Science.gov

Sample records for air-purifying high efficiency

  1. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  2. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  3. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  4. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  5. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    ERIC Educational Resources Information Center

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  6. Home Air Purifiers Eradicate Harmful Pathogens

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.

  7. Air Purifiers Eliminate Pathogens, Preserve Food

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA-funded researchers produced an ethylene reduction device for a plant growth unit. KES Science & Technology Inc., a Kennesaw, Georgia-based company specializing in sustaining perishable foods, licensed the ethylene scrubbing technology. KES partnered with Akida Holdings, of Jacksonville, Florida, which now markets the NASA-developed technology as AiroCide. According to the company, it is the only air purifier that completely destroys airborne bacteria, mold, fungi, mycotoxins, viruses, volatile organic compounds (like ethylene), and odors. What?s more, the devices have no filters that need changing and produce no harmful byproducts, such as the ozone created by some filtration systems.

  8. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet air purifier is a device intended for medical purposes that is used to destroy bacteria in the air by...

  9. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  10. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  11. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  12. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  13. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  14. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical ultraviolet air purifier. 880.6500 Section... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  15. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  16. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  17. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical ultraviolet air purifier. 880.6500 Section... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  18. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    PubMed

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, <2% for benzene, 11+/-2.4% for toluene, 3+/-1% for ethylbenzene, 1+/-1% for sigma-xylene, and 3+/-0.4% for m-/rho-xylene were found. A fairly wide range of degradation products could be identified. On both trapping media, various oxidized species such as alcohols, aldehydes, ketones and one epoxide were observed. The formation of adipaldehyde from nebulized cyclohexene clearly indicates an ozonolysis reaction. Other degradation products observed suggests reactions with OH radicals. We propose that mostly ozone and OH radicals are responsible for the degradation of organic molecules in the plasma air purifier. PMID:20167347

  19. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC. PMID:27082715

  20. 42 CFR 84.254 - Powered air-purifying respirators; requirements and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... air-purifying respirators prescribed in subpart L of this part are applicable to vinyl chloride... use with powered air-purifying respirators for entry into and escape from vinyl chloride atmospheres... of 25 ppm vinyl chloride monomer at a total flow rate of 115 liters per minute for...

  1. 42 CFR 84.254 - Powered air-purifying respirators; requirements and tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... air-purifying respirators prescribed in subpart L of this part are applicable to vinyl chloride... use with powered air-purifying respirators for entry into and escape from vinyl chloride atmospheres... of 25 ppm vinyl chloride monomer at a total flow rate of 115 liters per minute for...

  2. 42 CFR 84.254 - Powered air-purifying respirators; requirements and tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... air-purifying respirators prescribed in subpart L of this part are applicable to vinyl chloride... use with powered air-purifying respirators for entry into and escape from vinyl chloride atmospheres... of 25 ppm vinyl chloride monomer at a total flow rate of 115 liters per minute for...

  3. 42 CFR 84.254 - Powered air-purifying respirators; requirements and tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... air-purifying respirators prescribed in subpart L of this part are applicable to vinyl chloride... use with powered air-purifying respirators for entry into and escape from vinyl chloride atmospheres... of 25 ppm vinyl chloride monomer at a total flow rate of 115 liters per minute for...

  4. 42 CFR 84.254 - Powered air-purifying respirators; requirements and tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... air-purifying respirators prescribed in subpart L of this part are applicable to vinyl chloride... use with powered air-purifying respirators for entry into and escape from vinyl chloride atmospheres... of 25 ppm vinyl chloride monomer at a total flow rate of 115 liters per minute for...

  5. Using Air-Purifying Respirators. Module 9. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using air-purifying respirators. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) describing how air flows through an…

  6. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate...

  7. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate...

  8. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate...

  9. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate...

  10. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate...

  11. Evaluation of air-purifying respirators for protection against toluene diisocyanate vapors.

    PubMed

    Dharmarajan, V; Lingg, R D; Hackathorn, D R

    1986-07-01

    Two brands of air-purifying organic vapor cartridges (Willson and Survivair) and a disposable respirator (3M) were evaluated for protection against toluene diisocyanate (TDI) vapors. The respirators/cartridges were tested by generating dynamic atmospheres of TDI at concentrations of 0.2 and 1.5 ppm or greater, which are substantially above the currently accepted exposure limits. The TDI atmospheres were generated by controlled and continuous evaporation and dilution techniques. The relative humidity of the final TDI atmosphere was maintained at 50%. For the testing of Survivair and Willson respirators, one cartridge was mounted on a stainless steel plate and placed inside an exposure chamber through which air was drawn unidirectionally at 32 L/min. Periodically, the air before and after the cartridge was monitored for TDI. In the case of the disposable, valveless 3M respirator, a breathing pump was used to simulate the breathing through the respirator. The TDI atmosphere was respired through the respirator at 28.8 L/min (24 cycles/min at 1.2 L/cycle). As before, the concentration of TDI was measured periodically before and after the respirator. There was no significant breakthrough (less than 0.5%) of TDI in any of the respirators tested for 40 hr at 0.2 ppm and for 20 hr at 1.5 ppm or higher concentration of TDI. The detection limits of the post-respirator TDI measurements ranged from 0.4 to 0.02% of the pre-respirator concentration. It is important to note that, at the present time, because the odor threshold for TDI is higher than the ceiling exposure limit (poor warning property), NIOSH and most of the respirator manufacturers do not recommend the use of air-purifying respirators in isocyanate containing environments. PMID:3019117

  12. Evaluation of air-purifying respirators for protection against toluene diisocyanate vapors

    SciTech Connect

    Dharmarajan, V.; Lingg, R.D.; Hackathorn, D.R.

    1986-07-01

    Two brands of air-purifying organic vapor cartridges (Wilson and Survivair) and a disposable respirator (3M) were evaluated for protection against toluene diisocyanate (TDI) vapors. The respirators/cartridges were tested by generating dynamic atmospheres of TDI at concentrations of 0.2 and 1.5 ppm or greater. The relative humidity of the final TDI atmosphere was maintained at 50%. For the testing of Survivair and Wilson respirators, one cartridge was mounted on a stainless steel plate and placed inside an exposure chamber through which air was drawn unidirectionally at 32 L/min. Periodically, the air before and after the cartridge was monitored for TDI. In the case of the 3M respirator, a breathing pump was used to simulate the breathing through the respirator. The TDI atmosphere was respired through the respirator at 28.8 L/min (24 cycles/min at 1.2 L/cycle). There was no significant breakthrough (<0.5%) of TDI in any of the respirators tested for 40 hr at 0.2 ppm and for 20 hr at 1.5 ppm or higher concentration of TDI. The detection limits of the post-respirator TDI measurements ranged from 0.4 to 0.02% of the pre-respirator concentration. It is important to note that, at the present time, because the odor threshold for TDI is higher than the ceiling exposure limit (poor warning property), NIOSH and most of the respirator manufacturers do not recommend the use of air-purifying respirators in isocyanate containing environments.

  13. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... P-series certification is requested by the applicant. (b) Filters including holders and gaskets... and gaskets, the exhalation valves shall be blocked so as to ensure that leakage, if present, is...

  14. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... P-series certification is requested by the applicant. (b) Filters including holders and gaskets... and gaskets, the exhalation valves shall be blocked so as to ensure that leakage, if present, is...

  15. High efficiency RCCI combustion

    NASA Astrophysics Data System (ADS)

    Splitter, Derek A.

    An experimental investigation of the pragmatic limits of Reactivity Controlled Compression Ignition (RCCI) engine efficiency was performed. The study utilized engine experiments combined with zero-dimensional modeling. Initially, simulations were used to suggest conditions of high engine efficiency with RCCI. Preliminary simulations suggested that high efficiency could be obtained by using a very dilute charge with a high compression ratio. Moreover, the preliminary simulations further suggested that with simultaneous 50% reductions in heat transfer and incomplete combustion, 60% gross thermal efficiency may be achievable with RCCI. Following the initial simulations, experiments to investigate the combustion process, fuel effects, and methods to reduce heat transfer and incomplete combustion reduction were conducted. The results demonstrated that the engine cycle and combustion process are linked, and if high efficiency is to be had, then the combustion event must be tailored to the initial cycle conditions. It was found that reductions to engine heat transfer are a key enabler to increasing engine efficiency. In addition, it was found that the piston oil jet gallery cooling in RCCI may be unnecessary, as it had a negative impact on efficiency. Without piston oil gallery cooling, it was found that RCCI was nearly adiabatic, achieving 95% of the theoretical maximum cycle efficiency (air standard Otto cycle efficiency).

  16. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e.,...

  17. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e.,...

  18. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e.,...

  19. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e.,...

  20. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e.,...

  1. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  2. Improvements in powered air purifying respirator protection in an ABSL-3E facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of and experimentation with zoonotic pathogens such as highly pathogenic avian influenza (HPAI) requires risk mitigation strategies including laboratory engineering controls and safety equipment, personal protective equipment (PPE), and proper practices and techniques. Incidences of potent...

  3. High Efficiency Cell Development

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The specific activity was to improve the tandem junction Cell (TJC) as a high efficiency solar cell. The TJC development was to be consistent with module assembly and should contribute to the overall goals of the Low-Cost Solar Array Project. During 1978, TJC efficiency improved from approximately 11 percent to approximately 16 percent (AMI). Photogenerated current densities in excess of 42 mA/sq cm were observed at AMO. Open circuit voltages as high as 0.615 V were measured at AMO. Fill factor was only 0.68 - 0.75 due to a nonoptimum metal contact design. A device model was conceived in which the solar cell is modelled as a transitor. There are virtually no interconnect or packaging factor systems and the TJC is compatible with all conventional module fabrication systems. A modification of the TJC, the Front Surface Field (FSF) cell, was also explored.

  4. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  5. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  6. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  7. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  8. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  9. Hepa room air purifier

    SciTech Connect

    Davis, G.B.

    1986-12-16

    This patent describes a portable air purification apparatus comprising a housing including a base portion and cover means, the base portion including an air deflection means and a plate means mounted in spaced relationship to the air deflection means so as to create a substantially continuous air exhaust opening therebetween. A centrifugal fan means is disposed between the plate means and the air deflection means and is mounted so as to direct air radially outwardly therefrom through the air exhaust opening, at least one opening through the plate means to permit air flow therethrough to the centrifugal fan means. The motor means carried by the base portion and extends upwardly with respect to the opening in the plate means, the motor means having drive shaft means for driving the centrifugal fan means. An air filter means is mounted between the base portion and the cover means so that air is drawn therethrough toward the centrifugal fan means, and a means for secures the cover means relative to the base means to thereby retain the air filter means therebetween.

  10. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  11. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  12. Summary report, California Department of Forestry and Fire Protection evaluation of full-face air-purifying respirators for wildland fire fighting use

    SciTech Connect

    Beason, D.G.; Johnson, J.S.; Foote, K.L.; Weaver, W.A.

    1996-02-01

    Wildland fire suppression personnel employed by the CDF do not currently have the equipment to protect themselves from the short-term acute affects of smoke from wildland fires. In addition, no regulations exist that specify appropriate respiratory protection and the current air-purifying respirator technology and carbon monoxide monitoring has not been adapted to fit wildland fire suppression requirements. This three-year limited study evaluated the ability of wildland fire fighters to perform their normal job function while wearing full-face air-purifying respirators. In the first two years of this study we designed, developed and field tested a prototype ``smart`` air-purifying respirator which incorporated a real-time carbon monoxide monitor into a commercial full-face respirator.` Data on carbon monoxide exposure while fighting wildland fires was collected. During the third year of this study we evaluated eight different commercially available full-face air-purifying respirators equipped with a variety of cartridges. Apparatus to aid the fire fighter in carrying the respirator and carbon monoxide personal monitor was designed and fabricated. A smoke exposure test method was developed and a laboratory study on the penetration of smoke through respirator cartridges was conducted.

  13. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  14. Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air

    SciTech Connect

    Esswein, E.J.; Boeniger, M.F.

    1994-02-01

    Formaldehyde, an air contaminant found in many indoor air investigations, poses distinct occupational exposure hazards in certain job categories (e.g., mortuary science) but is also of concern when found or suspected in office buildings and homes. A variety of air-purifying devices (APDs) are currently available or marketed for application to reduce or remove concentrations of a variety of indoor air pollutants through the use of ozone as a chemical oxidant. An investigation was conducted to determine if concentrations of formaldehyde similar to those found in industrial hygiene evaluations of funeral homes could be reduced with the use of an ozone-generating APD. An ozone-generating APD was placed in an exposure chamber and formaldehyde-containing embalming solution was allowed to evaporate naturally, creating peak and mean chamber concentrations of 2.5 and 1.3 ppm, respectively. Continuous-reading instruments were used to sample for formaldehyde and ozone. Active sampling methods were also used to sample simultaneously for formaldehyde and a possible reactant product, formic acid. Triplicate measurements were made in each of three evaluations: formaldehyde alone, ozone alone, and formaldehyde and ozone combined. Concentrations of formaldehyde were virtually identical with and without 0.5 ppm ozone. No reduction in formaldehyde concentration was found during a 90-minute evaluation using ozone at this concentration with peak and average concentrations of approximately 2.5 and 1.3 ppm formaldehyde, respectively. The results of this investigation suggest that the use of ozone is ineffective in reducing concentrations of formaldehyde. Because ozone has demonstrated health hazards, and is a regulated air contaminant in both the occupational and ambient environment, the use of ozone as an air purification agent in indoor air does not seem warranted. 25 refs., 5 figs., 4 tabs.

  15. Special article: personal protective equipment for care of pandemic influenza patients: a training workshop for the powered air purifying respirator.

    PubMed

    Tompkins, Bonnie M; Kerchberger, John P

    2010-10-01

    Virulent respiratory infectious diseases may present a life-threatening risk for health care professionals during aerosol-generating procedures, including endotracheal intubation. The 2009 Pandemic Influenza A (H1N1) brings this concern to the immediate forefront. The Centers for Disease Control and Prevention have stated that, when performing or participating in aerosol-generating procedures on patients with virulent contagious respiratory diseases, health care professionals must wear a minimum of the N95 respirator, and they may wish to consider using the powered air purifying respirator (PAPR). For influenza and other diseases transmitted by both respiratory and contact modes, protective respirators must be combined with contact precautions. The PAPR provides 2.5 to 100 times greater protection than the N95, when used within the context of an Occupational Safety and Health Administration-compliant respiratory protection program. The relative protective capability of a respirator is quantified using the assigned protection factor. The level of protection designated by the APF can only be achieved with appropriate training and correct use of the respirator. Face seal leakage limits the protective capability of the N95 respirator, and fit testing does not assure the ability to maintain a tight face seal. The protective capability of the PAPR will be defeated by improper handling of contaminated equipment, incorrect assembly and maintenance, and improper don (put on) and doff (take off) procedures. Stress, discomfort, and physical encumbrance may impair performance. Acclimatization through training will mitigate these effects. Training in the use of PAPRs in advance of their need is strongly advised. "Just in time" training is unlikely to provide adequate preparation for groups of practitioners requiring specialized personal protective equipment during a pandemic. Employee health departments in hospitals may not presently have a PAPR training program in place

  16. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  17. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  18. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  19. Performance of an improperly sized and stretched-out loose-fitting powered air-purifying respirator: Manikin-based study.

    PubMed

    Gao, Shuang; McKay, Roy T; Yermakov, Michael; Kim, Jinyong; Reponen, Tiina; He, Xinjian; Kimura, Kazushi; Grinshpun, Sergey A

    2016-01-01

    The objective of this study was to investigate the protection level offered by a Powered Air-Purifying Respirator (PAPR) equipped with an improperly sized or stretched-out loose-fitting facepiece using constant and cyclic flow conditions. Improperly sized PAPR facepieces of two models as well as a stretched-out facepiece were tested. These facepieces were examined in two versions: with and without exhaust holes. Loose-fitting facepieces (size "large") were donned on a small manikin headform and challenged with sodium chloride (NaCl) aerosol particles in an exposure chamber. Four cyclic flows with mean inspiratory flows (MIFs) of 30, 55, 85, and 135 L/min were applied using an electromechanical Breathing Recording and Simulation System (BRSS). The manikin Fit Factor (mFF) was determined as the ratio of aerosol concentrations outside (Cout) to inside (Cin) of the facepiece, measured with a P-Trak condensation particle counter (CPC). Results showed that the mFF decreased exponentially with increasing MIF. The mFF values of the stretched-out facepiece were significantly lower than those obtained for the undamaged ones. Facepiece type and MIF were found to significantly affect the performance of the loose-fitting PAPR. The effect of the exhaust holes was less pronounced and depended on the facepiece type. It was concluded that an improperly sized facepiece might potentially offer relatively low protection (mFF < 250) at high to strenuous workloads. The testing was also performed at a constant inhalation flow to explore the mechanism of the particle-facepiece interaction. Results obtained with cyclic flow pattern were consistent with the data generated when testing the loose-fitting PAPR under constant flow conditions. The time-weighted average values of mFF calculated from the measurements conducted under the constant flow regime were capable of predicting the protection under cyclic flow regime. The findings suggest that program administrators need to equip employees

  20. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain is a 5-6 cavity design focused by an electromagnet. An outline of a potential klystron configuration is given. The selected power output of 70 kW CW resulted from a maximum assumed operating voltage of 40 kV. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. Although impressive gains were achieved in raising the basic efficiency from 50% to 70% or so with a multi-stage collector, the estimated efficiency improvement due to 5-stage collector at the 75% level is only about 8% resulting in an overall efficiency of about 83%.

  1. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  2. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  3. Very high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Barnett, Allen; Kirkpatrick, Douglas; Honsberg, Christiana

    2006-08-01

    The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

  4. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  5. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  6. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  7. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  8. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  9. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  10. High efficiency germanium immersion gratings

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Paul J.; Davis, Pete J.; Little, Steve L.; Little, Liesl M.; Bixler, Jay V.

    2006-06-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 104. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO II laser sets an upper bound on total integrated scatter of 0.5%.

  11. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  12. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  13. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  14. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  15. Effects of a powered air-purifying respirator intervention on indium exposure reduction and indium related biomarkers among ITO sputter target manufacturing workers.

    PubMed

    Liu, Hung-Hsin; Chen, Chang-Yuh; Lan, Cheng-Hang; Chang, Cheng-Ping; Peng, Chiung-Yu

    2016-05-01

    This study aimed to evaluate the efficacy of powered air-purifying respirators (PAPRs) worn by the workers, and to investigate the effect of this application on exposure and preclinical effects in terms of workplace measuring and biomarker monitoring in ITO sputter target manufacturing plants and workers, respectively. Fifty-four workers were recruited and investigated from 2010-2012, during which PAPRs were provided to on-site workers in September 2011. Each worker completed questionnaires and provided blood and urine samples for analysis of biomarkers of indium exposure and preclinical effects. Area and personal indium air samples were randomly collected from selected worksites and from participants. The penetration percentage of the respirator (concentration inside respirator divided by concentration outside respirator) was 6.6%. Some biomarkers, such as S-In, SOD, GPx, GST, MDA, and TMOM, reflected the decrease in exposure and showed lower levels, after implementation of PAPRs. This study is the first to investigate the efficacy of PAPRs for reducing indium exposure. The measurement results clearly showed that the implementation of PAPRs reduces levels of indium-related biomarkers. These findings have practical applications for minimizing occupational exposure to indium and for managing the health of workers exposed to indium. PMID:26771526

  16. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  17. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  18. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  19. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  20. Efficiency and reliability assessments of retrofitted high-efficiency motors

    SciTech Connect

    Hsu, John S.; Otaduy, P.J.; Dueck, J.D.

    1994-12-31

    The majority of electric-motor applications are pumps, fans, blowers, and certain compressors that follow the load torque pattern described in this paper. It has been known for many years that simply replacing the old motor with a high-efficiency motor might not produce the expected efficiency gain. This paper suggests the calculations for the effective efficiency and temperature rise of the high-efficiency motor. The reliability in terms of temperature rise, downsizing, power factor, harmonics, mechanical structure, etc., are discussed.

  1. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  2. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  3. High-efficiency wind turbine

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  4. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  5. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  6. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  7. High efficiency ground data transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, W. B.

    1973-01-01

    It is demonstrated that state-of-the-art communications technology can be implemented and reliably operated on a global basis to increase the transmission rates and efficiencies on circuits with bandwidths greater than the typical speech channel. Optimization is affected by optimum clock recovery procedures, multilevel pulse amplitude modulation, single sideband amplitude modulation, transversal filter equalizers, data scrambling, and active compensation for phase instability.

