasonic transducer

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.; Heyman, J. S.; Yost, W. T.; Torbett, M. A.; Breazeale, M. A. (Inventor)

    1982-01-01

    A broadband megahertz range electrostatic acoustic transducer for use in a liquid environment is described. A liquid tight enclosure includes a metallic conducting membrane as part of its outside surface and has a means inside the liquid tight enclosure for applying a tension to the membrane and for mounting an electrode such that the flat end of the electrode is aproximately parallel to the membrane. The invention includes structure and a method for ensuring that the membrane and the flat end of the electrode are exactly parallel and a fixed predetermined distance from each other.

  3. Flexible ultrasonic transducers incorporating piezoelectric fibres.

    PubMed

    Harvey, Gerald; Gachagan, Anthony; Mackersie, John W; McCunnie, Thomas; Banks, Robert

    2009-09-01

    It is possible to produce a high-performance, flexible 1-3 connectivity piezoelectric ceramic composite with conventional methods but the process is difficult and time-consuming. Extensive finite element modeling was used to design a piezocomposite structure which incorporated randomly positioned piezoceramic fibers in a polymer matrix. Simple manufacturing techniques were developed which resulted in the production of large numbers of fully populated fiber composites that offered performance comparable with a conventional 1-3 piezocomposite. A modified process facilitated the production of efficient fiber piezocomposite elements separated by polymer channels which conformed to a highly flexible (13 mm radius of curvature), 2-D matrix array configuration. This arrangement has been termed a Composite Element Composite Array Transducer, or CECAT. These devices were evaluated in terms of their impedance spectra, pulse-echo response, and surface displacement characteristics. The random piezoceramic fiber arrangements showed comparable sensitivity and bandwidth to periodic devices while minimizing the parasitic interpillar modes associated with periodic structures. Investigations have indicated that CECAT arrays constructed with 250 microm diameter fibers can be operated at frequencies of up to 3 MHz and transducers incorporating 10 microm diameter fibers can extend the frequency range above 6 MHz. Conversely, improved low-frequency devices can be produced with taller pillars than possible with conventional manufacturing techniques. PMID:19812003

  4. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  5. Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Soon; Kim, Jung-Ho; Kim, Moo-Joon; Ha, Kang-Lyeol; Yamada, Akira

    2004-05-01

    In ultrasonic computed tomography (UCT), it is necessary to synthesize a plane wave using waves emitted from sound sources arranged in the interior surface of a cylinder. In order to transmit a plane wave into a cylindrical surface, an ultrasonic transducer which has many vibrating elements with piezoelectric transverse effect arrayed on an arc surface is proposed. To achieve a wide beam width, the elements should have a small radiation area with a much narrow width. The measured electroacoustic efficiency for the elements was approximately 40% and the beam width defined by -3 dB level from the maximum was as wide as 120 deg. It was confirmed that plane wave synthesis is possible using the proposed transducer array.

  6. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  7. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  8. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer.

    PubMed

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L; Shung, K Kirk; Zhang, Hao F; Jiao, Shuliang

    2012-11-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

  9. Digital ultrasonic signal processing: Primary ultrasonics task and transducer characterization use and detailed description

    NASA Technical Reports Server (NTRS)

    Hammond, P. L.

    1979-01-01

    This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.

  10. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  11. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  12. Focused intravascular ultrasonic probe using dimpled transducer elements.

    PubMed

    Chen, Y; Qiu, W B; Lam, K H; Liu, B Q; Jiang, X P; Zheng, H R; Luo, H S; Chan, H L W; Dai, J Y

    2015-02-01

    High-frequency focused intravascular ultrasonic probes were fabricated in this study using dimple technique based on PMN-PT single crystal and lead-free KNN-KBT-Mn ceramic. The center frequency, bandwidth, and insertion loss of the PMN-PT transducer were 34 MHz, 75%, and 22.9 dB, respectively. For the lead-free probe, the center frequency, bandwidth, and insertion loss were found to be 40 MHz, 72%, and 28.8 dB, respectively. The ultrasonic images of wire phantom and vessels with good resolution were obtained to evaluate the transducer performance. The -6 dB axial and lateral resolutions of the PMN-PT probe were determined to be 58 μm and 131 μm, respectively. For the lead-free probe, the axial and lateral resolutions were found to be 44 μm and 125 μm, respectively. These results suggest that the mechanical dimpling technique has good potential in preparing focused transducers for intravascular ultrasound applications. PMID:25108608

  13. Endoscopic Therapeutic Device Using Focused Ultrasonic Small Transducer

    NASA Astrophysics Data System (ADS)

    Yasui, Akihiro; Haga, Yoichi; Chen, Jiun-Jie; Iseki, Hiroshi; Esashi, Masayoshi; Wada, Hiroshi

    In this research, an ultrasonic probe (5.5 mm in diameter), which has a concave PZT transducer at its tip, was fabricated for ultrasonic treatments such as sonoporation and sonodynamic therapy in the human body using a catheter and/or endoscope. Ultrasound has the potential to enhance cytotoxicity of drugs such as porphyrins, a process referred to as sonodynamic therapy, and also to deliver macromolecules such as plasmid DNA, a process referred to as sonoporation. The fabricated probe was then experimentally characterized by measuring the acoustic intensity distribution around the focal point, using a PVDF needle-type ultrasonic hydrophone. When the PZT transducer was driven by a 120 Volts peak-to-peak AC signal at 1.83 MHz, the ultrasound output was successfully focused at the focal point, with a peak intensity of 24.9 W/cm2 (0.87 MPa). Using the fabricated probe, cultured Chinese Hamster Ovary (CHO) cells were exposed to ultrasound (1.83 MHz, continuous wave, peak acoustic pressure of 0.5 MPa) for 2 s in the presence of microbubbles MB-3 and Green Fluorescent Protein (GFP) plasmid DNA. As a result of sonication, the expression of GFP was observed in CHO cells.

  14. A Low Frequency Broadband Flextensional Ultrasonic Transducer Array.

    PubMed

    Savoia, Alessandro Stuart; Mauti, Barbara; Caliano, Giosuè

    2016-01-01

    In this paper, we propose the design and the fabrication of a multicell, piezoelectrically actuated, flextensional transducer array structure, characterized by a low mechanical impedance, thus allowing wideband and high-sensitivity immersion operation in the low ultrasonic frequency range. The transducer structure, consisting of a plurality of circular elementary cells orderly arranged according to a periodic hexagonal tiling, features a high flexibility in the definition of the active area shape and size. We investigate, by finite element modeling (FEM), the influence of different piezoelectric and elastic materials for the flexural plate, for the plate support and for the backing, on the transducer electroacoustic behavior. We carry out the dimensioning of the transducer components and cell layout, in terms of materials and geometry, respectively, by aiming at a circular active area of 80-mm diameter and broadband operation in the 30-100-kHz frequency range in immersion. PZT-5H ceramic disks and a calibrated thickness stainless steel plate are chosen for the vibrating structure, and FR-4 laminates and a brass plate, respectively, for the plate support and the backing. The diameter of the individual cells is set to 6 mm resulting in 121 cells describing a quasi-circular area, and the total thickness of the transducer is less than 10 mm. We report on the fabrication process flow for the accurate assembly of the transducer, based, respectively, on epoxy resin and wire bonding for the mechanical and electrical interconnection of the individual parts. The results of the electrical impedance and transmit pressure field characterization are finally reported and discussed. PMID:26540680

  15. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  16. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  17. Acoustic coupling in capacitive microfabricated ultrasonic transducers: modeling and experiments.

    PubMed

    Caronti, Alessandro; Savoia, Alessandro; Caliano, Giosuè; Pappalardo, Massimo

    2005-12-01

    In the design of low-frequency transducer arrays for active sonar systems, the acoustic interactions that occur between the transducer elements have received much attention. Because of these interactions, the acoustic loading on each transducer depends on its position in the array, and the radiated acoustic power may vary considerably from one element to another. Capacitive microfabricated ultrasonic transducers (CMUT) are made of a two-dimensional array of metallized micromembranes, all electrically connected in parallel, and driven into flexural motion by the electrostatic force produced by an applied voltage. The mechanical impedance of these membranes is typically much lower than the acoustic impedance of water. In our investigations of acoustic coupling in CMUTs, interaction effects between the membranes in immersion were observed, similar to those reported in sonar arrays. Because CMUTs have many promising applications in the field of medical ultrasound imaging, understanding of cross-coupling mechanisms and acoustic interaction effects is especially important for reducing cross-talk between array elements, which can produce artifacts and degrade image quality. In this paper, we report a finite-element study of acoustic interactions in CMUTs and experimental results obtained by laser interferometry measurements. The good agreement found between finite element modeling (FEM) results and optical displacement measurements demonstrates that acoustic interactions through the liquid represent a major source of cross coupling in CMUTs.

  18. Finite element analysis of underwater capacitor micromachined ultrasonic transducers.

    PubMed

    Roh, Yongrae; Khuri-Yakub, Butrus T

    2002-03-01

    A simple electro-mechanical equivalent circuit model is used to predict the behavior of capacitive micromachined ultrasonic transducers (cMUT). Most often, cMUTs are made in silicon and glass plates that are in the 0.5 mm to 1 mm range in thickness. The equivalent circuit model of the cMUT lacks important features such as coupling to the substrate and the ability to predict cross-talk between elements of an array of transducers. To overcome these deficiencies, a flnite element model of the cMUT is constructed using the commercial code ANSYS. Calculation results of the complex load impedance seen by single capacitor cells are presented, then followed by a calculation of the plane wave real load impedance seen by a parallel combination of many cells that are used to make a transducer. Cross-talk between 1-D array elements is found to be due to two main sources: coupling through a Stoneley wave propagating at the transducer-water interface and coupling through Lamb waves propagating in the substrate. To reduce the cross-talk level, the effect of structural variations of the substrate are investigated, which includes a change of its thickness and etched trenches or polymer walls between array elements. PMID:12322877

  19. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    PubMed Central

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  20. Electromechanical coupling factor of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo

    2003-01-01

    Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor kw of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of kw, corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of kw, because it does not contribute to the energy conversion. The effective coupling factor keff is also investigated, showing that this parameter coincides with kw within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, keff, which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.

  1. Optimizing Piezoelectric Stack Preload Bolts in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.; Wong, K. S.

    The selection of the preload bolt is often an afterthought in the design of Langevin type "sandwich" transducers, but quite often it is the root cause of failure for power ultrasonic applications. The main role of the preload bolt is to provide a "prestress" in the piezo stack to prevent interface "gapping" or tension in glued joints which can result in delamination. But as an integral part of a highly tuned dynamic system, the resulting parasitic resonances in these preload bolts, such as bending or longitudinal modes, are often difficult to predict and control. This research investigates many aspects of preload bolt design for achieving optimal transducer performance, including basic size and strength determination based on drive amplitude, as well as ensuring adequate thread engagement to the mating horn. Other aspects such as rule-of-thumb configuration and length guidelines to reduce parasitic resonances are also investigated. Optimizing the uniformity of stress in the piezoceramics is also considered, which is affected by end mass length, counterbores and proximity to threading. The selection of the bolt material based on stiffness is also investigated as related to electromechanical coupling. The investigation focuses solely on Langevin type transducers used for semiconductor wire bonding, and which are comprised of the common Navy Types I and III (PZT4 and PZT8) piezoelectric materials. Several metrics are investigated such as impedance, displacement gain, and electromechanical coupling factor. The experimental and theoretical research methods include Bode plots, scanning laser vibrometry and finite element analysis.

  2. Impedance matching network for high frequency ultrasonic transducer for cellular applications.

    PubMed

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K Kirk

    2016-02-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber=1.23) and 2.6mm (fnumber=0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (|Y|) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic pulse was

  3. Transcranial Propagation with an Ultrasonic Mono-element Focused Transducer

    NASA Astrophysics Data System (ADS)

    Iglesias, P. C.; Jiménez, N.; Konofagou, E.; Camarena, F.; Redondo, J.

    Focused Ultrasound is the only truly transient, local and non-invasive technique able to induce safe Blood-Brain Barrier Opening (BBBO), technique used in Parkinson or Alzheimer diseases research. However, the presence of the skull in the path usually affects the focus characteristics (gain, beam width, shape and maxima location). In this work, transcranial acoustic wave propagation generated by a mono-element focused transducer has been modeled using 2D and 3D FDTD methods. Skull structure of the non-human primate under test can be compared in terms of density and sound speed with polymethylmethacrylate (PMMA) films. Then, focus aberration and the phenomena that cause it are characterized, providing a better control of the beam focus using the BBBO technique. Results throw that focal axial displacements are constant with the angle of incidence for PMMA flat films. In normal incidence, a shift of 6 mm is given for axial displacement in the 2D transcranial propagation. Moreover, if the skull geometry under the action of the ultrasonic beam can be compared with the curvature radius of the transducer, displacements should be constant with angle independency, like those seeing in the homogenous flat films with the same thickness.

  4. Deep-collapse operation of capacitive micromachined ultrasonic transducers.

    PubMed

    Olcum, Selim; Yamaner, F Yalcin; Bozkurt, Ayhan; Atalar, Abdullah

    2011-11-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been introduced as a promising technology for ultrasound imaging and therapeutic ultrasound applications which require high transmitted pressures for increased penetration, high signal-to-noise ratio, and fast heating. However, output power limitation of CMUTs compared with piezoelectrics has been a major drawback. In this work, we show that the output pressure of CMUTs can be significantly increased by deep-collapse operation, which utilizes an electrical pulse excitation much higher than the collapse voltage. We extend the analyses made for CMUTs working in the conventional (uncollapsed) region to the collapsed region and experimentally verify the findings. The static deflection profile of a collapsed membrane is calculated by an analytical approach within 0.6% error when compared with static, electromechanical finite element method (FEM) simulations. The electrical and mechanical restoring forces acting on a collapsed membrane are calculated. It is demonstrated that the stored mechanical energy and the electrical energy increase nonlinearly with increasing pulse amplitude if the membrane has a full-coverage top electrode. Utilizing higher restoring and electrical forces in the deep-collapsed region, we measure 3.5 MPa peak-to-peak pressure centered at 6.8 MHz with a 106% fractional bandwidth at the surface of the transducer with a collapse voltage of 35 V, when the pulse amplitude is 160 V. The experimental results are verified using transient FEM simulations.

  5. Investigation of a cup-shaped ultrasonic transducer operated in the full-wave vibrational mode.

    PubMed

    Xu, Long

    2015-05-01

    Cup-shaped horn has significant applications in ultrasonic machining, such as continuous bonding of plastic sheet or strips. Generally, it is excited by a sandwich piezoelectric transducer and both together constitute a cup-shaped ultrasound transducer (CUT). To provide a concise theoretical model for its engineering applications, the equivalent circuit of the cup-shaped ultrasonic transducer is deduced and the resonance/anti-resonance frequency equations are obtained. Meanwhile, the vibrational characteristics of the cup-shaped ultrasonic transducer have been investigated by using the analytical and numerical methods, and then confirmed by the experiment. The results show that the cup-shaped horn has a distinctive equivalent circuit, and the cup-shaped ultrasonic transducer has a good vibrational performance.

  6. Effect of Thermal Degradation on High Temperature Ultrasonic Transducer Performance in Small Modular Reactors

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    Prototype ultrasonic NDT transducers for use in immersion in coolants for small modular reactors have shown low signal to noise ratio. The reasons for the limitations in performance at high temperature are under investigation, and include changes in component properties. This current work seeks to quantify the issue of thermal expansion and degradation of the piezoelectric material in a transducer using a finite element method. The computational model represents an experimental set up for an ultrasonic transducer in a pulse-echo mode immersed in a liquid sodium coolant. Effect on transmitted and received ultrasonic signal due to elevated temperature (∼200oC) has been analysed.

  7. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach.

  8. Flaw detection in multi-layer, multi-material composites by resonance imaging: Utilizing Air-coupled Ultrasonics and Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Livings, Richard Andrew

    2011-12-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  9. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    SciTech Connect

    Wang, F. J. Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W.; Zhang, H. J.

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  10. High-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler.

    PubMed

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K Kirk; Wang, Gaofeng; Yu, Hongyu

    2010-05-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.

  11. High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors

    SciTech Connect

    Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

    2011-12-31

    In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

  12. New technology for the design of advanced ultrasonic transducers for high-power applications.

    PubMed

    Parrini, Lorenzo

    2003-06-01

    A new high-frequency ultrasonic transducer for wire bonding has been conceived, designed, prototyped and tested. In the design phase an advanced approach was used and established. The method is based on the two basic principles of modularity and iteration. The transducer is decomposed to its elementary components. For each component an initial design is obtained with finite elements method (FEM) simulations. The simulated ultrasonic modules are then built and characterized experimentally through laser-interferometry measurements and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be iteratively adjusted and optimized. The achieved FEM simulations exhibit a remarkably high-predictive potential and allow full control on the vibration behavior of the ultrasonic modules and of the whole transducer. The new transducer is fixed on the wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the converter to be attached on the wire bonder not only in longitudinal nodes but also in radial nodes of the ultrasonic field excited in the horn. This leads to a nearly complete decoupling of the transducer to the wire bonder, which has not been previously obtained. The new approach to mount ultrasonic transducers on a welding-device is of major importance not only for wire bonding but also for all high-power ultrasound applications and has been patented.

  13. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-01-01

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a -6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs. PMID:27347955

  14. An ultrasonic transducer array for velocity measurement in underwater vehicles.

    PubMed

    Boltryk, P; Hill, M; Keary, A; Phillips, B; Robinson, H; White, P

    2004-04-01

    A correlation velocity log (CVL) is an ultrasonic navigation aid for marine applications, in which velocity is estimated using an acoustic transmitter and a receiver array. CVLs offer advantages over Doppler velocity logs (DVLs) in many autonomous underwater vehicle (AUV) applications, since they can achieve high accuracy at low velocities even during hover manoeuvres. DVLs require narrow beam widths, whilst ideal CVL transmitters have wide beam widths. This gives CVLs the potential to use lower frequencies thus permitting operation in deeper water, reducing power requirements for the same depth, or allowing the use of smaller transducers. Moving patterns in the wavefronts across a 2D receiver array are detected by calculating correlation coefficients between bottom reflections from consecutive transmitted pulses, across all combinations of receiver pairings. The position of the peak correlation value, on a surface representing receiver-pairing separations, is proportional to the vessel's displacement between pulses. A CVL aimed primarily for AUVs has been developed. Its acoustical and signal processing design has been optimised through sea trials and computer modelling of the sound field. This computer model is also used to predict how the distribution of the correlation coefficients varies with distance from the peak position. Current work seeks to increase the resolution of the peak estimate using surface fitting methods. Numerical simulations suggest that peak estimation methods significantly improve system precision when compared with simply identifying the position of the maximum correlation coefficient in the dataset. The peak position may be estimated by fitting a quadratic model to the measured data using least squares or maximum likelihood estimation. Alternatively, radial basis functions and Gaussian processes successfully predict the peak position despite variation between individual correlation datasets. This paper summarises the CVL's main acoustical

  15. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-06-24

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a -6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs.

  16. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers

    PubMed Central

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-01-01

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a −6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs. PMID:27347955

  17. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy.

    PubMed

    Ma, Teng; Zhang, Xiangyang; Chiu, Chi Tat; Chen, Ruimin; Kirk Shung, K; Zhou, Qifa; Jiao, Shuliang

    2014-01-01

    Photoacoustic ophthalmoscopy (PAOM) is a high-resolution in vivo imaging modality that is capable of providing specific optical absorption information for the retina. A high-frequency ultrasonic transducer is one of the key components in PAOM, which is in contact with the eyelid through coupling gel during imaging. The ultrasonic transducer plays a crucial role in determining the image quality affected by parameters such as spatial resolution, signal-to-noise ratio, and field of view. In this paper, we present the results of a systematic study on a high-frequency ultrasonic transducer design for PAOM. The design includes piezoelectric material selection, frequency selection, and the fabrication process. Transducers of various designs were successfully applied for capturing images of biological samples in vivo. The performances of these designs are compared and evaluated.

  18. An Ultrasonic Motor Using a Titanium Transducer for a Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Takeda, Dai; Yamaguchi, Daisuke; Kanda, Takefumi; Suzumori, Koichi; Noguchi, Yuya

    2013-07-01

    We have fabricated an ultrasonic motor using a titanium transducer. This motor is for driving in the cryogenic temperature condition with a highly intense magnetic field. Titanium has low magnetic permeability and a thermal expansion coefficient close to that of lead zirconate titanate (PZT). These features mean that a transducer made of titanium has good properties for use in such an environment. We have fabricated and evaluated the ultrasonic motor in a cryogenic environment and an intense magnetic field. We have simulated the thermal stress applied to PZT in consideration of nonlinear material properties in the cryogenic environment. The thermal stress of the titanium transducer is smaller than that of the SUS304 transducer. Moreover, we have achieved driving of the ultrasonic motor at 4.5 K. Additionally, we have confirmed that there is little effect of the intense magnetic field on the driving of the motor.

  19. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    NASA Astrophysics Data System (ADS)

    Taghaddos, Elaheh; Hejazi, Mehdi; Safari, Ahmad

    2015-06-01

    Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  20. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    PubMed

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  1. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... that converts electrical signals into acoustic signals and acoustic signals into electrical signals and... include transmission media for acoustically coupling the transducer to the body surface, such as...

  2. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that converts electrical signals into acoustic signals and acoustic signals into electrical signals and... include transmission media for acoustically coupling the transducer to the body surface, such as...

  3. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... that converts electrical signals into acoustic signals and acoustic signals into electrical signals and... include transmission media for acoustically coupling the transducer to the body surface, such as...

  4. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  5. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.

    PubMed

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L W; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  6. Characteristics of Ultrasonic Linear Motor that Incorporates Two Transducers at an Acute Angle

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuyuki; Tsunoji, Masaki; Tsujino, Jiromaru

    2013-07-01

    In this study, we have developed an ultrasonic linear motor that incorporates two transducers at an acute angle. The two transducers are used to generate the vertical and horizontal vibration components. The complex vibration is excited using two electrical sources with a phase shift. Ultrasonic motors have unique characteristics such as silent motion and absence of magnetic noise. These characteristics are suitable for use in hospitals and so on. Therefore, we focus on developing actuators for use in a medical bed, specifically a bedsore prevention bed. A study of the vibration characteristics of the motor showed that the resonant frequencies of the transducers were appropriate, although the vibration amplitude of one transducer was less than that of the other. A study of the load characteristics showed that a no-load speed of 267 mm/s and a maximum thrust of 40 N were obtained.

  7. Finite element simulation of single ultrasonic transducer with segmented electrodes to adjust the directional characteristic

    NASA Astrophysics Data System (ADS)

    Unverzagt, Carsten; Henning, Bernd

    2012-05-01

    For many applications like level measurement and industry robotics it is of advantage if the directional characteristic of an ultrasonic transducer is changeable or adaptable for the improvement of spatial resolution. Often this goal is reached with the use of ultrasonic transducer arrays, which elements are driven with phase shifted excitation signals. One disadvantage of these solutions is the great effort for building such an array and the multi-channel sensor electronics. In this contribution the directional characteristic of a single air transducer with segmented electrodes is analyzed. Therefore a variable script based finite element model is used to discover the influence of different electrode configurations on the directional characteristic of a single piezoceramic transducer. Especially the influence on the angle of beam and the near field length are evaluated. The used variable model permits an optimization of the configuration with regards to the mentioned criteria. The findings will be used for the development of a level measurement system for bulk solids.

  8. Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers

    DOEpatents

    Karplus, Henry H. B.

    1980-01-01

    An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultrasonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.

