Science.gov

Sample records for air-sea co2 fluxes

  1. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  2. Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?

    NASA Astrophysics Data System (ADS)

    Halloran, P. R.

    2012-06-01

    The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid

  3. Influence of precipitation on the CO2 air-sea flux, an eddy covariance field study

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alexander; Steinhoff, Tobias; Marandino, Christa

    2016-04-01

    During the SPACES-OASIS cruise (July-August 2015) from Durban, SA to Male, MV direct fluxes of CO2 and dimethyl sulfide (DMS) were measured using the eddy covariance (EC) technique. The cruise covered areas of sources and sinks for atmospheric CO2, where the bulk concentration gradient measurements resembled the Takahashi (2009) climatology. Most of the time, bulk CO2 fluxes (F=k* [cwater-cair]), calculated with the parametrization (k) by Nightingale et al. 2000, were in general agreement with direct EC measurements. However, during heavy rain events, the directly measured CO2 fluxes were 4 times higher than predicted. It has been previously described that rain influences the k parametrization of air-sea gas exchange, but this alone cannot explain the measured discrepancy. There is evidence that freshwater input and a change in the carbonate chemistry causes the water side concentration of ?c=cwater-cair to decrease. Unfortunately this cannot be detected by most bulk measurement systems. Using the flux measurements of an additional gas like DMS, this rain influence can be evaluated as DMS does not react to changes in the carbonate system and has a different solubility. A pending question is if the enhanced flux of CO2 in the ocean is sequestered into the ocean mixed layer and below. This question will be tackled using the GOTM model to understand the implications for the global carbon cycle.

  4. Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    NASA Astrophysics Data System (ADS)

    Ward, B.; Wanninkhof, R.; McGillis, W. R.; Jessup, A. T.; Degrandpre, M. D.; Hare, J. E.; Edson, J. B.

    2004-08-01

    The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of -4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.

  5. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  6. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    NASA Astrophysics Data System (ADS)

    Padin, X. A.; Vázquez-Rodríguez, M.; Castaño, M.; Velo, A.; Alonso-Pérez, F.; Gago, J.; Gilcoto, M.; Álvarez, M.; Pardo, P. C.; de La Paz, M.; Ríos, A. F.; Pérez, F. F.

    2010-05-01

    A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2) in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of -3 ± 18 μatm (Takahashi et al., 2009). The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m-2 yr-1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of -0.16 ± 0.01 yr-1 coinciding with a declination of -3.5 ± 0.9 μatm yr-1 in the air-sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of -0.09 ± 0.03 mol m-2 yr-1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m-2 y-1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr-1 and a wind speed decrease of -0.58 ± 0.14 m s-1 yr-1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño - Southern Oscillation episodes. Contrary the surface waters of the

  7. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  8. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  9. Reconstruction of super-resolution fields of ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the Southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.

    2015-01-01

    The knowledge of Green House Gases GHGs fluxes at the air-sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2, pCO2, and air-sea CO2 fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution of pCO2, and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO2 with respect to in-situ measurements are smaller than for CarbonTracker.

  10. Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.; González-Dávila, M.; Santana-Casiano, J. M.

    2015-09-01

    An accurate quantification of the role of the ocean as source/sink of greenhouse gases (GHGs) requires to access the high-resolution of the GHG air-sea flux at the interface. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2 ( pCO2) and air-sea CO2 fluxes at super resolution (4 km, i.e., 1/32° at these latitudes) using sea surface temperature (SST) and ocean color (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution pCO2 and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the microcanonical multifractal formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multi-resolution analysis performed on the signal of the so-called singularity exponents allows for the correct and near optimal cross-scale inference of GHG fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small-scale variability. We examine different combinations of ocean color and sea surface temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in situ measurements by means of statistical errors. We find that mean absolute and relative errors in the inferred values of pCO2 with respect to in situ measurements are smaller than for CarbonTracker.

  11. Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California, México

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, L.; Ocampo-Torres, F. J.

    2016-05-01

    The influence of wave-associated parameters controlling turbulent CO2 fluxes through the air-sea water interface is evaluated in a coastal region. The study area, located within the Todos Santos Bay, Baja California, México, was found to be a weak sink of CO2 with a mean flux of -1.32 µmol m-2s-1. The low correlation found between flux and wind speed (r = 0.09), suggests that the influence of other forcing mechanisms, besides wind, is important for gas transfer modulation through the sea surface, at least for the conditions found in this study. In addition, the results suggest that for short periods where an intensification of the wave conditions occurs, a CO2 flux response increases the transport of gas to the ocean.