  8. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  9. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  10. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  11. Advanced High Efficiency Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Flanders, Laffite; Cummer, Keith R.; Feinsinger, Joseph; Heshmatpour, Ben

    2006-01-01

    The research effort at Teledyne Energy Systems, Inc., which has been aimed at improving the performance of the currently used thermoelectric (TE) materials has identified a number of improved formulations for the standard n-type PbTe and p-type TAGS. The preliminary test results appear to indicate nearly 50% higher thermal to electric energy conversion efficiency for these new PbTe and TAGS formulations. Effort is continuing to confirm the preliminary test results and validate the materials fabrication processes. Multiple batches of the newly developed TE materials will be prepared and characterized for thermoelectric properties. The selected TE materials will be subjected to degradation analysis and life modeling to determine any deterioration in the TE properties as a function of time and operating temperatures. This effort also includes measurement of sublimation rates as a function of temperature for the selected materials. The results for the initial sublimation tests are quite encouraging and show appreciable reduction in sublimation rate for TAGS 80 and the modified TAGS alloys. Future effort will include determination of effect of sublimation on TE characteristics for the selected TE materials. Microanalysis technique such as optical and electron microscopy, XRD and EDSX will be used to determine the microstructural characteristics of the TE materials at various stages of their simulated operating life. Based on the results of these studies the n-type and p-type materials with the highest power conversion efficiency and the lowest degradation rate will be selected for use in fabrication of future thermoelectric devices.

  12. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  13. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  14. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  15. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  16. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  17. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  18. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  19. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  20. High-Efficiency Autonomous Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Gatt, Philip; Henderson, Sammy W.; Hannon, Stephen M.

    1999-01-01

    A useful measure of sensor performance is the transceiver system efficiency n (sub sys). Which consists of the antenna efficiency n (sub a) and optical and electronic losses. Typically, the lidar equation and the antenna efficiency are defined in terms of the telescope aperture area. However, during the assembly of a coherent transceiver, it is important to measure the system efficiency before the installation of the beamexpanding telescope (i.e., the untruncated-beam system efficiency). Therefore, to accommodate both truncated and untruncated beam efficiency measurements, we define the lidar equation and the antenna efficiency in terms of the beam area rather than the commonly used aperture area referenced definition. With a well-designed Gaussian-beam lidar, aperture area referenced system efficiencies of 15 to 20 % (23-31% relative to the beam area) are readily achievable. In this paper we compare the differences between these efficiency definitions. We then describe techniques by which high efficiency can be achieved, followed by a discussion several novel auto alignment techniques developed to maintain high efficiency.

  1. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  2. Junior High Gets Energy Efficient VAV System

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Minnesota's Isanti Junior High, designed with an energy efficient variable air volume system, is an innovative school selected for display at the 1977 Exhibition of School Architecture in Las Vegas. (Author/MLF)

  3. High-efficiency crystalline silicon technology development

    NASA Technical Reports Server (NTRS)

    Prince, M. B.

    1984-01-01

    The rationale for pursuing high efficiency crystalline silicon technology research is discussed. Photovoltaic energy systems are reviewed as to their cost effectiveness and their competitiveness with other energy systems. The parameters of energy system life are listed and briefly reviewed.

  4. Multi Band Gap High Efficiency Converter (RAINBOW)

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  5. High-efficiency axial compressor: Final report

    SciTech Connect

    Bettner, J.L.; Sehra, A.K.

    1986-12-01

    An aerodynamic design study was conducted to configure an industrial-size gas turbine compressor of 14.0:1 pressure ratio and 800 lb/sec flow for achieving maximum efficiency. Starting with an initial configuration based on conventional design practice, compressor design parameters were progressively optimized, leading to a 1.8% improvement in the adiabatic efficiency over that of the conventional design. To further improve the efficiency potential of this design, several advanced design concepts were investigated. It was found that incorporation of airfoils with swept leading edges and customization of the airfoil camber and endwall region would result in an additional adiabatic efficiency potential of 1%. The projected polytropic efficiency of the final advanced concept compressor design was estimated at 92.8%, which is 2 to 3% higher than the current high-efficiency aircraft turbine engine compressors. As a part of this design study, the influence of variable geometry on the flow and efficiency (at design speed) was also investigated. It was estimated that the efficiency decrement associated with a 25% reduction in the design flow, achieved by a system of variable inlet guide vanes and the front five stators, was about 4.0%. The corresponding efficiency penalty with variable IGV-only was estimated to be in excess of 10%.

  6. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  7. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  8. High-efficiency filtration meets IAQ goals

    SciTech Connect

    Aaronson, E.L. ); Fencl, F. )

    1994-12-01

    This article describes multi-stage filtration system which provided initial cost savings and is expected to save even more in energy costs while fulfilling IAQ requirements. The use of high-efficiency filtration has enabled the city of Kansas City, Mo., to save an estimated $500,000 in initial HVAC system costs for its Bartle Hall expansion project, which is currently under construction. Once operational, the new HVAC system, with its high-efficiency filters, is expected to save thousands of dollars per week more in energy costs while also delivering superior indoor air quality (IAQ).

  9. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  10. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  11. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  12. High-efficiency 20 W yellow VECSEL.

    PubMed

    Kantola, Emmi; Leinonen, Tomi; Ranta, Sanna; Tavast, Miki; Guina, Mircea

    2014-03-24

    A high-efficiency optically pumped vertical-external-cavity surface-emitting laser emitting 20 W at a wavelength around 588 nm is demonstrated. The semiconductor gain chip emitted at a fundamental wavelength around 1170-1180 nm and the laser employed a V-shaped cavity. The yellow spectral range was achieved by intra-cavity frequency doubling using a LBO crystal. The laser could be tuned over a bandwidth of ~26 nm while exhibiting watt-level output powers. The maximum conversion efficiency from absorbed pump power to yellow output was 28% for continuous wave operation. The VECSEL's output could be modulated to generate optical pulses with duration down to 570 ns by directly modulating the pump laser. The high-power pulse operation is a key feature for astrophysics and medical applications while at the same time enables higher slope efficiency than continuous wave operation owing to decreased heating. PMID:24663985

  13. High efficiency novel window air conditioner

    DOE PAGESBeta

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  14. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  15. Advanced high efficient liquid transport garments

    NASA Technical Reports Server (NTRS)

    Elkins, W.; Williams, W.

    1973-01-01

    The heat transfer characteristics, design, fabrication, and current and anticipated applications of a new liquid transport garment (LTG) are discussed. The new LTG is being constructed from highly efficient liquid transport modules which have been developed to replace the current tygon tubing networks for applications in Apollo and other liquid cooling garment designs.

  16. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  17. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  18. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  19. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  20. Thermal modeling of high efficiency AMTEC cells

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.

    1995-12-31

    Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Two parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.

  1. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  2. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  3. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  4. High-efficiency silicon concentrator cell commercialization

    SciTech Connect

    Sinton, R.A.; Swanson, R.M.

    1993-05-01

    This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

  5. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  6. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  7. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  8. High-rate counting efficiency of VLPC

    SciTech Connect

    Hogue, H.H.

    1998-11-01

    A simple model is applied to describe dependencies of Visible Light Photon Counter (VLPC) characteristics on temperature and operating voltage. Observed counting efficiency losses at high illumination, improved by operating at higher temperature, are seen to be a consequence of de-biasing within the VLPC structure. A design improvement to minimize internal de-biasing for future VLPC generations is considered. {copyright} {ital 1998 American Institute of Physics.}

  9. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  10. Highly efficient spin filtering of ballistic electrons

    NASA Astrophysics Data System (ADS)

    Steinmuller, S. J.; Trypiniotis, T.; Cho, W. S.; Hirohata, A.; Lew, W. S.; Vaz, C. A.; Bland, J. A.

    2004-04-01

    Spin dependent electron transport in hybrid Au/Co/Cu/NiFe/n-GaAs spin valve Schottky barrier structures was investigated using photoexcitation at various wavelengths. For excitation with the photon energy well above the Schottky barrier height we found a ˜2400% increase in helicity dependent photocurrent on switching the spin valve from parallel to antiparallel alignment. Our observations provide clear evidence for highly efficient spin filtering of spin polarized ballistic electrons.

  11. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  12. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  13. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  14. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  15. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  16. High purity efficient first Stokes Raman laser

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Liu, Qinyong; Li, Daijun; Du, Keming

    2015-02-01

    The subject of the solid-state Raman frequency conversion to the yellow frequency spectra has been an active topic since the mid 1990's, because of its application in bio-medical and astronomy fields. However, the yellow laser performance is often limited because of the cascade conversion to second or higher Stokes. This cascade conversion not only limits the conversion efficiency and the output power of the first Stokes, but also degrades the pulse and the beam profile of the first Stokes. We present a type of polarization coupled Raman resonator, in which the higher order ( the second Stokes and higher ) laser output can be dramatically suppressed. Our Raman resonator is pumped by a Q-switched and frequency doubled slab laser, and we can get an almost pure (P559/(P559 +P532)>99%) 559 nm yellow light output with an efficiency over 39% from 532 nm to 559 nm. The resonator includes a high reflection rear mirror, a KGW crystal, a polarization coupled input/output element, and a high reflection output coupler of 559 nm (R559 nm = 0.6). Furthermore, we have proposed an improvement of this polarization coupled Raman resonator. The theoretical calculations of the temporal and spatial dependent Raman conversion equations show that the conversion efficiency of the first order Stokes is greatly enhanced with an additionalλ/2 waveplate for 589 nm and the BBO crystal.

  17. Quantum wells for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas

    2016-03-01

    Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.

  18. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  19. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  20. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses. PMID:22418313

  1. Wavelength Scaling of High Harmonic Generation Efficiency

    SciTech Connect

    Shiner, A. D.; Trallero-Herrero, C.; Kajumba, N.; Corkum, P. B.; Villeneuve, D. M.; Bandulet, H.-C.; Comtois, D.; Legare, F.; Giguere, M.; Kieffer, J-C.

    2009-08-14

    Using longer wavelength laser drivers for high harmonic generation is desirable because the highest extreme ultraviolet frequency scales as the square of the wavelength. Recent numerical studies predict that high harmonic efficiency falls dramatically with increasing wavelength, with a very unfavorable lambda{sup -(5-6)} scaling. We performed an experimental study of the high harmonic yield over a wavelength range of 800-1850 nm. A thin gas jet was employed to minimize phase matching effects, and the laser intensity and focal spot size were kept constant as the wavelength was changed. Ion yield was simultaneously measured so that the total number of emitting atoms was known. We found that the scaling at constant laser intensity is lambda{sup -6.3+}-{sup 1.1} in Xe and lambda{sup -6.5+}-{sup 1.1} in Kr over the wavelength range of 800-1850 nm, somewhat worse than the theoretical predictions.

  2. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  3. High efficiency x-band TWT amplifiers

    SciTech Connect

    Naqvi, S.; Kerslick, G.S.; Nation, J.A.; Wang, Q.

    1997-12-31

    The authors report on a research program to increase the efficiency of relativistic traveling wave amplifiers to > 50%. The two stage amplifier consists of a bunching periodic structure with phase velocity and a decelerating section with phase velocity significantly lower than the beam velocity. The position of the decelerating stage with respect to the bunching stage is chosen such that the narrowest bunches are sustained in the decelerating field for the longest possible time before significant debunching occurs. Two schemes are under investigation. In the first scheme, a resistive sever is placed between the two stages to suppress temporal phenomena. In the second scheme, the bunching and decelerating stages merge into each other by a gradual change in the iris radius over a wavelength. An absorbing section in this case is placed before the start of the bunching stage. A Coaxial extraction geometry is used in both schemes. Efficiencies obtained from MAGIC simulations are comparable to those obtained in high efficiency klystrons (50--50%) but carry the important advantage of broad-bandwidth, low sensitivity on dimensions, low surface fields, and simplicity of design.

  4. High-efficiency concentrator silicon solar cells

    SciTech Connect

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. . Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  5. Multi-bandgap high efficiency converter (RAINBOW)

    SciTech Connect

    Lewis, C.R.; Phillips, W.M.; Shields, V.B.; Stella, P.M.; Bekey, I.

    1997-12-31

    Many proposals have been made to increase solar array efficiency by using two or more cells with appropriately spaced bandgaps to span a greater portion of the incident spectrum. One such technique is to split the solar spectrum and focus each portion on a different cell bandgap. Each bandgap is selected to best match the input spectral portion and thus obtain maximum efficiency. This paper reports on the reexamination of the spectrally split, individually matched cell approach using modern-day optics and lightweight structures. The RAINBOW multi-bandgap system represents a unique combination of solar cells, concentrators and beam splitters. The use of separate cells offers the widest possible scope of material choices. Many different component combinations are possible. The relatively low temperature operation, due to reduced thermal input per cell, adds to the performance increase. Finally, RAINBOW is a flexible system which can readily expand as new high efficiency components are developed. Based to a large extent on data for real cells and optical components, RAINBOW is expected to convert over 40% of incident solar energy to electricity at the system level. This conclusion is based on preliminary analyses of cell and optics performances.

  6. High efficiency quadruple junction solar cells

    NASA Astrophysics Data System (ADS)

    Bestam, R.; Aissat, A.; Vilcot, J. P.

    2016-03-01

    This work focuses on the modeling and optimization of a structure based on InGaP/InGaAs/InGaAsN/Ge for photovoltaic. In this study we took into consideration the concentration effect of alloys x (In) and y (N) on the strain, the bandgap, the absorption and structure efficiency. It has been shown that the concentration of indium varies the strain and the bandgap. These two parameters change considerably the yield. Also it optimized the effect of alloys on the total absorption of the structure. For a concentration of indium x = 0.40 and y = 0.03 we had a absorption coefficient which is equal to 2 × 106 cm-1. We have found 50% efficiency for the multi-junction structure based on In0.55Ga0.45P/In0.40Ga0.60As/In0.30Ga0.70As0.97N0.03/Ge. To achieve a reliable high efficiency multi-junction structure, we just need to optimize the concentrations of different alloys.

  7. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  8. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better

  9. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  10. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  11. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  12. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  13. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  14. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  15. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  16. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  17. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  18. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  19. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  20. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  1. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  2. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  3. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  4. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  5. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  6. High Efficiency Diffusion Molecular Retention Tumor Targeting

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light. PMID:23505478

  7. A New High Efficiency Segmented Thermoelectric Unicouple

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Fleurial, J.-P.; Snyder, G. J.; Zoltan, A.; Zoltan, D.; Borshchevsky, A.

    2000-01-01

    To achieve high thermal-to-electric energy conversion efficiency, it is desirable to operate thermoelectric generator devices over large temperature gradients and also to maximize the thermoelectric performance of the materials used to build the devices. However, no single thermoelectric material is suitable for use over a very wide range of temperatures (approx. 300 - 1000 K). It is therefore necessary to use different materials in each temperature range where they possess optimum performance. This can be achieved in two ways: 1) multistage thermoelectric generators where each stage operates over a fixed temperature difference and is electrically insulated but thermally in contact with the other stages and 2) segmented generators where the p- and n-legs are formed of different segments joined in series. The concept of integrating new thermoelectric materials developed at the Jet Propulsion Laboratory (JPL) into a segmented thermoelectric generator has been presented in detail in earlier publications . This new generator is expected to operate over a 300-973 K temperature difference and will use novel segmented legs based on a combination of state-of-the-art thermoelectric materials and novel p-type Zn4Sb3, p-type CeFe4Sb12-based alloys and n-type CoSb3-based alloys. An increase in the conversion efficiency of about 60% is expected compared to conventional Bi2Te3- and PbTe-based generators. We present in this paper the latest experimental results from the bonding studies between the different segments of the p-legs, n-legs, and p-leg to n-leg interconnect. Evaluation of the bond quality was done by measuring the contact resistance across the joints as well as by detailed microstructure investigations to reveal any potential interdiffusion. Among the materials investigated as inter-layers between the different segments of the legs, Pd-Ag joining alloys have been found to provide mechanically stable and low electrical resistance bonds.

  8. High efficiency shale oil recovery. [Kilntrol program

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency is first being demonstrated at bench scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications, now completed, provide for a great improvement in the operation and make the data and analysis more exact. Last quarter we reported on equipment modifications and refurbishments which resulted in a sophisticated analytical rotary kiln. As we began operating the equipment this quarter, we observed that the software package was inadequate for our purpose and that the appropriate software could not be purchased as a shelf item. Therefore, we were required to modify the equipment interface and to write our own software. The quartz sand kiln calibration runs have been completed and the results are included in this report. Computer Interface: The computer interface was designed on CTR-05, DAS-08 and MUX-32 Boards from ComputerBoards Inc. We purchased a software program, Control EG by Quinn-Curtis, to use with these boards. As we began operating the equipment we realized that the software control was inadequately sensitive for our system as it would not provide time-proportioning output. This problem was resolved by writing our own software and providing time-proportioning duty cycles for the output to each of five heaters. We have entitled this program Kilntrol.'' It is included in the Appendix of this report.

  9. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  10. Counterfactual quantum key distribution with high efficiency

    SciTech Connect

    Sun Ying; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  11. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  12. Multi-petascale highly efficient parallel supercomputer

    SciTech Connect

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  13. High efficiency, radiation-hard solar cells

    SciTech Connect

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  14. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  15. High efficiency quasi-monochromatic infrared emitter

    NASA Astrophysics Data System (ADS)

    Brucoli, Giovanni; Bouchon, Patrick; Haïdar, Riad; Besbes, Mondher; Benisty, Henri; Greffet, Jean-Jacques

    2014-02-01

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  16. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  17. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  18. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  19. High Efficient Cryocooler for Liquid Hydrogen System

    NASA Astrophysics Data System (ADS)

    Nakagome, H.

    2006-04-01

    Conversion into Hydrogen Energy Society is advanced focusing on the application to a fuel cell electric vehicle. As volume and weight density of liquid hydrogen are large, it is the method which was most excellent as the storage method of hydrogen. However, in order to store liquid hydrogen stably over a long period of time, decreasing the loss of energy, development of an efficient small cryocooler becomes important. This paper reports the research about improvement in the refrigeration efficiency of a two-stage GM cryocooler. In order that the GM cryocooler may operate by the Simon expansion, it carries out asymptotic of the COP of the GM cryocooler to the Carnot COP as a compression ratio is lowered. When experimented based on this view, it was checked that refrigeration efficiency rises with reduction in a compression ratio. Furthermore, if the compression ratio is lowered, refrigeration efficiency will fall rapidly. The peak value of the refrigeration efficiency in 20K level attained 28%Carnot. It was verified by optimization of the compression ratio of the GM cryocooler that refrigeration efficiency can be improved significantly. Therefore, sharp reduction of the energy consumption of a liquid hydrogen system will be attained by applying the result of this research.

  20. High Efficiency Thermoelectric Generators Using New Very High Performance Materials

    NASA Astrophysics Data System (ADS)

    Fleurial, Jean-Pierre; Ewell, Richard; Caillat, Thierry; Vandersande, Jan

    1994-07-01

    Extensive theoretical and experimental studies have resulted in reasonable performance improvements (from an average ZT of 0.62 up to 0.75) of the state of the art high temperature SiGe thermoelectric materials in the last 5 years. However, significantly higher material conversion efficiencies are needed to make thermoelectrics competitive and economically attractive. A new approach that looks at radically different compounds and alloys was recently started at JPL and a new family of materials with great potential has been discovered. A real breakthrough was achieved when maximum ZT values of 2.0 were obtained to date on one of these materials in the 300-400C temperature range. Initial analysis of various experimental tests have confirmed its good mechanical and physico-chemical properties. Substantial increases in conversion efficiency and specific power are predicted (60-90%) by incorporating this new material into state of the art space nuclear power systems such as Radioisotope Thermoelectric Generators (RTG).

  1. High efficiency klystron for the SPS application

    NASA Technical Reports Server (NTRS)

    Larue, A. D.

    1980-01-01

    The enhancement of klystron efficiency through the use of collector depression, that is by recovering energy from the spent electron beam after microwave amplification, was investigated. Design considerations included noise, harmonics, cooling, and service life. The mod anode, to be employed for beam control, and the depressed collector, used in spent electron beam energy recovery, are described.

  2. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  3. High-diffraction-efficiency pseudorandom encoding.

    PubMed

    Yang, Y; Stark, H; Gurkan, D; Lawson, C L; Cohn, R W

    2000-02-01

    Pseudorandom encoding (PRE) is a statistics-based procedure in which a pure-phase spatial light modulator (SLM) can yield, on the average, the prescribed diffraction pattern specified by the user. We seek to combine PRE with the optimization of an aperture-based target function. The target function is a fully complex input transmittance, unrealizable by a phase-only SLM, that generates a prescribed light intensity. The optimization is done to increase the diffraction efficiency of the overall process. We compare three optimization methods-Monte Carlo simulation, a genetic algorithm, and a gradient search-for maximizing the diffraction efficiency of a spot-array generator. Calculated solutions are then encoded by PRE, and the resulting diffraction patterns are computer simulated. Details on the complexity of each procedure are furnished, as well as comparisons on the quality, such as uniformity of the output spot array. PMID:10680630

  4. High efficiency annual denuder for formaldehyde monitoring

    SciTech Connect

    Cecchini, F.; Febo, A.; Possanzini, M.