  9. Development of lead-free single-element ultrahigh frequency (170 – 320 MHz) ultrasonic transducers

    PubMed Central

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320 MHz. The center frequency of > 300 MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured −6 dB bandwidth of the transducers ranged from 35 to 64 %. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from −50 to −60 dB. In addition to the pulse-echo measurement, a 6-μm tungsten wire phantom was also imaged with a 205 MHz transducer to demonstrate the imaging capability. The measured −6 dB axial and lateral resolutions were found to be 12 μm and 50 μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher. PMID:23485349

  10. Development of lead-free single-element ultrahigh frequency (170-320MHz) ultrasonic transducers.

    PubMed

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320MHz. The center frequency of >300MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured -6dB bandwidth of the transducers ranged from 35% to 64%. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from -50 to -60dB. In addition to the pulse-echo measurement, a 6μm tungsten wire phantom was also imaged with a 205MHz transducer to demonstrate the imaging capability. The measured -6dB axial and lateral resolutions were found to be 12μm and 50μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher.

  11. Development of a Novel Ultrasonic Waveguide Transducer for Under-Sodium Viewing

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chien, H. T.; Lawrence, W. P.; Engel, D.; Sheen, S. H.

    2011-06-01

    A novel ultrasonic waveguide transducer (UWT) has been developed for under-sodium inspection of sodium-cooled fast reactor (SFR). Its performance was evaluated and compared with other four types of waveguide designs. The signal transmission efficiency and detection sensitivity has been greatly improved. The preliminary results in molten sodium demonstrate that our novel ultrasonic waveguide transducer is able to achieve 1 mm lateral resolution and 0.5 mm vertical resolution in molten sodium with temperature ranged from 300 °F to 650 °F.

  12. Optimization of ultrasonic transducers for selective guided wave actuation

    NASA Astrophysics Data System (ADS)

    Miszczynski, Mateusz; Packo, Pawel; Zbyrad, Paulina; Stepinski, Tadeusz; Uhl, Tadeusz; Lis, Jerzy; Wiatr, Kazimierz

    2016-04-01

    The application of guided waves using surface-bonded piezoceramic transducers for nondestructive testing (NDT) and Structural Health Monitoring (SHM) have shown great potential. However, due to difficulty in identification of individual wave modes resulting from their dispersive and multi-modal nature, selective mode excitement methods are highly desired. The presented work focuses on an optimization-based approach to design of a piezoelectric transducer for selective guided waves generation. The concept of the presented framework involves a Finite Element Method (FEM) model in the optimization process. The material of the transducer is optimized in topological sense with the aim of tuning piezoelectric properties for actuation of specific guided wave modes.

  13. Linear-array ultrasonic waveguide transducer for under sodium viewing.

    SciTech Connect

    Sheen, S. H.; Chien, H. T.; Wang, K.; Lawrence, W. P.; Engel, D.; Nuclear Engineering Division

    2010-09-01

    In this report, we first present the basic design of a low-noise waveguide and its performance followed by a review of the array transducer technology. The report then presents the concept and basic designs of arrayed waveguide transducers that can apply to under-sodium viewing for in-service inspection of fast reactors. Depending on applications, the basic waveguide arrays consist of designs for sideway and downward viewing. For each viewing application, two array geometries, linear and circular, are included in design analysis. Methods to scan a 2-D target using a linear array waveguide transducer are discussed. Future plan to develop a laboratory array waveguide prototype is also presented.

  14. Development of High Temperature Ultrasonic Transducer for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Baba, A.; Searfass, C. T.; Tittmann, B. R.

    2011-06-01

    Structural health monitoring (SHM) techniques are needed to maintain the reliability of aging power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings, crack growth in the materials and material evaluation) under the working condition of power plants. We have developed high temperature transducer using lithium niobate (LiNbO3) single crystal which is well known as a high Curie temperature piezoelectric material. The LiNbO3 was bonded onto a stainless steel substrate. The transducer was heated in an electric furnace while measuring the bottom echoes from the substrate. We confirmed that the high temperature transducer could work up to 1000 °C.

  15. Self-focused ZnO transducers for ultrasonic biomicroscopy

    SciTech Connect

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-04-15

    A simple fabrication technique was developed to produce high frequency (100 MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18 {mu}m thick ZnO layer on 2 mm diameter aluminum rods with ends shaped and polished to produce a 2 mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4 {mu}m Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101 MHz with a -6 dB bandwidth of 49%. The measured two way insertion loss was 44 dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.

  16. High Temperature Ultrasonic Transducers : Material Selection and Testing

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bruno, Alessandro

    2012-01-01

    The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.

  17. Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding.

    PubMed

    Mathieson, Andrew; DeAngelis, Dominick A

    2016-01-01

    Since the 1950s, lead zirconate-titanate (PZT) has been the dominant transduction material utilized in power ultrasonics, while lead-free piezoceramics have been largely neglected due to their relatively poor piezoelectric and electromechanical properties. However, the implementation of environmental directives that regulate and control the use of hazardous materials, such as lead, triggered a search for new high-performance lead-free piezoceramics. Recent advances have led to lead-free piezoceramics exhibiting properties similar to PZT, but despite this, reports utilizing these novel piezoceramics in practice are limited. This research employs a modified variant of bismuth sodium titanate (BNT) in a power ultrasonic transducer used for metal welding during the manufacture of semiconductors. The important factors for transducer reliability and performance are investigated, such as piezoceramic aging and stack preload level. It is reported that BNT-based transducers exhibit good stability, and can withstand a stack preload level of 90 MPa without depoling. Although the BNT-based transducers exhibited larger dissipative losses compared to identical PZT8-based transducers, the tool displacement gain was larger under constant current conditions. Semiconductor wire bonds which satisfied the commercial quality control requirements were also formed by this BNT-based transducer.

  18. Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding.

    PubMed

    Mathieson, Andrew; DeAngelis, Dominick A

    2016-01-01

    Since the 1950s, lead zirconate-titanate (PZT) has been the dominant transduction material utilized in power ultrasonics, while lead-free piezoceramics have been largely neglected due to their relatively poor piezoelectric and electromechanical properties. However, the implementation of environmental directives that regulate and control the use of hazardous materials, such as lead, triggered a search for new high-performance lead-free piezoceramics. Recent advances have led to lead-free piezoceramics exhibiting properties similar to PZT, but despite this, reports utilizing these novel piezoceramics in practice are limited. This research employs a modified variant of bismuth sodium titanate (BNT) in a power ultrasonic transducer used for metal welding during the manufacture of semiconductors. The important factors for transducer reliability and performance are investigated, such as piezoceramic aging and stack preload level. It is reported that BNT-based transducers exhibit good stability, and can withstand a stack preload level of 90 MPa without depoling. Although the BNT-based transducers exhibited larger dissipative losses compared to identical PZT8-based transducers, the tool displacement gain was larger under constant current conditions. Semiconductor wire bonds which satisfied the commercial quality control requirements were also formed by this BNT-based transducer. PMID:26584490

  19. A Double Transducer for High Precision Ultrasonic Time-Domain Reflectometry Measurements

    PubMed Central

    Stade, Sam; Hakkarainen, Tuomas; Kallioinen, Mari; Mänttäri, Mika; Tuuva, Tuure

    2015-01-01

    Membrane fouling, where unwanted particles accumulate on the membrane surface and reduce its permeability, causes problems in membrane filtration processes. With ultrasonic time-domain reflectometry (UTDR) it is possible to measure the extent of membrane fouling and hence take actions to minimize it. However, the usability of UTDR is very limited to constant filtration conditions if the sonic velocity, which has a great impact on UTDR measurement accuracy, is unknown. With a reference transducer the actual sonic velocity can be measured. This requires another transducer to be installed in the module, where there may be only limited space or the module dimensions may not be suitable for the reference transducer. A double transducer described in this study eliminates the need for a separate reference transducer because in the double transducer the reference measurement is included in the design of the transducer holder. Two sensors in the same holder require less space. Other advantage is that the double transducer can be placed near the measurement target and hence the local sonic velocity can be determined. PMID:26131667

  20. Waterless coupling of ultrasound from planar contact transducers to curved and irregular surfaces during non-destructive ultrasonic evaluations

    NASA Astrophysics Data System (ADS)

    Denslow, Kayte; Diaz, Aaron; Jones, Mark; Meyer, Ryan; Cinson, Anthony; Wells, Mondell

    2012-04-01

    The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  1. Waterless Coupling of Ultrasound from Planar Contact Transducers to Curved and Irregular Surfaces during Non-destructive Ultrasonic Evaluations

    SciTech Connect

    Denslow, Kayte M.; Diaz, Aaron A.; Jones, Anthony M.; Meyer, Ryan M.; Cinson, Anthony D.; Wells, Mondell D.

    2012-04-30

    The Applied Physics group at the Pacific The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  2. Design and some practical applications of ultrasonic transducers with axicon lenses

    NASA Astrophysics Data System (ADS)

    Katchadjian, P.; Desimone, C.; Garcia, A.

    2013-01-01

    In this paper the applications, detailed in previous papers, referred to ultrasonic transducers with the addition of axicon lenses are extended. Axicon lenses, both contact and immersion, for normal and angular incidence were manufactured, in order to study defectology in welds and other components. For immersion transducers, as had already been made for contact transducers, signal amplitude in function of the depth of the reflector and transverse acoustic pressure at the focus were measured. For this purpose a small metallic sphere submerged in different fluids was used. Several practical applications are shown where it is possible to exploit the advantages that these transducers offer: high resolution measurements for corrosion, laminations and thickness reduction. Discrimination between a weld root and a defect very close to it, etc. Measurements in anisotropic materials (composites) in order to achieve an SNR improvement.

  3. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers

    PubMed Central

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-01-01

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design. PMID:26287197

  4. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-08-13

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design.

  5. Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers

    DOEpatents

    Karplus, H.H.B.; Forster, G.A.

    An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultransonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.

  6. A rectangle-type linear ultrasonic motor using longitudinal vibration transducers with four driving feet.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2013-04-01

    To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.

  7. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    PubMed

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  8. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  9. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.

    PubMed

    Chen, Ruimin; Wu, Jinchuan; Ho Lam, Kwok; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K Kirk

    2012-12-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In(1/2)Nb(1/2))-Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PIN-PMN-PT) and binary Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PMNPT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a -6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227

  10. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    NASA Astrophysics Data System (ADS)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  11. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements.

    PubMed

    Loveday, Philip W

    2007-10-01

    A finite-element modeling procedure for computing the frequency response of piezoelectric transducers attached to infinite constant cross-section waveguides, as encountered in guided wave ultrasonic inspection, is presented. Two-dimensional waveguide finite elements are used to model the waveguide. Conventional three-dimensional finite elements are used to model the piezoelectric transducer. The harmonic forced response of the waveguide is used to obtain a dynamic stiffness matrix (complex and frequency dependent), which represents the waveguide in the transducer model. The electrical and mechanical frequency response of the transducer, attached to the waveguide, can then be computed. The forces applied to the waveguide are calculated and are used to determine the amplitude of each mode excited in the waveguide. The method is highly efficient compared to time integration of a conventional finite-element model of a length of waveguide. In addition, the method provides information about each mode that is excited in the waveguide. The method is demonstrated by modeling a sandwich piezoelectric transducer exciting a waveguide of rectangular cross section, although it could be applied to more complex situations. It is expected that the modeling method will be useful during the optimization of piezoelectric transducers for exciting specific wave propagation modes in waveguides.

  12. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  13. A high-power linear ultrasonic motor using longitudinal vibration transducers with single foot.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-08-01

    A high-power linear ultrasonic motor using longitudinal vibration transducers with single foot was proposed in this paper. The stator of proposed motor contains a horizontal transducer and a vertical transducer. Longitudinal vibrations are superimposed in the stator and generate an elliptical trajectory at the driving foot. The sensitivity analysis of structural parameters to the resonance frequencies of two working modes of the stator was performed using the finite element method. The resonance frequencies of two working modes were degenerated by adjusting the structural parameters. The vibration characteristics of stator were studied and discussed. A prototype motor was fabricated and measured. Typical output of the prototype is a no-load speed of 1160 mm/s and maximum thrust force of 20 N at a voltage of 200 V(rms).

  14. Numerical simulation of the transient temperature field from an annular focused ultrasonic transducer.

    PubMed

    Zhang, Qiang; Li, Faqi; Feng, Ruo; Xu, Jianyi; Bai, Jin; Wang, Zhibiao; Wang, Yaojun

    2003-04-01

    Knowledge of the extent of the "heated necrosis element" from a single exposure in target tissue created by an ultrasonic beam is critical for the application of focal ultrasound (US) surgery (FUS). This study uses the O'Nell and Pennes formulas to simulate the heated necrosis element from an annular focused transducer and to examine its dependence on exposure dosage, as well as some design parameters of the transducer. Several conclusions may be drawn from our numerical results: 1. With increasing exposure, the heated necrosis element increases, but its contour becomes plumper and the influence of sound intensity I is found to be greater than that of the exposure time t. 2. To get a similar heated necrosis element, the exposure approximately satisfies a relation: It(0. 4 3)=constant. 3. Increasing the US frequency or the outer-radius of the annular transducer leads to a decrease in the heated necrosis volume. PMID:12749928

  15. Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers.

    PubMed

    Akhbari, Sina; Sammoura, Firas; Lin, Liwei

    2016-03-01

    Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material, and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently and can be further generalized to evaluate other pMUT architectures in the form of single devices or arrays. PMID:26863658

  16. Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers.

    PubMed

    Akhbari, Sina; Sammoura, Firas; Lin, Liwei

    2016-03-01

    Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material, and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently and can be further generalized to evaluate other pMUT architectures in the form of single devices or arrays.

  17. In-flight measurement of ice growth on an airfoil using an array of ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Mcknight, Robert C.; Humes, Robert L.

    1987-01-01

    Results from three research flights to obtain in-flight ultrasonic pulse-echo measurements of airfoil ice thickness as a function of time using an array of eight ultrasonic transducers mounted flush with the leading edge of the airfoil are presented. The accuracy of the thickness measurements is found to be within 0.5 mm of mechanical and stereophotograph measurements of the ice accretion. The ultrasonic measurements demonstrate that the ice growth rate typically varies during the flight, with variations in the ice growth rate for dry ice growth being primarily due to fluctuations in the cloud liquid water content. Discrepancies between experimental results and results predicted by an analytic icing code underline the need for a better understanding of the physics of wet ice growth.

  18. Dual-Mode Combined Infra Red and Air-Coupled Ultrasonic Technique for Real-Time Industrial Process Control with Special Reference to the Food Industry

    NASA Astrophysics Data System (ADS)

    Pallav, P.; Hutchins, D. A.; Diamond, G. G.; Gan, T. H.; Hellyer, J. E.

    2008-02-01

    This paper describes the use of air-coupled ultrasound and Near Infra red (NIR) as complimentary techniques for food quality assessment. A major study has been performed, in collaboration with four industrial food companies, to investigate the use of air-coupled ultrasound and NIR to both detect foreign bodies, and to measure certain parameters of interest, such as the amount of a certain additive. The research has demonstrated that air-coupled ultrasound can be used in on-line situations, measuring food materials such as chocolate and cheese. It is also capable of performing measurements on moving sealed metal cans containing food, and is able to detect foreign bodies with the top removed, as encountered just before sealing. NIR has been used as a complimentary technique to test food materials where propagation of air-coupled ultrasound was found to be difficult. This could be due to the presence of air pockets within the food material, as in the case of bread dough.

  19. Piezoelectric polymer foams: transducer mechanism and preparation as well as touch-sensor and ultrasonic-transducer properties

    NASA Astrophysics Data System (ADS)

    Wegener, M.

    2010-04-01

    Different materials provide a mechanical-electrical energy conversion and are thus interesting candidates for piezoelectric sensors and actuators. Beside ferroelectric ceramics and polymers, also polymer foams, so-called ferroelectrets, are developed as piezoelectric active materials. Their piezoelectricity originates from optimized structural and elastic-foam properties accompanied with an optimized charge trapping at the polymer layers within the foam structure. The piezoelectric activity arises if mechanical stimuli lead to a thickness variation of the electrically charged voids which results in an electrical signal between the connected electrodes on the film surfaces due to the change of internal electric fields. The concept of such a piezoelectric transducer was developed by investigating cellular polypropylene films with different foam structures and thus different elastic properties. Recently, ferroelectrets were prepared from other polymers following the same concept. Different kind of new foaming procedures are developed in order to broaden the range of usable materials as well as to optimize the adjustment of piezoelectric and ultrasonictransducer properties. The paper provides an overview about ferroelectrets, their underlying working mechanism as well as their preparation possibilities. In detail, piezoelectric properties of polypropylene ferroelectrets are described which are usable for pushbutton or touch-pad applications as well as in ultrasonic-transducer applications.

  20. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  1. Lead-free BNT composite film for high-frequency broadband ultrasonic transducer applications.

    PubMed

    Yan, Xingwei; Ji, Hongfen; Lam, Kwok Ho; Chen, Ruimin; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    A lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric composite thick film with a thickness of ~11 μm has been fabricated using a modified sol-gel method. Dielectric constant, remnant polarization, and coercive field of the BNT composite film were found to be 1018, 22.6 μC/cm2, and 76.1 kV/cm, respectively. The film was used to fabricate a high-frequency needle transducer and the performance of the transducer was measured. The transducer without a matching layer exhibits a center frequency of 98 MHz and a -6-dB bandwidth of 86%. A wire phantom image acquired using the transducer shows an axial resolution of 15 ¿m and lateral resolution of 68 μm, respectively. Results from this study suggest that the BNT composite film is a promising lead-free piezoelectric material for high-frequency broadband ultrasonic transducer applications. PMID:25004521

  2. Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies.

    PubMed

    Juliano, Pablo; Temmel, Sandra; Rout, Manoj; Swiergon, Piotr; Mawson, Raymond; Knoerzer, Kai

    2013-01-01

    Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general. PMID:22929928

  3. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  4. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  5. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  6. The Effects of Piezoelectric Ceramic Dissipation Factor on the Performance of Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The dissipation factor (DF) is an important material property of piezoceramics that governs the amount of self-heating under resonant conditions; it essentially quantifies a particular material type for either an actuator or resonator application: high DF materials with typically higher output (d33) are better for actuators, whereas low DF materials with typically lower d33 are better for resonators. Transducer designers must often compromise between mechanical output and DF in the selection of piezoceramics for power ultrasonic applications, and abnormally high DF is one of the main causes of production stoppages. In theory DF is simply the current/voltage phase deviation from an ideal capacitor at 90° (a.k.a. tan(δ) or dielectric loss). Abnormally high DF is typically caused by moisture absorption due to poor ceramic porosity, which causes voltage leakage effects; e.g., seen in transducer production when setting piezo stack preload. Corresponding large increases in capacitance can also be associated with poor porosity, which is counterintuitive unless there is moisture absorption or electrode wicking. This research investigates the mechanisms for abnormally high DF in peizoceramics, and its corresponding effect on transducer performance. It investigates if DF is only affected by the bulk dielectric properties of the piezoceramics (e.g. porosity), or is also influenced by non-uniform electric field effects from electrode wicking. It explores if higher DF ceramics can affect transducer displacement/current gain stability via moisture expulsion at higher drive levels. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Transducers are built with both normal DF peizoceramics, and those with abnormally high DF ceramics which caused production stoppages. Several metrics are investigated such as impedance, displacement gain and capacitance. The experimental and theoretical research

  7. Materials issues in high temperature ultrasonic transducers for under-sodium viewing

    NASA Astrophysics Data System (ADS)

    Bond, L. J.; Griffin, J. W.; Posakony, G. J.; Harris, R. V.; Baldwin, D. L.

    2012-05-01

    Liquid sodium is used as the coolant in some fast spectrum nuclear reactors. This material is optically opaque. To facilitate operations and maintenance activities, an ultrasonic under-sodium viewing system has been developed. In the USA, the technology was successfully demonstrated in the 1970s and, over the intervening 30+ years, the capability was lost. This paper reports materials challenges encountered in developing both single-element and linear phased-array 2-MHz transducers that must operate at temperatures up to 260°C. The critical issues are fundamentally material selection: the ability of a transducer to be immersed into liquid sodium and function at 260°C, to achieve wetting and transmission of ultrasound into the sodium, and to be able to be removed and re-used.

  8. An FPGA-based ultrasound imaging system using capacitive micromachined ultrasonic transducers.

    PubMed

    Wong, Lawrence L P; Chen, Albert I; Logan, Andrew S; Yeow, John T W

    2012-07-01

    We report the design and experimental results of a field-programmable gate array (FPGA)-based real-time ultrasound imaging system that uses a 16-element phased-array capacitive micromachined ultrasonic transducer fabricated using a fusion bonding process. The imaging system consists of the transducer, discrete analog components situated on a custom-made circuit board, the FPGA, and a monitor. The FPGA program consists of five functional blocks: a main counter, transmit and receive beamformer, receive signal pre-processing, envelope detection, and display. No dedicated digital signal processor or personal computer is required for the imaging system. An experiment is carried out to obtain the sector B-scan of a 4-wire target. The ultrasound imaging system demonstrates the possibility of an integrated system-in-a-package solution.

  9. KNN/BNT Composite Lead-Free Films for High-Frequency Ultrasonic Transducer Applications

    PubMed Central

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2011-01-01

    Lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a −6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  10. Materials issues in high temperature ultrasonic transducers for under-sodium viewing

    SciTech Connect

    Bond, L. J.; Griffin, J. W.; Posakony, G. J.; Harris, R. V.; Baldwin, D. L.

    2012-05-17

    Liquid sodium is used as the coolant in some fast spectrum nuclear reactors. This material is optically opaque. To facilitate operations and maintenance activities, an ultrasonic under-sodium viewing system has been developed. In the USA, the technology was successfully demonstrated in the 1970s and, over the intervening 30+ years, the capability was lost. This paper reports materials challenges encountered in developing both single-element and linear phased-array 2-MHz transducers that must operate at temperatures up to 260 deg. C. The critical issues are fundamentally material selection: the ability of a transducer to be immersed into liquid sodium and function at 260 deg. C, to achieve wetting and transmission of ultrasound into the sodium, and to be able to be removed and re-used.

  11. Materials Issues in High Temperature Ultrasonic Transducers for Under-Sodium Viewing

    SciTech Connect

    Bond, Leonard J.; Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.

    2012-06-12

    Liquid sodium is used as the coolant in some fast spectrum nuclear reactors. This material is optically opaque. To facilitate operations and maintenance activities, an ultrasonic under-sodium viewing system has been developed. In the USA, the technology was successfully demonstrated in the 1970's, and, over the intervening 30+ years the capability was lost. This paper reports materials challenges encountered in developing both single-element and linear phased array 2 MHz transducers that must operate at temperatures up to 260C. The critical issues are fundamentally material selection: the ability of a transducer to be immersed into liquid sodium and function at 260C, to achieve wetting and transmission of ultrasound into the sodium, and to be able to be removed and re-used.

  12. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  13. Experimental Study on Ultrasonic Computed Tomography Using Transducers Arrayed on the Internal Surface of a Cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Soon; Kim, Moo-Joon; Kim, Jung-Ho; Ha, Kang-Lyeol

    2005-06-01

    In this study, ultrasonic array transducers with 32 vibrators arranged on the internal surface of a part of a cylinder were fabricated. The vibrators were operated by the piezoelectric transverse effect. By controlling the phase of the input signal for every vibrator, a quasi plane wave was synthesized. Using the fabricated array, inverse scattering ultrasonic computed tomography (UCT) was carried out with a phantom specimen after checking the plane wave generation. It was confirmed that the plane wave was synthesized successfully and a sound velocity image of the phantom was obtained by the plane wave. Consequently, it was noted that the array could be employed as a transmitter and receiver for data acquisition in UCT.

  14. Efficiency improvement of hybrid transducer-type ultrasonic motor using lubricant.

    PubMed

    Qiu, Wei; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro

    2013-04-01

    Ultrasonic motors have hit a bottleneck caused by low efficiency and short life, which limits their applications to some niche areas. We believe that lubrication is a promising candidate to solve these problems. In this paper, we clarify, both analytically and experimentally, that the performance of the hybrid transducer-type ultrasonic motor (HTUSM), including the transduction efficiency, can be drastically improved at large static preloads if appropriate lubricant is applied. First, simulation was performed using an equivalent circuit in dry and lubricated conditions, and the HTUSM characteristics were shown to be more desirable at high static preloads in the lubricated condition than in the dry condition. Then, we experimentally investigated the mechanical performance of the HTUSM, verifying the effect of improving the motor performance at high preloads using lubricant, which was in good agreement with the simulation results. The maximum transduction efficiency of the HTUSM was significantly enhanced from 28% in the dry condition to 68% in the lubricated condition.