  12. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  13. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2014-02-01

    We quantify the CO2 source/sink nature of the California Current System (CalCS) and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2) in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-biogeochemical oceanic model on the basis of the Regional Oceanic Modeling System (ROMS). In the annual mean, the entire CalCS within 800 km of the coast and from ∼33° N to 46° N is essentially neutral with regard to atmospheric CO2: the model simulates an integrated uptake flux of -0.9 ± 3.6 Tg C yr-1, corresponding to an average flux density of -0.05 ± 0.20 mol C m-2 yr-1. This near zero flux is a consequence of an almost complete regional compensation between (i) strong outgassing in the nearshore region (first 100 km) that brings waters with high concentrations of dissolved inorganic carbon (DIC) to the surface and (ii) and a weaker, but more widespread uptake flux in the offshore region due to an intense biological reduction of this DIC, driven by the nutrients that are upwelled together with the DIC. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. Most of the variability in pCO2 is associated with the seasonal cycle, with the exception of the nearshore region, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The prevalence of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source

  14. Micrometeorological survey of air-sea ice CO2 fluxes in arctic coastal waters

    NASA Astrophysics Data System (ADS)

    Heinesch, Bernard; Tison, Jean-Louis; Carnat, Gauthier; Heicken, Hajo; Geilfus, Nicolas-Xavier; Goosens, Thomas; Papakyriakou, Tim; Yernaux, Michel; Delille, Bruno

    2010-05-01

    We carried out a 6 month study that aimed to robustly track CO2 exchange between land-fast sea-ice and the atmosphere during the winter and spring season. A meteorological mast equipped for eddy-covariance measurements was installed on land-fast sea-ice near Barrow (Alaska), 1 km off the coast, from the end of January 2009 to the beginning of June 2009, before ice break-up. These data were supported by continuous measurements of solar radiation, snow depth, ice thickness and temperature profile in the ice. Biogeochemical data necessary for the understanding of the CO2 dynamics in sea-ice were obtained through discrete ice coring. Two regimes were detected for the CO2 exchanges linked with the status of the sea-ice: a winter regime and a spring summer regime. From 27 of March onwards brine volume at the sea ice-snow interface was above the threshold of permeability for liquid according to Golden et al (1998). During this period, we observed some conspicuous CO2 fluxes events tightly linked to wind speed. The flux was directed from the sea-ice to the atmosphere and reached up to 0.6 umol m-2 s-1 (51.8 mmol m-2 d-1). This flux to the atmosphere is expected as sea-ice at the air interface is permeable during a large part of the period and brines are oversaturated compared to the atmosphere. CO2 may accumulate in the snow layer which thus acts as a buffer that is flushed under occurrence of high wind speeds and associated pressure pumping. During the spring-summer period i.e. from 27 of April onwards, we observed a marked increase in sea ice temperature. Temperature profiles suggest that convective events occurred within the ice cover between April 27 and May 05. Within these convective events, two regimes were observed. First, for a period of 5 days, pCO2 was still above the threshold of saturation and CO2 fluxes were still mainly positive but lower than in the winter period, ranging from 0.1 to 0.2 umol m-2 s-1. This flux was only moderately controlled by windspeed

  15. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2013-08-01

    nutrient concentrations of the upwelled waters a primary determinant of the overall source/sink nature of the CalCS. The comparison of the standard simulation with one for preindustrial conditions show that the CalCS is taking up anthropogenic CO2 at a rate of about -1 mol C m-2 yr-1, implying that the region was a small source of CO2 to the atmosphere in preindustrial times. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. There are important differences among the subregions. Notably, the total variance of the fluxes in the central nearshore CalCS is roughly 4-5 times larger than elsewhere. Most of the variability in pCO2 is associated with the seasonal cycle, except in the nearshore, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The dominance of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source/sink nature of this region reliably.

  16. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-09-01

    This study reports the most comprehensive data set thus far of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS), based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability in sea surface pCO2 in the ECS except in winter, when it ranged across a narrow band of 330 to 360 μatm. We categorized the ECS into five different domains featuring with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in autumn. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in autumn (> 350 μatm). On the northern ECS shelf, pCO2 in summer and autumn was > 340 μatm in most areas, higher than in winter and spring. On the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux on the entire ECS shelf was -10.0 ± 2.0 in winter, -11.7 ± 3.6 in spring, -3.5 ± 4.6 in summer and -2.3 ± 3.1 mmol m-2 d-1 in autumn. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation in pCO2 rather than the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was 6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  17. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-04-01