    1985-01-01

    A practical and correct methodology for evaluating CH/sub 2/O in air without sampling artifact formation is presented. Formaldehyde is collected on an annual denuder coated with bisulfite-triethanolamine. The sorbent layer is extracted with water and the solution analyzed by the chromotropic acid (CTA) procedure. Sorption efficiency and loading capacity have been investigated along with storage stability. Results of laboratory validation studies have indicated that a small annual denuder was able to sample about 300 ..mu..g CH/sub 2/O without an appreciable decrease in the initial collection efficiency (99% at 2.5 1 min/sup -1/). Tests on storage stability before and after exposure have also demonstrated that both oxidation of bisulfite and release of CH/sub 2/O did not occur for time periods as long as 1 month.

  5. Highly efficient self-replicating RNA enzymes.

    PubMed

    Robertson, Michael P; Joyce, Gerald F

    2014-02-20

    An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic efficiency of the enzyme. Directed evolution was used to improve the efficiency of the enzyme and increase its exponential growth rate to 0.14 min(-1), corresponding to a doubling time of 5 min. This is close to the limit of 0.21 min(-1) imposed by the rate of product release, but sufficient to enable more than 80 logs of growth per day. PMID:24388759

  6. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  7. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  8. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  9. PMMA lens with high efficiency and reliability

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ichiro; Abe, Koji; Fujita, Katsuhiro

    2013-09-01

    Polymethyl Methacrylate (PMMA) Fresnel lenses are increasingly being used in concentrated photovoltaic (CPV) systems installed outdoors and, accordingly, emphasis is being placed on the durability of such lenses with regard to light transmittance when subject to ultraviolet (UV) light and dust exposure. Accelerated testing methods for evaluating durability under UV exposure were established, allowing development of a lens material with improved UV resistance. Simultaneously, through a proprietary molding method, a Fresnel lens that boasts favorable light concentration efficiency with little deformation even after prolonged outdoor use was developed. Moreover, the lens incorporates a new hard-coat finish that possesses sand durability and UV resistance comparable to that of tempered glass.

  10. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  11. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  12. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  13. Printing highly efficient organic solar cells.

    PubMed

    Hoth, Claudia N; Schilinsky, Pavel; Choulis, Stelios A; Brabec, Christoph J

    2008-09-01

    The technological attraction in organic solar cells is their compatibility to printing processes. However, up to today, nearly no literature on "printed" organic solar cells have been published and the major body of the research work was done by spin coating or blading techniques. Transferring the spin-coating or doctor blading process currently used for the fabrication of bulk heterojunction solar cell to a printing process holds morphological challenges that have not been observed or reported up to today. We highlight these challenges and we show that inkjet printing of organic bulk heterojunction solar cells requires completely novel approaches and skill sets compared to the current state of the art. By adjusting the chemical properties of the poly(3-hexylthiophene) polymer donor and by using our recently developed inkjet solvent mixture, we have gained control over the nanomorphology of poly(3-hexylthiophene):fullerene blends during the printing process and report a new record power conversion efficiency of 3.5% for inkjet printed poly(3-hexylthiophene):fullerene based solar cells. PMID:18683989

  14. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  15. Summary of the advanced high efficiency concepts subcontractors review meeting

    SciTech Connect

    Not Available

    1983-10-01

    Brief summaries are given of presentations on the topics of: new ideas for photovoltaic conversion; a high efficiency bulk graded band gap/pn junction solar cell structure at high concentration ratios; development of high efficiency graded band gap p+-p-n GaAlAs/GaAs solar cells; an advanced AlGaAs-GaAs high efficiency concentrator solar cell; GaAs solar cell with low surface recombination; theory of advanced high-efficiency concentrator cells; III-V high efficiency photovoltaic cells; advanced high efficiency concentrator cells; monolithic two-color/three-terminal GaAsP/GaAsSb solar cells; high-efficiency thin-film and multijunction solar cells; review of the NASA space photovoltaic program; review of the Air Force space photovoltaic program; the Air Force manufacturing program; an overview of Sandia FY84 advanced concentrator cell research; thin film gallium arsenide solar cell research; fabrication of monocrystalline GaAs solar cells utilizing sacrificial NaCl substrates; and progress toward development of high efficiency GaAs solar cells on silicon substrates. (LEW)

  16. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  17. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  18. Some approaches for fabricating high-efficiency OLEDs

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Wang, Wei-Ben; Shen, Shih-Ming; Wu, Ming-Hsuan

    2009-08-01

    High-efficiency is strongly desired for organic light-emitting diodes (OLEDs) to be fully realized as the future display and lighting technology. To replace current illumination tools, such as incandescent bulbs and fluorescent tubes, for examples, OLEDs with much higher efficiency are demanded. We will present herein some approaches for fabricating high-efficiency OLEDs of blue and white emission. Besides employing highly efficient electroluminescent guests and thin device architecture, low injection barriers to carriers, high carrier-transporting character, effective carrier/exciton confinement, balanced carrier-injection, exciton generation on host, effective host-to-guest energy-transfer and improved light-coupling efficiency are essential. Amongst, the incorporation of nano-dots in emissive- and non-emissive-layers can markedly improve the device efficiency. The enhancement is especially marked as small polymeric nano-dots are incorporated into the non-emissive layers. Since the incorporation is not in the emissive layer, the efficiency improvement mechanism works for both fluorescent and phosphorescent devices. Importantly, the efficiency improvement is also a strong function of the surface charge density of the nano-dots. Regardless positively or negatively charged, the improvement becomes more pronounced as the charge density increases. Results regarding some lately achieved extraordinarily highly-efficient OLEDs containing nano-dots with high surface charge will be presented.

  19. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  20. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  1. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  2. Vacuum testing of high efficiency AMTEC cells

    SciTech Connect

    Schuller, M.; Phillips, P.H.; Reiners, E.; Merrill, J.; Crowley, C.; Izenson, M.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environment of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.

  3. Microalgae--novel highly efficient starch producers.

    PubMed

    Brányiková, Irena; Maršálková, Barbora; Doucha, Jiří; Brányik, Tomáš; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2011-04-01

    The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215 µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330 µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1 mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20 h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass

  4. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  5. High efficiency lithium-thionyl chloride cell

    NASA Astrophysics Data System (ADS)

    Doddapaneni, N.

    1981-10-01

    The main objectives are to evaluate the polarization characteristics of Teflon bonded carbon electrodes in the Li/SOCl2 system and to improve cathode performance at high discharge rates and low operating temperatures (-40 F to 32 F). During the report period, we have studied the half-cell polarization and discharge performance characteristics of Li/SOCl2 cells with and without improved cathodes. In addition, the effect of catalysts on cyclic volt-ammograms and electrolyte viscosity and conductivity relationships with operating temperature have been examined. Electrolyte properties in Li/SOCL2 systems are found to contribute significantly towards the cathode overpotential. Cathodes doped with catalysts greatly minimized the activation polarization throughout the operating temperatures.

  6. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  7. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  8. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  9. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  10. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2003-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations (<{approx}10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Much of the work during year 02 consisted of

  11. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2002-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full testing in our desulfurization reactor. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations ({approx}< 10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Characterization and desulfurization

  12. Summary of high-efficiency solar-cell research

    NASA Technical Reports Server (NTRS)

    Kachare, R.

    1985-01-01

    High-efficiency solar-cell activities supporting efforts to achieve the DOE Five-Year Plan goals are summarized. Specific objectives are to identify and resolve key generic problems that limit cell efficiency to below theoretically predicted values and to design and fabricate cells having efficiences equal to or greater than 20% (AM1.5). Theoretical curves for various p-n junction cells were shown. The effects of practical barriers on cell efficiency was depicted along with the modeling parameters. Cell design parameters used in the analyses were described. The usefulness and present limitations of the existing modeling capabilities were presented. The historical evolution of the efficiencies of cells made from web and edge-defined film-fed growth (EFG) silicon ribbons were also described. The status of contemporary higher-efficiency technical capabilities and future activities to raise efficiencies were stated.

  13. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  14. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  15. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  16. High efficiency solar cell research for space applications

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1985-01-01

    A review is given of NASA photovoltaic research with emphasis on the activities of the Lewis Research Center. High efficiency solar cell research is discussed, as well as solar arrays, multi-junction cell bandgaps, and plasmon coupling.

  17. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  18. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  19. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  20. Ultra-High Efficiency White Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Narukawa, Yukio; Narita, Junya; Sakamoto, Takahiko; Deguchi, Kouichiro; Yamada, Takao; Mukai, Takashi

    2006-10-01

    We fabricated the high luminous efficiency white light emitting diode (LED) and the high power white LED by using the patterned sapphire substrates and an indium-tin oxide (ITO) contact as a p-type electrode. The high luminous efficiency white LED was the yellow YAG-phosphors-coated small-size (240 × 420 μm2) high efficiency blue LED with the quantum efficiency of 63.3% at a forward-bias current of 20 mA. The luminous flux (Φ), the forward-bias voltage (Vf), the correlated color temperature (Tcp), the luminous efficiency (ηL), and the wall-plug efficiency (WPE) of the high luminous efficiency white LED are 8.6 lm, 3.11 V, 5450 K, 138 lm/W, and 41.7%, respectively. The luminous efficiency is 1.5 times greater than that of a tri-phosphor fluorescent lamp (90 lm/W). The high power white LED was fabricated from the larger-size (1 × 1 mm2) blue LED with the output power of 458 mW at 350 mA. Φ, Vf, Tcp, ηL, and WPE of the high power white LED are 106 lm, 3.29 V, 5200 K, 91.7 lm/W, and 27.7%, respectively, at 350 mA. The WPE is greater than that of a fluorescent lamp (25%) in the visible region. Moreover, the luminous flux of the high power white LED reaches to 402 lm at 2 A, which is equivalent to the total flux of a 30 W incandescent lamp.

  1. Space solar cells - High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.; Bernatowicz, D. T.

    1980-01-01

    The proceedings of the Third Solar Cell High Efficiency and Radiation Damage Meeting are outlined. The topics covered included high efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance, and 30 percent conversion devices. The study of radiation damage from a fundamental defect-centered basis is discussed and evaluated as a focus of future work. 18% AM0 efficiency and 0.7 V open-circuit voltages are designated as achievable goals for silicon solar cells, and the potential for 30% AM0 efficiencies from monolithic tandem cell designs without sunlight concentration is noted. In addition to its potential for 20% AM0 efficiencies, the GaAs cell offers the possibility of a radiation-insensitive power supply when operated at temperatures near 200 C.

  2. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  3. Phenomena and Performance of High-Efficiency Split Spectrum Photovoltaics

    NASA Astrophysics Data System (ADS)

    Downs, Chandler

    High-efficiency photovoltaics are one of the most promising technologies for supplying sustainable energy in the near future. These technologies allow for high energy conversion efficiencies and long system lifetimes, which is becoming an increasingly profitable power generation option. One high-efficiency photovoltaic technology gaining increasing attention recent years is that of split-spectrum photovoltaics. This technology divides the incident solar spectrum on the basis of wavelength, directing each portion of the spectrum to a different cell where the light can be utilized most efficiently. In this dissertation, a number of aspects of high-efficiency photovoltaics, most notably split-spectrum photovoltaics, are examined. First, the ideal bandgap placements of the subcells of a split-spectrum photovoltaic system are calculated, specifically determined with an eye towards practical fabrication of the cells. Two viable designs are determined which improve theoretical absolute conversion efficiency by 4-5%. Next, those systems are simulated using the TCAD Sentaurus software package to project conversion efficiencies and determine additional device specifications (doping levels, layer thicknesses, etc.). These cells show comparable conversion efficiencies to high performing, full-spectrum multijunction photovoltaics in fabrication today. In the last section, a theoretical examination of semiconductor performance under high optical concentration is performed, including the prediction and characterization of various phenomena in those devices. This work aims to improve the understanding of the performance of high concentration photovoltaics, most notably split-spectrum photovoltaics. This understanding will aid in the advancement of this technology as a widespread, sustainable energy source for use worldwide, reducing greenhouse emissions and providing cheap, clean energy.

  4. Highly efficient carrier multiplication in PbS nanosheets.

    PubMed

    Aerts, Michiel; Bielewicz, Thomas; Klinke, Christian; Grozema, Ferdinand C; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2014-01-01

    Semiconductor nanocrystals are promising for use in cheap and highly efficient solar cells. A high efficiency can be achieved by carrier multiplication (CM), which yields multiple electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of specific interest, since their band gap can be tuned to be optimal to exploit CM in solar cells. Interestingly, for a given photon energy CM is more efficient in bulk PbS and PbSe, which has been attributed to the higher density of states. Unfortunately, these bulk materials are not useful for solar cells due to their low band gap. Here we demonstrate that two-dimensional PbS nanosheets combine the band gap of a confined system with the high CM efficiency of bulk. Interestingly, in thin PbS nanosheets virtually the entire excess photon energy above the CM threshold is used for CM, in contrast to quantum dots, nanorods and bulk lead chalcogenide materials. PMID:24781188

  5. Research on stable, high-efficiency, amorphous silicon multijunction modules

    SciTech Connect

    Catalano, A.; Bennett, M.; Chen, L.; D'Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Yang, L. . Thin Film Div.)

    1992-08-01

    This report describes work to demonstrate a multijunction module with a stabilized'' efficiency (600 h, 50{degrees}C, AM1.5) of 10.5%. Triple-junction devices and modules using a-Si:H alloys with carbon and germanium were developed to meet program goals. ZnO was used to provide a high optical transmission front contact. Proof of concept was obtained for several important advances deemed to be important for obtaining high (12.5%) stabilized efficiency. They were (1) stable, high-quality a-SiC:H devices and (2) high-transmission, textured ZnO. Although these developments were not scaled up and included in modules, triple-junction module efficiencies as high as 10.85% were demonstrated. NREL measured 9.62% and 9.00% indoors and outdoors, respectively. The modules are expected to lose no more than 20% of their initial performance. 28 refs.

  6. High surface area electrode for high efficient microbial electrosynthesis

    NASA Astrophysics Data System (ADS)

    Nie, Huarong; Cui, Mengmeng; Lu, Haiyun; Zhang, Tian; Russell, Thomas; Lovley, Derek

    2012-02-01

    Microbial electrosynthesis, a process in which microorganisms directly accept electrons from an electrode to convert carbon dioxide and water into multi carbon organic compounds, affords a novel route for the generation of valuable products from electricity or even wastewater. The surface area of the electrode is critical for high production. A biocompatible, highly conductive, three-dimensional cathode was fabricated from a carbon nanotube textile composite to support the microorganism to produce acetate from carbon dioxide. The high surface area and macroscale porous structure of the intertwined CNT coated textile ?bers provides easy microbe access. The production of acetate using this cathode is 5 fold larger than that using a planar graphite electrode with the same volume. Nickel-nanowire-modified carbon electrodes, fabricated by microwave welding, increased the surface area greatly, were able to absorb more bacteria and showed a 1.5 fold increase in performance

  7. The emerging High Efficiency Video Coding standard (HEVC)

    NASA Astrophysics Data System (ADS)

    Raja, Gulistan; Khan, Awais

    2013-12-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC.

  8. Process and design considerations for high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Rohati, A.; Rai-Choudhury, P.

    1985-01-01

    This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.

  9. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  10. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  11. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  12. High Efficiency Pb-In Binary Metal Perovskite Solar Cells.

    PubMed

    Wang, Zhao-Kui; Li, Meng; Yang, Ying-Guo; Hu, Yun; Ma, Heng; Gao, Xing-Yu; Liao, Liang-Sheng

    2016-08-01

    Mixed Pb-In perovskite solar cells are fabricated by using lead(II) chloride and indium(III) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of perovskites with multiple ordered crystal orientations. PMID:27184107

  13. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  14. Highly efficient monolithic dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok

    2013-03-01

    Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated. PMID:23432389

  15. Development of an Improved High Efficiency Thin Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Wrigley, C.

    1979-01-01

    Breakage and front contact failure in high efficiency, textured ultrathin cells was reduced as a consequence of the introduction of process modifications. In a small production run, over one hundred ultrathin cells, having an average AMO efficiency of 13%, were fabricated from 10-25 ohm cm silicon. An in-house aluminum paste for back surface field formation was developed that resulted in cell efficiencies equivalent to those from commercial pastes. The quality of the back surface field was found to be dependent on the orientation of the silicon slice during alloying.

  16. Investigation of high efficiency GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Linden, Kurt

    1989-01-01

    Investigations of basic mechanisms which limit the performance of high efficiency GaAs solar cells are discussed. P/N heteroface structures have been fabricated from MOCVD epiwafers. Typical AM1 efficiencies are in the 21 to 22 percent range, with a SERI measurement for one cell being 21.5 percent. The cells are nominally 1.5 x 1.5 cm in size. Studies have involved photoresponse, T-I-V analyses, and interpretation of data in terms of appropriate models to determine key cell parameters. Results of these studies are utilized to determine future approaches for increasing GaAs solar cell efficiencies.

  17. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  18. High conversion efficiency ultraviolet fiber Raman oscillator--amplifier system

    SciTech Connect

    Pini, R.; Salimbeni, R.; Vannini, M.; Haider, A.F.M.Y.; Lin, C.

    1986-04-01

    High efficiency UV frequency conversion by stimulated Raman scattering in a XeCl (lambda = 308-nm) excimer laser-pumped multimode fiber is presented. The system consists of a first piece of fiber as a Stokes generator and a second as a power amplifier. Power conversion efficiencies up to 80% have been measured. Uses of fiber Raman amplifiers in the near UV are also discussed.

  19. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  20. High-speed, efficient metal - semiconductor - metal photodetectors

    SciTech Connect

    Collin, St; Pardo, F; Bardou, N; Pelouard, J.-L.; Averin, S V

    2010-08-03

    Design principles and the fabrication technique of highly efficient, high-speed photodetectors based on MSM nanostructures are developed. To efficiently confine light in the region of the strong field as well as to decrease light losses due to reflection from the diode contacts, use is made of a nanoscale interdigital diffraction grating and a multilayer Bragg grating. Measurements of the reflection coefficients and the quantum efficiency for a multilayer structure are in good agreement with theoretical estimates. A record-high quantum efficiency (QE = 46 %) is obtained for high speed MSM photodetectors. The detector has a high spectral selectivity ({Delta}{lambda}{sub 1/2} = 17 nm) at a wavelength of 800 nm. Taking into account the diode capacitance and the drift time of photogenerated carriers, the performance of the detectors under study is {approx} 500 GHz. The low level of the dark current density in the structures under study (j={sup 1} pA {mu}m{sup -2}) makes it possible to realise on their basis highly sensitive, high-speed selective detectors of optical radiation.

  1. Efficiency enhancement in high power backward-wave oscillators

    SciTech Connect

    Goebel, D.M.; Feicht, J.R. Adler, E.A. ); Ponti, E.S. ); Eisenhart, R.L. ); Lemke, R.W. )

    1999-06-01

    High power microwave (HPM) sources based on the backward-wave oscillator (BWO) have been investigated for the past two decades primarily because of their potential for very high efficiency (15 to 40%) operation. Several different effects have been proposed to explain this high efficiency compared to conventional BWO's. One of the major contributors to the high efficiency of the plasma-filled Pasotron HPM BWO source is the presence of optimally phased end reflections. The Pasotron uses a long pulse ([ge]100 [micro]s) plasma-cathode electron-gun and plasma-filled slow-wave structure to produce microwave pulses in the range of 1 to 10 MW without the use of externally produced magnetic fields. The efficiency of the Pasotron can be enhanced by up to a factor of two when the device is configured as a standing-wave oscillator in which properly phased reflections from the downstream collector end of the finite length SWS constructively interfere with the fundamental backward-wave modes and improve the coupling of the beam to the circuit. Operation in this configuration increases the efficiency up to 30% but causes the frequency to vary in discrete steps and the output power to change strongly with beam parameters and oscillation frequency.

  2. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures.

    PubMed

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ(3)/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  3. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  4. Heat transparent high intensity high efficiency solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1982-01-01

    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell.

  5. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  6. Investigation of beat-waves generation with high efficiency

    SciTech Connect

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  7. Design of scanning spherical trireflector antennas with high aperture efficiency

    NASA Technical Reports Server (NTRS)

    Shen, Bing; Stutzman, Warren L.

    1993-01-01

    It is frequently desirable to scan the main beam of a large antenna system without moving the main aperture structure. Spherical reflectors have excellent potential in this application. However, they are not commonly used because of poor aperture efficiency and high side lobes in traditional implementations. This paper introduces a new dual-subreflector feed system design which does not require oversizing the spherical main reflector to accommodate scan and yet permits a controlled aperture illumination. The design yields high aperture efficiency, low cross-polarization, and low side lobes.

  8. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  9. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  10. High efficiency all-polymer tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-05-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells.