  15. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    PubMed Central

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-01-01

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness. PMID:26110400

  16. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers.

    PubMed

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-06-11

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  17. Non-intrusive measurement of inner bore temperature of small arms using integrated ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Pimentel, R.; Lord, M.; Beauchesne, A.; Kruger, S. E.; Stowe, R.; Wong, F.; Monchalin, J.-P.

    2016-02-01

    Management of thermal input to a small arms weapons system is a significant design and operational constraint. A collaborative project was initiated with the objective to measure non-intrusively the inner bore barrel temperature of a small arm during actual firing. The approach uses integrated ultrasonic transducers (IUTs) and the velocity temperature dependence of the longitudinal wave propagating through thickness. IUT is successfully implemented on a small arm at 3 locations and results from several firing tests are presented. The small but systematic increase in ultrasonic time delay of less than 1 ns after each firing shot is reliably measured, in agreement with a simple 1D model of heat conduction, and measured temperature rises are consistent with the thicknesses at the different locations. The evaluation of the peak inner bore temperatures using IUT and their validation using eroding surface thermocouples at the same locations in the barrel are discussed.

  18. Ultrahigh Frequency (100 MHz-300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining.

    PubMed

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100-300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a -6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  19. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    NASA Astrophysics Data System (ADS)

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-06-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a ‑6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution.

  20. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    PubMed Central

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  1. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer.

    PubMed

    Novell, Anthony; Arena, Christopher B; Oralkan, Omer; Dayton, Paul A

    2016-06-01

    An ongoing challenge exists in understanding and optimizing the acoustic droplet vaporization (ADV) process to enhance contrast agent effectiveness for biomedical applications. Acoustic signatures from vaporization events can be identified and differentiated from microbubble or tissue signals based on their frequency content. The present study exploited the wide bandwidth of a 128-element capacitive micromachined ultrasonic transducer (CMUT) array for activation (8 MHz) and real-time imaging (1 MHz) of ADV events from droplets circulating in a tube. Compared to a commercial piezoelectric probe, the CMUT array provides a substantial increase of the contrast-to-noise ratio. PMID:27369143

  2. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    PubMed

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-05-04

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy.

  3. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  4. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    PubMed

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  5. Optical vibration measurements of cross coupling effects in capacitive micromachined ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Leirset, Erlend; Aksnes, Astrid

    2011-05-01

    Optical vibration measurement systems are excellent tools for characterizing ultrasonic transducers. This paper presents measurements on immersed arrays of capacitive ultrasonic transducers (CMUTs) using a heterodyne interferometer. The interferometer allows measurements of vibrations from DC up to 1 GHz with a noise floor of ~1pm/√Hz. Previously CMUTs have been characterized in air. The transducer is intended for intravascular use. Therefore the CMUTs were characterized in the transparent fluids kerosene and rapeseed oil that have acoustic properties closer to blood. The optical measurements on immersed CMUTs were validated by assessing the measurement errors caused by the acousto optic effects in the fluid. When immersed there is significant cross coupling between individual CMUTs within an array. Simulations presented here indicate that this causes an acoustic wave mode that is bound to the interface between the CMUTs and the fluid. This is confirmed by measurements of the phase velocity and attenuation coefficient of this wave. The measurement results indicate that the wave exists up to a maximum frequency and that the attenuation constant increases with increasing frequency. Rapeseed oil causes a significantly larger attenuation coefficient than kerosene, which most probably is due to a considerable difference in fluid viscosities. There was a mismatch between the simulated and measured phase velocity for low frequencies. It is likely that the cause of this is coupling between the fluid CMUT interface waves and Lamb waves in the substrate of the CMUT array. Measurements performed with the heterodyne interferometer have confirmed the presence of dispersive waves bound to the surface of the transducer by directly showing their propagation along the array. The setup has also characterized the bound waves by measuring dispersion relations.

  6. FABRICATION AND TESTING OF MICROWAVE SINTERED SOL-GEL SPRAY-ON BISMUTH TITANATE-LITHIUM NIOBATE BASED PIEZOELECTRIC COMPOSITE FOR USE AS A HIGH TEMPERATURE (>500 deg. C) ULTRASONIC TRANSDUCER

    SciTech Connect

    Searfass, C. T.; Baba, A.; Tittmann, B. R.; Agrawal, D. K.

    2010-02-22

    Bismuth titanate-lithium niobate based ultrasonic transducers have been fabricated using a sol-gel spray-on deposition technique. These transducers were then tested to determine their potential as high temperature ultrasonic transducers. Fabricated transducers were capable of operating to 1000 deg. C in pulse-echo mode; however, the exposure to such extreme temperatures appears to be destructive to the transducers.

  7. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    NASA Astrophysics Data System (ADS)

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-01

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger's complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  8. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    SciTech Connect

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-18

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger’s complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  9. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    NASA Astrophysics Data System (ADS)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  10. A row-column addressed micromachined ultrasonic transducer array for surface scanning applications.

    PubMed

    Wong, Lawrence L P; Chen, Albert I H; Li, Zhenhao; Logan, Andrew S; Yeow, John T W

    2014-12-01

    Row-column addressed arrays for ultrasonic non-destructive testing (NDT) applications are analyzed and demonstrated in this paper. Simulation and experimental results of a row-column addressed 32 by 32 capacitive micromachined ultrasonic transducer (CMUT) array are presented. The CMUT array, which was designed for medical imaging applications, has a center frequency of 5.3MHz. The CMUT array was used to perform C-scans on test objects with holes that have diameters of 1.0mm and 0.5mm. The array transducer has an aperture size of 4.8mm by 4.8mm, and it was used to scan an area of 4.0mm by 4.0mm. Compared to an N by N fully addressed 2-D array, a row-column addressed array of the same number of elements requires fewer (N instead of N(2)) pairs of interconnection and supporting electronic components such as pulsers and amplifiers. Even though the resulting field of view is limit by the aperture size, row-column addressed arrays and the row-column addressing scheme can be an alternative option of 2-D arrays for NDT applications.

  11. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films.

    PubMed

    Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang

    2005-12-01

    Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated. PMID:16463494

  12. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications.

    PubMed

    Babitsky, V I; Astashev, V K; Kalashnikov, A N

    2004-04-01

    Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The

  13. Use of sputtered zinc oxide film on aluminium foil substrate to produce a flexible and low profile ultrasonic transducer.

    PubMed

    Hou, Ruozhou; Fu, Yong Qing; Hutson, David; Zhao, Chao; Gimenez, Esteban; Kirk, Katherine J

    2016-05-01

    A flexible and low profile ultrasonic transducer was fabricated for non-destructive testing (NDT) applications by DC sputtering of 3 μm thick, c-axis oriented, ZnO film on 50 μm aluminium foil. Due to the thin foil-based construction, the transducer can be applied to curved objects and used in sites of restricted accessibility. The device has been used to demonstrate detection of simulated defects in a 45 mm diameter steel pipe, and for thickness measurement on a 3.1 mm thick flat carbon steel plate. Centre frequency measured on the flat plate was 24-29 MHz, with -6 dB bandwidth 4-7 MHz. The pulse duration depended on the couplant, at best 3 cycles or 0.12 μs using SONO Ultragel or epoxy couplant. Transducer performance was found to be comparable to a commercial 10 MHz piezoelectric ultrasonic transducer. PMID:26913377

  14. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    SciTech Connect

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A.; Tang, H.; Boser, B. E.; Tsai, J. M.; Daneman, M.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  15. A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer.

    PubMed

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan

    2011-11-01

    This paper intends to present and verify a new idea for constructing traveling wave ultrasonic motors that may effectively avoid the drawbacks of conventional traveling wave motors using bonded PZT plates as the exciting elements. In the configuration of the motor's stator, a composite sandwich type transducer is used to excite a traveling wave in a cylinder with two cantilevers as the coupling bridges between the transducer and the cylinder. The design process of the stator is described using the FEM modal analysis method, and the establishment of traveling wave on the cylindrical stator was simulated by FEM transient analysis. To verify the theoretical analysis results, a laser Doppler scanner was employed to test the mode shapes of a prototype stator excited by the longitudinal and bending vibrations respectively. Finally, to validate the design idea, a prototype motor was fabricated and tested; the typical output features are no-load speed of 156 rpm and maximum torque of 0.75 N·m under exciting voltages of 70 V(rms) applied to excite the longitudinal vibration of the transducer and 200 V(rms) applied to excite the bending vibration.

  16. Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C

    PubMed Central

    Shih, Jeanne-Louise; Wu, Kuo-Ting; Jen, Cheng-Kuei; Chiu, Chun-Hsiung; Tzeng, Jing-Chi; Liaw, Jiunn-Woei

    2013-01-01

    In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT) array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 μm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH) of ϕ3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections. PMID:23322101

  17. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    PubMed

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  18. Degree of dispersion monitoring by ultrasonic transmission technique and excitation of the transducer's harmonics

    NASA Astrophysics Data System (ADS)

    Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.

  19. An ultrasonic system for measurement of absolute myocardial thickness using a single transducer.

    PubMed

    Pitsillides, K F; Longhurst, J C

    1995-03-01

    We have developed an ultrasonic instrument that can measure absolute regional myocardial wall motion throughout the cardiac cycle using a single epicardial piezoelectric transducer. The methods in place currently that utilize ultrasound to measure myocardial wall thickness are the transit-time sonomicrometer (TTS) and, more recently, the Doppler echo displacement method. Both methods have inherent disadvantages. To address the need for an instrument that can measure absolute dimensions of myocardial wall at any depth, an ultrasonic single-crystal sonomicrometer (SCS) system was developed. This system can identify and track the boundary of the endocardial muscle-blood interface. With this instrument, it is possible to obtain, from a single epicardial transducer, measurement of myocardial wall motion that is calibrated in absolute dimensional units. The operating principles of the proposed myocardial dimension measurement system are as follows. A short duration ultrasonic burst having a frequency of 10 MHz is transmitted from the piezoelectric transducer. Reflected echoes are sampled at two distinct time intervals to generate reference and interface sample volumes. During steady state, the two sample volumes are adjusted so that the reference volume remains entirely within the myocardium, whereas half of the interface sampled volume is located within the myocardium. After amplification and filtering, the true root mean square values of both signals are compared and an error signal is generated. A closed-loop circuit uses the integrated error signal to continuously adjust the position of the two sample volumes. We have compared our system in vitro against a known signal and in vivo against the two-crystal TTS system during control, suppression (ischemia), and enhancement (isoproterenol) of myocardial function. Results were obtained in vitro for accuracy (> 99%), signal linearity (r = 0.99), and frequency response to heart rates > 450 beats/min, and in vivo data were

  20. Non-contact feature detection using ultrasonic Lamb waves

    DOEpatents

    Sinha, Dipen N.

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  1. A low pull-in SU-8 based Capacitive Micromachined Ultrasonic Transducer for medical imaging applications.

    PubMed

    Joseph, Jose; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2014-01-01

    In this paper we present a thorough analysis of a low pull-in voltage Capacitive Micromachined Ultrasonic Transducer (CMUT) using SU-8 as the membrane material. It is designed to operate at 1 MHz frequency that has a wide range of applications including the imaging of deeper organs. We also propose a simple state-of-the-art fabrication methodology for the same. As compared to the standard Silicon Nitride CMUTs, the proposed structure gives the same electromechanical coupling coefficient with lower membrane dimensions and low pull-in voltage which in turn results in reduced area and power consumption. Moreover the proposed fabrication methodology is a low temperature process which makes it CMOS compatible. PMID:25570229

  2. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    SciTech Connect

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowing localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.

  3. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    DOE PAGES

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowingmore » localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.« less

  4. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    NASA Astrophysics Data System (ADS)

    Le Bas, P.-Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-01

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowing localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. This capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.

  5. Intracardiac Forward-Looking Ultrasound Imaging Catheters Using Capacitive Micromachined Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Nikoozadeh, A.; Wygant, I. O.; Lin, D.-S.; Oralkan, Ö.; Thomenius, K.; Dentinger, A.; Wildes, D.; Akopyan, G.; Shivkumar, K.; Mahajan, A.; Stephens, D. N.; O'Donnell, M.; Sahn, D.; Khuri-Yakub, P. T.

    Atrial fibrillation is the most common sustained arrhythmia that now affects approximately 2.2 million adults in the United States alone. Minimally invasive catheter-based electrophysiological interventions have revolutionized the management of cardiac arrhythmias. We are developing forward-viewing ultrasound imaging catheters based on two types of transducer arrays using the capacitive micromachined ultrasonic transducer technology: A 10-MHz, 24-element MicroLinear (ML) array with a footprint of 1.7 mm × 1.3 mm, and a 10-MHz, 64-element annular ring array with an outside diameter of 2.6 mm and inner diameter of 1.6 mm. Both arrays are integrated with custom-designed front-end electronic circuitry to overcome the performance degradation associated with long cables in the catheter. The ML and ring arrays provide real-time 2-D and 3-D images, respectively, in front of the catheter tip. Using the ML array, we demonstrated ex-vivo images of the left atrial appendage in an isolated Langendorff-perfused rabbit heart model and in-vivo images of heart through the open chest in a porcine animal model. We used the ring array to demonstrate 3-D images of coronary stents and an anatomic cast of a left atrial model.

  6. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.

    PubMed

    Qian, Y; Harris, N R

    2014-02-01

    This work describes a new approach to impedance matching for ultrasonic transducers. A single matching layer with high acoustic impedance of 16 MRayls is demonstrated to show a bandwidth of around 70%, compared with conventional single matching layer designs of around 50%. Although as a consequence of this improvement in bandwidth, there is a loss in sensitivity, this is found to be similar to an equivalent double matching layer design. Designs are calculated by using the KLM model and are then verified by FEA simulation, with very good agreement Considering the fabrication difficulties encountered in creating a high-frequency double matched design due to the requirement for materials with specific acoustic impedances, the need to accurately control the thickness of layers, and the relatively narrow bandwidths available for conventional single matched designs, the new approach shows advantages in that alternative (and perhaps more practical) materials become available, and offers a bandwidth close to that of a double layer design with the simplicity of a single layer design. The disadvantage is a trade-off in sensitivity. A typical example of a piezoceramic transducer matched to water can give a 70% fractional bandwidth (comparable to an ideal double matched design of 72%) with a 3dB penalty in insertion loss.

  7. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions.

  8. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  9. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  10. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    PubMed Central

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  11. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-05-01

    This paper presents an 8 × 24 element, 100 μm-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 μm diameter, 220 μm long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 μm. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  12. Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection.

    PubMed

    Hall, Neal A; Lee, Wook; Degertekin, F Levent

    2003-11-01

    Capacitive detection limits the performance of capacitive micromachined ultrasonic transducers (CMUTs) by providing poor sensitivity below megahertz frequencies and limiting acoustic power output by imposing constraints on the membrane-substrate gap height. In this paper, an integrated optical interferometric detection method for CMUTs, which provides high displacement sensitivity independent of operation frequency and device capacitance, is reported. The method also enables optoelectronics integration in a small volume and provides optoelectronic isolation between transmit and receive electronics. Implementation of the method involves fabricating CMUTs on transparent substrates and shaping the electrode under each individual CMUT membrane in the form of an optical diffraction grating. Each CMUT membrane thus forms a phase-sensitive optical diffraction grating structure that is used to measure membrane displacements down to 2 x 10(-4) A/square root(Hz) level in the dc to 2-MHz range. Test devices are fabricated on quartz substrates, and ultrasonic array imaging in air is performed using a single 4-mm square CMUT consisting of 19 x 19 array of membranes operating at 750 kHz. PMID:14682641

  13. Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation

    PubMed Central

    Decharat, Adit; Wagle, Sanat; Jacobsen, Svein; Melandsø, Frank

    2015-01-01

    High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag) nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices. PMID:25903552

  14. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.

    PubMed

    Fan, Zichuan; Jiang, Wentao; Cai, Maolin; Wright, William M D

    2016-02-01

    Air-coupled ultrasonic inspection using leaky Lamb waves offers attractive possibilities for non-contact testing of plate materials and structures. A common method uses an air-coupled pitch-catch configuration, which comprises a transmitter and a receiver positioned at oblique angles to a thin plate. It is well known that the angle of incidence of the ultrasonic bulk wave in the air can be used to preferentially generate specific Lamb wave modes in the plate in a non-contact manner, depending on the plate dimensions and material properties. Multiple reflections of the ultrasonic waves in the air gap between the transmitter and the plate can produce additional delayed waves entering the plate at angles of incidence that are different to those of the original bulk wave source. Similarly, multiple reflections of the leaky Lamb waves in the air gap between the plate and an inclined receiver may then have different angles of incidence and propagation delays when arriving at the receiver and hence the signal analysis may become complex, potentially leading to confusion in the identification of the wave modes. To obtain a better understanding of the generation, propagation and detection of leaky Lamb waves and the effects of reflected waves within the air gaps, a multiphysics model using finite element methods was established. This model facilitated the visualisation of the propagation of the reflected waves between the transducers and the plate, the subsequent generation of additional Lamb wave signals within the plate itself, their leakage into the adjacent air, and the reflections of the leaky waves in the air gap between the plate and receiver. Multiple simulations were performed to evaluate the propagation and reflection of signals produced at different transducer incidence angles. Experimental measurements in air were in good agreement with simulation, which verified that the multiphysics model can provide a convenient and accurate way to interpret the signals in

  15. Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers

    PubMed Central

    Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  16. Harmonic reduction in capacitive micromachined ultrasonic transducers by gap feedback linearization.

    PubMed

    Satir, Sarp; Degertekin, F Levent

    2012-01-01

    The nonlinear relationship between the electrical input signal and electrostatic force acting on the capacitive micromachined ultrasonic transducer (CMUT) membrane limits its harmonic imaging performance. Several input shaping methods were proposed to compensate for the nonlinearity originating from the electrostatic force's dependence on the square of the applied voltage. Here, we analyze harmonic generation in CMUTs with a time-domain model. The model explains the basis of the input shaping methods and suggests that the nonlinearity resulting from gap dependence of the electrostatic force is also significant. It also suggests that the harmonic distortion in the output pressure can be eliminated by subharmonic ac-only excitation of the CMUT in addition to scaling the input voltage with the instantaneous gap. This gap feedback configuration can be approximated by the simple addition of a series impedance to the CMUT capacitance. We analyze several types of series impedance feedback topologies for gap feedback linearization. We show that for subharmonic ac excitation, although resistive and capacitive impedances result in a trade-off between input voltage and harmonic distortion for a desired pressure output, harmonic generation can be suppressed while increasing the Pa/V transmit sensitivity for proper series inductance and resistance feedback. We experimentally demonstrate the feedback method by reducing harmonic generation by 10 dB for the same output pressure at the fundamental frequency by using a simple series resistor feedback with a CMUT operating at a center frequency of 3 MHz. The proposed methods also allow for utilization of the full CMUT gap for transmit operation and, hence, should be useful in high-intensity ultrasonic applications in addition to harmonic imaging. PMID:22293735

  17. Developing a Commercial Air Ultrasonic Ceramic Transducer to Transdermal Insulin Delivery.

    PubMed

    Jabbari, Nasrollah; Asghari, Mohammad Hossein; Ahmadian, Hassan; Mikaili, Peyman

    2015-01-01

    The application of low-frequency ultrasound for transdermal delivery of insulin is of particular public interest due to the increasing problem of diabetes. The purpose of this research was to develop an air ultrasonic ceramic transducer for transdermal insulin delivery and evaluate the possibility of applying a new portable and low-cost device for transdermal insulin delivery. Twenty-four rats were divided into four groups with six rats in each group: one control group and three experimental groups. Control group (C) did not receive any ultrasound exposure or insulin (untreated group). The second group (T1) was treated with subcutaneous insulin (Humulin(®) R, rDNA U-100, Eli Lilly and Co., Indianapolis, IN) injection (0.25 U/Kg). The third group (T2) topically received insulin, and the fourth group (T3) received insulin with ultrasound waves. All the rats were anesthetized by intraperitoneal injection of ketamin hydrochloride and xylazine hydrochloride. Blood samples were collected after anesthesia to obtain a baseline glucose level. Additional blood samples were taken every 15 min in the whole 90 min experiment. In order for comparison the changes in blood glucose levels" to " In order to compare the changes in blood glucose levels. The statistical multiple comparison (two-sided Tukey) test showed a significant difference between transdermal insulin delivery group (T2) and subcutaneous insulin injection group (T1) during 90 min experiment (P = 0.018). In addition, the difference between transdermal insulin delivery group (T2) and ultrasonic transdermal insulin delivery group (T3) was significant (P = 0.001). Results of this study demonstrated that the produced low-frequency ultrasound from this device enhanced the transdermal delivery of insulin across hairless rat skin.

  18. Control of the ultrasonic beam transmitted through an irregular profile using a smart flexible transducer: modelling and application.

    PubMed

    Roy, Olivier; Mahaut, Steve; Casula, Olivier

    2002-05-01

    In most of industries as aeronautics, aerospace and nuclear, the main part of the ultrasonic testing is carried out directly in touch with the inspected component. Among others, the cooling piping of French pressurized water reactor comprises many welding components with complex geometry: elbows, butt welds, nozzles. In service inspections of such components performed with conventional ultrasonic contact transducers present limited performances. Variations in sensitivity are produced by unmatched contact on irregular surface, which results in poor detection performances. In addition, the beam orientation transmitted through complex interfaces cannot be totally controlled, because of the disorientations suffered by the transducer during its displacement. As a result, a possible defect cannot be correctly detected, positioned and characterized. At last, the geometry of some components limits the displacement of the transducer, resulting in an uncovered scan area. To overcome these difficulties and to improve the performances of such inspections, the CEA, supported by the safety authorities (IPSN), has developed a new concept of phased array transducer. The phased array radiating surface is flexible to optimise the contact, and thus the sensitivity of the testing, while the characteristics of the transmitted beam (orientation and focal depth) are preserved during the scanning, thanks to a delay law optimising algorithm. This computation requires the actual position of the elements, so a specific instrumentation is coupled to the transducer to measure its radiating surface distortions. Thus, this smart flexible transducer becomes self-adaptive. Recent studies have been made to obtain further performances improvements of this system, including instrumentation development and a new phased array design. Both longitudinal and shear waves focused beams can therefore be generated and mastered with this smart transducer. Inspections have been performed on a specimen

  19. Ultrasonic input-output for transmitting and receiving longitudinal transducers coupled to same face of isotropic elastic plate

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1982-01-01

    The quantitative understanding of ultrasonic nondestructive evaluation parameters such as the stress wave factor were studied. Ultrasonic input/output characteristics for an isotropic elastic plate with transmitting and receiving longitudinal transducers coupled to the same face were analyzed. The asymptotic normal stress is calculated for an isotropic elastic half space subjected to a uniform harmonic normal stress applied to a circular region at the surface. The radiated stress waves are traced within the plate by considering wave reflections at the top and bottom faces. The output voltage amplitude of the receiving transducer is estimated by considering only longitudinal waves. Agreement is found between the output voltage wave packet amplitudes and times of arrival due to multiple reflections of the longitudinal waves.

  20. High-temperature-immersion ultrasonic probe without delay line using PbTiO3/Pb(Zr,Ti)O3 ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Kibe, Taiga; Inoue, Takuo; Namihira, Takao; Kobayashi, Makiko

    2015-07-01

    The behavior of a high-temperature-immersion ultrasonic probe without a delay line using a PbTiO3/Pb(Zr,Ti)O3 (PT/PZT) ultrasonic transducer was investigated empirically. A ∼100-µm-thick PT/PZT film was fabricated on a 200-µm-thick stainless steel substrate. After PT/PZT film fabrication, the substrate was bonded to a stainless steel pipe using a high-temperature waterproof adhesive material. The probe was tested in a water bath from room temperature to 100 °C for system verification. During three thermal cycles, the ultrasonic echoes had a high signal-to-noise ratio (SNR) and reasonable repeatability. After that, the same probe was verified by testing it in the silicone oil from room temperature to 200 °C. The test was also repeated three times and the probe successfully demonstrated high-temperature durability, a high SNR, and repeatability throughout the experiments.