    This study reports thus far a most comprehensive dataset of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS) based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability of sea surface pCO2 in the ECS except in winter when it ranged in a narrow band of 330 to 360 μatm. In this context, we categorized the ECS into five different domains featured with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in fall. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in fall (> 350 μatm). In the northern ECS shelf, pCO2 in summer and fall was > 340 μatm in most areas, higher than in winter and spring. In the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux in the entire ECS shelf was -10.0 ± 2.0 mmol m-2 d-1 in winter, -11.7 ± 3.6 mmol m-2 d-1 in spring, -3.5 ± 4.6 mmol m-2 d-1 in summer and -2.3 ± 3.1 mmol m-2 d-1 in fall. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation of pCO2, which differ from the spatial variance nor the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was -6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  18. CO2 air-sea fluxes across the Portuguese estuaries Tagus and Sado

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, G.; Nogueira, M.

    2009-04-01

    Generally, estuaries and proximal shelves under the direct influence of river runoff and large inputs of organic matter are mostly heterotrophic and, therefore, act as a carbon source. In this context the CO2 dynamics in Tagus and Sado estuaries (SW Portugal) was studied under two different climate and hydrological situations. These moderately productive mesotidal coastal-plain lagoon-type estuaries, localised in the center of Portugal and distant 30-40 km apart, present quite different freshwater inflows, surface areas and water residence times. A study performed in 2001 revealed that the magnitude of CO2 fluxes in the two estuarine systems varied seasonally. CO2 emissions during the huge rainfall winter were similar in both estuaries, reaching a mean value of ~50 mmol m-2 d-1, while in spring emissions from Sado were ~6 times higher then Tagus ones, attaining a mean value of 62 mmol m-2 d-1. Nevertheless, in both sampling periods, Sado estuary showed, within the upper estuary (salinity

  19. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  20. Inference of super-resolution ocean pCO2 and air-sea CO2 fluxes from non-linear and multiscale processing methods

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, Ismael; Sudre, Joel; Garçon, Veronique; Yahia, Hussein; Dewitte, Boris; Garbe, Christoph; Illig, Séréna; Montes, Ivonne; Dadou, Isabelle; Paulmier, Aurélien; Butz, André

    2014-05-01

    In recent years the role of submesoscale activity is emerging as being more and more important to understand global ocean properties, for instance, for accurately estimating the sources and sinks of Greenhouse Gases (GHGs) at the air-sea interface. The scarcity of oceanographic cruises and the lack of available satellite products for GHG concentrations at high resolution prevent from obtaining a global assessment of their spatial variability at small scales. In this work we develop a novel method to reconstruct maps of CO2 fluxes at super resolution (4km) using SST and ocean colour data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). The responsible process for propagating the information between scales is related to cascading properties and multiscale organization, typical of fully developed turbulence. The methodology, based on the Microcanonical Multifractal Formalism, makes use, from the knowledge of singularity exponents, of the optimal wavelet for the determination of the energy injection mechanism between scales. We perform a validation analysis of the results of our algorithm using pCO2 ocean data from in-situ measurements in the upwelling region off Namibia.

  1. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Jen; Cai, Wei-Jun; Wang, Yongchen; Lohrenz, Steven E.; Murrell, Michael C.

    2015-03-01

    River-dominated continental shelf environments are active sites of air-sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air-sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low-salinity zones (0≤S<17) to a strong CO2 sink in the middle-to-high-salinity zones (17≤S<33), and finally was a near-neutral state in the high-salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen-enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air-sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m-2 yr-1 (1.15 ± 4.4 Tg C yr-1).

  2. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  3. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  4. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  5. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  6. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  7. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-09-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.6 ± 0.3, -0.9 ± 0.3 and -0.5 ± 0.3 mol C m-2 yr-1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m-2 yr-1 in the sWEC and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of -1.11 ± 0.32 Tg C yr-1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to

  8. Dynamics of air-sea CO2 fluxes in the North-West European Shelf based on Voluntary Observing Ship (VOS) and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-04-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 dataset based on voluntary observing ship (VOS) measurements in the Western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in north-west European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), the gas transfer velocity coefficient (K), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with relative uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 dataset (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish Seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT database and obtained relatively robust results with an average precision of 4 ± 22 μatm in the seasonally stratified nWEC and the southern and northern CS (sCS and nCS), but less promising results in the permanently well-mixed sWEC, IS and Cap Lizard (CL) waters. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.4, -0.9 and -0.4 mol C m-2 year-1 in the nCS, sCS and nWEC, respectively, whereas, permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2, 0.4 and 0.4 mol C m-2 year-1 in the sWEC, CL and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over six provinces for the last decade and obtained the first annual average uptake of -0.95 Tg C year-1 for this