  11. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  12. Experimental Realization of High-Efficiency Counterfactual Computation

    NASA Astrophysics Data System (ADS)

    Kong, Fei; Ju, Chenyong; Huang, Pu; Wang, Pengfei; Kong, Xi; Shi, Fazhan; Jiang, Liang; Du, Jiangfeng

    2015-08-01

    Counterfactual computation (CFC) exemplifies the fascinating quantum process by which the result of a computation may be learned without actually running the computer. In previous experimental studies, the counterfactual efficiency is limited to below 50%. Here we report an experimental realization of the generalized CFC protocol, in which the counterfactual efficiency can break the 50% limit and even approach unity in principle. The experiment is performed with the spins of a negatively charged nitrogen-vacancy color center in diamond. Taking advantage of the quantum Zeno effect, the computer can remain in the not-running subspace due to the frequent projection by the environment, while the computation result can be revealed by final detection. The counterfactual efficiency up to 85% has been demonstrated in our experiment, which opens the possibility of many exciting applications of CFC, such as high-efficiency quantum integration and imaging.

  13. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  14. High efficiency all-polymer tandem solar cells.

    PubMed

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  15. Processing technology for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.

    1985-01-01

    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.

  16. Evaluation of a high-efficiency, filter-bank system.

    PubMed

    Martin, Stephen B; Beamer, Bryan R; Moyer, Ernest S

    2006-04-01

    National Institute for Occupational Safety and Health (NIOSH) investigators evaluated filtration efficiencies at three U.S. Postal Service (USPS) facilities. Ventilation and filtration systems (VFSs) had been installed after the 2001 bioterrorist attacks when the USPS unknowingly processed letters laden with B. anthracis spores. The new VFS units included high-efficiency particulate air (HEPA) filters and were required by USPS contract specifications to provide an overall filtration efficiency of at least 99.97% for particles between 0.3 microm and 3.0 micro m. The USPS evaluation involved a modification of methodology used to test total filtration system efficiency in agricultural tractor cab enclosures. The modified sampling strategy not only proved effective for monitoring the total filtration system component of VFS performance but also distinguished between filtration systems performing to the high USPS performance criteria and those needing repair or replacement. The results clearly showed the importance of choosing a pair of optical particle counters that have been closely matched immediately prior to testing. The modified methodology is readily adaptable to any workplace wishing to evaluate air filtration systems, including high-efficiency systems. PMID:16531293

  17. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  18. Metal-Dielectric Waveguides for High Efficiency Coupled Emission

    PubMed Central

    Badugu, Ramachandram; Szmacinski, Henryk; Ray, Krishanu; Descrovi, Emiliano; Ricciardi, Serena; Zhang, Douguo; Chen, Junxue; Huo, Yiping; Lakowicz, Joseph R.

    2015-01-01

    We report a metal-dielectric planar structure which provides high efficiency coupling of fluorescence at distances over 100 nm away from the metal surface. This hybrid metal-dielectric waveguide (MDW) consists of a continuous metal film coated with a dielectric layer. We observed efficient long-range coupling of Rhodamine B on top of a 130 nm layer of silica resulting in a narrow angular distribution of the emission. The high efficiency radiation through the Ag film appears to be due to coupling of the fluorophore to an optical waveguide mode with a long propagation length and a narrow resonance. The results were consistent with simulations. These multi-layer structures can be made using vapor deposition and/or spin coating and the silica surface can be used for conjugation to biomolecules and surface-selective detection. This simple hybrid metal-dielectric structures provides new opportunities for fluorescence sensing, genomics, proteomics and diagnostics. PMID:26523286

  19. Overview of SERI's high efficiency solar cell research

    NASA Technical Reports Server (NTRS)

    Benner, J. P.; Cole, L. A.; Leboeuf, C. M.

    1985-01-01

    The bulk of the research efforts supported by the Solar Energy Research Institute (SERI) High Efficiency Concepts area has been directed towards establishing the feasibility of achieving very high efficiencies, 30% for concentrator and more than 20% for thin film flat plate, in solar cell designs which could possibly be produced competitively. The research has accomplished a great deal during the past two years. Even though the desired performance levels have not yet been demonstrated, based on the recent progress, a greater portion of the terrestrial photovoltaics community believes that these efficiencies are attainable. The program will now allocate a larger portion of resources to low cost, large area deposition technology. The program is currently shifting greater emphasis on to the study of crystal growth in order to provide the understanding and tools needed to design a large area process.

  20. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  1. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  2. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence.

    PubMed

    Hirata, Shuzo; Sakai, Yumi; Masui, Kensuke; Tanaka, Hiroyuki; Lee, Sae Youn; Nomura, Hiroko; Nakamura, Nozomi; Yasumatsu, Mao; Nakanotani, Hajime; Zhang, Qisheng; Shizu, Katsuyuki; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-03-01

    Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%. PMID:25485987

  3. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Sakai, Yumi; Masui, Kensuke; Tanaka, Hiroyuki; Lee, Sae Youn; Nomura, Hiroko; Nakamura, Nozomi; Yasumatsu, Mao; Nakanotani, Hajime; Zhang, Qisheng; Shizu, Katsuyuki; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-03-01

    Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%.

  4. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  5. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  6. FACILITIES EVALUATION OF HIGH EFFICIENCY BOILER DESTRUCTION PCB WASTE

    EPA Science Inventory

    The report gives results of an evaluation of destruction in two different high-efficiency boilers (as an alternative to landfill disposal) of waste (a rendering plant byproduct, yellow grease) found to be contaminated by PCBs from a transformer leak. (The PCB content--under 500 p...

  7. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  8. Applications of ion implantation for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Kirkpatrick, A. R.

    1977-01-01

    Ion implantation is utilized for the dopant introduction processes necessary to fabricate a silicon solar cell. Implantation provides a versatile powerful tool for development of high efficiency cells. Advantages and problems of implantation and the present status of developmental use of the technique for solar cells are discussed.

  9. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  10. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  11. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    EPA Science Inventory

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  12. Development of High Efficiency (14%) Solar Cell Array Module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1979-01-01

    High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.

  13. Basic studies of 3-5 high efficiency cell components

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. )

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  14. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  15. High Efficiency Mode Converter for Low-Frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Minami, Ryutaro; Kariya, Tsuyoshi; Imai, Tsuyoshi; Mitsunaka, Yoshika; Sakamoto, Keishi

    2011-03-01

    A high efficiency quasi-optical (QO) mode converter for high-power, low-frequency gyrotron have been designed and tested. For low-frequency gyrotrons, the scales of the mode converter are comparatively small on the wavelength scale, thus causing significant diffraction losses. Over-1 MW power gyrotron with TE8,3 cavity at 28 GHz have been developed, which has a high efficiency mode converter designed by the use of numerical methods for launcher optimization. This calculation is sufficiently optimized to maximize the fractional Gaussian content of the far field. The total transmission efficiency from the mode converter to output window is 94.7%. For the experimental result of first tube, the output power of more than 1 MW has been obtained with about 40% efficiency and output burn pattern agrees fairly with the calculated profiles, which imply the design appropriateness. Besides, the frequency dependence for diffraction loss is discussed, and these results give the guiding design principle of the mode converter for high-power, low-frequency and long-pulse gyrotrons.

  16. High Efficient OLEDs and Their Application to Lighting

    NASA Astrophysics Data System (ADS)

    Komoda, Takuya; Ide, Nobuhiro; Kido, Junji

    Organic Light Emitting Diode (OLED) is one of the strongest candidates for the next generation solid state lighting alternative to conventional incandescent bulbs and fluorescent lamps. There are still a lot of issues to overcome in order to commercialize OLED lighting, but a number of elemental technologies indispensable for OLED lighting such as high efficiency, long lifetime at high luminance and large area uniform emission have been developed.

  17. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  18. High-efficiency heteroepitaxial solar cells for space power applications

    NASA Technical Reports Server (NTRS)

    Vernon, S. M.; Tobin, S. P.; Keavney, C. J.; Wojtczuk, S. J.

    1989-01-01

    The experimental results for several technical approaches aimed at achieving highly efficient solar cells for space-power applications are reported. Efficiencies of up to 24.5 percent (170X, AM0) and 21.7 percent (1X, AM0) have been achieved with homoepitaxial GaAs p/n cells. This one-sun AM0 efficiency value is believed to be the highest reported to date. Tandem solar cells utilizing GaAs-on-Ge structures have been fabricated and shown to have efficiencies up to 21.3 percent (1X, AM0), and a GaAs-on-Si cell at 15.2 percent (1X, AM0) is reported. Homoepitaxial n/p InP cells with an efficiency of 18.8 percent (1X, AM0) are also reported. The fabrication of heteroepitaxial InP solar cells with one-sun AM0 efficiency values of 9.4 percent (on GaAs) and 7.2 percent (on Si) is described.

  19. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect

    Lowes, Ted

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in today's commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  20. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Culik, J.; Wrigley, C.

    1980-01-01

    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.

  1. A high-efficiency relativistic magnetron with the filled dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yu; Fan, Yu-Wei; Shi, Di-fu; Shu, Ting

    2016-07-01

    Relativistic magnetron (RM) is a popular high power microwave device. Filling the resonant cavities with the low-loss dielectric is a well-proven technology that improves the performance of RM. In order to enhance the power efficiency, a dielectric-filled relativistic magnetron (DFRM) is presented and investigated numerically with KARAT code in this paper. The simulation results indicate that the maximum power efficiency is enhanced from 50.0% in the conventional RM to 56.0% in the DFRM when the applied voltage and the magnetic field are 280 kV and 0.5 T, respectively. Besides, the simulation results are analyzed and discussed.

  2. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  3. High-efficiency, 200 watt, 12-gigahertz traveling wave tube

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.; Mcnary, B. D.; Sauseng, O.

    1974-01-01

    Design and performance of a highly efficient experimental 200-watt traveling wave tube for space communications are described. The tube uses a coupled cavity slow wave structure with periodic permanent magnet focusing. A two-step velocity taper is incorporated in the slow wave structure for velocity resynchronization with the modulated beam. The spent beam is reconditioned in a refocusing section before it is collected in a novel multistage depressed collector. The collector is radiation cooled and heat insulated from the tube body. At saturation the tube provides peak output power of 240 watts with a 35-db gain and an overall maximum efficiency of 56 percent.

  4. Right-angle slot waveguide bends with high bending efficiency.

    PubMed

    Ma, Changbao; Zhang, Qun; Van Keuren, Edward

    2008-09-15

    Two right-angle bends for nanoscale slot waveguides with high bending efficiency based on a corner mirror and different resonant cavities are presented, one with a triangular cavity and the other with a square cavity. Through two-dimensional parametric scanning of the position of the mirror and the dimension of the cavity, a maximum bending efficiency calculated using mode overlap integral (MOI) of 94.3% is achieved for the bend with the triangular cavity and 93.1% is achieved for the bend with the square cavity. Although they both have similar bending performance, the position of the mirror is different between the two cases. PMID:18794968

  5. Development of high efficiency (14 percent) solar cell array module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1980-01-01

    Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices.

  6. High efficiency low cost monolithic module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, Wendell C.; Siu, Daniel P.

    1992-01-01

    The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.

  7. High-efficiency heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Coutts, T. J.; Ward, J. S.; Emery, K. A.

    1991-01-01

    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet

  8. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  9. Emcore High Efficiency Space Solar Cell Technology: 30% And Beyond

    NASA Astrophysics Data System (ADS)

    Sharps, P. R.; Aiken, D.; Boca, A.; Buitrago, O.; Cho, B.; Chummney, D.; Cornfield, A.; Garnica, R.; Guzie, B.; Haney, D.; Lin, Y.; Newman, F.; Patel, P.; Stan, M.; Steinfeld, J.; Spann, J.; Torino, C.; Varghese, T.

    2011-10-01

    We present data on the Emcore 29.5% class ZTJ cell that has been qualified to the AIAA S-111 cell standard, and is now in high volume production for a number of flights. We present a summary of the results from the cell qualification tests, focussing on the testing methodology as well as the results for the combined effects test. In addition, the ZTJ cell has been qualified to the AIAA S-112 SCA (CIC) integration standard, and a summary of these results will be presented as well. The 30% efficiency level for space applications is considered limiting for the lattice matched GaInP2/InGaAs/Ge triple junction device. In the past decade the efficiency of the GaInP2/GaAs based cell has increased from 23% to nearly 30%, and surpassing this value requires novel device designs. While multi- junction cells have been receiving considerable attention for terrestrial applications because of their ability to achieve high efficiencies, there are additional requirements for performance and survival in the space environment. In typical operation in space the degradation caused by particle radiation as well as weight requirements place constraints on what cell architectures can be utilized. We present data for an inverted metamorphic multi-junction (IMM) approach that has demonstrated a clear path to higher efficiencies as well as a very high specific power. The IMM approach also opens opportunities for novel cell packaging and array designs.

  10. High efficiency of tide-induced mixing in estuaries

    NASA Astrophysics Data System (ADS)

    Geyer, W. R.; Ralston, D. K.; Scully, M. E.

    2008-12-01

    Estuaries convert tidal kinetic energy to potential energy by mixing fresh and salt water. Overall mixing efficiency can be expressed by the ratio of volume-integrated buoyancy flux to turbulent kinetic energy production, yielding an overall flux Richardson number Rfo. This quantity was estimated in two estuaries, the partially mixed Hudson River and the highly stratified Merrimack, based on control-volume estimates using velocity, elevation and salinity data, as well as direct integration of the buoyancy flux and kinetic-energy production from verified numerical simulations. The efficiency ranged from 0.025 for low-discharge, partially mixed conditions up to 0.12 for high-discharge, salt-wedge conditions. These values are well above the Simpson-Hunter value of ~ 0.003 for shelf seas, and they approach the Osborn (1980) value of 0.15 for the high-stratification regime. The increasing efficiency with higher stratification is a consequence of the increasing role of shear instability relative to boundary mixing. The efficiency in the partially mixed regime is limited by the restratification of the bottom boundary layer, in which longitudinal and lateral straining of the salinity are both important. Osborn, TR (1980). J. Phys. Oceanography, 10, 83-89.

  11. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  12. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A.

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  13. High-efficiency machining methods for aviation materials

    NASA Astrophysics Data System (ADS)

    Kononov, V. K.

    1991-07-01

    The papers contained in this volume present results of theoretical and experimental studies aimed at increasing the efficiency of cutting tools during the machining of high-temperature materials and titanium alloys. Specific topics discussed include a study of the performance of disk cutters during the machining of flexible parts of a high-temperature alloy, VZhL14N; a study of the wear resistance of cutters of hard alloys of various types; effect of a deformed electric field on the precision of the electrochemical machining of gas turbine engine components; and efficient machining of parts of composite materials. The discussion also covers the effect of the technological process structure on the residual stress distribution in the blades of gas turbine engines; modeling of the multiparameter assembly of engineering products for a specified priority of geometrical output parameters; and a study of the quality of the surface and surface layer of specimens machined by a high-temperature pulsed plasma.

  14. A Perspective on the Future of High Efficiency Engines

    SciTech Connect

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  15. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  16. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures. PMID:27244596

  17. Nanofabrication advances for high efficiency critical-angle transmission gratings

    NASA Astrophysics Data System (ADS)

    Bruccoleri, Alexander R.; Guan, Dong; Heilmann, Ralf K.; Vargo, Steve; DiPiazza, Frank; Schattenburg, Mark L.

    2013-09-01

    We report several break-through nanofabrication developments enabling high efficiency and high resolving power spectrometers in the soft x-ray band. The device is the critical-angle transmission (CAT) grating, which combines the low mass and relaxed alignment tolerances of a transmission grating with the high broad-band efficiency and high diffraction orders of a blazed reflection grating. Past work successfully demonstrated the CAT grating concept; however, the open-area fraction was often less than 20% whilst more than 50% is desired. This presents numerous nanofabrication challenges including a requirement for a freestanding silicon membrane of ultra high-aspect ratio bars at a period of 200 nanometers with minimal cross support blockage. Furthermore, the sidewalls must be smooth to a few nanometers to efficiently reflect soft x-rays. We have developed a complete nanofabrication process for creating freestanding CAT gratings via plasma-etching silicon wafers with a buried layer of SiO2. This removable buried layer enables combining a record-performance plasma etch for the CAT grating with a millimeter-scale honeycomb structural support to create a large-area freestanding membrane. We have also developed a process for polishing sidewalls of plasma-etched ultra-high aspect ratio nanoscale silicon structures via potassium hydroxide (KOH). This process utilizes the anisotropic etch nature of single crystal silicon in KOH. We developed a novel alignment technique to align the CAT grating bars to the {111} planes of silicon within 0.2 degrees, which enables KOH to etch away sidewall roughness without destroying the structure, since the {111} planes etch approximately 100 times slower than the non-{111} planes. Preliminary results of a combined freestanding grating with polishing are presented to enable efficient diffraction of soft x-rays.

  18. Resonantly pumped high efficiency Ho:YAG laser.

    PubMed

    Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu

    2012-11-20

    High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW. PMID:23207298

  19. Highly efficient PWM synchronous buck converter with optimized LDMOS

    NASA Astrophysics Data System (ADS)

    Roy, Swarnil; Mukherjee, Sagar; Sarkar, Chandan Kumar

    2015-07-01

    In this work, a design of high efficiency synchronous buck converter with an optimized LDMOS is presented which works in VHF frequency domain. The circuit performance of the buck converter is then analyzed and optimized to increase the efficiency and to reduce the power losses without modifying the circuit. The analysis and optimization is performed by varying the different device parameters like drift region doping concentration (DDrift) and drift region length (LDrift) along with the circuit level parameters like the dead time and the switching frequency. The effect of the parameters is found to reduce the power losses of the circuit. The circuit with optimized parameters yields 80% efficiency at 100 MHz switching frequency.

  20. High Efficiency InP Solar Cells Through Nanostructuring

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel; Murray, Joseph; Munday, Jeremy

    We describe high efficiency InP solar cells which utilize a periodic array of optically designed TiO2 nanocylinders. Optical and electronic simulations were performed to determine the spectrally resolved reflectivity and I-V characteristics of potential devices under AM1.5G illumination. The reflectivity of InP solar cells with these nanocylinders is found to have an average value of 2% over the visible and near-IR spectral range, which outperforms traditional antireflection coatings. Coupling between Mie scattering resonances and thin film interference effects is found to accurately describe the optical enhancement provided by the nanocylinders. These nanostructured solar cells have power conversion efficiencies greater than 23%, which is comparable to the highest quoted efficiencies for InP solar cells.

  1. Invited Article: Broadband highly efficient dielectric metadevices for polarization control

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; Miroshnichenko, Andrey; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-06-01

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. By employing this novel concept, we demonstrate reflectionless (˜90% transmission) half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across multiple telecom bands with ˜99% polarization conversion efficiency.

  2. Highly efficient photocathodes for dye-sensitized tandem solar cells.

    PubMed

    Nattestad, A; Mozer, A J; Fischer, M K R; Cheng, Y-B; Mishra, A; Bäuerle, P; Bach, U

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components. PMID:19946281

  3. Highly efficient photocathodes for dye-sensitized tandem solar cells

    NASA Astrophysics Data System (ADS)

    Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U.

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components.

  4. Modeling intermediate band solar cells: a roadmap to high efficiency

    NASA Astrophysics Data System (ADS)

    Krich, Jacob J.; Trojnar, Anna H.; Feng, Liang; Hinzer, Karin; Walker, Alexandre W.

    2014-03-01

    Intermediate band (IB) photovoltaics have the potential to be highly efficient and cost effective solar cells. When the IB concept was proposed in 1997, there were no known intermediate band materials. In recent years, great progress has been made in developing materials with intermediate bands, though power conversion efficiencies have remained low. To understand the material requirements to increase IB device efficiencies, we must develop good models for their behavior under bias and illumination. To evaluate potential IB materials, we present a figure of merit, consisting of parameters that can be measured without solar cell fabrication. We present a new model for IB devices, including the behavior of their junctions with n- and p-type semiconductors. Using a depletion approximation, we present analytic approximations for the boundary conditions of the minority carrier diffusion equations. We compare the analytic results to Synopsys Sentaurus device models. We use this model to find the optimal thickness of the IB region based on material parameters. For sufficiently poor IB materials, the optimal thickness is zero - i.e., the device is more efficient without the IB material at all. We show the minimum value of the figure of merit required for an IB to improve the efficiency of a device, providing a clear goal for the quality of future IB materials.

  5. High-efficiency large-area CdTe modules

    NASA Astrophysics Data System (ADS)

    Albright, S. P.; Ackerman, B.

    1989-10-01

    A small solar cell with an efficiency of 12.3 percent was examined. The high efficiency of this device was largely due to improving the window layer. Analyzing the diode characteristics of this cell indicates that the largest potential for fill-factor improvement lies in reducing the diode quality factor. Through outdoor life testing of encapsulated modules and accelerated life testing of laboratory cells, the CdS/CdTe structure has demonstrated the long term stability necessary for photovoltaic products. Also described is a preformed metal backcap, which is fitted with hermetic feed-through tubes and used for encapsulization. Using the results of these studies, PEI produced sample modules with efficiencies very close to the original objectives, including a 1 sq ft module with an output of 6.1 W and an active area of 754 sq cm. For this module, the active area efficiency was 8.1 percent and the aperture efficiency was 7.3 percent.

  6. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    SciTech Connect

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  7. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

    1992-04-01

    This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

  8. a Study of High Efficiency Thin Thermophotovoltaic Solar Cells.