  1. Prediction of flat-bottom hole signals received by a spherically focused transducer for an ultrasonic pulse echo immersion testing

    NASA Astrophysics Data System (ADS)

    Xiao, Huifang; Sun, Yunyun; Chen, Dan; Xu, Jinwu

    2016-11-01

    The spherically focused transducer has been widely used for nondestructive evaluation of micrometer-scale inner defects in material and microelectronic devices due to its outstanding transverse resolution and high beam intensity. In this paper, by combining the beam model, the flaw scattering model and the system efficiency factor, an ultrasonic measurement model is developed for the spherically focused transducer in an ultrasonic pulse-echo immersion testing and is used to predict the ultrasonic flaw signal for flat bottom hole (FBH). The multi-Gaussian beam (MGB) model and the Gaussian beam equivalent point source (GBEPS) model are extended to evaluate the beam fields radiated by the spherically focused transducer in water and transmitted into solid through a planar interface. Results show that the MGB model is more excellent considering both the accuracy and efficiency. Experiments are performed to determine the system efficiency factor and the experimental measured flaw signal is compared with the model predictions to validate the accuracy of the proposed model. Effects of the depth and size of the FBH are further studied using the established model.

  2. Cataract measurement by estimating the ultrasonic statistical parameter using an ultrasound needle transducer: an in vitro study

    PubMed Central

    Huang, Chih-Chung; Zhou, Qifa; Shung, K Kirk

    2011-01-01

    A cataract is a clouding of the crystalline lens that reduces the amount of incoming light and impairs visual perception. Phacoemulsification is the most common surgical method for treating advanced cataracts, and the optimal phacoemulsification energy is determined by the lens hardness. A previous study proposed using the ultrasonic Nakagami image to complement the B-scan for distinguishing different degrees of lens hardening. However, it is difficult to implement the use of an imaging probe to detect the lens during phacoemulsification surgery in a clinical situation. To resolve this problem, this study applied an ultrasonic needle transducer to estimate the Nakagami parameter as an alternative for characterizing the cataract lens. Cataracts of porcine lenses were artificially induced in vitro, and the Young’s modulus, backscattering intensities, and the Nakagami parameters were measured. The results showed that the backscattering intensity was not correlated with Young’s modulus. In contrast, the average Nakagami parameter increased from 0.34 to 0.95 with increasing Young’s modulus of the lens from 1.71 to 101 kPa. The above findings showed that the Nakagami parameter estimated with a needle transducer may be useful in differentiating different degrees of lens hardening, and implied that determining the optimal ultrasonic energy during clinical cataract surgery is possible if the needle transducer can be combined with the phacoemulsification probe to estimate the Nakagami parameter. PMID:21422512

  3. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Akhbari, Sina; Ding, Jianjun; Zhao, Yihe; Zhao, Yulong; Lin, Liwei

    2015-12-01

    Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs) are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonant pressure sensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM) simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa) was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.

  4. Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers.

    PubMed

    Trogé, Alexandre; O'Leary, Richard L; Hayward, Gordon; Pethrick, Richard A; Mullholland, Anthony J

    2010-11-01

    This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88-6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.

  5. A novel device for the calibration of sonic and ultrasonic recording transducers.

    PubMed

    McMurray, Matthew S; Hubbard, Devin K

    2013-07-15

    Recently, there has been an increase in the analysis of animal vocalizations in behavioral neuroscience as a social cue or indicator of neurological integrity. Despite the multitude of researchers examining vocalizations in a variety of species, no inexpensive, tunable devices currently exist to calibrate the amplification applied to such vocalizations before data are collected. Many commercially available recording systems have analog adjustments for gain, but such methods are notoriously unreliable and highly variable. Without a consistent level of gain, the amplitudes of recorded acoustic signals cannot be reliably compared. Here, we describe an apparatus designed to fulfill this need, which we have labeled the Calibration Unit for Recording Transducers (CURT). To maximize application to various fields, its emitted frequency and amplitude are tunable to output frequencies in both human-sonic (20 Hz-20 kHz) and human-ultrasonic ranges (20 Hz-100 kHz). Additionally, it is a portable (weighing approximately 180 g), customizable, stand-alone unit, and fits a variety of microphone connector types. The CURT is also relatively low cost to build (under 250.00 USD), thereby making such a device available to as many researchers as possible in animal behavior and neuroscience.

  6. Experiment and simulation validated analytical equivalent circuit model for piezoelectric micromachined ultrasonic transducers.

    PubMed

    Smyth, Katherine; Kim, Sang-Gook

    2015-04-01

    An analytical Mason equivalent circuit is derived for a circular, clamped plate piezoelectric micromachined ultrasonic transducer (pMUT) design in 31 mode, considering an arbitrary electrode configuration at any axisymmetric vibration mode. The explicit definition of lumped parameters based entirely on geometry, material properties, and defined constants enables straightforward and wide-ranging model implementation for future pMUT design and optimization. Beyond pMUTs, the acoustic impedance model is developed for universal application to any clamped, circular plate system, and operating regimes including relevant simplifications are identified via the wave number-radius product ka. For the single-electrode fundamental vibration mode case, sol-gel Pb(Zr0.52)Ti0.48O3 (PZT) pMUT cells are microfabricated with varying electrode size to confirm the derived circuit model with electrical impedance measurements. For the first time, experimental and finite element simulation results are successfully applied to validate extensive electrical, mechanical, and acoustic analytical modeling of a pMUT cell for wide-ranging applications including medical ultrasound, nondestructive testing, and range finding.

  7. Note: Piezoelectric polymers as transducers for the ultrasonic-reflection method and the application in mechanical property-screening of coatings.

    PubMed

    Wegener, Michael; Oehler, Harald; Lellinger, Dirk; Alig, Ingo

    2012-01-01

    In the last years, non-destructive ultrasonic testing methods are more and more frequently employed in order to investigate the drying and curing processes of different coatings. Among them an ultrasonic reflection method was developed allowing the simultaneous measurement with longitudinal and transversal waves. In order to generate the ultrasonic pulse, piezoelectric ceramics or oxides are usually used as transducer materials which are connected to a delay line. Here, we demonstrate a similar approach for the ultrasonic reflection method installing piezoelectric polymers as ultrasonic transducer materials. In detail, poly(vinylidene fluoride and trifluoroethylene) [P(VDF-TrFE)] copolymers were prepared as piezoelectric transducer layers directly onto the metallization of glass delay lines avoiding additional bonding processes. The film preparation was carried out by solvent casting the polymer onto an area with a diameter of 12 mm and is optimized so that relatively homogeneous polymer layers with thicknesses between 14 and 35 μm are adjusted by the deposited amount of the polymer. Electrical poling renders the polymer piezoelectric. The ultrasonic properties of the P(VDF-TrFE) transducer and their usability for the ultrasonic reflection method are described also in comparison to previous measurements using LiNbO(3) transducer.

  8. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  9. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  ‑6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  ‑3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  ‑8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  10. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    PubMed

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  11. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  12. Reflection at a liquid-solid interface of a transient ultrasonic field radiated by a linear phased array transducer.

    PubMed

    Maghlaoui, Nadir; Belgroune, Djema; Ourak, Mohamed; Djelouah, Hakim

    2016-09-01

    In order to put in evidence the specular reflection and the non-specular reflection in the transient case, we have used a model for the study of the transient ultrasonic waves radiated by a linear phased array transducer in a liquid and reflected by a solid plane interface. This method is an extension of the angular spectrum method to the transient case where the reflection at the plane interface is taken into account by using the reflection coefficient for harmonic plane waves. The results obtained highlighted the different components of the ultrasonic field: the direct and edge waves as well as the longitudinal head waves or leaky Rayleigh waves. The transient representation of these waves have been carefully analyzed and discussed by the rays model. Instantaneous cartographies allowed a clear description of all the waves which appear at the liquid-solid interface. The obtained results have been compared to those obtained with a finite element method package.

  13. Reflection at a liquid-solid interface of a transient ultrasonic field radiated by a linear phased array transducer.

    PubMed

    Maghlaoui, Nadir; Belgroune, Djema; Ourak, Mohamed; Djelouah, Hakim

    2016-09-01

    In order to put in evidence the specular reflection and the non-specular reflection in the transient case, we have used a model for the study of the transient ultrasonic waves radiated by a linear phased array transducer in a liquid and reflected by a solid plane interface. This method is an extension of the angular spectrum method to the transient case where the reflection at the plane interface is taken into account by using the reflection coefficient for harmonic plane waves. The results obtained highlighted the different components of the ultrasonic field: the direct and edge waves as well as the longitudinal head waves or leaky Rayleigh waves. The transient representation of these waves have been carefully analyzed and discussed by the rays model. Instantaneous cartographies allowed a clear description of all the waves which appear at the liquid-solid interface. The obtained results have been compared to those obtained with a finite element method package. PMID:27290651

  14. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    SciTech Connect

    Matt, Howard M.

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  15. Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials

    SciTech Connect

    Solodov, Igor; Busse, Gerd

    2007-12-17

    It is shown that low-frequency elastic vibrations of near-surface planar defects cause high-frequency ultrasonic radiation in surrounding air. The frequency conversion mechanism is concerned with contact nonlinearity of the defect vibrations and provides efficient generation of air-coupled higher-order ultraharmonics, ultrasubharmonics, and combination frequencies. The nonlinear air-coupled ultrasonic emission is applied for location and high-resolution imaging of damage-induced defects in a variety of solid materials.

  16. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    PubMed Central

    Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk

    2010-01-01

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm−1 MHz−1 corresponding to an increase in Young’s modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse–echo test showed that a good performance in sensitivity was maintained after the vibration test. PMID:19759408

  17. Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers.

    PubMed

    Akram, Nik Ahmad; Isa, Dino; Rajkumar, Rajprasad; Lee, Lam Hong

    2014-08-01

    This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of "smart pigs" to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of "smart pigs" is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig.

  18. Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers.

    PubMed

    Akram, Nik Ahmad; Isa, Dino; Rajkumar, Rajprasad; Lee, Lam Hong

    2014-08-01

    This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of "smart pigs" to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of "smart pigs" is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig. PMID:24792683

  19. Optimization of electrode size for aluminum-nitride matrix ultrasonic transducers in the frequency range above 200 MHz.

    PubMed

    Wei, Yangjie; Herzog, Thomas; Heuer, Henning

    2013-03-01

    This paper describes an optimization method of the top electrode size for a thin film matrix ultrasonic transducer (M-UT) in the frequency range above 200 MHz. The goal of this work is to design an optimal top electrode size for an M-UT providing the maximal output peak-peak voltage (V(PP)) and the maximal signal-to-noise ratio (SNR) without additional electrical impedance matching. In order to reduce the complexity of the M-UT with more than 1000 elements, an intrinsic matching by electrode size variation is necessary. However, the size of a single element top electrode for an M-UT is related to the number of elements within a targeted sensor area, V(PP) and SNR of the transducer. In this paper, varying the active area of the top electrode from 0.09 to 25 mm(2) shows that for an Al-AlN-Al on silicon wafer configuration connected with a JSR Ultrasonics pulser/receiver (50 ohms), the optimal electrode size is 1 mm(2). With the optimal size electrode, the maximum output V(PP) of 0.08 V and the SNR of 42.93 dB are achieved at the resonance frequency of 225 MHz, and the bandwidth is 16.21 MHz.

  20. Non-contact evaluation of milk-based products using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Hindle, S. A.; Sandoz, J.-P.; Gan, T. H.; Hutchins, D. A.

    2006-07-01

    An air-coupled ultrasonic technique has been developed and used to detect physicochemical changes of liquid beverages within a glass container. This made use of two wide-bandwidth capacitive transducers, combined with pulse-compression techniques. The use of a glass container to house samples enabled visual inspection, helping to verify the results of some of the ultrasonic measurements. The non-contact pulse-compression system was used to evaluate agglomeration processes in milk-based products. It is shown that the amplitude of the signal varied with time after the samples had been treated with lactic acid, thus promoting sample destabilization. Non-contact imaging was also performed to follow destabilization of samples by scanning in various directions across the container. The obtained ultrasonic images were also compared to those from a digital camera. Coagulation with glucono-delta-lactone of skim milk poured into this container could be monitored within a precision of a pH of 0.15. This rapid, non-contact and non-destructive technique has shown itself to be a feasible method for investigating the quality of milk-based beverages, and possibly other food products.

  1. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  2. Numerical analysis and noise detection for design optimisation of an ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Makhdum, Farrukh; Roy, Anish; Silberschmidt, Vadim V.

    2012-08-01

    The characteristics of a Langevin transducer are studied using a combination of numerical and experimental techniques, which reveal the effect of minor design changes on its performance. The experiments were performed using a microphone and voice-recording software capable of measuring frequencies up to 41 kHz; the obtained signal was analysed in MATLAB. A three-dimensional finite element model of the analysed transducer was also developed in a commercial finite element software ABAQUS/Standard and used for numerical simulations of its response to different excitation conditions. The transducer system was optimised using the results of noise detection and FEA.

  3. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation.

    PubMed

    Doinikov, Alexander A; Novell, Anthony; Calmon, Pierre; Bouakaz, Ayache

    2014-09-01

    The purpose of this work is to validate, by comparing numerical and experimental results, the ability of the Westervelt equation to predict the behavior of ultrasound beams generated by phased-array transducers. To this end, the full Westervelt equation is solved numerically and the results obtained are compared with experimental measurements. The numerical implementation of the Westervelt equation is performed using the explicit finite-difference time-domain method on a three-dimensional Cartesian grid. The validation of the developed numerical code is first carried out by using experimental data obtained for two different focused circular transducers in the regimes of small-amplitude and finite-amplitude excitations. Then, the comparison of simulated and measured ultrasonic fields is extended to the case of a modified 32-element array transducer. It is shown that the developed code is capable of correctly predicting the behavior of the main lobe and the grating lobes in the cases of zero and nonzero steering angles for both the fundamental and the second-harmonic components.

  4. Adaptation of a High Frequency Ultrasonic Transducer to the Measurement of Water Temperature in a Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Zaz, G.; Calzavara, Y.; Le Clézio, E.; Despaux, G.

    Most high flux reactors possess for research purposes fuel elements composed of plates. Their relative distance is a crucial parameter, particularly concerning the irradiation history. For the High Flux Reactor (RHF) of the Institute Laue-Langevin (ILL), the measurement of this distance with a microscopic resolution becomes extremely challenging. To address this issue, a specific ultrasonic transducer, presented in a first paper, has been designed and manufactured to be inserted into the 1.8 mm width channel existing between curved fuel plates. It was set on a blade yielding a total device thickness of 1 mm. To achieve the expected resolution, the system is excited with frequencies up to 70 MHz and integrated into a set of high frequency acquisition instruments. Thanks to a specific signal processing, this device allows the distance measurement through the evaluation of the ultrasonic wave time of fight. One of the crucial points is then the evaluation of the local water temperature inside the water channel. To obtain a precise estimation of this parameter, the ultrasonic sensor is used as a thermometer thanks to the analysis of the spectral components of the acoustic signal propagating inside the sensor multilayered structure. The feasibility of distance measurement was proved during the December 2013 experiment in the RHF fuel element of the ILL. Some of the results will be presented as well as some experimental constraints identified to improve the accuracy of the measurement in future works.

  5. Nondestructive Evaluation of Double Bevel T-Joint by Tandem Array Ultrasonic Transducer

    NASA Astrophysics Data System (ADS)

    Shirahata, H.; Miki, C.; Yamaguchi, R.

    2003-03-01

    The double bevel T-joint is one of the most fundamental joints of steel bridges. Double bevel T-joint can be seen at beam-column connection of bridge pier. In the Japanese specifications, the welding should be full penetration. However, weld defect of incomplete penetration could be left in the joint due to the lack of quality control in welding. Fatigue cracks can be propagated from the weld defects. The authors developed a tandem array transducer. The tandem array transducer consists of 10 elements aligned in the same direction. Tandem scanning can be simulated by the transducer. Image reconstruction of incomplete penetration by synthetic aperture focusing technique was carried out. The test results showed sufficient detectability of incomplete penetration by the tandem array transducer. Height of incomplete of penetration could be estimated.

  6. Two transducer formula for more precise determination of ultrasonic phase velocity from standing wave measurements

    NASA Technical Reports Server (NTRS)

    Ringermacher, H. I.; Moerner, W. E.; Miller, J. G.

    1974-01-01

    A two transducer correction formula valid for both solid and liquid specimens is presented. Using computer simulations of velocity measurements, the accuracy and range of validity of the results are discussed and are compared with previous approximations.

  7. Non-contact fluid characterization in containers using ultrasonic waves

    DOEpatents

    Sinha, Dipen N.

    2012-05-15

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  8. Broadband and High Sensitive Time-of-Flight Diffraction Ultrasonic Transducers Based on PMNT/Epoxy 1–3 Piezoelectric Composite

    PubMed Central

    Liu, Dongxu; Yue, Qingwen; Deng, Ji; Lin, Di; Li, Xiaobing; Di, Wenning; Wang, Xi’an; Zhao, Xiangyong; Luo, Haosu

    2015-01-01

    5–6 MHz PMNT/epoxy 1–3 composites were prepared by a modified dice-and-fill method. They exhibit excellent properties for ultrasonic transducer applications, such as ultrahigh thickness electromechanical coupling coefficient kt (85.7%), large piezoelectric coefficient d33 (1209 pC/N), and relatively low acoustic impedance Z (1.82 × 107 kg/(m2·s)). Besides, two types of Time-of-Flight Diffraction (TOFD) ultrasonic transducers have been designed, fabricated, and characterized, which have different matching layer schemes with the acoustic impedance of 4.8 and 5.7 × 106 kg/(m2·s), respectively. In the detection on a backwall of 12.7 mm polystyrene, the former exhibits higher detectivity, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −21.93 dB and 102.7%, respectively, while the later exhibits broader bandwidth, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −24.08 dB and 117.3%, respectively. These TOFD ultrasonic transducers based on PMNT/epoxy 1–3 composite exhibit considerably improved performance over the commercial PZT/epoxy 1–3 composite TOFD ultrasonic transducer. PMID:25808776

  9. Sensitivity and resonance frequency with changing the diaphragm diameter of piezoelectric micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Akai, Daisuke; Katori, Takeo; Takashima, Daisuke; Ishida, Makoto

    2016-02-01

    In this work, we investigate the sensitivity and resonance frequency of pMUTs by changing the diameter of the diaphragm in order to improve sensitivity. Five types of pMUTs which have different diaphragm diameters and three types of ultrasonic source which have differing transmitting frequencies were used in the evaluation. The pMUT with an 80-μm-diameter diaphragm showed the largest sensitivities with the 3.5-MHz ultrasonic source. The 60-μm-diameter and 90-μm-diameter pMUTs exhibited the highest sensitivities with the 1.75-MHz ultrasonic source. This is in good agreement with the analytical results and it could be expected that the sensitivities were improved by changing the diaphragm diameter of the pMUTs.

  10. Transducer characterization

    SciTech Connect

    Cross, B. T.; Eoff, J. M.; Schuetz, L. J.; Cunningham, K. R.

    1980-07-02

    This report has been prepared specifically for ultrasonic transducer users within the Nondestructive Testing Evaluation (NDE) community of the weapons complex. The purpose of the report is to establish an initial set of uniform procedures for measuring and recording transducer performance data, and to establish a common foundation on which more comprehensive transducer performance evaluations may be added as future transducer performance criteria expands. Transducer parameters and the problems with measuring them are discussed and procedures for measuring transducer performance are recommended with special precautionary notes regarding critical aspects of each measurement. An important consideration regarding the recommended procedures is the cost of implementation. There are two distinct needs for transducer performance characterization in the complex. Production oriented users need a quick, reliable means to check a transducer to ascertain its suitability for continued service. Development groups and the Transducer Center need a comprehensive characterization means to collect adequate data to evaluate theoretical concepts or to build exact replacement transducers. The instrumentation, equipment, and procedures recommended for monitoring production transducers are utilitarian and provide only that information needed to determine transducer condition.

  11. Extension of the crosstalk cancellation method in ultrasonic transducer arrays from the harmonic regime to the transient one.

    PubMed

    Bybi, A; Grondel, S; Assaad, J; Hladky-Hennion, A-C

    2014-02-01

    This paper describes a procedure to extend the crosstalk correction method presented in a previous paper [A. Bybi, S. Grondel, J. Assaad, A.-C. Hladky-Hennion, M. Rguiti, Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study, Ultrasonics, 53 (6) (2013) 1135-1140] from the harmonic regime to the transient one. For this purpose a part of an ultrasonic transducer array radiating in water is modeled around the frequency 0.5 MHz using the finite element method. The study is carried out at low frequency in order to respect the same operating conditions than the previous paper. This choice facilitated the fabrication of the transducer arrays and the comparison of the numerical results with the experimental ones. The modeled array is composed of seventeen elements with the central element excited, while the others are grounded. The matching layers and the backing are not taken into account which limits the crosstalk only to the piezoelectric elements and fluid. This consideration reduces the structure density mesh and results in faster computation time (about 25 min for each configuration using a computer with a processor Intel Core i5-3210M, frequency 2.5 GHz and having 4 Go memory (RAM)). The novelty of this research work is to prove the efficiency of the crosstalk correction method in large frequency band as it is the case in medical imaging. The numerical results show the validity of the approach and demonstrate that crosstalk can be reduced by at least 13 dB in terms of displacement. Consequently, the directivity pattern of the individual element can be improved. PMID:24064509

  12. Development of an impact-reduction device by applying ultrasonic vibrations to a high-strength steel plate using a downsized transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuyuki; Ikeoka, Shota; Tsujino, Jiromaru

    2016-07-01

    In this study, we attempted to downsize an ultrasonic impact-reduction device and studied its use in vehicles because the use of large devices increases the overall vehicle weight and size and reduces fuel economy. We downsized the ultrasonic transducer to 195 mm from 435 mm and measured the vibration, deformation, and impact-reduction characteristics. The resonant frequency changed after a bolt-clamped Langevin-type transducer was connected with the horn, and the motional admittance decreased. Upon application of ultrasonic vibrations to a high-strength steel plate, the deformation magnitude increased, the springback magnitude decreased by up to 25%, and the impact force decreased by 18%. While the downsized impact reduction system was found to be less effective, it still showed an impact reduction effect.

  13. Saft-reconstruction in ultrasonic immersion technique using phased array transducers

    NASA Astrophysics Data System (ADS)

    Kitze, J.; Prager, J.; Boehm, R.; Völz, U.; Montag, H.-J.

    2012-05-01

    The two main preconditions for the application of the Synthetic Aperture Focusing Technique (SAFT) are: (i) a large divergence of the sound beam of the transducer and (ii) an exact knowledge about the sound propagation path. These requirements are easily fulfilled for point sources directly mounted on the surface of the specimen. In many cases, however, the transducer is wedge mounted and/or coupled using a water delay line, e.g. in immersion technique. These delay lines change the beam index and the propagation path has to be evaluated for each pixel separately considering Fermat's principle. Using phased array transducers, a sector scan can improve the divergence of the sound beam. The introduced method combines the advantages of using a phased array transducer in immersion technique to improve SAFT reconstruction. An algorithm is presented accounting the influence of the delay line on the reconstruction method. The applicability of the algorithm is shown by validation with simulated echo responses and with experimental results collected from a specimen with artificial flaws.

  14. Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves.