  9. An Approach to Minimizing Artifacts Caused by Cross-Sensitivity in the Determination of Air-Sea CO2 Flux Using the Eddy-Covariance Technique

    NASA Astrophysics Data System (ADS)

    Duan, Ziqiang; Gao, Huiwang; Gao, Zengxiang; Wang, Renlei; Xue, Yuhuan; Yao, Xiaohong

    2013-07-01

    The air-sea CO2 flux was measured from a research vessel in the North Yellow Sea in October 2007 using an open-path eddy-covariance technique. In 11 out of 64 samples, the normalized spectra of scalars (C}2, water vapour, and temperature) showed similarities. However, in the remaining samples, the normalized CO2 spectra were observed to be greater than those of water vapour and temperature at low frequencies. In this paper, the noise due to cross-sensitivity was identified through a combination of intercomparisons among the normalized spectra of three scalars and additional analyses. Upon examination, the cross-sensitivity noise appeared to be mainly present at frequencies {<}0.8 Hz. Our analysis also suggested that the high-frequency fluctuations of CO2 concentration (frequency {>}0.8 Hz) was probably less affected by the cross-sensitivity. To circumvent the cross-sensitivity issue, the cospectrum in the high-frequency range 0.8-1.5 Hz, instead of the whole range, was used to estimate the CO2 flux by taking the contribution of the high frequency to the CO2 flux to be the same as the contribution to the water vapour flux. The estimated air-sea CO2 flux in the North Yellow Sea was -0.039 ± 0.048 mg m^{-2} s^{-1}, a value comparable to the estimates using the inertial dissipation method and Edson's method (Edson et al., J Geophys Res 116:C00F10, 2011).

  10. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  11. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  12. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    NASA Astrophysics Data System (ADS)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile (~ 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  13. Examination of air-sea CO2 fluxes from the low-latitude coastal Eastern Pacific: Application of predictive algorithms to new VOS observations.

    NASA Astrophysics Data System (ADS)

    Hales, B.; Alin, S.; Feely, R. A.; Hernandez-Ayon, M.; Letelier, R.; Strutton, P. G.; Cosca, C.

    2008-12-01

    Coastal oceans are regions of large and highly variable air-sea CO2 fluxes, leading to highly uncertain predictions of globally significant contributions to the atmospheric carbon budget. Estimates of net annual regional fluxes are often the balance between poorly-constrained, large-magnitude sinks and sources. This is the case for the Pacific coast of North America, where a recent synthesis (Chavez et al., 2007) predicted low total fluxes resulting from the near-cancellation of large, lightly-sampled fluxes of opposite sign. In particular, the low latitude coastal waters off Central America appeared to be a large source of CO2 to the atmosphere, but there was very low spatial and temporal observational coverage in these waters. Recently, new VOS data in this region has become available that has dramatically increased both spatial and temporal sampling density in this region. In previous work we developed a new remote sensing-based synthetic approach applied to the mid-latitude regions of the North American Pacific coast that gave strong predictive power and was subsequently validated by in-water measurements in the summer of 2007. We present the results of applying this predictive approach to the target study region, and the predictive relationship is then combined with seasonally resolved remote sensing data to generate annual net flux estimates and to evaluate the prediction of strong efflux from these low-latitude waters based on the sparse historical data.

  14. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  15. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Arruda, R.; Calil, P. H. R.; Bianchi, A. A.; Doney, S. C.; Gruber, N.; Lima, I.; Turi, G.

    2015-10-01

    We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the southwestern Atlantic Ocean. Overall, the region acts as a sink of atmospheric CO2 south of 30° S, and is close to equilibrium with the atmospheric CO2 to the north. On the shelves, the ocean acts as a weak source of CO2, except for the mid/outer shelves of Patagonia, which act as sinks. In contrast, the inner shelves and the low latitude open ocean of the southwestern Atlantic represent source regions. Observed nearshore-to-offshore and meridional pCO2 gradients are well represented by our simulation. A sensitivity analysis shows the importance of the counteracting effects of temperature and dissolved inorganic carbon (DIC) in controlling the seasonal variability of pCO2. Biological production and solubility are the main processes regulating pCO2, with biological production being particularly important on the shelves. The role of mixing/stratification in modulating DIC, and therefore surface pCO2, is shown in a vertical profile at the location of the Ocean Observatories Initiative (OOI) site in the Argentine Basin (42° S, 42° W).