    NASA Astrophysics Data System (ADS)

    Vera, Eduardo Sobrino

    1982-05-01

    High conversion efficiency of solar energy into electrical energy is possible if the incident radiation is first absorbed by an intermediate absorber and then re-emitted onto a photovoltaic (PV) solar cell. This mode of operation is known as solar thermophotovoltaic (TPV) energy conversion. This thesis explores the limits on performance of TPV systems based on germanium in which the source temperature and the opto-electronic structure of the germanium PV cell are varied and optimized with respect to overall radiant energy conversion efficiency. The principal characteristic of the optimized high efficiency TPV germanium cells is that they are thin p-n junction solar cells which incorporate minority carrier mirrors (MCM) and optical mirrors (OM) at the front and back surfaces of the device examined. In this study, the role of MCM and OM is studied theoretically by solving the minority carrier diffusion equation in the n- and p-type quasineutral regions of the cell with the appropriate boundary conditions at the end of these regions and an appropriate minority carrier generation function. The high theoretical efficiency calculated for these thin structures derives from the simultaneous use of optical and electronic reflection. The calculations presented here determine the theoretical upper limit to TPV conversion efficiency and show the dependence of this limit on cell geometry, resistivity, surface recombination and input density. In addition, TPV systems based on more than one PV cell, each utilizing a different photovoltaically active semiconductor are also considered. A number of possible TPV systems are treated within this theoretical framework. When blackbody thermal radiation sources having temperatures in the range 1500-2000 C are considered, the upper limit efficiency is found to be about 22% for an optimum design germanium cell 90 microns thick and about 26% for a two-junction silicon-germanium tandem cell arrangement 50 and 90 microns thick, respectively

  9. High-efficiency nanostructured window GaAs solar cells.

    PubMed

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-01

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage. PMID:24021024

  10. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  11. Scattering Efficiency of High-Voltage Tethers in Space

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.; Khazanov, G. V.; Gamayunov, K. V.; Avanov, L. A.

    2005-01-01

    Several concepts have been proposed to remediate the effect of artificial Radiation Belts (RB) in Space Plasma. Among them is the high-voltage electrostatic tether remediation technique. Preliminary analysis that has been carried out later by several groups showed, that this technique could be very efficient and is able to control relativistic electron energies of artificial RB population. The relativistic electron population is the one of the most important topic of US Space Weather studies and very dangerous to many civilian and military space assets, it is also important to study some fundamentals of scattering efficiency of high-voltage tethers in space plasma. There are several fundamental issues that should be examined in order to validate high-voltage tether artificial RB remediation concept. The most critical among them are: power consumption, the size and stability of the plasma sheath around the tether, and scattering efficiency of this high-voltage system that is ultimately related with the plasma sheath size. This study would be focused on the scattering process itself and artificial RB remediation assuming that power consumption and the size of the plasma sheath are known.

  12. Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization.

    PubMed

    Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang

    2016-02-10

    Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials. PMID:26785427

  13. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-07-01

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  14. Lightweight High Efficiency Electric Motors for Space Applications

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  15. Laser doping for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jäger, Ulrich; Wolf, Andreas; Steinhauser, Bernd; Benick, Jan; Nekarda, Jan; Preu, Ralf

    2012-10-01

    Selective laser doping is a versatile tool for the local adaption of doping profiles in a silicon substrate. By adjusting the laser fluence as well as the pulse width the maximum melt depth in the silicon can be controlled. Longer pulses lead to lower temperatures in the material and can help to enlarge the process window as ablation sets in at higher fluencies. For the fabrication of highly efficient silicon solar cells, laser doping can be used for efficiency improvement and process simplification. In passivated emitter and rear cells (PERC), selective laser doping can be used for selective emitter formation. Employing such a process, an efficiency boost of Δ ƞ= 0.4%abs was observed on commercial Cz-Si material. Laser doping was also used for process simplification for the fabrication of locally doped point contacts at the rear of a solar cell. A simple approach employing a doped passivation layer and a laser doping process allows for efficiencies beyond 22% on high quality n-type silicon.

  16. High efficiency GaAs/Ge monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Tobin, S. P.; Vernon, S. M.; Bajgar, C.; Haven, V. E.; Geoffroy, L. M.; Sanfacon, M. M.; Lillington, D. R.; Hart, R. E., Jr.

    1988-01-01

    Two-terminal monolithic tandem cells consisting of a GaAs solar cell grown epitaxially on a Ge solar cell substrate are very attractive for space applications. Tandem cells of GaAs grown by metal-organic chemical vapor deposition on thin Ge were investigated to address both higher efficiency and reduced weight. Two materials growth issues associated with this heteroepitaxial system, autodoping of the GaAs layers by Ge and diffusion of Ga and As into the Ge substrate, were addressed. The latter appears to result in information of an unintentional p-n junction in the Ge. Early simulator measurements gave efficiencies as high as 21.7 percent for 4 cm2 GaAs/Ge cells, but recent high-altitude testing has given efficiencies of 18 percent. Sources of errors in simulator measurements of two-terminal tandem cells are discussed. A limiting efficiency of about 36 percent for the tandem cell at AMO was calculated. Ways to improve the performance of present cells, primarily by increasing the Isc and Voc of the Ge cell, are proposed.

  17. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  18. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  19. Modular design optical light pipe with high efficiency

    NASA Astrophysics Data System (ADS)

    Whang, Allen Jong-Woei; Yeh, Yi-Hsin; Chen, Yi-Yung

    2013-03-01

    The best benefit of Natural Light Illumination System (NLIS®) is to reduce energy consumption that compare to traditional lighting system. However, the propagation efficiency will decrease dramatically when there is the long distance propagation in NLIS®. Therefore, this paper has proposed an innovative modulated guiding structure with high propagation efficiency. The base structure is consisting of two Fresnel lenses and the distance between two lenses is two times of focal length. Furthermore, the light will be focused by first Fresnel lens and diverge as original input again before the second lens due to two times of focal length design. The advantage of the innovative design is to avoid energy loss when propagation. Based on two times of focal length design method and connecting several base structures in the way of cascading, it could make the structure become modulated. The efficiency of a base module structure will reach above 80%. We have proposed an innovative modeled structure that is with high propagation efficiency. By the Fresnel lens, the structure has the benefit of low cost and easy to produce that compare to traditional natural light system.

  20. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  1. Efficiency Analysis of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.

    2004-01-01

    Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.

  2. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  3. Research on stable, high efficiency amorphous silicon multijunction modules

    SciTech Connect

    Catalano, A.; Arya, R.R.; Bennett, M.; Chen, L.; D'Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Wiedeman, S.; Yang, L. . Thin Film Div.)

    1992-02-01

    Improvements towards a goal of a 12.5% initial triple-junction module efficiency require the use of a wide gap top-layer for improved open circuit voltage, higher transmission from the transparent front contact and more highly transmitting doped layers. To address the first issue, there has been continued development of a-SiC:H with the utilization of several novel feedstocks to control the atomic structure of the solid. These films have transport properties superior to the best results reported for a-SiC:H. Preliminary results with devices exhibits a stability comparable to a-Si:H, while previous results with a-SiC:H have generally shown for higher rates of degradation. Module fabrication has been refined to the extent that comparable module and small area device efficiencies are readily obtained. Despite the high initial efficiencies (9%--10%) obtained in 935 cm{sup 2} modules employing devices with 4000{Angstrom} thick middle junctions, higher than expected rates of degradation were found. The cause of the anomalous degradation was traced to shunts present in the device arising from defects in the tin oxide coating. NREL degradation results of triple-junction modules showed stabilized performance of the initial efficiency for modules prepared during the period in which shunts were a problem. 20 refs.

  4. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  5. Stratified Diffractive Optic Approach for Creating High Efficiency Gratings

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.

    1998-01-01

    Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns

  6. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  7. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  8. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  9. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  10. High Energy-Efficiency Retrofits to Baltimore's Row Homes

    SciTech Connect

    Chalk, J.; Johnson, A.L.; Lipscomb, L.; Wendt, R.

    1999-04-19

    The purpose of the research project is to develop high-perfommnce, energy-eflicient retrofits of existing row homes in Baltimore, Maryland. These efficiency enhancements are to optimize building envelope improvements, mechanical equipment improvements and operational improvements to the highest cost-effective level. Furthermore, this project is to investigate and demonstrate the impact of high-performance energy-efficiency retrofit improvements on row homes in the Historic East area of Baltimore. Three homes awaiting renovation are planned to receive building envelope, mechanical system, and electrical system improvements that will improve their energy petiormance. An incremental additional cost ceiling of $4000 for the energy eftlciency improvements, beyond those normally installed, has been set by the project.

  11. Highly efficient reflective Dammann grating with a triangular structure.

    PubMed

    Wang, Jin; Zhou, Changhe; Ma, Jianyong; Zong, Yonghong; Jia, Wei

    2016-07-01

    A highly efficient reflective Dammann grating with a triangular structure operating at 1064 nm wavelength under normal incidence for TE polarization is designed and fabricated. Rigorous coupled wave analysis and particle swarm optimization algorithms are adopted to design and analyze the properties. The triangular reflective grating could cancel the 0th order, and the mechanism is clarified by the simplified modal method. The gratings are fabricated by direct laser writing lithography. The diffraction efficiency of fabricated grating is more than 86% at 1064 nm wavelength (97.6% in theory). This reflective grating should be a useful optical element in the field of high-power lasers as well as other reflective applications. PMID:27409211

  12. Fusion blanket for high-efficiency power cycles

    SciTech Connect

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by Ar) utilizing Li/sub 2/O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  13. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  14. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Rai-Choudhury, P.

    1986-01-01

    Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.

  15. The high efficiency steel filters for nuclear air cleaning

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs.

  16. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  17. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  18. High-efficiency GaAs concentrator space cells

    NASA Technical Reports Server (NTRS)

    Werthen, J. G.; Virshup, G. F.; Macmillan, H. F.; Ford, C. W.; Hamaker, H. C.

    1987-01-01

    High efficiency Al sub x Ga sub 1-x As/GaAs heteroface solar concentrator cells have been developed for space applications. The cells, which were grown using metalorganic chemical vapor deposition (MOCVD), have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as the p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm by 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C.

  19. Chemical beam epitaxy for high efficiency photovoltaic devices

    SciTech Connect

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-09-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes recent results on PV devices and demonstrates the strength of this new technology.

  20. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  1. Development of an improved high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Wrigley, C.; Storti, G.

    1978-01-01

    Efforts were directed towards investigating means of producing more effective high-low junctions at the back of the cell. Cells with output power up to 77 mW (AM0 efficiency of 14.2 percent) were fabricated. Some reflectivity studies were also made. Deliveries of 2 cm x 2 cm experimental cells included a number having AM0 outputs greater than 70 mW.

  2. High efficiency labeling of glycoproteins on living cells

    PubMed Central

    Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.

    2010-01-01

    We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450

  3. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  4. Highly reliable high-efficiency wavelength-stabilized 885 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Leisher, Paul; Bao, Ling; Huang, Hua; Wang, Jun; DeVito, Mark; Dong, Weimin; Grimshaw, Mike; Balsley, David; Martinsen, Rob; DeFranza, Mark; Patterson, Steve

    2009-05-01

    We report on the progress of highly-reliable, high-efficiency 885-nm diode laser bar arrays. Conduction-cooled hardsoldered bars rated to 60W and 57% conversion efficiency demonstrate >30,000 device hours under 1-sec on, 1-sec off hard pulse conditions failure-free. Microchannel-cooled bars rated to 100W and 62% efficiency demonstrate >100,000 accelerated device hours failure-free. Integrated volume Bragg grating fast axis lenses provide wavelength stabilization at low cost. Vertically stacked arrays (seven bars each) of such configuration are demonstrated with a 0.8 nm FWHM spectral width and rated to 700W, 53% conversion efficiency.

  5. Flexible, highly efficient all-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-10-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  6. High material efficiency MOVPE growth with in situ monitoring

    NASA Astrophysics Data System (ADS)

    Onitsuka, R.; Sugiyama, M.; Nakano, Y.

    2010-04-01

    The possibility of growing a GaAs single-junction solar cell structure with high growth rate and low partial pressure of tertiary-butylarsine (TBAs) has been explored in order to minimize the cost and material consumption in metal-organic vapor phase epitaxy (MOVPE). In situ surface reflectance anisotropy measurements suggested that we can grow reasonable quality GaAs layers at a growth rate of 3.3 μm/h and a V/III ratio of 2.5. Dark current-voltage characteristics of the pn junction that was grown at this condition yielded an ideality factor of 1.3, which was equivalent to the value obtained with a lower growth rate and higher V/III ratio, suggesting a possibility that we can grow GaAs with reasonable crystal quality at a high material efficiency. However, there seemed to exist spots of accumulated defects with a spacing of hundreds of micrometers at such a growth condition with a high material efficiency. If they are situated in the vicinity of the pn junction, the efficiency of the PV cell was significantly degraded, which suggests the necessity of tuning the growth conditions according to the impact of a layer on the electrical properties of a PV cell.

  7. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  8. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  9. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  10. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  11. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  12. Development and evaluation of a cleanable high efficiency steel filter

    SciTech Connect

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D. ); Simon, K.; Turley, J.; Frye, L.; Monroe, D. )

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 [times] 6l0 [times] 292 mm aluminum frame and has 13.5 m[sup 2] of filter area. The filter media consists of a sintered steel fiber mat using 2 [mu]m diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m[sup 3]/hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO[sub 2] aerosols. We used a 1,700 m[sup 3]/hr slip stream from the 10,200 m[sup 3]/hr exhaust system.

  13. Development and evaluation of a cleanable high efficiency steel filter

    SciTech Connect

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D.; Simon, K.; Turley, J.; Frye, L.; Monroe, D.

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 {times} 6l0 {times} 292 mm aluminum frame and has 13.5 m{sup 2} of filter area. The filter media consists of a sintered steel fiber mat using 2 {mu}m diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m{sup 3}/hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO{sub 2} aerosols. We used a 1,700 m{sup 3}/hr slip stream from the 10,200 m{sup 3}/hr exhaust system.

  14. Efficient Hole-Transporting Materials with Triazole Core for High-Efficiency Perovskite Solar Cells.

    PubMed

    Choi, Hyeju; Jo, Hyeonjun; Paek, Sanghyun; Koh, Kyungkuk; Ko, Haye Min; Lee, Jae Kwan; Ko, Jaejung

    2016-02-18

    Efficient hole-transporting materials (HTMs), TAZ-[MeOTPA]2 and TAZ-[MeOTPATh]2 incorporating two electron-rich diphenylamino side arms, through direct linkage or thiophen bridges, respectively, on the C3- and C5-positions of a 4-phenyl-1,2,4-triazole core were synthesized. These synthetic HTMs with donor-acceptor type molecular structures exhibited effective intramolecular charge transfer for improving the hole-transporting properties. The structural modification of HTMs by thiophene bridging might increase intermolecular π-π stacking in the solid state and afford a better spectral response because of their increased π-conjugation length. Perovskite-based cells using TAZ-[MeOTPA]2 and TAZ-[MeOTPATh]2 as HTMs afforded high power conversion efficiencies of 10.9 % and 14.4 %, respectively, showing a photovoltaic performance comparable to that obtained using spiro-OMeTAD. These synthetically simple and inexpensive HTMs hold promise for replacing the more expensive spiro-OMeTAD in high-efficiency perovskite solar cells. PMID:26573775

  15. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  16. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  17. High-efficiency absorber for damping transverse wakefields

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Seeman, J.; Weathersby, S.

    2007-04-01

    Transverse wakefields generated by intense beams may propagate long distances in a vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves, or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate a high efficiency for this device. This absorber may be useful in super B-factories, the International Linear Collider, the Large Hadron Collider, or synchrotron light sources.

  18. A high efficiency annular dark field detector for STEM.

    PubMed

    Kirkland, E J; Thomas, M G

    1996-01-01

    A new high efficiency annular dark field (ADF) detector for an HB501 STEM (Scanning Transmission Electron Microscope) has been constructed and tested. This detector uses a single crystal YAP scintillator and a solid quartz light pipe extending from the scintillator (inside the vacuum) to the photomultiplier tube (outside the vacuum). A factor of approximately 100 improvement in signal relative to the original detector has been obtained. This has substantially improved the signal to noise ratio in the recorded high resolution ADF-STEM images. PMID:22666919

  19. Efficiency of nonstandard and high contact ratio involute spur gears

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1986-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  20. Efficiency of nonstandard and high contact ratio involute spur gears

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1984-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  1. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  2. High efficiency CIP 10-I personal inhalable aerosol sampler

    NASA Astrophysics Data System (ADS)

    Görner, P.; Wrobel, R.; Simon, X.

    2009-02-01

    The CIP 10 personal aerosol sampler was first developed by Courbon for sampling the respirable fraction of mining dust. This respirable aerosol sampler was further improved by Fabries, then selectors for sampling thoracic and inhalable aerosols were designed. Kenny et al. evaluated the particle-size dependent sampling efficiency of the inhalable version in a large-scale wind tunnel using a life-size dummy. The authors found that the overall sampling efficiency decreases more rapidly than the CEN-ISO-ACGIH target efficiency curve. Görner and Witschger measured the aspiration efficiency of the CIP 10 omni-directional inlet. They found that the aspiration efficiency was high enough for inhalable aerosol sampling. This result led to the conclusion that the low sampling efficiency is due to some internal losses of the aspirated particles before they reach the final sampling stage, namely the CIP 10 rotating filter. Based on the assumption that the inhalable particles are selected at selector aspiration level, an experimental research project was conducted to improve particle transmission to the collection stage of the sampler. Two different inhalable selectors were designed by Görner and tested in a laboratory wind tunnel. The transmission efficiency of both models was measured by Roger following an experimental protocol described by Witschger. The T-shaped air flow circuit was finally adopted to draw the aspirated particles into the final collection stage of the CIP 10. Actually, in this selector, the almost horizontally aspirated particles should be conducted vertically to the rotating cup. In two previous prototypes, particles could be deposited in certain places by inertia (where the aerosol was forced to deviate drastically) or by sedimentation (where the aerosol decelerated). The aerodynamic behaviour of the adopted solution causes the particles to accelerate radially between two horizontal plates before they enter a vertical tube. This acceleration avoids the

  3. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    PubMed Central

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  4. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications.

    PubMed

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E; Kavaldzhiev, Mincho; Contreras, Maria F; Thoroddsen, Sigurdur T; Khashab, Niveen M; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  5. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    NASA Astrophysics Data System (ADS)

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-06-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  6. IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS

    SciTech Connect

    G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

    2006-05-22

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  7. In-Plant Testing of High-Efficiency Hydraulic Separators

    SciTech Connect

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2006-06-30

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  8. Study of High-Efficiency Motors Using Soft Magnetic Cores

    NASA Astrophysics Data System (ADS)

    Tokoi, Hirooki; Kawamata, Shoichi; Enomoto, Yuji

    We have been developed a small and highly efficient axial gap motor whose stator core is made of a soft magnetic core. First, the loss sensitivities to various motor design parameters were evaluated using magnetic field analysis. It was found that the pole number and core dimensions had low sensitivity (≤ 2.2dB) in terms of the total loss, which is the sum of the copper loss and the iron losses in the stator core and the rotor yoke respectively. From this, we concluded that to improve the motor efficiency, it is essential to reduce the iron loss in the rotor yoke and minimize other losses. With this in mind, a prototype axial gap motor is manufactured and tested. The motor has four poles and six slots. The motor is 123mm in diameter and the axial length is 47mm. The rotor has parallel magnetized magnets and a rotor yoke with magnetic steel sheets. The maximum measured motor efficiency is 93%. This value roughly agrees with the maximum calculated efficiency of 95%.

  9. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  10. Recombination phenomena in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1985-01-01

    The dominant recombination phenomena which limit the highest efficiency attainable in silicon solar cells under terrestrial sunlight are reviewed. The ultimate achievable efficiency is limited by the two intrinsic recombination mechanisms, the interband Auger recombination and interband Radiative recombination, both of which occur in the entire cell body but principally in the base layer. It is suggested that an optimum (26%) cell design is one with lowly doped 50 to 100 micron thick base, a perfect BSF, and zero extrinsic recombination such as the thermal mechanism at recombination centers the Shockley-Read-Hall process (SRH) in the bulk, on the surface and at the interfaces. The importance of recombination at the interfaces of a high-efficiency cell is demonstrated by the ohmic contact on the back surface whose interface recombination velocity is infinite. The importance of surface and interface recombination is demonstrated by representing the auger and radiative recombination losses by effective recombination velocities. It is demonstrated that the three highest efficiency cells may all be limited by the SRH recombination losses at recombination centers in the base layer.

  11. Recent progress of Spectrolab high-efficiency space solar cells

    NASA Astrophysics Data System (ADS)

    Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.

    2013-09-01

    Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.

  12. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.

    PubMed

    Borzenets, I V; Shimazaki, Y; Jones, G F; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  13. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-03-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

  14. High-efficiency copper ternary thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kapur, V. K.; Basol, B. M.; Kullberg, R. C.