    PubMed

    Agrahari, J K; Kapuria, S

    2016-08-01

    To develop an effective baseline-free damage detection strategy using the time-reversal process (TRP) of Lamb waves in thin walled structures, it is essential to develop a good understanding of the parameters that affect the amplitude dispersion and consequently the time reversibility of the Lamb wave signal. In this paper, the effects of adhesive layer between the transducers and the host plate, the tone burst count of the excitation signal, the plate thickness, and the piezoelectric transducer thickness on the time reversibility of Lamb waves in metallic plates are studied using experiments and finite element simulations. The effect of adhesive layer on the forward propagation response and frequency tuning has been also studied. The results show that contrary to the general expectation, the quality of the reconstruction of the input signal after the TRP may increase with the increase in the adhesive layer thickness at certain frequency ranges. Similarly, an increase in the tone burst count resulting in a narrowband signal does not necessarily enhance the time reversibility at all frequencies, contrary to what has been reported earlier. For a given plate thickness, a thinner transducer yields a better reconstruction, but for a given transducer thickness, the similarity of the reconstructed signal may not be always higher for a thicker plate. It is important to study these effects to achieve the best quality of reconstruction in undamaged plates, for effective damage detection. PMID:27176646

  15. Monte Carlo uncertainty assessment of ultrasonic beam parameters from immersion transducers used to non-destructive testing.

    PubMed

    Alvarenga, A V; Silva, C E R; Costa-Félix, R P B

    2016-07-01

    The uncertainty of ultrasonic beam parameters from non-destructive testing immersion probes was evaluated using the Guide to the expression of uncertainty in measurement (GUM) uncertainty framework and Monte Carlo Method simulation. The calculated parameters such as focal distance, focal length, focal widths and beam divergence were determined according to EN 12668-2. The typical system configuration used during the mapping acquisition comprises a personal computer connected to an oscilloscope, a signal generator, axes movement controllers, and a water bath. The positioning system allows moving the transducer (or hydrophone) in the water bath. To integrate all system components, a program was developed to allow controlling all the axes, acquire waterborne signals, and calculate essential parameters to assess and calibrate US transducers. All parameters were calculated directly from the raster scans of axial and transversal beam profiles, except beam divergence. Hence, the positioning system resolution and the step size are principal source of uncertainty. Monte Carlo Method simulations were performed by another program that generates pseudo-random samples for the distributions of the involved quantities. In all cases, there were found statistical differences between Monte Carlo and GUM methods.

  16. Acoustic Field Calculation of Ultrasonic Linear Phased Array Transducers with Curve Surface

    NASA Astrophysics Data System (ADS)

    Xu, Chunguang; Wang, Lijiu; Xiao, Dingguo; Zhou, Shiyuan

    2011-06-01

    The focus law and acoustic field computation method about circular arc linear phased array have been discussed in the paper. Acoustic field of transducers is given by the use of the coordinate transformation and an approximation with rectangle element instead of circular arc element, and was validated using Rayleigh-Sommerfeld Integral and nonparallel multiple Gaussian beam model respectively. The results of two methods match well.

  17. Design of a Subtarsal Ultrasonic Transducer for Mild Hyperthermia Treatment of Dry Eye Disease.

    PubMed

    Hynes, Michael B; Bujak, Matthew C; Chérin, Emmanuel; Sade, Shachar; Foster, F Stuart

    2016-01-01

    Dry eye disease is a disorder of the ocular surface that causes pain and low vision in a significant portion of the adult population. A common cause is obstructive Meibomian gland dysfunction, whereby the Meibomian glands secrete abnormal meibum with a melting point elevated by 3°C-4°C; hence, hyperthermia is the typical treatment. A design is proposed for an ultrasound hyperthermia device made of a transducer contained inside a contact lens with an internal air gap. The transducer heats the posterior of the tarsus, and the air gap provides an air backing to the transducer, preventing direct heating of the cornea. A prototype device was built, and hyperthermia experiments were performed on a porcine subject in vivo. A therapeutic temperature rise of 5°C-7°C was achievable in 10-15 min. The temperature of the cornea did not rise more than 2°C during any of the experiments.

  18. Design of a Subtarsal Ultrasonic Transducer for Mild Hyperthermia Treatment of Dry Eye Disease.

    PubMed

    Hynes, Michael B; Bujak, Matthew C; Chérin, Emmanuel; Sade, Shachar; Foster, F Stuart

    2016-01-01

    Dry eye disease is a disorder of the ocular surface that causes pain and low vision in a significant portion of the adult population. A common cause is obstructive Meibomian gland dysfunction, whereby the Meibomian glands secrete abnormal meibum with a melting point elevated by 3°C-4°C; hence, hyperthermia is the typical treatment. A design is proposed for an ultrasound hyperthermia device made of a transducer contained inside a contact lens with an internal air gap. The transducer heats the posterior of the tarsus, and the air gap provides an air backing to the transducer, preventing direct heating of the cornea. A prototype device was built, and hyperthermia experiments were performed on a porcine subject in vivo. A therapeutic temperature rise of 5°C-7°C was achievable in 10-15 min. The temperature of the cornea did not rise more than 2°C during any of the experiments. PMID:26603735

  19. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    PubMed

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-01

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  20. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  1. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect

    Qi, Wenjuan; Li, Rui; Ma, Teng; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  2. Piezoelectric composite transducers, ultrasonic materials characterization, and the ROSETTA Comet mission

    NASA Astrophysics Data System (ADS)

    Arnold, W.; Gebhardt, W.; Licht, R.; Kröning, M.

    2001-04-01

    In 2003 the ROSETTA space mission to Comet 46P/Wirtanen will be launched by the European Space Agency (ESA). On board of the spacecraft will be a lander in order to carry out measurements on the comet surface. The so-called CASSE experiment aims to investigate the surface of the comet by transmitting, receiving and passively monitoring acoustic waves at frequencies from a few hundred to several kilohertz. The knowledge of the IZFP in modeling of NDT problems, in wave propagation in complex materials, and in the design of advanced transducers eventually led to its involvement in the ROSETTA mission. .

  3. Broadband Terahertz Ultrasonic Transducer Bbased on a Laser-driven Piezoelectric Semiconductor Superlattice

    SciTech Connect

    Maznev, A A; Manke, K; Lin, K.-H.; Nelson, Keith A; Sun, C.-K.; Chyi, J.-I.

    2011-01-01

    Spectral characteristics of laser-generated acoustic waves in an InGaN/GaN superlattice structure are studied at room temperature. Acoustic vibrations in the structure are excited with a femtosecond laser pulse and detected via transmission of a delayed probe pulse. Seven acoustic modes of the superlattice are detected, with frequencies spanning a range from 0.36 to 2.5 THz. Acoustic waves up to ~2 THz in frequency are not significantly attenuated within the transducer which indicates excellent interface quality of the superlattice. The findings hold promise for broadband THz acoustic spectroscopy.

  4. A power transducer system for the ultrasonic lubrication of the continuous steel casting.

    PubMed

    Iula, Antonio; Caliano, Giosué; Caronti, Alessandro; Pappalardo, Massimo

    2003-11-01

    A critical point in the continuous steel casting process exists in the meniscus zone of the cooled mould, i.e., the region in which the steel stream flowing out of the tundish nozzle starts to solidify. This is a critical point because of the sticking that occurs between the solid shell of steel and the mould. In this work, a new system for the ultrasonic lubrication of the continuous steel casting is proposed and experimentally tested. The basic idea is to excite one of the mould's natural vibration modes by means of a distributed ultrasonic source. This source is composed of an array of power emitters, with each of them placed upon an antinode of the mould. An experimental characterization of the vibrational behavior of a square mould was first carried out. The most active resonance modes of the mould were detected with an experimental technique based on a simple impedance measurement. The modal shape of the selected mode, and hence the position of antinodes, was obtained by means of interferometer measurements. Additional experimental investigations were performed by exciting mould vibrations with up to four piezoceramic disks placed on different sets of antinodes. Some positioning criteria to maximize the superposition effect were derived. Measurements were obtained through excitation of the mould with up to four Langevin-type power emitters, designed and manufactured to work at the mould's selected resonance frequency. These measurements have shown that, by increasing the number of emitters, the ultrasonic power transmitted to the mould and, consequently, the maximum available displacement, increases. Other practical advantages of the proposed system are highlighted and discussed.

  5. Optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications.

    PubMed

    Sunny, Youhan; Bawiec, Christopher R; Nguyen, An T; Samuels, Joshua A; Weingarten, Michael S; Zubkov, Leonid A; Lewin, Peter A

    2012-09-01

    This paper describes optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications. The goal of this work was to design a fully wearable, low weight (<100g), battery operated, piezoelectric ultrasound applicator providing maximum output pressure amplitude at the minimum excitation voltage. Such implementation of ultrasound applicators that can operate at the excitation voltages on the order of only 10-25V is needed in view of the emerging evidence that spatial-peak temporal-peak ultrasound intensity (I(SPTP)) on the order of 100mW/cm(2) delivered at frequencies below 100kHz can have beneficial therapeutic effects. The beneficial therapeutic applications include wound management of chronic ulcers and non-invasive transdermal delivery of insulin and liposome encapsulated drugs. The early prototypes of the 20 and 100kHz applicators were optimized using the maximum electrical power transfer theorem, which required a punctilious analysis of the complex impedance of the piezoelectric disks mounted in appropriately shaped metal housings. In the implementation tested, the optimized ultrasound transducer applicators were driven by portable, customized electronics, which controlled the excitation voltage amplitude and facilitated operation in continuous wave (CW) or pulsed mode with adjustable (10-90%) duty cycle. The driver unit was powered by remotely located rechargeable lithium (Li) polymer batteries. This was done to further minimize the weight of the applicator unit making it wearable. With DC voltage of approximately 15V the prototypes were capable of delivering pressure amplitudes of about 55kPa or 100mW/cm(2) (I(SPTP)). This level of acoustic output was chosen as it is considered safe and side effects free, even at prolonged exposure.

  6. Crack orientation and depth estimation in a low-pressure turbine disc using a phased array ultrasonic transducer and an artificial neural network.

    PubMed

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-01-01

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602

  7. Crack Orientation and Depth Estimation in a Low-Pressure Turbine Disc Using a Phased Array Ultrasonic Transducer and an Artificial Neural Network

    PubMed Central

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-01-01

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602

  8. Crack orientation and depth estimation in a low-pressure turbine disc using a phased array ultrasonic transducer and an artificial neural network.

    PubMed

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-09-13

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.

  9. Ultrasonic Guided Waves for Health Monitoring of High Pressure Composite Tanks

    NASA Astrophysics Data System (ADS)

    Castaings, M.; Hosten, B.

    2008-02-01

    Ultrasonic guided wave modes are proposed to control the integrity of high-pressure composite tanks produced by EADS—ASTRIUM, France. The purpose is to demonstrate the potentiality of air-coupled transducers to set-up a contact-less, single-sided technique for testing the moisture content and/or the micro-cracking of carbon epoxy composite wound around a Titanium liner.

  10. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative

  11. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative

  12. Design of broadband linear micromachined ultrasonic transducer arrays by means of boundary element method coupled with normal mode theory.

    PubMed

    Boulmé, Audren; Certon, Dominique

    2015-09-01

    In view of the maturity of fabrication processes for capacitive micromachined ultrasonic transducers (cMUTs), engineers and researchers now need efficient and accurate modeling tools to design linear arrays according to a set of technological specifications, such as sensitivity, bandwidth, and directivity pattern. A simplified modeling tool was developed to meet this requirement. It consists of modeling one element as a set of cMUT columns, each being a 1-D periodic array of cMUTs. Model description and assessment of simulation results are given in the first part of the paper. The approach is based on the theory of linear systems so the output data are linked to input data through a large matrix, known as an admittance matrix. In the second part of the paper, we propose reorganization of matrix equations by applying the normal mode theory. From the modal decomposition, two categories of eigenmodes are highlighted, one for which all cMUTs vibrate in phase (the fundamental mode) and the others, which correspond to localized subwavelength resonances, known as baffle modes. The last part of the paper focuses mainly on the fundamental mode and gives several design strategies to optimize the frequency response of an element.

  13. Asymmetric Ultrasonic Pulse Radiation Using Electromagnetic-Induction Transducer and PZT(Pb(Zr-Ti)O3) Transducer with Wave Synthesis Method

    NASA Astrophysics Data System (ADS)

    Endoh, Nobuyuki; Yamamoto, Koji

    1993-05-01

    In medical applications, especially in urology, we use a fragmentation calculus technique with shock waves. This technique is very profitable because of no abdominal surgery for a human being. Large negative sound amplitude pulses, however, can cause problems such as internal hemorrhage or pain in the human body. The final goal of this study is to develop a means to project an intense positive unipolar pulse without negative sound pressure. We improved a composite transducer consisting of an electromagnetic-induction-type (EMI) transducer and PZT (Pb(Zr-Ti)O3) transducers. An EMI transducer consisting of a metal coil and vibration membrane can project intense sound pulses into water. In order to suppress its negative sound pressure, we project a compensation pulse with PZT transducers using an inverse filtering method. An asymmetric pulse whose P+ to P- amplitude ratio was very high was projected in water.

  14. Imaging the Cemento-Enamel Junction Using a 20-MHz Ultrasonic Transducer.

    PubMed

    Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Major, Paul W

    2016-01-01

    The cemento-enamel junction (CEJ), which is the intersection between enamel and cementum, is an important landmark in the diagnosis of periodontal disease. Pulse-echo ultrasound was used to image the CEJs of six porcine lower central incisors with a single 20-MHz transducer. A notch was longitudinally created on the enamel as a stable marker, from which the CEJ was measured. Data were acquired along the tooth's axis at 0.4-mm intervals. Time-distance data were bandpass-filtered to enhance signal-to-noise ratio and record density was increased fourfold to 0.1-mm spacing by a frequency-distance interpolation scheme. Reflections from the CEJ were unambiguously identified along with those from enamel, dentin and cementum. The notch-CEJ distances measured by the ultrasound and micro-computed tomography methods correlated strongly (r = 0.996, p < 0.05) and were in good agreement with the 95% lines of agreement between -0.49 and 0.17 mm, as statistically determined by Bland-Altman analysis. The results indicate the potential of ultrasound to be a reliable and non-ionizing technique to image the CEJ. PMID:26546266

  15. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x(0.65PMN-0.35PT)-(1 - x)PZT (xPMN-PT-(1 - x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT-(1 - x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  16. Imaging the Cemento-Enamel Junction Using a 20-MHz Ultrasonic Transducer.

    PubMed

    Nguyen, Kim-Cuong T; Le, Lawrence H; Kaipatur, Neelambar R; Major, Paul W

    2016-01-01

    The cemento-enamel junction (CEJ), which is the intersection between enamel and cementum, is an important landmark in the diagnosis of periodontal disease. Pulse-echo ultrasound was used to image the CEJs of six porcine lower central incisors with a single 20-MHz transducer. A notch was longitudinally created on the enamel as a stable marker, from which the CEJ was measured. Data were acquired along the tooth's axis at 0.4-mm intervals. Time-distance data were bandpass-filtered to enhance signal-to-noise ratio and record density was increased fourfold to 0.1-mm spacing by a frequency-distance interpolation scheme. Reflections from the CEJ were unambiguously identified along with those from enamel, dentin and cementum. The notch-CEJ distances measured by the ultrasound and micro-computed tomography methods correlated strongly (r = 0.996, p < 0.05) and were in good agreement with the 95% lines of agreement between -0.49 and 0.17 mm, as statistically determined by Bland-Altman analysis. The results indicate the potential of ultrasound to be a reliable and non-ionizing technique to image the CEJ.

  17. Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations.

    PubMed

    Liu, Jessica; Oakley, Clyde; Shandas, Robin

    2009-12-01

    The objective of this work is to construct capacitive micromachined ultrasound transducers (cMUTs) using multi-user microelectromechanical systems (MEMS) processess (MUMPs) and to analyze the capability of this process relative to the customized processes commonly in use. The MUMPs process has the advantages of low cost and accessibility to general users since it is not necessary to have access to customized fabrication capability such as wafer-bonding and sacrificial release processes. While other researchers have reported fabricating cMUTs using the MUMPs process none has reported the limitations in the process that arise due to the use of standard design rules that place limitations on the material thicknesses, gap thicknesses, and materials that may be used. In this paper we explain these limitations, and analyze the capabilities using 1D modeling, Finite Element Analysis, and experimental devices. We show that one of the limitations is that collapse voltage and center frequency can not be controlled independently. However, center frequencies up to 9 MHz can be achieved with collapse voltages of less than 200 V making such devices suitable for medical and non-destructive evaluation imaging applications. Since the membrane and base electrodes are made of polysilicon, there is a larger series resistance than that resulting from processes that use metal electrodes. We show that the series resistance is not a significant problem. The conductive polysilicon can also destroy the cMUT if the top membrane is pulled in the bottom. As a solution we propose the application of an additional dielectric layer. Finally we demonstrate a device built with a novel beam construction that produces transmitted pressure pulse into air with 6% bandwidth and agrees reasonably well with the 1D model. We conclude that cMUTs made with MUMPs process have some limitations that are not present in customized processes. However, these limitations may be overcome with the proper design

  18. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.

    PubMed

    Chung, In-Young; Lee, Jungwoo

    2015-02-01

    This paper presents the temperature dependence of lateral acoustic trapping capability by probing the speed of sound in individual lipid droplets at a given temperature of water and measuring its corresponding displacement, a value for quantitatively evaluating a spring-like behavior of the acoustic trap with certain strength. A 20/40 MHz dual element LiNbO3 ultrasonic transducer is fabricated to simultaneously perform both transverse trapping and sound speed measurement for each droplet over a discrete temperature range from 20°C to 30°C. Time of flight method is employed for pulse tracking that determines the arrival time of an echo reflected back from either a trapped droplet or a mylar film. The estimated speeds of sound in water and droplets are 1484.8 m/s and 1431.6 m/s at 20°C, while 1506.0 m/s and 1400.6 m/s at 30°C, respectively. As the temperature rises, the sound speed in droplets decreases at an average rate of 3.1 m/s/°C, and the speed in water increases at 2.1 m/s/°C. The average displacement varies from 150.0 μm to 179.0 μm with an increasing rate of 2.9 μm/°C, and its standard deviation is obtained between 1.0 μm and 2.0 μm over the same temperature range. Reduced sound speed as a function of rising temperature results in increased displacement, indicating that the trapping strength is adjustable by regulating ambient temperature in water as well as by changing transducer excitation parameters. Therefore, the results suggest that the temperature dependence of this trapping technique can be exploited for developing a remote manipulation tool of micron-sized particles in a thermally fluctuating environment. It is also shown that any deviated trapping strength caused by thermal disturbance near the trap can be restored to its desired level by compensating either temperature difference or trapping system condition.

  19. Silver Doped 0.9PMN-PT-0.1PZT Composite Films for very High Frequency Ultrasonic Transducer Applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Wei, Qiang; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2013-05-01

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+ 2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 µC/cm(2) at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29% (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications. PMID:23814408

  20. Non-destructive evaluation means and method of flaw reconstruction utilizing an ultrasonic multi-viewing transducer data acquistion system

    DOEpatents

    Thompson, Donald O.; Wormley, Samuel J.

    1989-03-28

    A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.

  1. An Airborne Ultrasonic Imaging System Based on 16 Elements: 150 kHz Piezopolymer Transducer Arrays—Preliminary Simulated and Experimental Results for Cylindrical Targets Detection

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Bulletti, A.; Calzolai, M.; Giannelli, P.

    2016-12-01

    This paper describes the design and fabrication of a 16-element transducer array for airborne ultrasonic imaging operating at 150 kHz, that can operate both at close range (50 mm) in the near field of a synthetic aperture, and up to 250 mm. The proposed imaging technique is based on a modified version of the delay and sum algorithm implemented with a synthetic aperture where each pixel amplitude is determined by the integration of the signal obtained by the coherent summation of the acquired signals over a delayed window with fixed length. The image reconstruction methods using raw data provides the possibility to detect targets with smaller feature size on the order of one wavelength because the coherent signals summation over the selected window length while the image reconstruction methods using the summation of enveloped signals increases the amplitude response at the expenses of a lower spatial resolution. For the implementation of this system it is important to design compact airborne transducers with large field of view and this can be obtained with a new design of hemi-cylindrical polyvinylidene fluoride film transducers directly mounted on a printed circuit board. This new method is low cost and has repeatable transducer characteristics. The complete system is compact, with a modular architecture, in which eight boards with dual ultrasonic channels are mounted on a mother board. Each daughter board hosts a microcontroller unit and can operate with transducers in the bandwidth 40-200 kHz with on-board data acquisition, pre-processing and transfer on a dedicated bus.

  2. NDE application of ultrasonic tomography to a full-scale concrete structure.

    PubMed

    Choi, Hajin; Popovics, John S

    2015-06-01

    Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.

  3. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  4. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers.

    PubMed

    Eriksson, Tobias J R; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ) ≃ 15 dB in transmit-receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  5. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    PubMed Central

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  6. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate

    PubMed Central

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-01-01

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683

  7. Scaling up the Single Transducer Thickness-Independent Ultrasonic Imaging Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.

    1998-01-01

    Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.

  8. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the

  9. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  10. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  11. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. PMID:27423027

  12. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings.

  13. Single-Transducer, Ultrasonic Imaging Method for High-Temperature Structural Materials Eliminates the Effect of Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1998-01-01

    NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are

  14. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.

    PubMed

    Lu, Yan; He, Cunfu; Song, Guorong; Wu, Bin; Chung, Cheng-Hsien; Lee, Yung-Chun

    2014-01-01

    This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol-gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (100) silicon wafer was measured along various directions between [100] and [010] to represent the anisotropic features.

  15. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  16. Non-Planar Pad-Printed Thick-Film Focused High-Frequency Ultrasonic Transducers for Imaging and Therapeutic Applications

    PubMed Central

    Lethiecq, Marc; Lou-Moeller, Rasmus; Ketterling, Jeffrey A.; Levassort, Franck; Tran-Huu-Hue, Louis Pascal; Filoux, Erwan; Silverman, Ronald H.; Wolny, Wanda W.

    2013-01-01

    Pad-printed thick-film transducers have been shown to be an interesting alternative to lapped bulk piezoceramics, because the film is deposited with the required thickness, size, and geometry, thus avoiding any subsequent machining to achieve geometrical focusing. Their electromechanical properties are close to those of bulk ceramics with similar composition despite having a higher porosity. In this paper, pad-printed high-frequency transducers based on a low-loss piezoceramic composition are designed and fabricated. High-porosity ceramic cylinders with a spherical top surface are used as the backing substrate. The transducers are characterized in view of imaging applications and their imaging capabilities are evaluated with phantoms containing spherical inclusions and in different biological tissues. In addition, the transducers are evaluated for their capability to produce high-acoustic intensities at frequencies around 20 MHz. High-intensity measurements, obtained with a calibrated hydrophone, show that transducer performance is promising for applications that would require the same device to be used for imaging and for therapy. Nevertheless, the transducer design can be improved, and simulation studies are performed to find a better compromise between low-power and high-power performance. The size, geometry, and constitutive materials of optimized configurations are proposed and their feasibility is discussed. PMID:23007770

  17. Drug tablet thickness estimations using air-coupled acoustics.

    PubMed

    Akseli, Ilgaz; Cetinkaya, Cetin

    2008-03-01

    A non-contact/non-destructive acoustic technique for predicting the coating layer thickness of a drug tablet is presented. Quality of tablet coatings can play a major role in the effectiveness of drug delivery. Many pharmaceutical tablets consist of a tablet core and a coated outer cover. Variations in the tablet coating can be indicative of various process problems and, therefore, is of a concern for quality assurance. In the current non-contact measurement system, an air-coupled excitation and laser interferometric detection for predicting the coating layer thickness of a drug tablet is introduced. Drug tablets with different coating thicknesses are vibrated via an acoustic field generated by an air-coupled transducer in a frequency range sufficiently high to excite their several vibrational modes. The tablet surface vibrational responses are acquired at a number of measurement points by a laser interferometer in a non-contact manner. An iterative computational procedure, based on the FE method and Newton's method, was developed and demonstrated to extract the coating layer thicknesses of the tablets from a subset of the measured resonance frequencies. PMID:18022335

  18. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  19. Numerical analysis of the hybrid transducer ultrasonic motor: comparison of characteristics calculated by transmission-line and lumped-element models.