  16. Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec

    2014-05-01

    Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of sea surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and air-sea CO2 fluxes. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main

  17. Interannual and seasonal variabilities in air-sea CO2 fluxes along the U.S. eastern continental shelf and their sensitivity to increasing air temperatures and variable winds

    NASA Astrophysics Data System (ADS)

    Cahill, Bronwyn; Wilkin, John; Fennel, Katja; Vandemark, Doug; Friedrichs, Marjorie A. M.

    2016-02-01

    Uncertainty in continental shelf air-sea CO2 fluxes motivated us to investigate the impact of interannual and seasonal variabilities in atmospheric forcing on the capacity of three shelf regions along the U.S. eastern continental shelf to act as a sink or source of atmospheric CO2. Our study uses a coupled biogeochemical-circulation model to simulate scenarios of "present-day" and "future-perturbed" mesoscale forcing variability. Overall, the U.S. eastern continental shelf acts as a sink for atmospheric CO2. There is a clear gradient in air-sea CO2 flux along the shelf region, with estimates ranging from -0.6 Mt C yr-1 in the South Atlantic Bight (SAB) to -1.0 Mt C yr-1 in the Mid-Atlantic Bight (MAB) and -2.5 Mt C yr-1 in the Gulf of Maine (GOM). These fluxes are associated with considerable interannual variability, with the largest interannual signal exhibited in the Gulf of Maine. Seasonal variability in the fluxes is also evident, with autumn and winter being the strongest CO2 sink periods and summer months exhibiting some outgassing. In our future-perturbed scenario spatial differences tend to cancel each other out when the fluxes are integrated over the MAB and GOM, resulting in only minor differences between future-perturbed and present-day air-sea CO2 fluxes. This is not the case in the SAB where the position of the along-shelf gradient shifts northward and the SAB becomes a source of CO2 to the atmosphere (0.7 Mt C yr-1) primarily in response to surface warming. Our results highlight the importance of temperature in regulating air-sea CO2 flux variability.

  18. Air-Sea CO2 fluxes and NEP changes in a Baja California Coastal Lagoon during the anomalous North Pacific warm condition in 2014

    NASA Astrophysics Data System (ADS)

    Ávila López, M. D. C.; Martin Hernandez-Ayon, J. M.; Camacho-Ibar, V.; Sandoval Gil, J.; Mejía-Trejo, A.; Félix-Bermudez, A.; Pacheco-Ruiz, I.

    2015-12-01

    The present study examines the temporal variability of seawater carbonate chemistry and air-sea CO2 fluxes (FCO2) in a Baja California Mediterranean-climate coastal lagoon. This study was carried out from Nov-2013 to Nov-2014, a period in which anomalous warm conditions were present in the North Pacific Ocean influenced the local oceanography in the adjacent coastal waters off Baja California. These ocean conditions resulted on a negative anomaly of upwelling index, which led to summer-like season (weak upwelling condition) that could be observed in the response of carbon dynamics and metabolic status in San Quintín Bay. Minor changes in dissolved inorganic carbon (DIC) concentration during spring months (~100 µmol kg-1) where observed and were associated to biological processes within the lagoon. High DIC (~2200 µmol kg-1), pCO2 (~800 μatm), and minimum pH (~7.8) values were observed in summer, reflecting the predominance of respiration processes apparently mostly linked to the remineralization of sedimentary organic matter supplied from macroalgal blooms. San Quintín Bay acted as a weak source of CO2 to the atmosphere during the study period, with maximum value observed in July (~10 mmol C m-2 d-1). Temporal biomass production of macroalgae contributed to about 50% of total FCO2 estimated in spring-summer seasons, that was a potencial internal source of organic matter to fuel respiration processes in San Quintín Bay. Eelgrass metabolism contributes in a lower degree in total FCO2. During the anomalous ocean conditions in 2014, the lagoon switched seasonally between net heterotrophy and net autotrophy during the study period, where photosynthesis and respiration processes in the lagoon were closer to a balance. Whole-system metabolism and FCO2 clearly indicated the strong dependence of San Quintín Bay on upwelling conditions and benthic metabolism activity, which was mainly controlled by dominant primary producer communities.