    1989-09-01

    A project is described which developes a high efficiency thin film CuInSe2 solar cell using a low-cost process. The two-stage process involves depositing the metallic elements of Cu and In on a substrate in the form of stacked layers, and then selenizing this stacked metallic film in an atmosphere containing Se. Early research concentrated on the electrodeposition technique for depositing the Cu and In films on Mo-coated glass substrates. This resulted in small-area cells with around 10 percent efficiency, indicating that the technique could yield CuInSe2 films with good electrical and optical properties. The program then involved scaling up the electrodeposition/selenization technique; fixtures for large-area plating were designed and built, but poor adhesion of the CuInSe2 films to the Mo-coated substrates and the stoichiometric non-uniformities encountered in the large-area films hindered the efficiency of the devices. The latter part of the program explored a new approach to the two-stage process. An evaporation/selenization approach, where the elemental layers were evaporated onto the Mo-coated substrates for selenization. Solar cells were produced with efficiencies approaching 11 percent using E-beam evaporated/selenized CuInSe2 films.

  15. Evaluation of Parameters for High Efficiency Transformation of Acinetobacter baumannii

    PubMed Central

    Yildirim, Suleyman; Thompson, Mitchell G.; Jacobs, Anna C.; Zurawski, Daniel V.; Kirkup, Benjamin C.

    2016-01-01

    Acinetobacter baumannii is an emerging, nosocomial pathogen that is poorly characterized due to a paucity of genetic tools and methods. While whole genome sequence data from several epidemic and environmental strains have recently become available, the functional characterization of genes is significantly lagging. Efficient transformation is one of the first steps to develop molecular tools that can be used to address these shortcomings. Here we report parameters allowing high efficiency transformation of A. baumannii. Using a multi-factorial experimental design we found that growth phase, voltage, and resistance all significantly contribute to transformation efficiency. The highest efficiency (4.3 × 108 Transformants/μg DNA) was obtained at the stationary growth phase of the bacterium (OD 6.0) using 25 ng of plasmid DNA under 100 Ohms resistance and 1.7 kV/cm voltage. The optimized electroporation parameters reported here provide a useful tool for genetic manipulation of A. baumannii. PMID:26911658

  16. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    PubMed Central

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  17. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  18. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    PubMed Central

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  19. A high efficiency hybrid stirling-pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhang, Yibing; Li, Haibing; Dai, Wei; Chen, Shuai; Lei, Gang; Luo, Ercang

    2015-03-01

    This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  20. Cascaded parametric amplification for highly efficient terahertz generation.

    PubMed

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  1. Highly efficient baculovirus-mediated multigene delivery in primary cells

    PubMed Central

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S.; Xie, Ye; Boyce, Frederick M.; Davis, M. Wayne; Neuhauss, Stephan C. F.; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  2. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. PMID:26278951

  3. High-efficiency ballistic electrostatic generator using microdroplets

    NASA Astrophysics Data System (ADS)

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J.; de Boer, Hans L.; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J.; van den Berg, Albert; Eijkel, Jan C. T.

    2014-04-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle (‘ballistic’ conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m-2 and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion.

  4. Highly efficient baculovirus-mediated multigene delivery in primary cells.

    PubMed

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S; Xie, Ye; Boyce, Frederick M; Davis, M Wayne; Neuhauss, Stephan C F; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  5. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  6. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.

    PubMed

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|(2) ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  7. Fabrication of High power, High-Efficiency Linear Array Diode Lasers by Pulse Anodic Oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Jing; Li, Hui; Qu, Yi; Bo, Baoxue

    2006-09-01

    InGaAlAs/AlGaAs/GaAs double-quantum-well (DQW) linear array diode lasers with asymmetric wide waveguide have been successfully fabricated by pulse anodic oxidation upon molecular beam epitaxy material growth. High-efficiency and high-power quasi-continuous-wave (QCW) output has been realized at 808 nm wavelength. The threshold current and slope efficiency of the prepared high-fill-factor QCW devices are 24 A and 1.25 A/W, respectively, and a maximum wall-plug efficiency of 51% has been achieved.

  8. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  9. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells

    NASA Astrophysics Data System (ADS)

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-03-01

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 107 M-1 cm-1), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm-2, 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm-2. These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 107 M-1 cm-1), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water

  10. Tunable C2N Membrane for High Efficient Water Desalination

    NASA Astrophysics Data System (ADS)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  11. Tunable C2N Membrane for High Efficient Water Desalination.

    PubMed

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  12. Tunable C2N Membrane for High Efficient Water Desalination

    PubMed Central

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  13. AMTEC: High efficiency static conversion for space power

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.

    1986-01-01

    Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.

  14. Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.

    2010-04-01

    This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.

  15. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  16. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Gerstandt, Karen; Majumder, Mainak; Zhan, Xin; Hinds, Bruce J.

    2011-08-01

    Carbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis. An electroosmotic velocity as high as 0.16 cm s-1 V-1 has been observed. Power efficiencies were 25-110 fold improved compared to related nanoporous materials, which has important applications in chemical separations and compact medical devices. Nearly ideal electroosmotic flow was seen in the case where the mobile cation diameter nearly matched the inner diameter of the single-walled carbon nanotube resulting in a condition of using one ion is to pump one neutral molecule at equivalent concentrations.

  17. Highly efficient source for indistinguishable single photons of controlled shape

    NASA Astrophysics Data System (ADS)

    Nisbet-Jones, Peter B. R.; Dilley, Jerome; Ljunggren, Daniel; Kuhn, Axel

    2011-10-01

    We demonstrate a straightforward implementation of a push-button like single-photon source, which is based on a strongly coupled atom-cavity system. The device operates intermittently for periods of up to 100 μs, with single-photon repetition rates of 1.0 MHz and an efficiency of 60%. Atoms are loaded into the cavity using an atomic fountain, with the upper turning point near the cavity's mode centre. This ensures long interaction times without any disturbances induced by trapping potentials. The latter is the key to reaching deterministic efficiencies as high as obtained in probabilistic photon-heralding schemes. The price to pay is the random loading of atoms into the cavity and the resulting intermittency. However, for all practical purposes, this has a negligible impact as an individual atom may emit up to 100 successive photons.

  18. High efficiency rare-earth emitter for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sakr, E. S.; Zhou, Z.; Bermel, P.

    2014-09-01

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573 K (1300 °C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  19. High efficiency rare-earth emitter for thermophotovoltaic applications

    SciTech Connect

    Sakr, E. S.; Zhou, Z.; Bermel, P.

    2014-09-15

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573 K (1300 °C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  20. High efficiency copper ternary thin film solar cells

    SciTech Connect

    Basol, B.M.; Kapur, V.K. )

    1991-04-01

    This report describes work to develop a high efficiency, thin film CuInSe{sub 2} solar cell using a potentially low-cost process. The technique used in this development program is a two-stage process. The two-stage process involves depositing the metallic elements of the CuInSe{sub 2} compound (i.e., Cu and In) on a substrate in the form of stacked layers, and then selenizing this stacked metallic film in an atmosphere containing Se. Early results showed that the electrodeposition/selenization technique could yield CuInSe{sub 2} films with good electrical and optical properties on small-area substrates. This report concentrates on the later half of the research effort; this portion was directed toward developing a two-stage process using evaporated Cu-In layers. The selenization technique has the potential of yielding solar cells with efficiencies in excess of 15 percent. 7 refs., 12 figs.

  1. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode. PMID:24977887

  2. Large area high efficiency multicrystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Shirasawa, Katsuhiko; Yamashita, Hironori; Fukui, Kenji; Takayama, Michihiro; Okada, Kenichi

    A high-efficiency, low-cost large-area multicrystalline silicon solar cell having a cell size of 15 cm x 15 cm and a substrate made by the casting method has been developed. The bifacial silicon nitride solar cell (BSNSC) fabrication process was used to construct the cell. By incorporating a new structure at the cell surface, an optimized back-surface field (BSF) process, and an electrode with a ratio of 5.2 percent into the BSNSC fabrication process, a conversion efficiency of 15.1 percent (global, AM1.5, 100 mW/sq cm, 25 C) has been obtained. The uniformity of the electrical performance of the cell has been studied by measuring the distribution of the spectral response at various points on the cell. The results of uniformity testing are presented.

  3. Surface passivation of high efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aberle, A.; Warta, W.; Knobloch, J.; Voss, B.

    Theoretically and experimentally determined design guides for significantly reducing recombination at the emitter and rear surfaces of full-area Al-BSF (back-surface region) and oxide-passivated bifacial cells are given. The impact of emitter thickness and surface dopant concentration on emitter saturation current and solar cell efficiency is outlined. A modified emitter structure (locally deep diffused below the metal contacts) is predicted to have superior performance. Measured Voc values reveal the potential of deep emitter cells to achieve efficiencies above 20 percent in spite of high metallization factors. Experimentally, a strong dependence of passivation quality on oxide thickness and base doping concentration is found. The BSF quality of a diffused aluminum layer decreases strongly with increasing drive-in time. For SiO2-passivated rear surfaces of bifacial cells, measurements of the dependence of the surface recombination velocity on the excess carrier concentration are presented.

  4. High-efficiency side diode pumped breech mount laser ignition

    NASA Astrophysics Data System (ADS)

    Hardy, Christopher R.; Guo, Baoping; Myers, Michael J.; Myers, John D.

    2007-09-01

    Breech Mounted Lasers (BMLs) have been successfully used to demonstrate laser ignition of howitzer propellant charges including bag, stick, and the Modular Artillery Charge System (MACS). BMLs have been integrated and tested on many artillery systems, including the US Army's M109A6 Paladin, M198, M777 Light Weight, Crusader, and Non-Line-of-Sight Cannon (NLOS-C). Until now, these lasers have been relatively large and inefficient systems based on a flashlamp pumped Nd:YAG laser design. Modern vehicle platforms will require smaller, more efficient lasers that can operate under increased shock and vibration loads. Kigre's new DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical artillery laser ignition system.

  5. High efficiency silicon nanohole/organic heterojunction hybrid solar cell

    SciTech Connect

    Hong, Lei; Wang, Xincai; Zheng, Hongyu; He, Lining; Wang, Hao; Rusli E-mail: erusli@ntu.edu.sg; Yu, Hongyu E-mail: erusli@ntu.edu.sg

    2014-02-03

    High efficiency hybrid solar cells are fabricated based on silicon with a nanohole (SiNH) structure and poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The SiNH structure is fabricated using electroless chemical etching with silver catalyst, and the heterojunction is formed by spin coating of PEDOT on the SiNH. The hybrid cells are optimized by varying the hole depth, and a maximum power conversion efficiency of 8.3% is achieved with a hole depth of 1 μm. The SiNH hybrid solar cell exhibits a strong antireflection and light trapping property attributed to the sub-wavelength dimension of the SiNH structure.

  6. Highly efficient mid-infrared dysprosium fiber laser.

    PubMed

    Majewski, Matthew R; Jackson, Stuart D

    2016-05-15

    A new, highly efficient and power scalable pump scheme for 3 μm class fiber lasers is presented. Using the free-running 2.8 μm emission from an Er3+-doped fluoride fiber laser to directly excite the upper laser level of the H13/26→H15/26 transition of the Dy3+ ion, output at 3.04 μm was produced with a record slope efficiency of 51%. Using comparatively long lengths of Dy3+-doped fluoride fiber, a maximum emission wavelength of 3.26 μm was measured. PMID:27176955

  7. Highly spectral efficient networks based on grouped optical path routing.

    PubMed

    Terada, Yuki; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-Ichi

    2016-03-21

    In order to mitigate the signal spectrum narrowing caused by optical filtering at nodes, an adequate guard band is needed between optical channels, which degrades the frequency utilization of optical fibers. In this study, we propose a grouped routing based network architecture that minimizes spectrum narrowing while greatly improving spectral efficiency. Coarse granular routing at GRE (grouped routing entity) level is employed at each ROADM node, but fine granular add/drop is adopted to retain high frequency utilization. Optical channels are packed densely in each GRE, and sufficient guard bands are inserted between GREs. As a result, signal spectrum narrowing is minimized and efficient spectrum utilization is achieved. Network design/control algorithms that support both static and dynamic traffic growth are developed. Extensive simulations demonstrate the effectiveness of the proposed architecture. To implement the scheme, current LCOS-based ROADMs are applied without any hardware changes; only the control schema are modified. PMID:27136815

  8. Development of a high efficiency, automatic defrosting refrigerator-freezer

    NASA Astrophysics Data System (ADS)

    Topping, R. F.; Lee, W. D.

    The development of an energy efficient refrigerator freezer prototype to accelerate the commercialization of residential, high efficiency refrigerator freezers is described. A computer model developed to simulate the cabinet and refrigeration unit performance was used to evaluate alternative designs and optimize the cabinet insulation as well as the refrigeration component integration. Placement of polyurethane foam insulation in the cabinet and thicker insulation in the doors were used to reduce the closed door heat load of the prototype. Modifications to the evaporator system provide automatic frost-free operation with a significantly reduced defrost energy requirement. Resulting higher moisture levels in the refrigerator compartment enhance fresh food storage. A dual control system, different from most models which use only one active control, provides precise temperature regulation in both the freezer and refrigerator compartments.

  9. ECC ozonesonde performance at high altitudes: Pump efficiency

    NASA Technical Reports Server (NTRS)

    Torres, A. L.

    1981-01-01

    The ECC ozonesonde sampling behavior was examined at pressures ranging from 60 to 6 hPa with the objective of evaluating uncertainties in high altitude ozone data caused by variations in pumping efficiency. The averaged pump efficiency correction curve for a 43 sample set of 3A type ECC pumps showed a 2-3% bias from the curve provided by the manufacturer. In addition, random pump to pump variations (2 sigma) + or - were 5% at 6 hPa. These values probably represent minimum errors since the pumps were from the same production batch. A seven sample set of the newer 4A type ECC pumps was examined, with similar findings as for the 3A types.

  10. High-efficiency multilayer-dielectric diffraction gratings

    SciTech Connect

    Perry, M.D.; Boyd, R.D.; Britten, J.A.

    1996-06-01

    The ability to produce short laser pulses of extremely high power and high irradiance, as is needed for fast ignitor research in inertial confinement fusion, places increasing demands on optical components such as amplifiers, lenses, and mirrors that must remain undamaged by the radiation. The higher refractive index in the center of an intense laser beam acts as a focusing lens. The resulting wavefront distortion, left uncorrected, eventually leads to catastrophic filamentation. Major advances in energy extraction and resulting increases in focused irradiance have been made possible by the use of chirped-pulse amplification (CPA), long used in radar applications and newly applied to optical frequencies. Optical-frequency CPA systems begin with a mode-locked oscillator that produces low-energy seed pulses with durations of ten to a few hundred femtoseconds. As a result of the classical uncertainty relation between time and frequency, these short pulses have a very broad frequency distribution. A pair of diffraction gratings (or other dispersive elements) lengthens the laser pulse and induces a time-varying frequency (or chirp). Following amplification, diffraction gratings compress the pulse back to nearly the original duration. Typically a nanojoule, femtosecond pulse is stretched by a factor of several thousand and is amplified by as much as 12 orders of magnitude before recompression. By producing the short pulse only after amplification, this technique makes possible efficient extraction of energy from a variety of broadband solid state materials. Achieving high focused irradiance from a pulse ultimately requires both high peak power and excellent beam quality. There is therefore a demand for diffraction gratings that produce a high-quality diffracted wavefront, have high diffraction efficiency, and exhibit a high threshold for laser damage.

  11. Highly efficient transfection of human THP-1 macrophages by nucleofection.

    PubMed

    Maeß, Marten B; Wittig, Berith; Lorkowski, Stefan

    2014-01-01

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings. PMID:25226503

  12. Highly Efficient Transfection of Human THP-1 Macrophages by Nucleofection

    PubMed Central

    Maeß, Marten B.; Wittig, Berith; Lorkowski, Stefan

    2014-01-01

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings. PMID:25226503

  13. Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation

    NASA Astrophysics Data System (ADS)

    Wang, Shiwen; Chen, Wei; He, Sha; Zhao, Qilong; Li, Xiaohong; Sun, Jiashu; Jiang, Xingyu

    2014-05-01

    In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications.In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01166j

  14. High efficiency beam splitting for H/sup -/ accelerators

    SciTech Connect

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H/sup -/ accelerators. This technique uses a high intensity flash of light to strip a fraction of the H/sup -/ beam to H/sup 0/ which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10/sup -3/ to 10/sup -2/ splitting of a 50 MeV H/sup -/ beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction.

  15. Highly efficient nanoplasmonic SERS on cardboard packaging substrates

    NASA Astrophysics Data System (ADS)

    Araújo, Andreia; Caro, Carlos; Mendes, Manuel J.; Nunes, Daniela; Fortunato, Elvira; Franco, Ricardo; Águas, Hugo; Martins, Rodrigo

    2014-10-01

    This work reports on highly efficient surface enhanced Raman spectroscopy (SERS) constructed on low-cost, fully recyclable and highly reproducible cardboard plates, which are commonly used as disposable packaging material. The active optical component is based on plasmonic silver nanoparticle structures separated from the metal surface of the cardboard by a nanoscale dielectric gap. The SERS response of the silver (Ag) nanoparticles of various shapes and sizes were systematically investigated, and a Raman enhancement factor higher than 106 for rhodamine 6G detection was achieved. The spectral matching of the plasmonic resonance for maximum Raman enhancement with the optimal local electric field enhancement produced by 60 nm-sized Ag NPs predicted by the electromagnetic simulations reinforces the outstanding results achieved. Furthermore, the nanoplasmonic SERS substrate exhibited high reproducibility and stability. The SERS signals showed that the intensity variation was less than 5%, and the SERS performance could be maintained for up to at least 6 months.

  16. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-11-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis.

  17. A Watermarking Scheme for High Efficiency Video Coding (HEVC)

    PubMed Central

    Swati, Salahuddin; Hayat, Khizar; Shahid, Zafar

    2014-01-01

    This paper presents a high payload watermarking scheme for High Efficiency Video Coding (HEVC). HEVC is an emerging video compression standard that provides better compression performance as compared to its predecessor, i.e. H.264/AVC. Considering that HEVC may will be used in a variety of applications in the future, the proposed algorithm has a high potential of utilization in applications involving broadcast and hiding of metadata. The watermark is embedded into the Quantized Transform Coefficients (QTCs) during the encoding process. Later, during the decoding process, the embedded message can be detected and extracted completely. The experimental results show that the proposed algorithm does not significantly affect the video quality, nor does it escalate the bitrate. PMID:25144455

  18. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  19. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells.

    PubMed

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang

    2015-06-10

    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells. PMID:26016386

  20. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes.

    PubMed

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  1. Highly efficient nanoplasmonic SERS on cardboard packaging substrates.

    PubMed

    Araújo, Andreia; Caro, Carlos; Mendes, Manuel J; Nunes, Daniela; Fortunato, Elvira; Franco, Ricardo; Águas, Hugo; Martins, Rodrigo

    2014-10-17

    This work reports on highly efficient surface enhanced Raman spectroscopy (SERS) constructed on low-cost, fully recyclable and highly reproducible cardboard plates, which are commonly used as disposable packaging material. The active optical component is based on plasmonic silver nanoparticle structures separated from the metal surface of the cardboard by a nanoscale dielectric gap. The SERS response of the silver (Ag) nanoparticles of various shapes and sizes were systematically investigated, and a Raman enhancement factor higher than 106 for rhodamine 6G detection was achieved. The spectral matching of the plasmonic resonance for maximum Raman enhancement with the optimal local electric field enhancement produced by 60 nm-sized Ag NPs predicted by the electromagnetic simulations reinforces the outstanding results achieved. Furthermore, the nanoplasmonic SERS substrate exhibited high reproducibility and stability. The SERS signals showed that the intensity variation was less than 5%, and the SERS performance could be maintained for up to at least 6 months. PMID:25257959

  2. Highly Efficient Amplifier for Ka-Band Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power

  3. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  4. High-efficiency target-ion sources for RIB generation

    SciTech Connect

    Alton, G.D.

    1993-12-31

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory.

  5. The design of space optical communications terminal with high efficient

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei

    2015-02-01

    In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.

  6. Primary optics for efficient high-brightness LED colour mixing

    NASA Astrophysics Data System (ADS)

    Cvetkovic, A.; Mohedano, R.; Dross, O.; Hernandez, M.; Benítez, P.; Miñano, J. C.; Vilaplana, J.; Chaves, J.

    2012-10-01

    In SSL general illumination, there is a clear trend to high flux packages with higher efficiency and higher CRI addressed with the use of multiple color chips and phosphors. However, such light sources require the optics provide color mixing, both in the near-field and far-field. This design problem is specially challenging for collimated luminaries, in which diffusers (which dramatically reduce the brightness) cannot be applied without enlarging the exit aperture too much. In this work we present first injection molded prototypes of a novel primary shell-shaped optics that have microlenses on both sides to provide Köhler integration. This shell is design so when it is placed on top of an inhomogeneous multichip Lambertian LED, creates a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with only small increment of the size (about 10-20%, so the average brightness is similar to the brightness of the source). This shell-mixer device is very versatile and permits now to use a lens or a reflector secondary optics to collimate the light as desired, without color separation effects. Experimental measurements have shown optical efficiency of the shell of 95%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.