    PubMed

    Satonobu, Jun; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki

    2002-06-01

    In this paper, a hybrid transducer ultrasonic motor is numerically analyzed by using two equivalent electrical circuit models. A transmission-line model for the torsional vibration in the stator, which can model any torsional vibration mode and their combinations, was introduced and compared with a lumped-element model, which modeled the fundamental torsional resonance mode in the stator. The calculation result by using the transmission-line model demonstrated that the second harmonic torsional vibration increased either with the static spring force by which the rotor was pressed to the stator or with the load torque placed on the rotor. The difference in the calculated motor performance between the two models appeared when the second harmonic torsional vibration became large at a sufficient static spring force.

  20. Modeling of phased array transducers.

    PubMed

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  1. Packaging and modular assembly of large-area and fine-pitch 2-D ultrasonic transducer arrays.

    PubMed

    Lin, Der-Song; Wodnicki, Robert; Zhuang, Xuefeng; Woychik, Charles; Thomenius, Kai E; Fisher, Rayette A; Mills, David M; Byun, Albert J; Burdick, William; Khuri-Yakub, Pierre; Bonitz, Barry; Davies, Todd; Thomas, Glen; Otto, Bernd; Töpper, Michael; Fritzsch, Thomas; Ehrmann, Oswin

    2013-07-01

    A promising transducer architecture for largearea arrays employs 2-D capacitive micromachined ultrasound transducer (CMUT) devices with backside trench-frame pillar interconnects. Reconfigurable array (RA) application-specified integrated circuits (ASICs) can provide efficient interfacing between these high-element-count transducer arrays and standard ultrasound systems. Standard electronic assembly techniques such as flip-chip and ball grid array (BGA) attachment, along with organic laminate substrate carriers, can be leveraged to create large-area arrays composed of tiled modules of CMUT chips and interface ASICs. A large-scale, fully populated and integrated 2-D CMUT array with 32 by 192 elements was developed and demonstrates the feasibility of these techniques to yield future large-area arrays. This study demonstrates a flexible and reliable integration approach by successfully combining a simple under-bump metallization (UBM) process and a stacked CMUT/interposer/ASIC module architecture. The results show high shear strength of the UBM (26.5 g for 70-μm balls), high interconnect yield, and excellent CMUT resonance uniformity (s = 0.02 MHz). A multi-row linear array was constructed using the new CMUT/interposer/ASIC process using acoustically active trench-frame CMUT devices and mechanical/ nonfunctional Si backside ASICs. Imaging results with the completed probe assembly demonstrate a functioning device based on the modular assembly architecture. PMID:25004504

  2. Backward-mode photoacoustic transducer for sensing optical scattering and ultrasonic attenuation: determining fraction consistencies in pulp suspensions

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Törmänen, Matti; Myllylä, Risto

    2010-02-01

    An innovative backward-mode photoacoustic transducer was developed, consisting of an optical fibre, a composite absorber, piezoelectric film and high impedance preamplifier. By receiving scattering light from a turbid suspension, the transducer produces a photoacoustic source in it. This source emits two photoacoustic waves travelling in opposite directions. The waves' amplitudes relate to the optical scattering properties of the suspension, and the echo of a wave returning from the suspension carries information of acoustic attenuation. By assessing the optical scattering and acoustic attenuation, fraction consistencies in a two-fractional suspension can be determined if one fraction dominantly scatters light and the other mainly attenuates ultrasound. This technique is used in this paper to investigate paper pulp suspensions. Pulp consists of wood celluloses and wood fines (or extra-added fillers in some cases), where cellulose lengths range from a few sub-millimetres to millimetres and fines/filler sizes are a few tens of micrometres or smaller. Due to their different size and shape, celluloses and fines (or fillers) have different optical scattering and acoustic attenuation properties. Experimental results showed that the transducer can measure pulp consistency with good linearity at least in the range from 0.5% to 3%, and that it can distinguish pulp cellulose from fines or fillers (TiO2 particles). Needless to say, this technique is also suitable for determining other suspensions in the food, pharmaceutical and mineral industries.

  3. Air Coupled Acoustic Thermography (acat) Inspection Technique

    NASA Astrophysics Data System (ADS)

    Zalameda, J. N.; Winfree, W. P.; Yost, W. T.

    2008-02-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of +/-6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  4. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  5. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    NASA Astrophysics Data System (ADS)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  6. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers.

    PubMed

    Wilkens, Volker; Sonntag, Sven; Georg, Olga

    2016-03-01

    The output characterization of medical high intensity therapeutic ultrasonic devices poses several challenges for the hydrophones to be used for pressure measurements. For measurements at clinical levels in the focal region, extreme robustness, broad bandwidth, large dynamic range, and small receiving element size are all needed. Conventional spot-poled membrane hydrophones, in principle, meet some of these features and were used to detect large amplitude ultrasonic fields to investigate their applicability. Cavitation in water was the limiting effect causing damage to the electrodes and membrane. A new hydrophone design comprising a steel foil front protection layer has been developed, manufactured, characterized, tested, and optimized. The latest prototypes additionally incorporate a low absorption and acoustic impedance matched backing, and could be used for maximum peak rarefactional and peak compressional pressure measurements of 15 and 75 MPa, respectively, at 1.06 MHz driving frequency. Axial and lateral beam profiles were measured also for a higher driving frequency of 3.32 MHz to demonstrate the applicability for output beam characterization at the focal region at clinical levels. The experimental results were compared with results of numerical nonlinear sound field simulations and good agreement was found if detection bandwidth and spatial averaging were taken into account. PMID:27036269

  7. Site–Specific Sonoporation of Human Melanoma Cells at the Cellular Level Using High Lateral–Resolution Ultrasonic Micro–Transducer Arrays

    PubMed Central

    Thein, Myo; Cheng, An; Khanna, Payal; Zhang, Chunfeng; Park, Eun–Joo; Ahmed, Daniel; Goodrich, Christopher J.; Asphahani, Fareid; Wu, Fengbing; Smith, Nadine B.; Dong, Cheng; Jiang, Xiaoning; Zhang, Miqin; Xu, Jian

    2011-01-01

    We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly–confined ultrasonic waves produced by high lateral–resolution Ultrasonic Micro–Transducer Arrays (UMTAs). The method enables cellular–level site–specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30–MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic–acid–derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer–generated ultrasound radiation pressure, the ultrasound–inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound–pressure–dependent wound size and enhanced cellular uptake of nanoparticles. Model–based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound–induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post–sonoporation intracellular quantum–dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ~0.12 MPa. PMID:21783355

  8. Simulation and Implementation of Ultrasonic Remote Sensing Agents for Reconfigurable Nde Scanning

    NASA Astrophysics Data System (ADS)

    Dobie, G.; Spencer, A.; Pierce, S. G.; Galbraith, W.; Worden, K.; Hayward, G.

    2009-03-01

    Remote Sensing Agents (RSAs), in the form of miniature robotic platforms, offer unique possibilities for structural inspection. Autonomous groups of RSAs can quickly cover large areas, access hazardous and inaccessible environments and work together intelligently to detect, localize and identify defects. This paper describes such a concept, using wireless RSAs that incorporate air-coupled Lamb wave ultrasonic sensors, combined with magnetic traction. The work focuses on reconfigurable array scanning in plates, where the ability to reconfigure the scanner intelligently requires an understanding of the ultrasonic wave generation, its propagation and the mechanics, positioning and control of the RSAs. To this end, a simulation of the complete system has been created. Ultrasonic generation has been modeled by the Linear Systems 1D Model; the resulting wave propagation is modeled in 3D using the Local Interaction Simulation Approach and a dynamic simulation of the RSA was used to model the transducer positions. The complete model is used to evaluate and optimize inspection strategies.

  9. Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation

    NASA Astrophysics Data System (ADS)

    Dhital, Dipesh; Lee, Jung Ryul; Park, Chan Yik; Flynn, Eric

    2012-04-01

    Various types of damages occur in aerospace, mechanical and many other engineering structures, and a reliable nondestructive evaluation technique is essential to detect any possible damage at the initiation phase. Ultrasound has been widely used but the conventional contact ultrasonic inspection techniques are not suitable for mass and couplant sensitive structures and are relatively slow. This study presents a fully non-contact hybrid laser ultrasonic generation and piezoelectric air-coupled transducer (ACT)/laser Doppler vibrometer (LDV) sensing technique combined with ultrasonic wave propagation imaging (UWPI), ultrasonic spectral imaging (USI) and wavelet-transformed ultrasonic propagation imaging (WUPI) algorithms to extract defect-sensitive features aimed at performing a thorough diagnosis of damage. Optimization enables improved performance efficiency of ACT and LDV to be used as receivers for non-contact hybrid laser ultrasonic propagation imaging (UPI) system as shown from the experimental results in this study. Real fatigue closed surface micro crack on metal structure was detected using hybrid laser ultrasonic generation/ACT sensing system, with size detection accuracy as high as 96%. Impact damages on carbon fiber reinforced plastic composite wing-box specimen were detected and localized using hybrid laser ultrasonic generation/LDV sensing system.

  10. Ultrasonic bone densitometer

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    A device, for measuring the density of a bone structure so as to monitor the calcium content, is described. A pair of opposed spaced ultrasonic transducers are held within a clamping apparatus closely adjacent the bone being analyzed. These ultrasonic transducers incude piezoelectric crystals shaped to direct signals through the bone encompassed in the heel and finger of the subject being tested. A pulse generator is coupled to one of the transducers and generates an electric pulse for causing the transducers to generate an ultrasonic sound wave which is directed through the bone structure to the other transducer. An electric circuit, including an amplifier and a bandpass filter couples the signals from the receiver transducer back to the pulse generator for retriggering the pulse generator at a frequency proportional to the duration that the ultrasonic wave takes to travel through the bone structure being examined.

  11. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  12. Two-Element Transducer for Ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.

    1986-01-01

    Separation of transmitting and receiving units improves probing of deep tissue. Ultrasonic transducer has dual elements to increase depth at which sonic images are made of biological tissue. Transducer uses separate transmitting and receiving elements, and frequency response of receiving element independently designed to accommodate attenuation of higher frequencies by tissue. New transducer intended for pulse-echo ultrasonic systems in which reflected sound pulses reveal features in tissue.

  13. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  14. Rapid non-contact inspection of composite ailerons using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Panda, Rabi Sankar; Karpenko, Oleksii; Udpa, Lalita; Haq, Mahmoodul; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2016-02-01

    This paper demonstrates an approach for rapid non-contact air-coupled ultrasonic inspection of composite ailerons with complex cross-sectional profile including thickness changes, curvature and the presence of a number of stiffeners. Low-frequency plate guided ultrasonic modes are used in B-scan mode for the measurements in pitch-catch mode. Appropriate probe holder angles suitable for generating and receiving lower order guided wave modes are discussed. Different embodiments of the pitch-catch tandem positions along and across stiffener and curved regions of the test sample enable a rapid test campaign capturing the feature-rich sample profile. Techniques to distinguish special features in the stiffener are presented.

  15. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  16. A sonic transducer to detect fluid leaks

    NASA Technical Reports Server (NTRS)

    Cimerman, I.; Janus, J.

    1972-01-01

    Ultrasonic detector utilizes set of contact transducers and bandpass filters to detect and analyze sonic energy produced by flow or leakage. Detector covers wide frequency range and is operable at cryogenic temperatures and in vacuum.

  17. An approach for defect visualization and identification in composite plate structures using air-coupled guided ultrasound

    NASA Astrophysics Data System (ADS)

    Panda, Rabi Sankar; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2015-03-01

    Composite materials are today widely used in engineering applications because of superior strength-weight ratios offered by them as well as high structural performance and corrosion resistance. However defects such as fibre breakage, matrix cracking, de-bonding and delaminations in composites impact their structural integrity and reliability negatively and NDE techniques to rapidly identify such defects are valuable. Ultrasonic guided waves have over the years emerged as attractive tools for scanning of large structures and recently they have been considered for rapid inspection of plate and pipe installations. Air-coupled ultrasound for generation of Lamb waves is particularly attractive for composite applications in view of the non-contact inspection offered, as well as the possibilities for rapid mechanized scanning. In this paper we present damage identification and visualisation approaches for quasi-isotropic composite plate structures, based on air-coupled plate guided ultrasonic (Lamb) waves. In the implementation demonstrated, an 8-layered quasi-isotropic [0/+45/-45/90]s glass fibre reinforced plastics (GFRP) composite plate is interrogated using air-coupled pitch-catch guided ultrasound. Propagation of Lamb waves in the laminates and their interaction with delaminations of different sizes at various locations along the structure are studied using 3D finite element (FE) analysis. The visualization approach is validated using experiments, leading to quantitative predictions of defect parameters such as sizing, location and depth. The approach is also extended for the inspection of complex composite structural features such as I- and T-sections.

  18. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.

    PubMed

    Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos

    2009-04-01

    In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface. PMID:19406714

  19. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  20. Application of pulse compression signal processing techniques to electromagnetic acoustic transducers for noncontact thickness measurements and imaging

    SciTech Connect

    Ho, K.S.; Gan, T.H.; Billson, D.R.; Hutchins, D.A.

    2005-05-15

    A pair of noncontact Electromagnetic Acoustic Transducers (EMATs) has been used for thickness measurements and imaging of metallic plates. This was performed using wide bandwidth EMATs and pulse-compression signal processing techniques, using chirp excitation. This gives a greatly improved signal-to-noise ratio for air-coupled experiments, increasing the speed of data acquisition. A numerical simulation of the technique has confirmed the performance. Experimental results indicate that it is possible to perform noncontact ultrasonic imaging and thickness gauging in a wide range of metal plates. An accuracy of up to 99% has been obtained for aluminum, brass, and copper samples. The resolution of the image obtained using the pulse compression approach was also improved compared to a transient pulse signal from conventional pulser(receiver). It is thus suggested that the combination of EMATs and pulse compression can lead to a wide range of online applications where fast time acquisition is required.

  1. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo.

    PubMed

    Groschup, Robin; Grosse, Christian U

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable.

  2. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo

    PubMed Central

    Groschup, Robin; Grosse, Christian U.

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable. PMID:26121610

  3. Air-coupled acoustic method for testing and evaluation of microscale structures.

    PubMed

    Ricci, Justin; Cetinkaya, Cetin

    2007-05-01

    A noncontact testing and characterization approach for microscale structures based on air-coupled acoustic excitation and optical sensing is proposed and demonstrated. Using an air-coupled transducer to externally excite and a laser Doppler vibrometer/interferometer to capture transient displacement wave forms, the experimental approach results in a technique to determine mechanical properties of microscale structural elements. The effectiveness of this method has been demonstrated on commercially available microcantilever beams and microscale rotational oscillators fabricated for this study. The resonance frequencies and mechanical properties (Young's modulus and stiffness) extracted from the transient displacement wave forms have been compared, with good agreement, to computational and simplified analytical models for each case. It is also shown that the technique could serve to diagnose stiction problems of microscale structures. Some potential advantages of the approach described include the simplicity of the test setup, functionality at room conditions, noncontact and nondestructive operations, and repeatability and rapid turn-around time for the evaluation of modal parameters and mechanical properties of microscale structures.

  4. Thermal imaging and air-coupled ultrasound characterization of a continuous-fiber ceramic composite panels.

    SciTech Connect

    Sun, J. G.; Easler, T. E.; Szweda, A.; Pillai, T. A. K.; Deemer, C.; Ellingson, W. A.

    1998-04-01

    SYLRAMIC{trademark} continuous fiber ceramic-matrix composites (Nicalon{trademark} fiber/SiNC matrix) were fabricated by Dow Corning Corporation with the polymer-impregnation and pyrolysis (PIP) process. The composite microstructure and its uniformity, and the completeness of infiltration during processing were studied as a function of number of PIP cycles. Two nondestructive evaluation (NDE) methods, i.e., infrared thermal imaging and air-coupled ultrasound (UT), were used to investigate flat composite panels of two thicknesses and various sizes. The thermal imaging method provided two-dimensional (2D) images of through-thickness thermal diffusivity distributions, and the air-coupled UT method provided 2D images of through-thickness ultrasonic transmission of the panel components. Results from both types of NDEs were compared at various PIP cycles during fabrication of the composites. A delaminated region was clearly detected and its progressive repair was monitored during processing. The NDE data were also correlated to results obtained from destructive characterization.

  5. Limitations of symmetry in FE modeling: A comparison of fem and air-coupled resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    It has long been an accepted practice to use symmetry in Finite Element Modeling. Whenever modeling a large structure, we turn to symmetry in order to significantly reduce the model size and computation time. But is symmetry always the solution to long computation times, and is it always accurate? This study is aimed at modeling a whole ceramic tile and several possible symmetric models under several different loading cases and comparing them to each other and Air-Coupled Ultrasonic scans to determine if the Finite Element Models can accurately predict the vibrational resonance patterns. The reason for the accuracy or inaccuracy will also be examined. The understanding of the limitations of using symmetry to model large structures will be very useful in all future modeling.

  6. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  7. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  8. Acoustic-speed correction of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Huang, Chao; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-03-01

    Photoacoustic computed tomography (PACT) is a hybrid technique that combines optical excitation and ultrasonic detection to provide high resolution images in deep tissues. In the image reconstruction, a constant speed of sound (SOS) is normally assumed. This assumption, however, is often not strictly satisfied in deep tissue imaging, due to acoustic heterogeneities within the object and between the object and coupling medium. If these heterogeneities are not accounted for, they will cause distortions and artifacts in the reconstructed images. In this paper, we incorporated ultrasonic computed tomography (USCT), which measures the SOS distribution within the object, into our full-ring array PACT system. Without the need for ultrasonic transmitting electronics, USCT was performed using the same laser beam as for PACT measurement. By scanning the laser beam on the array surface, we can sequentially fire different elements. As a first demonstration of the system, we studied the effect of acoustic heterogeneities on photoacoustic vascular imaging. We verified that constant SOS is a reasonable approximation when the SOS variation is small. When the variation is large, distortion will be observed in the periphery of the object, especially in the tangential direction.

  9. Fixture for holding testing transducer

    DOEpatents

    Wagner, T.A.; Engel, H.P.

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  10. Fixture for holding testing transducer

    DOEpatents

    Wagner, Thomas A.; Engel, Herbert P.

    1984-01-01

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  11. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  12. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  13. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, W.; Celliers, P.; Da Silva, L.; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Krulevich, P.; Lee, A.

    1999-08-31

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control. 7 figs.

  14. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    1999-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  15. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    2002-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  16. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  17. Full-Duplex Airborne Ultrasonic Data Communication Using a Pilot-Aided QAM-OFDM Modulation Scheme.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-08-01

    Orthogonal frequency division multiplexing (OFDM) has been extensively used in a variety of broadband digital wireless communications applications because of its high bandwidth utilization efficiency and effective immunity to multipath distortion. This paper has investigated quadrature amplitude modulation and OFDM methods in air-coupled ultrasonic communication, using broadband capacitive ultrasonic transducers with high- k dielectric layers. OFDM phase noise was discussed and corrected using a pilot-aided estimation algorithm. The overall system data rate achieved was up to 400 kb/s with a spectral efficiency of 2 b/s/Hz. An ultrasonic propagation model for signal prediction considered atmospheric absorption of sound in air, beam divergence, and transducer frequency response. The simulations were compared with the experimental results, and good agreement was found between the two. Two-way communication through air was also implemented successfully by applying three-way handshaking initialization and an adaptive modulation scheme with variable data rates depending on the transmission distance, estimated using received signal strength indication measurement. It was shown that the error-free transmission range could be extended up to 2.5 m using different system transfer rates from 400 kb/s down to 100 kb/s. In full-duplex transmission mode, the overall error-free system data rate achieved was 0.8 Mb/s up to 1.5 m.

  18. Full-Duplex Airborne Ultrasonic Data Communication Using a Pilot-Aided QAM-OFDM Modulation Scheme.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-08-01

    Orthogonal frequency division multiplexing (OFDM) has been extensively used in a variety of broadband digital wireless communications applications because of its high bandwidth utilization efficiency and effective immunity to multipath distortion. This paper has investigated quadrature amplitude modulation and OFDM methods in air-coupled ultrasonic communication, using broadband capacitive ultrasonic transducers with high- k dielectric layers. OFDM phase noise was discussed and corrected using a pilot-aided estimation algorithm. The overall system data rate achieved was up to 400 kb/s with a spectral efficiency of 2 b/s/Hz. An ultrasonic propagation model for signal prediction considered atmospheric absorption of sound in air, beam divergence, and transducer frequency response. The simulations were compared with the experimental results, and good agreement was found between the two. Two-way communication through air was also implemented successfully by applying three-way handshaking initialization and an adaptive modulation scheme with variable data rates depending on the transmission distance, estimated using received signal strength indication measurement. It was shown that the error-free transmission range could be extended up to 2.5 m using different system transfer rates from 400 kb/s down to 100 kb/s. In full-duplex transmission mode, the overall error-free system data rate achieved was 0.8 Mb/s up to 1.5 m. PMID:27214897

  19. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    SciTech Connect

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to be developed for better classification and categorization of defects in real-time.

  20. Ultrasonic hydrometer

    SciTech Connect

    Swoboda, C.A.

    1984-04-17

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time ''t'' between the initial and returning impulses. Considering the distance ''d'' between the spaced sonic surfaces and the measured time ''t'', the sonic velocity ''V'' is calculated with the equation ''V=2d/t''. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0/sup 0/ and 40/sup 0/ C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  1. Ultrasonic hydrometer

    DOEpatents

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  2. Numerical and Analytical Design of Functionally Graded Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Rubio, Wilfredo Montealegre; Buiochi, Flavio; Adamowski, Julio C.; Silva, Emílio Carlos Nelli

    2008-02-01

    This paper presents analytical and finite element methods to model broadband transducers with a graded piezoelectric parameter. The application of FGM (Functionally Graded Materials) concept to piezoelectric transducer design allows the design of composite transducers without interface between materials (e.g. piezoelectric ceramic and backing material), due to the continuous change of property values. Thus, large improvements can be achieved in their performance characteristics, mainly generating short-time waveform ultrasonic pulses. Nevertheless, recent research on functionally graded piezoelectric transducers shows lack of studies that compare numerical and analytical approaches used in their design. In this work analytical and numerical models of FGM piezoelectric transducers are developed to analyze the effects of piezoelectric material gradation, specifically, in ultrasonic applications. In addition, results using FGM piezoelectric transducers are compared with non-FGM piezoelectric transducers. We concluded that the developed modeling techniques are accurate, providing a useful tool for designing FGM piezoelectric transducers.

  3. Three dimensional ultrasonic imaging

    SciTech Connect

    Thomas, G. H.; Benson, S.; Crawford, S.

    1993-03-01

    Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.

  4. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  5. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  6. Application of Ultrasonic Dental Scaler for Diagnosis

    NASA Astrophysics Data System (ADS)

    Maruyama, Yutaka; Takasaki, Masaya; Kutami, Tomonori; Mizuno, Takeshi

    Ultrasonic dental scaler is an instrument to remove dental calculi using ultrasonic vibration of a transducer. The conventional transducer has a hose to provide water to scaling point. The hose causes attenuation of the ultrasonic vibration. This paper describes a new transducer design to avoid the attenuation. Design decision by comparison of two types of transducer designs is reported. Additionally, the ultrasonic transducer is used in resonance condition. The resonance frequency, however, is shifted according to value of input voltage to the transducer and condition of contact with tooth or gum. This paper presents a resonance frequency tracing system to solve the frequency shift. Step responses are specified as evaluation of the system. Application of the system to diagnosis is also discussed. Experiments on measurement of object properties are reported. The results indicate possibility that dental health can be investigated by observing the frequency shift during the scaler operation.