  19. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  20. Model estimating the effect of marginal ice zone processes on the phytoplankton primary production and air-sea flux of CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Martjyanov, Stanislav

    2016-04-01

    This study is aimed to assess the impact of sea ice on the primary production of phytoplankton (PPP) and air-sea CO2 flux in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes: 1) a module of sea ice with 7 categories, and 2) the 11-component module of marine pelagic ecosystem developed in the St. Petersburg Branch, Institute of Oceanology. The model is driven by atmospheric forcing, prescribed from the reanalysis NCEP / NCAR, and conditions on the open sea boundary, prescribed from the regional model of the atmosphere-ocean-sea ice-ocean biogeochemistry, developed at Max Planck Institute for Meteorology, Hamburg. Comparison of the model results for the period 1998-2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll "a" concentration and PPP in the Barents Sea. Model estimates of the annual PPP for whole sea, APPmod, appeared in 1.5-2.3 times more than similar estimates, APPdata, from satellite data. The main reasons for this discrepancy are: 1) APPdata refers to the open water, while APPmod, to the whole sea area (under the pack ice and marginal ice zone (MIZ) was produced 16 - 38% of PPP); and 2) values of APPdata are underestimated because of the subsurface chlorophyll maximum. During the period 1998-2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15%. This reduction was accompanied by an increase in annual PPP of the sea at 54 and 63%, based, respectively, on satellite data and the model for the open water. According to model calculations for the whole sea area, the increase is only 19%. Using a simple 7-component model of oceanic carbon cycle incorporated into the above hydrodynamic model, the CO2 exchange between the atmosphere and sea has been estimated in different conditions. In the absence of biological

  1. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  2. Estimating Seasonal Cycles of Atmospheric CO2 and APO Resulting from Terrestrial NEE and Air-Sea O2 Fluxes using the Transcom T3L2 Pulse-Response Functions

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2011-12-01

    We present a method for translating modeled terrestrial net ecosystem exchange (NEE) fluxes of carbon into the corresponding annual mean cycles in atmospheric CO2. The method is based on the pulse-response functions from the Transcom 3 atmospheric tracer transport model (ATM) intercomparison. An oceanic version of the method is applied to air-sea O2 fluxes to estimate the corresponding annual mean cycles in atmospheric potential oxygen (APO). The estimated atmospheric seasonal cycles can be evaluated against observed atmospheric CO2 and APO data, which are measured at high precision at a wide range of monitoring sites and reflect the integrated impact of surface CO2 and O2 fluxes, respectively, across broad regions. The pulse-response function method is considerably faster than a full forward ATM simulation, allowing seasonal cycles from 13 different ATMS to be computed in minutes, rather than the days or weeks required for a single forward simulation. We evaluate the method against the results of full forward ATM simulations and examine the uncertainties associated with neglecting additional surface fluxes, e.g., from fossil fuel combustion, that may contribute to the observed seasonal cycles of CO2 and APO.

  3. Ocean Carbon Cycling and CO2 Air-Sea Exchange in Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Plattner, G.; Gruber, N.; Lachkar, Z.; Frenzel, H.; Loher, D.

    2008-12-01

    Eastern boundary current (EBC) upwelling systems are regions of intense biogeochemical transformations and transports. Strong upwelling of nutrient- and carbon-rich waters tends to lead to CO2 outgassing nearshore and biologically-driven CO2 uptake offshore. Yet, the net air-sea CO2 balance of EBCs remains unknown. High near-shore productivity coupled with filaments and other meso- and submesoscale phenomena cause a substantial lateral export of organic carbon. We investigate these coastal processes in the California Current (CalCS) and the Canary Current Systems (CanCS), on the basis of the eddy-resolving, physical-biogeochemical model ROMS. Our results confirm the onshore-offshore trends in the air-sea fluxes, with substantial spatial and temporal differences due to topography, upwelling strength, and eddy activity. The CalCS is modeled to be, on average, a very small source of CO2 to the atmosphere, consistent with a recent data-based estimate by Chavez and Takahashi, while for the CanCS this is not clear yet. Regarding offshore transport, the CalCS appears to be stronger than the CanCS. Spatio-temporal variability of all carbon fluxes is substantial, particularly nearshore, posing a tremendous challenge for observing systems targeting e.g. air-sea CO2 fluxes in these dynamic regions. Further analyses of the processes that determine the mean carbon fluxes and their spatio-temporal variability will be presented. Characteristic differences and similarities between the two EBC systems will be discussed.

  4. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  5. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume

    SciTech Connect

    John, David E.; Wang, Zhaohui A.; Liu, Xuewu; Byrne, Robert H.; Corredor, Jorge E.; López, José M.; Cabrera, Alvaro; Bronk, Deborah A.; Tabita, F. Robert; Paul, John H.