  7. Riverbed methanotrophy sustained by high carbon conversion efficiency.

    PubMed

    Trimmer, Mark; Shelley, Felicity C; Purdy, Kevin J; Maanoja, Susanna T; Chronopoulou, Panagiota-Myrsini; Grey, Jonathan; Jonathan, Grey

    2015-10-01

    Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10-7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44-56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane. PMID:26057842

  8. High efficiency pulse tube cryocoolers for aerospace applications

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng

    2014-01-01

    This paper reviews the recent advances in Stirling-type pulse tube cryocoolers for aerospace applications in the author's group. Due to the special environment featuring the limited power supply and adverse rejection condition, high cooler efficiencies are emphasized and thus the approaches to realize them are stressed. The cold fingers involve three geometries, and designs and optimizations on key dimensional parameters of coaxial and in-line ones for given compressors are discussed and compared. The high performance moving-coil linear compressors are studied, and the optimizations on linear motor and flexure springs are briefly reviewed as examples of studies on the key compressor technologies. The mature single-stage coolers cover 25-200 K with the capacities varying from milliwatt levels to over 30 W, and the high efficiencies at typical temperatures such as 40 K, 60 K, 80 K and 95 K are presented. The two-stage arrangement is becoming another trend to achieve cooling below 25 K and also to simultaneously provide cooling powers at both stages. Some typical development programs are introduced and a brief overview of the data package is updated.

  9. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  10. Basic studies of 3-V high efficiency cell components

    NASA Astrophysics Data System (ADS)

    Lundstrom, M. S.; Melloch, M. R.; Pierret, R. F.; Carpenter, M. S.; Chuang, H. L.; Keshavarzi, A.; Klausmeier-Brown, M. E.; Lush, G. B.; Morgan, J. M.; Stellwag, T. B.

    1990-07-01

    This project's objective is to improve our fundamental understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research consists of fabricating and characterizing solar cell building blocks such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. We expect that the insight into III-V device physics occurring during the course of this work will help to identify paths toward higher efficiency III-V cells. This report describes our progress during the fourth year of the project. The past year's efforts centered on completing studies of heavy doping effects in p(sup +)-GaAs and assessing the importance of similar effects in n(sup +)-GaAs, and at continuing research on characterizing, controlling, and passivating perimeter recombination currents. We also initiated work to identify the dominant loss mechanism in Al(sub 0.2)Ga(sub 0.8) As solar cells and brought on-line a new MBE growth facility and demonstrated the high-quality of the films by fabricating, with assistance from Spire Corporation, 23.8 percent 1-sun solar cells.

  11. Plasmonic energy nanofocusing for high-efficiency laser fusion ignition

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-08-01

    We propose an efficient laser fusion ignition system consisting of metal nanoparticles or nanoshells embedded in conventional deuterated polystyrene fuel targets. The incident optical energy of the heating laser is highly concentrated around the metallic particulates randomly dispersed inside imploded targets due to the electromagnetic-field-enhancement effect by surface plasmon resonance, and thus effectively triggers nuclear-fusion chain reactions. Our preliminary calculations exhibit field enhancement factors of around 50 and 1100 for spherical Ag nanoparticles and Ag/SiO2 nanoshells, respectively, in the 1-µm band.

  12. High quantum efficiency S-20 photocathodes in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  13. A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Van Thanh, Dang; Van Thien, Nguyen; Thang, Bui Hung; Van Chuc, Nguyen; Hong, Nguyen Manh; Trang, Bui Thi; Lam, Tran Dai; Huyen, Dang Thi Thu; Hong, Phan Ngoc; Minh, Phan Ngoc

    2016-05-01

    In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20-50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.

  14. A high-efficiency focusing Cherenkov radiation detector

    SciTech Connect

    Lewis, K.; Moran, M.J.; Hall, J. ); Graser, M. )

    1992-03-01

    A new design uses advanced technology to produce an efficient, high-bandwidth Cherenkov detector for relativistic charged particles. The detector consists of a diamond-lathe machined ultraviolet-grade Lucite radiator, a parabolic focusing mirror, and a photodiode with an S-20 cathode. This article discusses some details of the detector design and describes preliminary measurements of its response characteristics. The data show the detector to have an overall gain of {approx}76 signal electrons per incident electron and a photodiode-limited response time of {approx}450 ps.

  15. Fabrication of high-efficiency diffraction gratings in glass

    NASA Astrophysics Data System (ADS)

    Takeshima, Nobuhito; Narita, Yoshihiro; Tanaka, Shuhei; Kuroiwa, Yutaka; Hirao, Kazuyuki

    2005-02-01

    We investigated a microfabrication process for optical gratings with periods of micrometer order that use ultrafast laser pulses in semiconductor-doped glass. ZnS- or PbS-doped SiO2 - Al2O3 - B2O3 - CaO - ZnO - Na2O - K2O glass was prepared by a melting method. Glass transmission diffraction gratings with a high refractive-index difference were fabricated with femtosecond laser pulses. The first-order diffraction efficiencies of these gratings were approximately 80%, and the first-order diffraction angles of these gratings were 8° at telecommunication wavelengths.

  16. Superlattices and multilayer structures for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Possible applications of superlattices to photovoltaic structures are discussed. A new concept based on doping superstructures (NIPI) can be exploited to significantly reduce recombination losses in III-V compound solar cells. A novel multijunction structure with lateral current transport is proposed. A computer simulation has been performed which shows that by optimizing the multilayer structure, short circuit current is substantially increased with minimum drop in open circuit voltage. An additional advantage of the structure is enhanced radiation tolerance. It is anticipated that this multilayer structure can be incorporated in multibandgap cells to achieve high efficiencies.

  17. Analysis of highly-efficient electric residential HPWHs

    SciTech Connect

    Baxter, Van D; Murphy, Richard W; Rice, C Keith; Shen, Bo; Gao, Zhiming

    2011-09-01

    A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

  18. Highly efficient entanglement swapping and teleportation at telecom wavelength

    PubMed Central

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  19. Funnel-shaped silicon nanowire for highly efficient light trapping.

    PubMed

    Hussein, Mohamed; Hameed, Mohamed Farhat O; Areed, Nihal F F; Yahia, Ashraf; Obayya, S S A

    2016-03-01

    In this Letter, funnel-shaped silicon nanowires (SiNWs) are newly introduced for highly efficient light trapping. The proposed designs of nanowires are inspired by the funnel shape, which enhances the light trapping with reduced reflections in the wavelength range from 300 to 1100 nm. Composed of both cylindrical and conical units, the funnel nanowires increase the number of leaky mode resonances, yielding an absorption enhancement relative to a uniform nanowire array. The optical properties of the suggested nanowires have been numerically investigated using the 3D finite difference time domain (FDTD) method and compared to cylindrical and conical counterparts. The structural geometrical parameters are studied to maximize the ultimate efficiency and hence the short-circuit current. Carefully engineered structure geometry is shown to yield improved light absorption useful for solar cell applications. The proposed funnel-shaped SiNWs offer an ultimate efficiency of 41.8%, with an enhancement of 54.8% relative to conventional cylindrical SiNWs. Additionally, short-circuit current of 34.2  mA/cm2 is achieved using the suggested design. PMID:26974103

  20. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  1. High-efficiency integrated piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  2. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  3. Features of photoconversion in highly efficient silicon solar cells

    SciTech Connect

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, N. R.; Sokolovskyi, I. O.

    2015-02-15

    The photoconversion efficiency η in highly efficient silicon-based solar cells (SCs) is analyzed depending on the total surface-recombination rate S{sub s} on illuminated and rear surfaces. Solar cells based on silicon p-n junctions and α-Si:H or α-SiC:H-Si heterojunctions (so-called HIT structures) are considered in a unified approach. It is shown that a common feature of these SCs is an increased open-circuit voltage V{sub oc} associated with an additional contribution of the rear surface. Within an approach based on analysis of the physical features of photoconversion in SCs, taking into account the main recombination mechanisms, including Shockley-Read-Hall recombination, radiative recombination, surface recombination, recombination in the space-charge region, and band-to-band Auger recombination, expressions for the photoconversion efficiency of such SCs are obtained. The developed theory is compared with experiments, including those for SCs with record parameters, e.g., η = 25% and 24.7% for SCs with a p-n junction for HIT structures, respectively, under AM1.5 conditions. By comparing theory and experiment, the values of S{sub s} achieved as a result of recombination-loss minimization by various methods are determined. The results of calculations of the maximum possible value η{sub max} in silicon SCs are compared with the data of other papers. Good agreement is observed.

  4. High-efficiency shock-wave generator for extracorporeal lithotripsy.

    PubMed

    Broyer, P; Cathignol, D; Theillère, Y; Mestas, J L

    1996-09-01

    In extracorporeal lithotripsy, the electro-acoustic efficiency of electrohydraulic generators is limited by the inductance of the electrical discharge circuit. A new shock-wave generator is described that uses a coaxial discharge line enabling electro-acoustic efficiency to be greatly increased. The line is built using a para-electric ceramic with a relative dielectric constant of 1700, manufactured for use in high-voltage impulse mode. A coaxial spark gap, with minimal inductance, has been developed to obtain the triggered breakdown of the discharge line. Shock waves are created with a coaxial electrode plugged directly into the spark gap and immersed in an electrolyte of degassed saline. Electrode gap and electrolyte resistivity are adjusted to match the resistivity of the electrolyte volume between the underwater electrodes to the characteristic impedance of the line. The discharge line generates in the medium a rectangular current pulse with an amplitude of about 6000 A and a rise time of 50 ns. Compared with conventional generators, measurements of the expansive peak pressure pulse show an increase of 105% at 10 kV, 86.5% at 12 kV and 34.5% at 14 kV charging voltage. Electro-acoustic efficiency is found to be 11% instead of 5.5% for a conventional discharge circuit. PMID:8945854

  5. Stable, high efficiency gyrotron backward-wave oscillator

    SciTech Connect

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-15

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3 GHz with a peak power of 149 kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  6. Highly efficient solar-pumped Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod. PMID:22274224

  7. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  8. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  9. High-efficiency photonic crystal narrowband thermal emitters

    NASA Astrophysics Data System (ADS)

    Farfan, G. B.; Su, M. F.; Reda Taha, M. M.; El-Kady, I.

    2010-02-01

    Photonic crystals (PhC) are artificial structures fabricated with a periodicity in the dielectric function. This periodic electromagnetic potential results in creation of energy bandgaps where photon propagation is prohibited. PhC structures have promising use in thermal applications if optimized to operate at specific thermal emission spectrum. Here, novel utilization of optimized PhC's in thermal applications is presented. We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC) to create high-efficiency multispectral thermal emitters. These emitters funnel radiation from a broad emission spectrum associated with a Plancklike distribution into a prescribed narrow emission band. A detailed quantitative evaluation of the spectral and power efficiencies of a PhC thermal emitter and its portability across infrared (IR) spectral bands are provided. We show an optimized tungsten PhC with a predominant narrow-band emission profile with an emitter efficiency that is more than double that of an ideal blackbody and ~65-75% more power-efficiency across the IR spectrum. We also report on using optimal three-dimensional Lincoln log photonic crystal (LL-PhC) emitters for thermophotovoltaic (TPV) generation as opposed to using a passive filtering approach to truncate the broadband thermal source emission to match the bandgap of a photovoltaic (PV) cell. The emitter performance is optimized for the 1-2μm PV band using different PhC materials, specifically copper, silver and gold. The use of the proposed PhC in TPV devices can produce significant energy savings not reported before. The optimal design of the PhC geometry is obtained by implementing a variety of optimization methods integrated with artificial intelligence (AI) algorithms.

  10. Roadmap for High Efficiency Solid-State Neutron Detectors

    SciTech Connect

    Nikolic, R; Cheung, C; Reinhardt, C; Wang, T

    2005-07-12

    Solid-state thermal neutron detectors are generally fabricated in a planar configuration by coating a layer of neutron-to-alpha converter material onto a semiconductor. The as-created alpha particles in the material are expected to impinge the semiconductor and create electron-hole pairs which provide the electrical signal. These devices are limited in efficiency to a range near (2-5%)/cm{sup 2} due to the conflicting thickness requirements of the converter layer. In this case, the layer is required to be thick enough to capture the incoming neutron flux while at the same time adequately thin to allow the alpha particles to reach the semiconductor. A three dimensional matrix structure has great potential to satisfy these two requirements in one device. Such structures can be realized by using PIN diode pillar elements to extend in the third dimension with the converter material filling the rest of the matrix. Our strategy to fabricate this structure is based on both ''top-down'' and ''bottom-up'' approaches. The ''top down'' approach employs high-density plasma etching techniques, while the ''bottom up'' approach draws on the growth of nanowires by chemical vapor deposition. From our simulations for structures with pillar diameters from 2 {micro}m down to 100 nm, the detector efficiency is expected to increase with a decrease in pillar size. Moreover, in the optimized configuration, the detector efficiency could be higher than 75%/cm{sup 2}. Finally, the road map for the relationship between detector diameter and efficiency will be outlined.

  11. High Efficiency Hybrid Silicon Nanopillar-Polymer Solar Cells

    PubMed Central

    Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Sharma, Manisha; Elam, David; Ponce, Arturo; Ayon, Arturo A

    2014-01-01

    Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ~10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell. PMID:24032746

  12. High efficiency UHF oscillator for portable battery-powered applications

    NASA Astrophysics Data System (ADS)

    Wessendorf, K. O.

    There is a growing demand for high-frequency circuit designs which are capable of being used in portable battery-powered applications. This type of environment typically requires circuits designed for small size and minimum dc current draw. A transponder design at Sandia National Laboratories required a 430 MHz oscillator (crystal controlled) which could run off a 3 V lithium battery and have an output power of approximately 0 dbm and draw the least possible dc current (less than 4 mA was desired). Physically the oscillator height has to be less than 0.1 sq in. and occupy less than 1 sq in. surface area. Another requirement, for the first engineering prototype, was that the oscillator be made out of inexpensive, standard parts. The design was integrated onto a circuit board with the associated transponder circuitry. This paper describes a technique to make a high-efficiency 430 MHz oscillator which demonstrates efficiencies in the 10 to 12 percent range for an output of approximately 0 dbm. Data will show the frequency spectrum of the oscillator waveform and the performance of the oscillator over temperature and power supply voltage. To meet the requirements and make the design as simple as possible a 107.5 MHz (R(sub m) less than 70 ohms) Statek AT-Strip resonator was chosen. This resonator was chosen because of its small size, surface mountability, and good electrical performance. This resonator was used at series resonance in an oscillator multiplier circuit which would provide a (4X) multiplication in an efficient manner. The oscillator (first stage) is a Butler Oscillator-Multiplier (2X) which is direct coupled to a buffer transistor (second stage) and harmonic generating (2X) transistor which share bias current. The final design delivers 1 dbm at 3 V with 3.33 mA current draw. All harmonics and subharmonics are greater than 20 db down from the desired frequency.

  13. High efficiency hybrid silicon nanopillar-polymer solar cells.

    PubMed

    Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Sharma, Manisha; Elam, David; Ponce, Arturo; Ayon, Arturo A

    2013-10-01

    Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ∼10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell. PMID:24032746

  14. Reflection type metasurface designed for high efficiency vectorial field generation

    NASA Astrophysics Data System (ADS)

    Wang, Shiyi; Zhan, Qiwen

    2016-07-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries.

  15. Optimization of a high efficiency free electron laser amplifier

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-03-01

    The free electron laser (FEL) amplifier is implemented in x-ray FEL facilities to generate short wavelength radiation. The problem of an efficiency increase of an FEL amplifier is now of great practical importance. The technique of undulator tapering in the postsaturation regime is used at the existing x-ray FELs LCLS, SACLA and FERMI, and is planned for use at FLASH, European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform a detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Analysis of the radiation properties from the modulated electron beam and application of similarity techniques allows us to derive the universal law of the undulator tapering.

  16. Reflection type metasurface designed for high efficiency vectorial field generation.

    PubMed

    Wang, Shiyi; Zhan, Qiwen

    2016-01-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries. PMID:27417150

  17. Reflection type metasurface designed for high efficiency vectorial field generation

    PubMed Central

    Wang, Shiyi; Zhan, Qiwen

    2016-01-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries. PMID:27417150

  18. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether

    PubMed Central

    Andrews, Ian P.; Kwon, Ohyun

    2008-01-01

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethyl ethynyl ether using 0.1% palladium(0) catalyst and 1.0 equiv of tributyltin hydride. The product obtained is a mixture of regioisomers that can be carried forward with exclusive reaction of the β-isomer. This method is highly reproducible; relative to previously reported procedures, it is more economical and involves a more facile purification procedure. PMID:20011027

  19. Development and characterization of high efficiency metallic reflectors

    NASA Astrophysics Data System (ADS)

    Viswanathan, M.; Thutupalli, G. K. M.

    1989-10-01

    The present Ag-based reflective coatings are useful in both the visible and the IR, and exhibit not only high optical efficiency but high resistance to both terrestrial storage/prelaunch and space environments. Excellent stability to adhesion, as well as abrasion resistance and aqueous environment corrosion resistance, are demonstrated for Ag protected by a 200-A layer of Al2O3 and an 800-A layer of Ta2O5. The results of thermal shock cycling of up to 1000 cycles in the -45 to +70 C range indicate no deterioration of the coating. The presence of the Al2O3 layer is noted to furnish an excellent barrier to UV degradation.

  20. OM-VPE grown materials for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Saxena, R.; Cooper, B., III; Ludowise, M.; Borden, P.; Gregory, P.

    1980-01-01

    Organometallic sources are available for all the III-V elements and a variety of dopants; thus it is possible to use the technique to grow a wide variety of semiconductor compounds. AlGaAsSb and AlGaInAs alloys for multijunction monolithic solar cells were grown by OM-VPE. While the effort concentrated on terrestrial applications, the success of OM-VPE grown GaAs/AlGaAs concentrator solar cells (23% at 400 suns) demonstrates that OM-VPE is suitable for growing high efficiency solar cells in large quantities for space applications. In addition, OM-VPE offers the potential for substantial cost reduction of photovoltaic devices with scale up and automation and due to high process yield from reproducible, uniform epitaxial growths with excellent surface morphology.

  1. Competitively priced hydrogen via high-efficiency nuclear electrolysis

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.

    1977-01-01

    A fully dedicated nuclear-electrolytic hydrogen-production facility, based on advanced (1985) technology, has been synthesized and assessed at the conceptual level. The facility integrates an HTGR operating a binary shaftpower-extraction cycle at 980 C top temperature, direct dc electricity generation via acyclic generators, and high-current density high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced. Pipeline-pressure hydrogen and coproduct oxygen are produced at 6900 kPa. On consistent costing bases, the advanced facility concept was found to provide hydrogen costs that were approximately half those associated with conventional, contemporary-technology nuclear electrolysis. The nuclear heat-to-hydrogen energy conversion efficiency for the advanced system was estimated as 43%, against 25% for the baseline present-day approach.

  2. Noise performance of high-efficiency germanium quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Siontas, Stylianos; Liu, Pei; Zaslavsky, Alexander; Pacifici, Domenico

    2016-08-01

    We report on the noise analysis of high performance germanium quantum dot (Ge QD) photodetectors with responsivity up to ˜2 A/W and internal quantum efficiency up to ˜400%, over the 400-1100 nm wavelength range and at a reverse bias of -10 V. Photolithography was performed to define variable active-area devices that show suppressed dark current, leading to a higher signal-to-noise ratio, up to 105, and specific detectivity D * ≃ 6 × 10 12 cm Hz 1 / 2 W-1. These figures of merit suggest Ge QDs as a promising alternative material for high-performance photodetectors working in the visible to near-infrared spectral range.