  7. Ultrasonic determination of Young's moduli of the coat and core materials of a drug tablet.

    PubMed

    Akseli, Ilgaz; Becker, Douglas C; Cetinkaya, Cetin

    2009-03-31

    Many modern tablet presses have system controls that monitor the force exerted to compress the solid oral dosage forms; however this data provides only limited information about the mechanical state of the tablet due to various process and materials uncertainties. A contact pulse/echo ultrasonic scheme is presented for the determination of the local Young's moduli of the coat and the core materials of enteric-coated and monolayer coated tablets. The Young's modulus of a material compacted into solid dosage can be related to its mechanical hardness and, consequently, its dissolution rate. In the current approach, short ultrasonic pulses are generated by the active element of a delay line transducer and are launched into the tablet. The waveforms reflected from the tablet coat-core interface are captured by the same transducer and are processed for determining the reflection and transmission coefficients of the interface from partially overlapping echoes. The Young's moduli of the coat and the core materials are then extracted from these coefficients. The results are compared to those obtained by an air-coupled acoustic excitation study, and good agreement is found. The described measurement technique provides greater insight into the local physical properties of the solid oral dosage form and, as a result, has the potential to provide better hardness-related performance predictability of compacts. PMID:19059326

  8. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  9. Development and application of specially-focused ultrasonic transducers to location and sizing of defects in 75 mm- to 127 mm-thick austenitic stainless steel weld metals

    SciTech Connect

    Dalder, E.N.C.; Benson, S.; McKinley, B.J.; Carodiskey, T.

    1992-08-01

    Special UT transducer parts, capable of focusing incident signals within a 25 mm {times} 25 mm {times} 25 mm volume in an austenitic stainless weld metal at depths that varied from 25 mm to 127 mm, were developed and demonstrated to be capable of detecting a defect with cross section equivalent to that of a 4.76 mm-dia flat-bottom hole. Defect length sizing could be accomplished to {plus_minus}50% for 100% of the time and to {plus_minus}25% on selected defect types as follows: porosity groups, 100%; cracks, 67%; combined slag and porosity, 60%; and linear slag indications, 59%. Extensive linear elastic-fracture-mechanics analyses were performed to establish allowable defect sizes at functions of stress, based on a cyclic-life criterion of 10{sup 3} full power cycles of the MFTF-B magnet system. These defect sizes were used to determine which UT indicating were to be removed and repaired and which were to be retained and their recorded sizes and locations.

  10. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  11. Pitch-catch only ultrasonic fluid densitometer

    SciTech Connect

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  12. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  13. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  14. Acoustic transducer with damping means

    DOEpatents

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  15. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  16. Laser ultrasonics: Current research needs

    SciTech Connect

    Wagner, J.W. . Center for Nondestructive Evaluation)

    1990-09-26

    Laser-ultrasonics refers to a range of technologies involving the use of laser electrooptical systems both to generate and to detect ultrasonic signals in and on materials and structures. Such systems have been developed to permit classical ultrasonic measurements for materials characterization and defect identification and measurement. From the point of view of one concerned with practical applications of ultrasonic inspection and measurement methods, laser-ultrasonic systems offer the flexibility which, in principle, should permit remote ultrasonic measurements to be performed on objects at elevated temperatures or in hostile environments. Laser-ultrasonic systems can be designed and constructed with extremely wide and flat detection bandwidth so that ultrasonic vibrational displacements can be recorded with high fidelity. In addition, there is no mechanical loading of the surface to damp, absorb, or otherwise distort the propagating acoustic energy. This feature has been used to great advantage in performing ultrasonic measurements in thin plates and films. In spite of the great advantages offered by laser-ultrasonics, there are severe limitations which restrict its application. In fact, based upon the performance of current state-of-the-art laser-ultrasonic systems, it is almost always more advantageous to use conventional ultrasonic transduction methods, if possible for a given application, than it is to apply laser-ultrasonics. In short, the main reason leading to this conclusion is the poor system detection sensitivity of laser-ultrasonic systems compared with piezoelectric transducer systems. The ramifications of this limited sensitivity are many.

  17. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  18. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  19. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  20. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates

    NASA Astrophysics Data System (ADS)

    Zhang, Dongbo; Zhao, Jinfeng; Bonello, Bernard; Li, Libing; Wei, Jianxin; Pan, Yongdong; Zhong, Zheng

    2016-08-01

    In this work, we applied a robust and fully air-coupled method to investigate the propagation of the lowest-order antisymmetric Lamb (A0) mode in both a stubbed and an air-drilled phononic-crystal (PC) plate. By measuring simply the radiative acoustic waves of A0 mode close to the plate surface, we observed the band gaps for the stubbed PC plate caused by either the local resonance or the Bragg scattering, in frequency ranges in good agreement with theoretical predictions. We measured then the complete band gap of A0 mode for the air-drilled PC plate, in good agreement with the band structures. Finally, we compared the measurements made using the air-coupled method with those obtained by the laser ultrasonic technique.

  1. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  2. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  3. Multifunctional transducer

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Culler, V. H.; Merrbaum, S. (Inventor)

    1981-01-01

    Several parameters of a small region of a muscle tissue or other object, can be simultaneously measured using with minimal traumatizing or damage of the object, a trifunctional transducer which can determine the force applied by a muscle fiber, the displacement of the fiber, and the change in thickness of the fiber. The transducer has three legs with inner ends joined together and outer ends formed to piece the tissue and remain within it. Two of the legs are relatively stiff, to measure force applied by the tissue, and a third leg is relatively flexible to measure displacement of the tissue relative to one or both stiff legs, and with the three legs lying in a common plane so that the force and displacement measurements all relate to the same direction of muscle movements. A flexible loop is attached to one of the stiff legs to measure changes in muscle thickness, with the upper end of the loop fixed to the leg and the lower end of the loop bearing against the surface of the tissue and being free to slide on the leg.

  4. Micro-stereolithography as a transducer design method.

    PubMed

    Ho, K S; Bradley, R J; Billson, D R; Hutchins, D A

    2008-03-01

    This paper investigates the use of micro-stereolithography, a rapid prototyping technique, in the manufacture of transducers. It is illustrated for the production of electromagnetic acoustic transducer (EMATs) coils in both meander-line and spiral configurations. A synthetic aperture focussing technique (SAFT) has been applied to the ultrasonic signals from these devices to reconstruct images in metallic objects.

  5. Flaw detection in a multi-material multi-layered composite: using fem and air-coupled ut

    SciTech Connect

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2011-06-23

    Ceramic tiles are the main ingredient of a multi-layer multi-material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay-up with finite element analysis and comparing the results with the resonance modes observed in air-coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and/or after usage, are expected to change the resonance modes. The comparison of a pristine tile/lay-up and a defective tile/lay-up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay-up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles.

  6. Flaw Detection in a Multi-Material Multi-Layered Composite: Using FEM and Air-Coupled UT

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2011-06-01

    Ceramic tiles are the main ingredient of a multi-layer multi-material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay-up with finite element analysis and comparing the results with the resonance modes observed in air-coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and/or after usage, are expected to change the resonance modes. The comparison of a pristine tile/lay-up and a defective tile/lay-up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay-up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles.

  7. Thick aluminium nitride films deposited by room-temperature sputtering for ultrasonic applications.

    PubMed

    Lee, C K; Cochran, S; Abrar, A; Kirk, K J; Placido, F

    2004-04-01

    Materials in film form for electromechanical transduction have a number of potential applications in ultrasound. They are presently under investigation in flexural transducers for air-coupled ultrasound and underwater sonar operating at frequencies up to a few megahertz. At higher frequencies, they have the potential to be integrated with electronics for applications of ultrasound requiring high spatial resolution. However, a number of fabrication difficulties have arisen in studies of such films. These include the high temperatures required in many thick and thin film deposition processes, making them incompatible with other stages in transducer fabrication, and difficulties maintaining film quality when thin film--typically sub-1 microm--processes are extended to higher thicknesses. In this paper, we first outline a process which has allowed us to deposit aluminium nitride (AlN) films capable of electromechanical transduction at thicknesses up to more than 5 microm without substrate heating. As an ultrasonic transduction material, AlN has functional disadvantages, particularly a high acoustic velocity and weak electromechanical transduction. However, it also has a number of advantages relating to practicality of fabrication and functionality. These include the ability to be deposited on a variety of amorphous substrates, a very high Curie temperature, low permittivity, and low electrical and mechanical losses. Here, we present experimental results highlighting the transduction capabilities of AlN deposited on aluminium electrodes on glass and lithium niobate. We compare the results with those from standard simulation processes, highlighting the reasons for discrepancies and discussing the implications for incorporation of AlN into standard ultrasonic transducer design processes.

  8. Effect of Ultrasonic Frequency on Enzymatic Hydrolysis of Cellulose

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiji; Kato, Daiki; Xu, Zheng; Sakka, Makiko; Sakka, Kazuo

    2010-07-01

    The effect of ultrasonic frequency on the enzymatic hydrolysis of cellulose was examined. As the cellulose and enzyme, needle unbleached kraft pulp and cellulase were used. In the cases of the horn-type transducer at 20 kHz and the plate-type transducer at 28 kHz, the enzymatic hydrolysis was accelerated by ultrasonic irradiation. Total sugar concentration linearly increased with ultrasonic intensity. On the other hand, in the case of the plate-type transducer at 500 kHz, the enzymatic hydrolysis was inhibited. Total sugar concentration decreased with increasing ultrasonic intensity.

  9. Ultrasonic fluid densitometer for process control

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  10. Calibration Methods for Air Coupled Antennas - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Marecos, Vânia; Solla, Mercedes; Fontul, Simona; Pajewski, Lara

    2016-04-01

    This work focuses on the comparison of different methods for calibrating air coupled antennas: Coring, Surface Reflection Method (SRM) and Common Mid-Point (CMP) through the analysis of GPR data collected in a test site with different pavement solutions. Research activities have been carried out during a Short Term Scientific Mission (STSM) funded by the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" in December 2015. The use of GPR in transport infrastructures represents one of the most significant advances for obtaining continuous data along the road, with the advantage of operation at traffic speed and being a non-destructive technique. Its main application has been the evaluation of layer thickness. For the determination of layer thickness, it is necessary to know the velocity of the signal, which depends on the dielectric constant of the material, and the two-way travel time of the reflected signal that is recorded by the GPR system. The calculation of the dielectric value of the materials can be done using different approaches such as: using fixed values based on experience, laboratory determination of dielectric values, applying the SRM, performing back calculation from ground truth references such as cores and test pits, or using the CMP method. The problem with using ground truth is that it is time consuming, labour intensive and intrusive to traffic, in addition, a drill core is not necessarily representative of the whole surveyed area. Regarding the surface reflection technique, one of the problems is that it only measures the dielectric value from the layer surface and not from the whole layer. Recent works already started to address some of these challenges proposing new approaches for GPR layer thickness measurements using multiple antennas to calculate the average dielectric value of the asphalt layer, taking advantage of significant hardware improvements in GPR

  11. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  12. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  13. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  14. Ultrasonics: Fundamentals, Technologies, and Applications

    SciTech Connect

    Ensminger, Dale; Bond, Leonard J.

    2011-09-17

    This is a new edition of a bestselling industry reference. Discusses the science, technology, and applications of low and high power ultrasonics, including industrial implementations and medical uses. Reviews the basic equations of acoustics, starting from basic wave equations and their applications. New material on property determination, inspection of metals (NDT) and non-metals, imaging, process monitoring and control. Expanded discussion of transducers, transducer wave-fields, scattering, attenuation and measurement systems and models. New material that discusses high power ultrasonics - in particular using mechanical effects and sonochemistry, including applications to nano-materials. Examines diagnosis, therapy, and surgery from a technology and medical physics perspective.

  15. Design considerations for piezoelectric polymer ultrasound transducers.

    PubMed

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  16. Model of a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  17. A novel ultrasonic clutch using near-field acoustic levitation.

    PubMed

    Chang, Kuo-Tsi

    2004-10-01

    This paper investigates design, fabrication and drive of an ultrasonic clutch with two transducers. For the two transducers, one serving as a driving element of the clutch is connected to a driving shaft via a coupling, and the other serving as a slave element of the clutch is connected to a slave shaft via another coupling. The principle of ultrasonic levitation is first expressed. Then, a series-resonant inverter is used to generate AC voltages at input terminals of each transducer, and a speed measuring system with optic sensors is used to find the relationship between rotational speed of the slave shaft and applied voltage of each transducer. Moreover, contact surfaces of the two transducers are coupled by the frictional force when both the two transducers are not energized, and separated using the ultrasonic levitation when at least one of the two transducers is energized at high voltages at resonance. PMID:15358528

  18. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  19. Techniques for enhancing laser ultrasonic nondestructive evaluation

    SciTech Connect

    Candy, J; Chinn, D; Huber, R; Spicer, J; Thomas, G

    1999-02-16

    Ultrasonic nondestructive evaluation is an extremely powerful tool for characterizing materials and detecting defects. A majority of the ultrasonic nondestructive evaluation is performed with piezoelectric transducers that generate and detect high frequency acoustic energy. The liquid needed to couple the high frequency acoustic energy from the piezoelectric transducers restricts the applicability of ultrasonics. For example, traditional ultrasonics cannot evaluate parts at elevated temperatures or components that would be damaged by contact with a fluid. They are developing a technology that remotely generates and detects the ultrasonic pulses with lasers and consequently there is no requirement for liquids. Thus the research in laser-based ultrasound allows them to solve inspection problems with ultrasonics that could not be done before. This technology has wide application in many Lawrence Livermore National Laboratory programs, especially when remote and/or non-contact sensing is necessary.

  20. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  1. 21 CFR 1050.10 - Ultrasonic therapy products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR SONIC, INFRASONIC, AND ULTRASONIC RADIATION-EMITTING PRODUCTS... ultrasonic radiation and which includes one or more ultrasonic transducers and any associated housing....

  2. Transducer-Mounting Fixture

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  3. Advantages of polymer transducers in high frequency inspections

    SciTech Connect

    Samari, S.; Stanton, M.

    1993-12-31

    Since the discovery of piezoelectricity in PVDF in 1969 the polymer transducers have now emerged as a significant tool in many ultrasonic inspections that otherwise would have been very difficult or impossible for conventional ceramic transducers. The major advantage, of Polymer transducers is in their inherent broadband characteristics in immersion applications which leads to their superior resolution and improved signal to noise ration over conventional ceramic transducers. This paper will show empirical results of high frequency polymer transducer in inspection of different materials including engineering materials such as ceramics. Other advantages of the polymer transducers are their low acoustic impedance as well as the compliance of the plastic material during construction. The compliance of the plastic PVDF film allows the manufacture of the high frequency polymer transducers without the use of permanent delays which can interfere with ultrasonic measurements. This paper will also give experimental results that will show how polymer transducers are instrument dependent, and how an operator can achieve optimum results by using an impedance matching network between the instrument and the polymer transducer.

  4. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  5. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  6. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  7. Apparatus for ultrasonic nebulization

    DOEpatents

    Olson, Kenneth W.; Haas, Jr., William J.; Fassel, Velmer A.

    1978-08-29

    An improved apparatus for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet.

  8. Medical ultrasonic imaging.

    PubMed

    Schuy, S

    1982-01-01

    The development of ultrasonic imaging techniques is by no means finished even today. The morphological display of anatomical cross-sections has already reached a high standard and is characterized by the realization of real-time compound scanners. Automated water-bath scanners, either compound or single pass, are intended to help ultrasound to play a more dominant role in mammography, especially as a screening method, although at present it cannot be used very efficiently for this purpose. Considerable progress can be expected with the increasing use of computer facilities, especially digital signal-processing techniques. They should not only further improve image fidelity and intelligibility, but also the comfort of the handling. A major step forward will be the implementation of objective transducer-independent tissue-differentiation facilities into imaging devices. The development of alternative ultrasonic imaging techniques like the transmission camera should increase the scope of ultrasonic application rather than compete with B-scan imaging.

  9. Researches and applications of the ultrasonic emulsifications and dispersions.

    PubMed

    Quanlu, Li; Yinhong, Zhang; Jing, Wu

    2013-11-01

    This paper defines power ultrasonics and their two important directions: Ultrasonic emulsification and dispersion from a practical point of view, brief reports on recent research results are ultrasonic emulsification to be used for the preparation of composite electrorheological fluid, and ultrasonic dispersion to be used dispersion as a new type cold cloud catalytic agent metaldehyde [CH3CH]4-6 (this is used for artificial rain), etc., and produce good results or gain progress. Then, the principle and applications of power ultrasonics (including magnetostriction type ultrasonic transducer and piezoelectric type ultrasonic transducer) in the emulsification or dispersion, are pointed out. Also, ultrasonic extensive applications in chemistry, materials, and life sciences are briefly introduced. PMID:24180765

  10. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  11. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  12. Flexible ultrasonic pipe inspection apparatus

    SciTech Connect

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  13. Transducer applications, a compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods.

  14. Increasing average power in medical ultrasonic endoscope imaging system by coded excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Zhou, Hao; Wen, Shijie; Yu, Daoyin

    2008-12-01

    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through biopsy channel of electronic endoscope and rotates it by a micro pre-motor, which requires that the length of ultrasonic probe is no more than 14mm and the diameter is no more than 2.2mm. As a result, the ultrasonic excitation power is very low and it is difficult to obtain a sharp image. In order to increase the energy and SNR of ultrasonic signal, we introduce coded excitation into the ultrasonic imaging system, which is widely used in radar system. Coded excitation uses a long coded pulse to drive ultrasonic transducer, which can increase the average transmitting power accordingly. In this paper, in order to avoid the overlapping between adjacent echo, we used a four-figure Barker code to drive the ultrasonic transducer, which is modulated at the operating frequency of transducer to improve the emission efficiency. The implementation of coded excitation is closely associated with the transient operating characteristic of ultrasonic transducer. In this paper, the transient operating characteristic of ultrasonic transducer excited by a shock pulse δ(t) is firstly analyzed, and then the exciting pulse generated by special ultrasonic transmitting circuit composing of MD1211 and TC6320. In the final part of the paper, we designed an experiment to validate the coded excitation with transducer operating at 5MHz and a glass filled with ultrasonic coupling liquid as the object. Driven by a FPGA, the ultrasonic transmitting circuit output a four-figure Barker excitation pulse modulated at 5MHz, +/-20 voltage and is consistent with the transient operating characteristic of ultrasonic transducer after matched by matching circuit. The reflected echo from glass possesses coded character, which is identical with the simulating result by Matlab. Furthermore, the signal's amplitude is higher.

  15. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  16. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.

    PubMed

    Harb, M S; Yuan, F G

    2016-01-01

    A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency.

  17. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  18. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  19. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  20. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  1. Application of Air Coupled Acoustic Thermography (ACAT) for Inspection of Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel

    2009-01-01

    The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.

  2. NDE of interfaces in the tube geometry with piezofilm transducers

    SciTech Connect

    Hsu, D.K.; Zhang, Zhong.

    1991-01-01

    The flexible polymer piezofilms such as polyvinylidene fluoride (1) (PVDF) posses distinct advantages as ultrasonic transducers for inspecting cylindrically symmetric components, including rods, pipes, cladding, and tube interfaces. The flexibility and contour conforming nature of the film transducer ensure normal incidence and avoid mode conversion. In this work, PVDF transducers are used in the evaluation of interfaces in coaxially extruded Zirconium-Zircaloy tubes and the clamping condition of Nitinol couplers over stainless steel tubing. Detailed description will be given for the evaluation of an interface in a Zirconium-Zircaloy tube, on which the same transducer was used both as the transmitter and the receiver. The multiple echo signals were analyzed and reflection coefficient as small as 0.006 was accurately measured. Comparison will be made with the measurement results of conventional transducers. 5 refs., 6 figs.

  3. NDE of interfaces in the tube geometry with piezofilm transducers

    SciTech Connect

    Hsu, D.K.; Zhang, Zhong

    1991-12-31

    The flexible polymer piezofilms such as polyvinylidene fluoride [1] (PVDF) posses distinct advantages as ultrasonic transducers for inspecting cylindrically symmetric components, including rods, pipes, cladding, and tube interfaces. The flexibility and contour conforming nature of the film transducer ensure normal incidence and avoid mode conversion. In this work, PVDF transducers are used in the evaluation of interfaces in coaxially extruded Zirconium-Zircaloy tubes and the clamping condition of Nitinol couplers over stainless steel tubing. Detailed description will be given for the evaluation of an interface in a Zirconium-Zircaloy tube, on which the same transducer was used both as the transmitter and the receiver. The multiple echo signals were analyzed and reflection coefficient as small as 0.006 was accurately measured. Comparison will be made with the measurement results of conventional transducers. 5 refs., 6 figs.

  4. Quantitative Measurement of the Doppler Shift at an Ultrasonic Frequency

    ERIC Educational Resources Information Center

    Nerbun, R. C.; Leskovec, R. A.

    1976-01-01

    Discussed is a Doppler shift laboratory experiment for an introductory college physics course. Ultrasonic transducers and a digital phase detector circuit "black box" are used to overcome room noise and "standing waves" and to produce an observable frequency shift. (SL)

  5. Assessment and Calibration of a Crimp Tool Equipped with Ultrasonic Analysis Features

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, K. Elliott (Inventor)

    2013-01-01

    A method is provided for calibrating ultrasonic signals passed through a crimp formed with respect to a deformable body via an ultrasonically-equipped crimp tool (UECT). The UECT verifies a crimp quality using the ultrasonic signals. The method includes forming the crimp, transmitting a first signal, e.g., a pulse, to a first transducer of the UECT, and converting the first signal, using the first transducer, into a second signal which defines an ultrasonic pulse. This pulse is transmitted through the UECT into the crimp. A second transducer converts the second signal into a third signal, which may be further conditioned, and the ultrasonic signals are calibrated using the third signal or its conditioned variant. An apparatus for calibrating the ultrasonic signals includes a pulse module (PM) electrically connected to the first and second transducers, and an oscilloscope or display electrically connected to the PM for analyzing an electrical output signal therefrom.

  6. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  7. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  8. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  9. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  10. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  11. Characterization methods for ultrasonic test systems

    SciTech Connect

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented.

  12. Accurate method for measurement of pipe wall thickness using a circumferential guided wave generated and detected by a pair of noncontact transducers

    NASA Astrophysics Data System (ADS)

    Nishino, H.; Taniguchi, Y.; Yoshida, K.

    2012-05-01

    A noncontact method of an accurate estimation of a pipe wall thickness using a circumferential (C-) Lamb wave is presented. The C-Lamb waves circling along the circumference of pipes are transmitted and received by the critical angle method using a pair of noncontact air-coupled ultrasonic transducers. For the accurate estimation of a pipe wall thickness, the accurate measurement of the angular wave number that changes minutely owing to the thickness must be achieved. To achieve the accurate measurement, a large number of tone-burst cycles are used so as to superpose the C-Lamb wave on itself along its circumferential orbit. In this setting, the amplitude of the superposed region changes considerably with the angular wave number, from which the wall thickness can be estimated. This paper presents the principle of the method and experimental verifications. As results of the experimental verifications, it was confirmed that the maximum error between the estimates and the theoretical model was less than 10 micrometers.

  13. Atomized Water As Couplant For Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Bouvier, Carl G.

    1990-01-01

    Simple technique makes possible to use demineralized water as coupling fluid for manual-scan ultrasonic inspection of convex objects. Fine mist of demineralized water sprayed onto part to be inspected, by use of simple pump spray bottle equipped with atomizing nozzle. As transducer scans across surface, droplets feed film of water under transducer. Excess water runs off part. Inspected areas then distinguished visually from uninspected areas by absence or presence of droplets, respectively.

  14. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  15. Electromagnetic-acoustic-transducer synthetic-aperture system for thick-weld inspection

    NASA Astrophysics Data System (ADS)

    Fortunko, C. M.; Schramm, R. E.; Moulder, J. C.; McColskey, J. D.

    1984-05-01

    A system is described based on electromagnetic acoustic transducers (EMATs) as an approach to automated nondestructive evaluation of thick weldments. Applications include a new type of ultrasonic inspection system for thick, butt welds used in ship construction. A minicomputer controlled transducer positioned and acquired the digitized ultrasonic waveforms for synthetic aperture processing. The synthetic aperture technique further improved signal quality and yielded flaw localization through the weld thickness. Details include the design of the transducers and electronics, as well as the mechanical positioner, signal processing algorithms, and complete computer program listings.

  16. Ultrasonic Sensor and Method of use

    SciTech Connect

    Condreva, Kenneth J.