    2007-08-30

    River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO2 drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO2 dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the co-occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. Finally, our work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO2 flux

  6. Temporal variations in air-sea CO2 exchange near large kelp beds near San Diego, California

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2015-01-01

    study presents nearly continuous air-sea CO2 flux for 7 years using the eddy covariance method for nearshore water near San Diego, California, as well as identifying environmental processes that appear to control temporal variations in air-sea CO2 flux at different time scales using time series decomposition. Monthly variations in CO2 uptake are shown to be positively influenced by photosynthetically active photon flux density (PPFD) and negatively related to wind speeds. In contrast to the monthly scale, wind speeds often influenced CO2 uptake positively on an hourly scale. Interannual variations in CO2 flux were not correlated with any independent variables, but did reflect surface area of the adjacent kelp bed in the following year. Different environmental influences on CO2 flux at different temporal scales suggest the importance of long-term flux monitoring for accurately identifying important environmental processes for the coastal carbon cycle. Overall, the study area was a strong CO2 sink into the sea (CO2 flux of ca. -260 g C m-2 yr-1). If all coastal areas inhabited by macrophytes had a similar CO2 uptake rate, the net CO2 uptake from these areas alone would roughly equal the net CO2 sink estimated for the entire global coastal ocean to date. A similar-strength CO2 flux, ranging between -0.09 and -0.01 g C m-2 h-1, was also observed over another kelp bed from a pilot study of boat-based eddy covariance measurements.

  7. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2015-05-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to, for example, short-term temporal variability in wind speed, atmospheric mixing height and atmospheric CO2 concentration. With this study, the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2w) has been developed for this coastal area based on available data from monitoring stations and on-board pCO2w measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short-term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010, the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short-term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2w fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer

  8. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2014-12-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to e.g. short-term temporal variability in wind speed, atmospheric mixing height and the atmospheric CO2 concentration. With this study the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2) has been developed for this coastal area based on available data from monitoring stations and underway pCO2 measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010 the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish Straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2 fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer velocity

  9. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  10. Air--Sea CO2 Cycling in the Southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Else, Brent Gordon Thomas

    During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air-sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO 2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze-up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break-up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind-driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO 2sw in Amundsen Gulf, we derived an annual budget of air-sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of airsea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes---including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates

  11. Observational Buoy Studies of Coastal Air-Sea Fluxes.

    NASA Astrophysics Data System (ADS)

    Frederickson, Paul A.; Davidson, Kenneth L.

    2003-02-01

    Recent advancements in measurement and analysis techniques have allowed air-sea fluxes to be measured directly from moving platforms at sea relatively easily. These advances should lead to improved surface flux parameterizations, and thus to improved coupled atmosphere-ocean modeling. The Naval Postgraduate School has developed a `flux buoy' (FB) that directly measures air-sea fluxes, mean meteorological parameters, and one-dimensional and directional wave spectra. In this study, the FB instrumentation and data analysis techniques are described, and the data collected during two U.S. east coast buoy deployments are used to examine the impact of atmospheric and surface wave properties on air-sea momentum transfer in coastal ocean regions. Data obtained off Duck, North Carolina, clearly show that, for a given wind speed, neutral drag coefficients in offshore winds are higher than those in onshore winds. Offshore wind drag coefficients observed over the wind speed range from 5 to 21 m s1 were modeled equally well by a linear regression on wind speed, and a Charnock model with a constant of 0.016. Measurements from an FB deployment off Wallops Island, Virginia, show that neutral drag coefficients in onshore winds increase as the wind-wave direction differences increase, especially beyond ±60°.

  12. Climatic impacts of stochastic fluctuations in air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Williams, Paul D.

    2012-05-01

    Air-sea fluxes vary partly on scales that are too small or fast to be resolved explicitly by global climate models. This paper proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate. The paper then demonstrates the mechanism in climate simulations with a comprehensive coupled general circulation model. Significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  13. Spatial and temporal variability of air-sea CO2 exchange of alongshore waters in summer near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2014-03-01