  3. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  4. A high-efficiency cellular extraction system for biological proteomics

    PubMed Central

    Dhabaria, Avantika; Cifani, Paolo; Reed, Casie; Steen, Hanno; Kentsis, Alex

    2015-01-01

    Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of biochemical analyses of cellular reactions, protein-protein interactions, and small molecule drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction of cellular proteins while minimizing their denaturation. Cells were mechanically disrupted using Potter-Elvehjem homogenization, probe or adaptive focused acoustic sonication, and in the presence of various detergents, including polyoxyethylene ethers and esters, glycosides, and zwitterions. Using fluorescence spectroscopy, biochemical assays, and mass spectrometry proteomics, we identified the combination of adaptive focused acoustic (AFA) sonication in the presence of binary poloxamer-based mixture of octyl-β-glucoside and Pluronic F-127 to maximize the depth and yield of proteome extraction while maintaining native protein activity. This binary poloxamer extraction system allowed native proteome extraction, comparable in coverage to proteomes extracted using denaturing SDS or guanidine containing buffers, including efficient extraction of all major cellular organelles. This high-efficiency cellular extraction system should prove useful for a variety of cell biochemical studies, including structural and functional proteomics. PMID:26153614

  5. A High-Efficiency Cellular Extraction System for Biological Proteomics.

    PubMed

    Dhabaria, Avantika; Cifani, Paolo; Reed, Casie; Steen, Hanno; Kentsis, Alex

    2015-08-01

    Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of the biochemical analyses of cellular reactions, protein-protein interactions, and small-molecule-drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction of cellular proteins while minimizing their denaturation. Cells were mechanically disrupted using Potter-Elvehjem homogenization, probe- or adaptive-focused acoustic sonication, and were in the presence of various detergents, including polyoxyethylene ethers and esters, glycosides, and zwitterions. Using fluorescence spectroscopy, biochemical assays, and mass spectrometry proteomics, we identified the combination of adaptive focused acoustic (AFA) sonication in the presence of a binary poloxamer-based mixture of octyl-β-glucoside and Pluronic F-127 to maximize the depth and yield of the proteome extraction while maintaining native protein activity. This binary poloxamer extraction system allowed for native proteome extraction comparable in coverage to the proteomes extracted using denaturing SDS or guanidine-containing buffers, including the efficient extraction of all major cellular organelles. This high-efficiency cellular extraction system should prove useful for a variety of cell biochemical studies, including structural and functional proteomics. PMID:26153614

  6. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  7. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  8. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  9. Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Yumoto, K.; Hiratsuka, Y.

    2015-12-01

    For wide spread high-temperature superconductor (HTS) devices, a cryocooler having COP of >0.1, with a compact size, light weight, high efficiency and high reliability is required. For practical use of superconductive devices, Sumitomo Heavy Industries, Ltd. (SHI) developed a high-efficiency Stirling type pulse tube cryocooler (STPC). The STPC had high reliability and low vibration. However, its efficiency was not enough to meet the demands of an HTS motor. To further improve the efficiency, we reconsidered the expander of cryocooler and developed a Stirling cryocooler (STC). Two prototype units of a compact, high-efficiency split Stirling cryocooler were designed, built and tested. With the second prototype unit, a cooling capacity of 151 W at 70 K and a minimum temperature of 33 K have been achieved with a compressor input power of 2.15 kW. Accordingly, COP of about 0.07 has been achieved. The detailed design of the prototype units and the experimental results will be reported in this paper.

  10. Preliminary field evaluation of high efficiency steel filters

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.

    1995-02-01

    We have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2` x 2` x 1` HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to our specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. We suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  11. High-Performance Permanent Magnets for Energy-Efficient Devices

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  12. Riverbed methanotrophy sustained by high carbon conversion efficiency

    PubMed Central

    Trimmer, Mark; Shelley, Felicity C; Purdy, Kevin J; Maanoja, Susanna T; Chronopoulou, Panagiota-Myrsini; Grey, Jonathan

    2015-01-01

    Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane. PMID:26057842

  13. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  14. Preliminary field evaluation of high efficiency steel filters

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.; Wilson, K.; Simon, K.; Frye, L.

    1994-11-01

    The authors have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2{prime} x 2{prime} {times} l{prime} HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to the authors specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. The authors suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  15. Progress toward steady-state, high-efficiency vircators

    SciTech Connect

    Poulsen, P.; Pincosy, P.A.; Morrison, J.J.

    1990-12-05

    The resonance at which high-efficiency operation of virtual cathode oscillators is obtained occurs when the beam frequency equals the reflex frequency to within 2%. This tolerance limit in the frequency ratio implies that cathode closure in the anode-cathode gap is not acceptable. We have developed and tested a 6-cm{sup 2} cathode that will operate longer than 1 {mu}s at 300 A/cm{sup 2} without significant closure. As yet, the full-scale (>80-cm{sup 2}) cathode has not worked quite as well. In many tests, the cathode will operate in the emission-limited temperature/field (T/F) mode for approximately 300 ns, and then transition into explosive emission with a relatively slow ({approximately}0.5 cm/{mu}s) closure rate. The current density was 45 to 90 A/cm{sup 2}. We have not run high-power rf-emission tests under conditions where the diode stays open and in resonance for the duration of the rf pulse at a current density of 250 A/cm{sup 2}, which is required for 3-GHz operation; that test remains the focus of our continuing research. We have obtained long (600-ns) duration rf pulses at low power. We have also extended the data base on microwave generation at lower power and have shown that high-efficiency resonances will occur when a multiple of the reflex frequency equals the beam frequency. This allows greater flexibility in the design and scaling of the microwave device. 6 refs., 14 figs.

  16. The growth efficiency of high-redshift black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Volonteri, Marta; Ferrara, Andrea

    2015-09-01

    The observational evidence that Super-Massive Black Holes (M• ˜ 109-10 M⊙) are already in place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive (˜103-6 M⊙) seeds and/or the occurrence of super-Eddington (dot{M}>dot{M}_{Edd}) accretion episodes may contribute to the solution of this problem. In this work, using a set of astrophysically motivated initial conditions, we analytically and numerically investigate the accretion flow on to high-redshift (z ˜ 10) black holes to understand the physical requirements favouring rapid and efficient growth. Our model identifies a `feeding-dominated' accretion regime and a `feedback-limited' one, the latter being characterized by intermittent (duty cycles D ≲ 0.5) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds (≲103-4 M⊙) evolve in the feedback-limited regime, while more massive seeds (≳105-6 M⊙) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor (ɛ = 0.1), we have also explored slim disc models, appropriate for super-Eddington accretion, where radiation is trapped in the disc and the radiative efficiency is reduced (ɛ ≲ 0.04), which may ensure a continuous growth with dot{M} ≫ dot{M}_{Edd} (up to {˜ } 300 dot{M}_{Edd} in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80-100 per cent of the gas mass of the host halo (˜107 M⊙) in ˜10 Myr, while in feedback-limited systems we predict that black holes can accrete only up to ˜15 per cent of the available mass.

  17. Cefazolin dialytic clearance by high-efficiency and high-flux hemodialyzers.

    PubMed

    Sowinski, K M; Mueller, B A; Grabe, D W; Manley, H J; Frye, R F; Bailie, G R; Marx, M A

    2001-04-01

    Cefazolin dialytic clearance has not been determined in patients undergoing hemodialysis with high-efficiency or high-flux dialyzers. The objective of this study is to determine the pharmacokinetics and dialytic clearance of cefazolin and develop dosing strategies in these patients. Twenty-five uninfected subjects undergoing chronic thrice-weekly hemodialysis were administered a single dose of intravenous cefazolin (15 mg/kg) after their standard hemodialysis session. Fifteen subjects underwent hemodialysis with high-efficiency hemodialyzers, and 10 subjects underwent hemodialysis with high-flux hemodialyzers. Blood and urine samples were collected serially over the interdialytic period, during the next intradialytic period, and immediately after the next hemodialysis session. Serum and urine concentrations of cefazolin were determined by high-performance liquid chromatography. Differential equations describing a two-compartment model were fit to the cefazolin serum concentration-time data over the study period, and pharmacokinetic parameters were determined. Mean dialytic clearance values for cefazolin were significantly greater in the high-flux group compared with the high-efficiency group (30.9 +/- 6.52 versus 18.0 +/- 6.26 mL/min, respectively; P: < 0.05). Cefazolin reduction ratios were significantly greater (0.62 +/- 0.08 versus 0.50 +/- 0.07; P: < 0.005) in the high-flux group compared with the high-efficiency group and correlated well with equilibrated urea reduction. The pharmacokinetic model developed from patient data was used to simulate cefazolin serum concentration data for high-efficiency and high-flux dialyzers. Cefazolin doses of 15 or 20 mg/kg after each hemodialysis session maintained adequate serum concentrations throughout a 2- or 3-day interdialytic period regardless of hemodialyzer type. PMID:11273877

  18. Optimizing Nanopore Surface Properties for High-Efficiency Water Desalination

    NASA Astrophysics Data System (ADS)

    Cohen-Tanugi, David; Grossman, Jeffrey

    2011-03-01

    As water resources worldwide become rapidly scarcer, it is becoming increasingly important to devise new techniques to obtain clean water from seawater. At present, water purification technologies are limited by costly energy requirements relative to the theoretical thermodynamic limit and by insufficient understanding of the physical processes underlying ion filtration and fluid transport at the molecular scale. New advances in computational materials science offer a promising way to deepen our understanding of these physical phenomena. In this presentation, we describe a new approach for high-efficiency water desalination based on surface-engineered porous materials. This approach is especially relevant for promising technologies such as nanofiltration and membrane distillation, which offers promising advantages over traditional desalination technologies using mesoporous membranes that are only permeable to pure water vapor. More accurate molecular modeling of mesoporous and nanoporous materials represents a key step towards efficient large-scale treatment of seawater. Results regarding the effect of pore properties (surface texture, morphology, density, tortuosity) on desired performance characteristics such as ion selectivity, maximal water flux and energy requirements will be presented.

  19. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air. PMID:25084346

  20. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  1. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  2. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  3. High power-efficiency terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Liu, Jun-Qi; Liu, Feng-Qi; Zhang, Jin-Chuan; Zhai, Shen-Qiang; Zhuo, Ning; Wang, Li-Jun; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-01

    We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ∼ 3.27 THz and has a maximum CW operating temperature of ∼ 70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively. Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051).

  4. Evaluation of new large area PMT with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Lei, Xiang-Cui; Heng, Yue-Kun; Qian, Sen; Xia, Jing-Kai; Liu, Shu-Lin; Wu, Zhi; Yan, Bao-Jun; Xu, Mei-Hang; Wang, Zheng; Li, Xiao-Nan; Ruan, Xiang-Dong; Wang, Xiao-Zhuang; Yang, Yu-Zhen; Wang, Wen-Wen, Wang; Can, Fang; Feng-Jiao, Luo; Liang, Jing-Jing; Yang, Lu-Ping; Yang, Biao

    2016-02-01

    The neutrino detector of the Jiangmen Underground Neutrino Observatory (JUNO) is designed to use 20 kilotons of liquid scintillator and approximately 16 000 20 inch photomultipliers (PMTs). One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics. The performance of the newly developed PMT preproduction samples is evaluated. The results show that its quantum efficiency is 30% at 400 nm. Its Peak/Valley (P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 107. The transit time spread of a single photoelectron is 2.86 ns. Generally the performances of this new 20 inch PMT are improved over the old one of R3600. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (X-DA10010200), Key Deployment Project of Chinese Academy of Sciences and CAS Center for Excellence in Particle Physics (CCEPP)

  5. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  6. High Efficiency Driving Electronics for General Illumination LED Luminaires

    SciTech Connect

    Upadhyay, Anand

    2012-10-31

    New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very reliable having an operating life of over 50,000 hours. This technology will enable growth of LED light sources in the use. This will also help in energy saving and reducing total life cycle cost of LED units. Two topologies selected for next generation of LED drivers: 1) Value engineered single stage Flyback topology. This is suitable for low powered LED drivers up to 50W power. 2) Two stage boost power factor correction (PFC) plus LLC half bridge platform for higher powers. This topology is suitable for 40W to 300W LED drivers. Three new product platforms were developed to cover a wide range of LED drivers: 1) 120V 40W LED driver, 2) Intellivolt 75W LED driver, & 3) Intellivolt 150W LED driver. These are standalone LED drivers for rugged outdoor lighting applications. Based on these platforms number of products are developed and successfully introduced in the market place meeting key performance, size and cost goals.

  7. Current-matched high-efficiency, multijunction monolithic solar cells

    SciTech Connect

    Olson, J.M.; Kurtz, S.R.

    1993-06-29

    A high-efficiency multijunction photovoltaic solar cell is described, consisting essentially of: a top semiconductor cell fabricated from Ga[sub x]In[sub l[minus]x]P wherein x is (0 < x < 0.5) a light-sensitive n/p homojunction therein for absorbing higher energy photons; a bottom semiconductor cell fabricated from GaAs with a light sensitive n/p homojunction therein for absorbing lower energy photons; and wherein the top cell thickness is optimized by thinning to from 0.5 to 1.7 microns and less than the bottom cell thickness in order to provide current matching between the top cell and the bottom cell in order to obtain improved conversion efficiency, a low-resistance attachment between the top cell and the bottom cell, wherein the top cell is lattice matched to the bottom cell; and electrical contact means attached to opposite sides of the solar cell to conduct current away from and into the solar cell.

  8. Miniature, high efficiency transducers for use in ultrasonic flow meters

    NASA Astrophysics Data System (ADS)

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  9. A new short-anoded IGBT with high emission efficiency

    NASA Astrophysics Data System (ADS)

    Weizhong, Chen; Bo, Zhang; Zehong, Li; Min, Ren; Zhaoji, Li

    2012-11-01

    A novel short-anoded insulated-gate bipolar transistor (SA-IGBT) with double emitters is proposed. At the on-state, the new structure shows extraordinarily high emission efficiency. Moreover, with a short-contacted anode, it further enhances the hole emission efficiency because of the crowding of the electrons. The forward voltage drop VF of this structure is 1.74 V at a current density 100 of A/cm2. Compared to the conventional NPT IGBT (1.94 V), segment-anode IGBT (SA-NPN 2.1 V), and conventional SA-IGBT (2.33 V), VF decreased by 10%, 17% and 30%, respectively. Furthermore, no NDR has been detected comparing to the SA-IGBT. At the off-state, there is a channel for extracting excessive carriers in the drift region. The turn-off loss Eoff of this proposed structure is 8.64 mJ/cm2. Compared to the conventional NPT IGBT (15.3 mJ/cm2), SA-NPN IGBT (12.8 mJ/cm2), and SA-IGBT (12.1 mJ/cm2), Eoff decreased by 43.7%, 32% and 28%, respectively.

  10. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics.

    PubMed

    Meng, Lingyi; Shang, Yuan; Li, Qikai; Li, Yongfang; Zhan, Xiaowei; Shuai, Zhigang; Kimber, Robin G E; Walker, Alison B

    2010-01-14

    We developed a model system for blend polymers with electron-donating and -accepting compounds. It is found that the optimal energy conversion efficiency can be achieved when the feature size is around 10 nm. The first reaction method is used to describe the key processes (e.g., the generation, the diffusion, the dissociation at the interface for the excitons, the drift, the injection from the electrodes, and the collection by the electrodes for the charge carries) in the organic solar cell by the dynamic Monte Carlo simulation. Our simulations indicate that a 5% power conversion efficiency (PCE) is reachable with an optimum combination of charge mobility and morphology. The parameters used in this model study correspond to a blend of novel polymers (bis(thienylenevinylene)-substituted polythiophene and poly(perylene diimide-alt-dithienothiophene)), which features a broad absorption and a high mobility. The I-V curves are well-reproduced by our simulations, and the PCE for the polymer blend can reach up to 2.2%, which is higher than the experimental value (>1%), one of the best available experimental results up to now for the all-polymer solar cells. In addition, the dependency of PCE on the charge mobility and the material structure are also investigated. PMID:20000370

  11. High efficiency, high energy, CEP-stabilized infrared optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Ling, Weijun; Geng, Xiaotao; Guo, Shuyan; Wei, Zhiyi; Krausz, F.; Kim, D.

    2014-10-01

    A high efficiency, tunable, carrier-envelope-phase (CEP) stabilized near-infrared optical parametric amplifier (OPA) is demonstrated with just a single BBO crystal. A white-light continuum produced by a CEP-stabilized laser is seeded into the two stages of the type II OPA system. We achieved a pump-to-signal conversion efficiency of 34% with a single nonlinear crystal. To our knowledge this is the highest conversion efficiency reported in broadband optical parametric amplification, using the two stages. This work demonstrates a compact way to for tunable femtosecond pulses with CEP stabilization.

  12. Possibilities of efficient high-speed transport airplanes

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Comparisons of wing-body combinations may not disclose the full effect of a loss in aerodynamic efficiency. If the thrust needs to be increased at a given altitude then more or larger engines will have to be used and the possibility of concealing them becomes less. In this process the lift drag ratio of the complete airplane may become still more unfavorable than indicated by the comparison. Primarily aerodynamic and structural considerations point toward the development of turbojet engines specifically adapted to operation in an atmosphere of one tenth normal density. In addition to the numerous other technological problems associated with operation at these high altitudes, the problems of safe descent and effective limitation to low speeds at low altitudes seem important.

  13. Highly efficient targeted chromosome deletions using CRISPR/Cas9.

    PubMed

    He, Zuyong; Proudfoot, Chris; Mileham, Alan J; McLaren, David G; Whitelaw, C Bruce A; Lillico, Simon G

    2015-05-01

    The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes. PMID:25362885

  14. Highly efficient and controllable method to fabricate ultrafine metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Cai, Hongbing; Zhang, Kun; Yu, Xinxin; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2015-11-01

    We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

  15. Performance of a high efficiency advanced coal combustor

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. )

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the primary act,'' and three further annuli for the supply of the secondary air.'' The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  16. Partially reduced graphene oxide as highly efficient DNA nanoprobe.

    PubMed

    Wang, Yan-Hong; Deng, Hao-Hua; Liu, Yin-Huan; Shi, Xiao-Qiong; Liu, Ai-Lin; Peng, Hua-Ping; Hong, Guo-Lin; Chen, Wei

    2016-06-15

    This work investigates the effect of reduction degree on graphene oxide (GO)-DNA interaction and the fluorescence quenching mechanism. Partial reduced graphene oxide (pRGO), which maintains well water-dispersibility, is synthesized using a mild reduction method by incubating GO suspension under alkaline condition at room temperature. The fluorescence quenching enhances with the restoration degree of sp(2) carbon bonds and follows the static quenching mechanism. The binding constant values imply that pRGO has much stronger affinity with ssDNA than GO. Utilizing this highly efficient nanoprobe, a universal sensing strategy is proposed for homogeneous detection of DNA. Compared with the reported GO-based DNA, this present strategy has obvious advantages such as requirement of low nanoprobe dosage, significantly reduced background, fast fluorescence quenching, and improved sensitivity. Even without any amplification process, the limit of detection can reach as low as 50 pM. PMID:26826548

  17. Transparent composite electrode for high-efficiency polymer LEDs

    NASA Astrophysics Data System (ADS)

    Li, Lu; Yu, Zhibin; Liang, Jiajie; Chang, Chia-Hao; Hu, Weili; Pei, Qibing

    2012-09-01

    Polymer composite electrodes based on silver nanowires or carbon nanotubes have been prepared with transparency and surface conductivity approaching those of ITO/glass and better than ITO/PET. The conductive surface has an average roughness less than 10 nm, better than ITO/glass. Depending on the polymer matrix selected, the composite electrodes can be made rigid, flexible like polycarbonate, or stretchable like a rubber. Various polymer light emitting diodes,light emitting electrochemical cells and polymer solar cells have been fabricated using the composite electrode as anode, exhibiting electroluminescent efficiencies generally higher than control devices fabricated on ITO/glass. These polymer light emitting devices are all highly flexible and can be bent to less than 3 mm radius without loss of performance. With further modification of the composite electrodes, we have also demonstrated stretchable OLEDs wherein the emissive area can be elongated by as much as 50%.

  18. Highly efficient and controllable method to fabricate ultrafine metallic nanostructures

    SciTech Connect

    Cai, Hongbing; Zhang, Kun; Pan, Nan E-mail: xpwang@ustc.edu.cn; Luo, Yi; Wang, Xiaoping E-mail: xpwang@ustc.edu.cn; Yu, Xinxin; Tian, Yangchao

    2015-11-15

    We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

  19. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  20. Leaks in nuclear grade high efficiency aerosol filters

    SciTech Connect

    Scripsick, R.C.

    1994-07-01

    Nuclear grade high efficiency aerosol filters, also known as high efficiency particulate air (HEPA) filters, are commonly used in air cleaning systems for removal of hazardous aerosols. Performance of the filter units is important in assuring health and environmental protection. The filter units are constructed from pleated packs of fiberglass filter media sealed into rigid frames. Results of previous studies on such filter units indicate that their performance may not be completely predicted by ideal performance of the fibrous filter media. In this study, departure from ideal performance is linked to leaks existing in filter units and overall filter unit performance is derived from independent performance of the individual filter unit components. The performance of 14 nuclear grade HEPA filter units (size 1, 25 cfm) with plywood frames was evaluated with a test system that permitted independent determination of penetration as a function of particle size for the whole filter unit, the filter unit frame, and the filter media pack. Tests were performed using a polydisperse aerosol of di-2-ethylhexyl phthalate with a count median diameter of 0.2 {mu}m and geometric standard deviation of 1.6. Flow rate and differential pressure were controlled from 1% to 100% of design values. Particle counts were made upstream and downstream of the filter unit with an optical particle counter (OPC). The OPC provided count information in 28 size channels over the particle diameter range from 0.1 to 0.7 {mu}m. Results provide evidence for a two component leak model of filler unit performance with: (1) external leaks through filter unit frames, and (2) internal leaks through defects in the media and through the seal between the media pack and frame. For the filter units evaluated, these leaks dominate overall filter unit performance over much of the flow rate and particle size ranges tested.