    1999-07-22

    An ultrasonic sensor system and method of use for measuring transit time through a liquid sample, comprising at least one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  17. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  18. Development of ultrasonic methods of hemodynamic measurements. [rheoencephalography/flowmeters

    NASA Technical Reports Server (NTRS)

    Histand, M. B.; Mcleod, F. D.; Miller, C. W.

    1975-01-01

    A pulsed ultrasonic Doppler velocity meter which can be used (by modifying transducers) as a flowmeter for blood circulation was experimentally studied. Calculations and profiles of turbulent and laminar flow within blood vessels are shown. Graphs and charts of transducers are included.

  19. The ultrasonic characteristics of high frequency modulated arc and its application in material processing.

    PubMed

    He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng

    2014-12-01

    To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints.

  20. Ultrasonic inspection apparatus and method using a focused wave device

    DOEpatents

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    2001-01-01

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  1. Microtronic Flow Transducer

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.; Henderson, H. T.; Hsieh, M. Walter

    1989-01-01

    Novel microelectronic airflow and gas-flow transducer developed. Has no moving parts and constructed by use of variation on ordinary technology for processing of planar silicon microelectronics, where hundreds or thousands of identical devices concurrently produced on single chip as easily as can one. Gas-flow transducer based upon integrated Wheatstone bridge in silicon chip. Legs doped with gold and isolated thermally by etching away surrounding material (except corners). Because of small size, sensitivity, and good directional capability of new transducer, numerous potential applications in measurement of vortexes, flows in inlets to pipes, and other complicated flows.

  2. Coupling apparatus for ultrasonic medical diagnostic system

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1978-01-01

    An apparatus for the ultrasonic scanning of a breast or other tissue is reported that contains a cavity for receiving the breast, a vacuum for drawing the breast into intimate contact with the walls of the cavity, and transducers coupled through a fluid to the cavity to transmit sound waves through the breast. Each transducer lies at the end of a tapered chamber which has flexible walls and which is filled with fluid, so that the transducer can be moved in a raster pattern while the chamber walls flex accordingly, with sound transmission always occurring through the fluid.

  3. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  4. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1988-01-01

    Ultrasonic pulse-echo measurements of ice growth on cylinders and airfoils exposed to both artificial (icing wind tunnel) and natural (flight) icing conditions are presented. An accuracy of + or - 0.5 mm is achieved with the present method. The ultrasonic signal characteristics associated with each of the two types of icing regimes identified, wet and dry ice growth, are discussed. Heat transfer coefficients are found to be higher in the wind tunnel environment than in flight. Results for ice growth on airfoils have also been obtained using an array of ultrasonic transducers. Icing profiles obtained during flight are compared with mechanical and stereo image measurements.

  5. Phase-Insensitive Ultrasonic Testing System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1995-01-01

    Ultrasonic testing system developed for use in revealing hidden disbonds at rough, inaccessible interfaces between layers of material. Includes array of small piezoelectric transducers, receiving outputs electronically processed individually and combined in such way as to make system phase-insensitive, overcoming limitations imposed by phase-sensitivity. Development of present ultrasonic system and phase-insensitive-array technique which based motivated by need to detect disbonds under conditions of bondline inhibitor, liner, and fuel at ends of segments of solid rocket motor of space shuttle. Here, liner-to-fuel bondline very rough with respect to ultrasonic wavelength.

  6. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  7. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  8. Detection of cystic structures using pulsed ultrasonically induced resonant cavitation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

    2002-01-01

    Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

  9. Improved myocardium transducer

    NASA Technical Reports Server (NTRS)

    Culler, V. H.; Feldstein, C.; Lewis, G. W.

    1979-01-01

    Method of implanting myocardium transducer uses special indented pins that are caught and securely held by epicardial fibers. Pins are small enough to cause minimum of trauma to myocardium during implantation or removal.

  10. Digital magnetic temperature transducer.

    NASA Technical Reports Server (NTRS)

    Tchernev, D. I.; Collier, T. E.

    1971-01-01

    A new digital magnetic temperature transducer is reported. The device utilizes the discontinuous behavior of the initial permeability with temperature at the Curie temperature of some magnetic materials. Since the Curie temperature is determined by the chemical and crystallographic composition of the particular material only, the transducer requires no calibration and has extremely high stability and reproducibility with time. The output of the transducer is inherently digital and, therefore, is directly compatible with the digital information processing and control without A/D conversion. The temperature-sensing portion of the transducer consists only of magnetic cores and wire and, therefore, has extremely high reliability, is shock and radiation insensitive, small, and virtually indestructible.

  11. Longitudinal-torsional vibration source consisting of two transducers with different vibration modes

    NASA Astrophysics Data System (ADS)

    Asami, Takuya; Miura, Hikaru

    2016-07-01

    The planar vibration locus is applicable to, for example, ultrasonic welding, ultrasonic machining, and ultrasonic polishing. In a previous study, we obtained the planar locus using an ultrasonic longitudinal-torsional vibration source that contained a vibration converter comprising diagonal slits to drive two frequencies. It was difficult to obtain only longitudinal or torsional vibration when using an ultrasonic complex vibration source with diagonal slits. Therefore, the versatility of the ultrasonic complex vibration source with diagonal slits was low. We have developed an ultrasonic longitudinal-torsional vibration source in which the longitudinal-torsional vibration can be controlled. The requirements for an ultrasonic vibration source were longitudinal-torsional vibration control and that the source has a planar locus. In this paper, we investigate a new type of vibration source that satisfies these requirements. It consists of two transducers, a longitudinal transducer and a torsional transducer, attached to the ends of a uniform rod with a length of one wavelength of the propagating vibration.

  12. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  13. Analysis of a Non-resonant Ultrasonic Levitation Device

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.

  14. [Ultrasonic diagnosis in urology].

    PubMed

    Lutz, H; Petzoldt Ehler, R

    1977-08-11

    In recent years ultrasonography has been established as a reliable diagnostic method in various urological disorders. The first and most important indication is the differentiation between renal cysts and solid tumors. But ultrasound is suitable, too, for the diagnosis of haematomas, abscesses and hydronephrosis in the postoperative period and for the evaluation of renal transplants to detect early signs of rejection. Ultrasound allows the examination of patients with renal insufficiency and of patients with unilateral absence of contrast medium excretion in urography, because it is independent of contrast medium and renal function. In these patients as well as in traumatized patients ultrasound can be used as a bed-side method. Furthermore, it is possible to diagnose retroperitoneal tumors causing obstruction, megaureter, and tumors of the bladder. For the diagnosis of the prostate the rectal application of an ultrasonic transducer seems to be the best method. With an ultrasonic Doppler probe the diagnosis of testicular torsion is possible on ground of the absence of intratesticular arterial pulsation. Finally the possibility of ultrasonic targeted percutaneous puncture of the kidneys, tumors and cysts as a diagnostic and occasionally therapeutic approach has to be mentioned.

  15. Numerical calculations of ultrasonic fields. [STEALTH

    SciTech Connect

    Johnson, J.A.

    1982-02-01

    A code for calculating ultrasonic fields has been developed by revisng the thermal-hydraulics code STEALTH. This code may be used in a wide variety of situations in which a detailed knowledge of a propagating wave field is required. Among the potential used are: interpretation of pulse-echo or pitch-catch ultrasonic signals in complicated geometries; ultrasonic transducer modeling and characterization; optimization and evaluation of transducer design; optimization and reliability of inspection procedures; investigation of the response of different types of reflectors; flaw modeling; and general theoretical acoustics. The code is described, and its limitations and potential are discussed. A discussion of the required input and of the general procedures for running the code is presented. Three sample problems illustrate the input and the use of the code.

  16. Non-contact ultrasonic guided wave inspection of rails: field test results and updates

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2015-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. Results from the first field test of the non-contact air-coupled defect detection prototype conducted at the Transportation Technology Center (TTC) in Pueblo, Colorado, in October 2014 are presented and discussed in this paper. The results indicate that the prototype is able to detect internal cracks with high reliability.

  17. Comparison of air-coupled GPR data analysis results determined by multiple analysts

    NASA Astrophysics Data System (ADS)

    Martino, Nicole; Maser, Ken

    2016-04-01

    Current bridge deck condition assessments using ground penetrating radar (GPR) requires a trained analyst to manually interpret substructure layering information from B-scan images in order to proceed with an intended analysis (pavement thickness, concrete cover, effects of rebar corrosion, etc.) For example, a recently developed method to rapidly and accurately analyze air-coupled GPR data based on the effects of rebar corrosion, requires that a user "picks" a layer of rebar reflections in each B-scan image collected along the length of the deck. These "picks" have information like signal amplitude and two way travel time. When a deck is new, or has little rebar corrosion, the resulting layer of rebar reflections is readily evident and there is little room for subjectivity. However, when a deck is severely deteriorated, the rebar layer may be difficult to identify, and different analysts may make different interpretations of the appropriate layer to analyze. One highly corroded bridge deck, was assessed with a number of nondestructive evaluation techniques including 2GHz air-coupled GPR. Two trained analysts separately selected the rebar layer in each B-scan image, choosing as much information as possible, even in areas of significant deterioration. The post processing of the selected data points was then completed and the results from each analyst were contour plotted to observe any discrepancies. The paper describes the differences between ground coupled and air-coupled GPR systems, the data collection and analysis methods used by two different analysts for one case study, and the results of the two different analyses.

  18. Performance characteristics of transit time ultrasonic flow meters

    SciTech Connect

    Freund, W.R. Jr.; Warner, K.L.

    1995-12-31

    Transit time ultrasonic flowmeters are increasingly being used in the measurement of natural gas flows. Multipath ultrasonic flowmeters are sufficiently accurate for custody transfer metering. The operating characteristics of these meters are explored by means of a model whose performance is linear with average velocity. Calibration of multipath ultrasonic flowmeters using chordal integration techniques can be accomplished with measurements of the geometry of the meter and delay times for the transducers. The effect of measurement errors in geometry and time on the performance curve of the meter are studied. Test results are given for 300 mm and 150 mm ultrasonic flowmeters.

  19. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  20. Inertia diaphragm pressure transducer

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. L. B.

    1971-01-01

    Transducer measures gas pressure profiles in high temperature, short duration, gas flows usually found in devices where pressure pulses may have durations of few microseconds to several milliseconds. Assembly includes fluid delay line, delay chamber, and flow restrictor for equalizing steady state pressure on diaphragm's sides

  1. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  2. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  3. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  4. Development of a Methodology for the Characterisation of Air-coupled Ultrasound Probes

    SciTech Connect

    Pietroni, Paolo; Marco Revel, Gian

    2010-05-28

    This study is aimed at developing a technique for the characterisation of air-coupled ultrasound probes, starting from the analysis of the mechanical behaviour of the probe membrane. The vibratory behaviour of the emission membrane is studied using laser-Doppler vibrometry techniques with high frequency demodulation system (20 MHz). The determination of the vibration provides information which are useful for the assessment of the performance of the probe, in particular concerning the Quality factor and the portion of the membrane which really contributes to the emission. During the second step the results of the vibration measurements are used to calculate, by means of numerical boundary element method, the ultrasound beam emitted in terms of intensity in space. The obtained field is compared with the direct measurements carried out by scanning with the receiver probe and a pinhole plate. This comparison allows the potential and the problems of the two different characterisation techniques to be determined, even if the pinhole technique (which is currently considered the state of the art) cannot be used as an absolute reference. This study appears to be useful for paving the way for a new methodology for the calibration of air-coupled ultrasound probes, which potentially could be used not only to improve the probe manufacturing process, but also to control conformity to specifications.

  5. Flexible ultrasonic pipe inspection apparatus

    SciTech Connect

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  6. Detection of laser generated ultrasound by micromachined capacitance transducers

    NASA Astrophysics Data System (ADS)

    Billson, D. R.; Hutchins, D. A.; McIntosh, J.; Wright, W. M. D.; Noble, R. A.; Jones, A. R. D.

    2000-05-01

    Two types of micromachined capacitance transducer have been used to detect ultrasonic waves generated by lasers in engineering materials. The first uses a flexible polymer membrane attached to a micromachined backplate, whereas the second type is fully micromachined using a CMOS compatible process. In the first experiments, a thin (4-5 μm) metallised polymer film is applied to a rigid silicon backplate, which has been micromachined to extend the frequency response of the device into the low MHz range. The transducer is positioned in air close to the sample, and is used to detect ultrasonic signals from the samples under test generated by a pulsed laser. An alternative is to attach a capacitance device to a sample. The polymer membrane transducers are not suitable for this, but we have investigated a fully micromachined design which can be attached to the surface of a wide range of engineering materials. These use a 1-2 μm thick, 1 mm square silicon nitride membrane machined above a silicon substrate, with typically a 2 μm air gap. They have been adhered to aluminum samples to investigate their performance as detectors of laser-generated signals. It will be shown that they are capable of detecting wide-bandwidth signals, in excess of 10 MHz. Lamb waves were also detected. Both types of transducer will be described in detail, and applications of this new technique presented.

  7. Future needs for biomedical transducers

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1971-01-01

    In summary there are three major classes of transducer improvements required: improvements in existing transducers, needs for unexploited physical science phenomena in transducer design, and needs for unutilized physiological phenomena in transducer design. During the next decade, increasing emphasis will be placed on noninvasive measurement in all of these areas. Patient safety, patient comfort, and the need for efficient utilization of the time of both patient and physician requires that noninvasive methods of monitoring be developed.

  8. Numerical modeling of piezoelectric transducers using physical parameters.

    PubMed

    Cappon, Hans; Keesman, Karel J

    2012-05-01

    Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and experimental data can be used to acquire valid estimates of the material parameters. In our design application, a finite element (FE) model of an ultrasonic particle separator, driven by an ultrasonic transducer in thickness mode, is required. A limited set of material parameters for the piezoelectric transducer were obtained from the manufacturer, thus preserving prior physical knowledge to a large extent. The remaining unknown parameters were estimated from impedance analysis with a simple experimental setup combined with a numerical optimization routine using 2-D and 3-D FE models. Thus, a full set of physically interpretable material parameters was obtained for our specific purpose. The approach provides adequate accuracy of the estimates of the material parameters, near 1%. These parameter estimates will subsequently be applied in future design simulations, without the need to go through an entire series of characterization experiments. Finally, a sensitivity study showed that small variations of 1% in the main parameters caused changes near 1% in the eigenfrequency, but changes up to 7% in the admittance peak, thus influencing the efficiency of the system. Temperature will already cause these small variations in response; thus, a frequency control unit is required when actually manufacturing an efficient ultrasonic separation system.

  9. Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation

    SciTech Connect

    Quarry, M J; Rose, J L

    2000-09-26

    A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.

  10. Multimode-Guided-Wave Ultrasonic Scanning of Materials

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2006-01-01

    Two documents discuss a method of characterizing advanced composite materials by use of multimode-guided ultrasonic waves. A transmitting transducer excites modulated (e.g., pulsed) ultrasonic waves at one location on a surface of a plate specimen. The waves interact with microstructure and flaws as they propagate through the specimen to a receiving transducer at a different location. The received signal is analyzed to determine the total (multimode) ultrasonic response of the specimen and utilize this response to evaluate microstructure and flaws. The analysis is performed by software that extracts parameters of signals in the time and frequency domains. Scanning is effected by using computer-controlled motorized translation stages to position the transducers at specified pairs of locations and repeating the measurement, data-acquisition, and data-analysis processes at the successive locations. One document presents results of a scan of a specimen containing a delamination.

  11. Component based modelling of piezoelectric ultrasonic actuators for machining applications

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Salah, M.; Ahmed, N.; Silberschmidt, V. V.

    2013-07-01

    Ultrasonically Assisted Machining (UAM) is an emerging technology that has been utilized to improve the surface finishing in machining processes such as turning, milling, and drilling. In this context, piezoelectric ultrasonic transducers are being used to vibrate the cutting tip while machining at predetermined amplitude and frequency. However, modelling and simulation of these transducers is a tedious and difficult task. This is due to the inherent nonlinearities associated with smart materials. Therefore, this paper presents a component-based model of ultrasonic transducers that mimics the nonlinear behaviour of such a system. The system is decomposed into components, a mathematical model of each component is created, and the whole system model is accomplished by aggregating the basic components' model. System parameters are identified using Finite Element technique which then has been used to simulate the system in Matlab/SIMULINK. Various operation conditions are tested and performed to demonstrate the system performance.

  12. Ultrasonic probe for inspecting double-wall tube. [Patent application

    DOEpatents

    Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.

    1981-05-29

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  13. Ultrasonic probe for inspecting double-wall tube

    DOEpatents

    Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  14. Three dimensional transducer

    DOEpatents

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  15. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  16. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  17. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  18. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  19. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  20. Ultrasonic Lamb wave tomography

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.

    2002-12-01

    Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.

  1. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  2. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  3. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  4. Ultrasonic Apparatus and Method to Assess Compartment Syndrome

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)

    2009-01-01

    A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.

  5. Ultrasonic Device Would Open Pipe Bombs

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael S.; Adams, Marc A.; Zwissler, James G.

    1991-01-01

    Piezoelectric ultrasonic transducer, energized by frequency generator and power supply, vibrates shell of pipe bomb while hardly disturbing explosive inner material. Frequency-control circuitry senses resonance in shell and holds generator at that frequency to induce fatigue cracking in threads of end cap. In addition to disarming bombs, ultrasonically induced fatigue may have other applications. In manufacturing, replaces some machining and cutting operations. In repair of equipment, cleanly and quickly disassembles corroded parts. In demolition of buildings used to dismember steel framework safely and controllably.

  6. A study on temperature dependence of an ultrasonic motor for cryogenic environment

    NASA Astrophysics Data System (ADS)

    Nakazono, Masahiro; Kanda, Takefumi; Yamaguchi, Daisuke; Suzumori, Koichi; Noguchi, Yuya

    2015-07-01

    In this study, we have examined the temperature dependence of an ultrasonic motor for a cryogenic environment. When we use an ultrasonic motor at low temperatures, thermal stress is induced at the ultrasonic transducer owing to the difference in temperature. Thus, the preload for the transducer needs to be regulated for a cryogenic environment. By finite element method (FEM) analysis, we have simulated the thermal stress at piezoelectric elements of the transducer. We have designed the transducer consisting of a body and a nut made of SUS304, and a bolt made of titanium. We have fabricated and evaluated the transducer at temperatures from 4.5 to 293 K. To evaluate the temperature dependence of the relationship between the preload and the thermal stress, we have measured the clamping torque and admittance. The optimal clamping torque shows a low-temperature dependence from 4.5 to 293 K. We have also evaluated the performance of an ultrasonic motor of the transducer. The ultrasonic motor can be driven at temperatures from 4.5 to 293 K without the regulation of the preload of the transducer.

  7. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  8. Ultrasonic neuromodulation.

    PubMed

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions. PMID:27153566

  9. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  10. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    SciTech Connect

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Micheal; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2014-07-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  11. Delimitation of the lung region with distributed ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Cardona Cárdenas, Diego Armando; Furuie, Sérgio Shiguemi

    2016-04-01

    One technique used to infer and monitor patient's respiratory conditions is the electrical impedance tomography (EIT). This provides images with information about lung function. The EIT image contrast is dependent on the variation of electrical impedance, therefore, this image does not provide anatomical details in border regions of several organs. To contribute to a clinical solution, we propose a new method to delimit regions of interest such as the pulmonary region and to improve the reconstruction quality of the EIT. Using a Matlab Toolbox k-wave, the ultrasound propagation phenomenon in homogeneous medium without patient (Reference) and with thoracic models were simulated, separately via a set of several ultrasound transducers distributed around the chest. After pulse emission by a transducer (TR), all received signals were compared considering the two sets of signals. If the energy relation between parts of the signals does not exceed an empirical threshold (30% in this study), a partial mask is generated between the transmitter and the receptor. This process was repeated until all 128 transducers are considered as TR-emitters. The 128 transducers (150kHz) are uniformly distributed. The evaluation was made by visually comparing the resulting images with the respective simulated object. A simple approach was presented to delimit high contrast organs with ultrasound transducers distributed around the patient. This approach allows other lower contrast objects to become invisible by varying the threshold limit. The investigation, based on numerical simulations of ultrasonic propagation, has shown promising results in the delimitation of the pulmonary region.

  12. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  13. Theoretical transducer properties of piezoelectric insulator FET transducers

    NASA Technical Reports Server (NTRS)

    Greeneich, E. W.; Muller, R. S.

    1975-01-01

    An oriented piezoelectric film incorporated in the insulator region of a silicon insulated-gate field-effect transistor (FET) results in a sensitive high-frequency strain transducer. Theory governing the transducer properties of the piezoelectric insulator FET transducer is presented. Equations are developed which relate the drain current of the device to induced polarizations of the piezoelectric layer. The highest frequency of surface strains to which the FET transducer can respond is determined by the FET frequency response - ultimately by the channel transit time. This frequency can extend to the GHz range. The low-frequency response to applied strain is determined by the dielectric relaxation frequency of the piezoelectric layer.

  14. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    SciTech Connect

    J. Daw; J. Rempe; J. Palmer; P. Ramuhalli; R. Montgomery; H.T. Chien; B. Tittmann; B. Reinhardt; P. Keller

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature of in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.

  15. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  16. Water wave energy transducer

    SciTech Connect

    Lamberti, J.

    1980-01-22

    A water wave energy transducer for converting the motion of a water wave into a controlled mechanical movement such as rotational motion suitable for actuating an electrical generator is disclosed. The transducer comprises a float member floatingly moored in a water body having waves and/or tidal movement, such as a seashore. A power gear is rotatably mounted in a swing block on the float with a power shaft extending from the power gear to laterally spaced drive bevel gears mounted for rotation with the power gear. These drive bevel gears are coupled to a transmission on the float comprising one-way drive clutches transmitting rotational energy to the drive shaft of a generator or the like to provide rotational energy on both up and down movement of the float. A rack is pivotally anchored in the water body, extends up through the float and is slideable with respect to the power gear of the swing block, so that movement of the float with respect to the rack will provide rotation of the power gear.

  17. Effect of Crack Closure on Ultrasonic Detection of Fatigue Cracks at Fastener Holes

    NASA Astrophysics Data System (ADS)

    Bowles, S. J.; Harding, C. A.; Hugo, G. R.

    2009-03-01

    The ultrasonic response from closed fatigue cracks grown in aluminium alloy specimens using a representative aircraft spectrum loading has been characterised as a function of tensile applied load using pulse-echo 45° shear-wave ultrasonic C-scans with focused immersion transducers. Observed trends with crack size and applied load are described and compared to results for artificial machined defects. The results demonstrate that crack closure significantly reduces the ultrasonic response compared to open cracks or machined defects.

  18. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  19. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  20. Photoacoustic computed tomography without accurate ultrasonic transducer responses

    NASA Astrophysics Data System (ADS)

    Sheng, Qiwei; Wang, Kun; Xia, Jun; Zhu, Liren; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Conventional photoacoustic computed tomography (PACT) image reconstruction methods assume that the object and surrounding medium are described by a constant speed-of-sound (SOS) value. In order to accurately recover fine structures, SOS heterogeneities should be quantified and compensated for during PACT reconstruction. To address this problem, several groups have proposed hybrid systems that combine PACT with ultrasound computed tomography (USCT). In such systems, a SOS map is reconstructed first via USCT. Consequently, this SOS map is employed to inform the PACT reconstruction method. Additionally, the SOS map can provide structural information regarding tissue, which is complementary to the functional information from the PACT image. We propose a paradigm shift in the way that images are reconstructed in hybrid PACT-USCT imaging. Inspired by our observation that information about the SOS distribution is encoded in PACT measurements, we propose to jointly reconstruct the absorbed optical energy density and SOS distributions from a combined set of USCT and PACT measurements, thereby reducing the two reconstruction problems into one. This innovative approach has several advantages over conventional approaches in which PACT and USCT images are reconstructed independently: (1) Variations in the SOS will automatically be accounted for, optimizing PACT image quality; (2) The reconstructed PACT and USCT images will possess minimal systematic artifacts because errors in the imaging models will be optimally balanced during the joint reconstruction; (3) Due to the exploitation of information regarding the SOS distribution in the full-view PACT data, our approach will permit high-resolution reconstruction of the SOS distribution from sparse array data.