    Alongshore water off Barrow, Alaska is a useful area for studying the carbon cycle of the Arctic coastal sea, because the different coastal characteristics extant in the area likely represent much larger regions of the coastal water of the western Arctic Ocean. Especially noteworthy is the inflow shelf water transferred northward by the Arctic Coastal Current into the Chukchi Sea from the North Pacific and turbid water in the Elson Lagoon where a significant amount of coastal erosion has been reported along the extensive coastal line and where a part of the water from the lagoon drains into the Beaufort Sea adjacent to the Chukchi Sea. To investigate spatial and temporal variations of air-sea CO2 flux (CO2 flux) of the alongshore water, partial pressure of CO2 of surface seawater (pCO2sw) was measured in summer, 2007 and 2008, and CO2 flux was directly measured by eddy covariance at a fixed point for the Beaufort Sea in summer 2008. Measured pCO2sw in the Chukchi Sea side was the lowest in the beginning of the measurement season and increased later in the season both in 2007 and 2008. The average CO2 flux estimated based on pCO2sw in the Chukchi Sea side was -0.10 μmol m-2 s-1 (±0.1 s.d.) using the sign convention of positive fluxes into the atmosphere from the ocean. pCO2sw in the Beaufort Sea and the Elson Lagoon was relatively higher in early summer and decreased in the middle of the summer. The overall average CO2 flux was -0.07 μmol m-2 s-1 (±0.1 s.d.) for the Beaufort Sea side and -0.03 μmol m-2 s-1 (±0.07 s.d.) for the Elson Lagoon respectively, indicating a sink of CO2 despite high carbon inflows from the terrestrial margin into the Elson Lagoon. A strong sink of CO2 was often observed from the Beaufort Sea by eddy covariance in the middle of the summer. This sink activity in the middle summer in the Beaufort Sea and Elson Lagoon was likely due to biological carbon uptake as inferred by low apparent oxygen utilization and high chlorophyll

  14. Impact of Sea Spray on Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Mueller, James

    2013-11-01

    The contributions of sea spray drops to the total air-sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution: the number of drops formed at the ocean surface and the per-drop contribution to the fluxes. To estimate these per-droplet fluxes, we present results from a large number of drop trajectories, which are simulated with a recently developed Lagrangian Stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. Then, using commonly accepted spray generation functions we present estimates of spray fluxes which account for the mediating feedback effects from the droplets on the atmosphere. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate. We further show that the spray fluxes may be especially sensitive to the size distribution of the drops. The total effective air-sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds. Funded by grants OCE-0850663 and OCE-0748767 from the National Science Foundation.

  15. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  16. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gao, Zhongyong; Chen, Liqi; Sun, Heng; Chen, Baoshan; Cai, Wei-Jun

    2012-12-01

    The uptake of carbon dioxide (CO2) by the Arctic Ocean is most likely increasing because of the rapid sea-ice retreat that lifted the barriers preventing gas exchange and light penetration for biological growth. Measurements of atmospheric and surface sea water partial pressure of CO2 (pCO2) were conducted during the Chinese National Arctic Research Expedition (CHINARE) cruises from July to September in 2003 and 2008. The latitudinal distribution of pCO2 along the 169°W transect showed a below-atmopsheric pCO2 level in most of the Western Arctic Ocean, with distinct regional differences from Bering Strait northward to the Central Acrctic Ocean. The average air-sea CO2 fluxes on the shelf and slope of the Chukchi Sea were -17.0 and -8.1 mmol m-2 d-1 respectively. In the ice-free zone, the partially ice-covered zone, and the heavily ice-covered zone of the Canada Basin, the fluxes were -4.2, -8.6, -2.5 mmol m-2 d-1 respectively. These rates are lower than other recent estimates. Our new results not only confirmed previous observations that most areas of the Western Arctic Ocean were a CO2 sink in general, but they also revealed that the previously unsampled central basins were a moderate CO2 sink. Analysis of controlling factors in different areas shows that pCO2 in Bering Strait was influenced not only by the Bering inflow waters but also by the high biological production. However, pCO2 fluctuated sharply because of strong water mixing both laterally and vertically. In the marginal ice zone (Chukchi Sea), pCO2 was controlled by ice melt and biological production, both of which would decrease pCO2 onshore of the ice edge. In the nearly ice-free southern Canada Basin, pCO2 increasd latitudinally as a result of atmospheric CO2 uptake due to intensive gas exchange, increased temperature, and decresed biological CO2 uptake due to limited nutrient supply. Finally, pCO2 was moderately lower than the atmospheric value and was relatively stable under the ice sheet of the

  17. Air-sea gas transfer for two gases of different solubility (CO2 and O2)

    NASA Astrophysics Data System (ADS)

    Rutgersson, A.; Andersson, A.; Sahlée, E.

    2016-05-01

    At the land-based marine measuring site Östergarnsholm in the Baltic Sea, the eddy covariance technique was used to measure air-sea fluxes of carbon dioxide and oxygen. High- frequency measurements of oxygen were taken with a Microx TX3 optode using the luminescence lifetime technique. The system gives reasonable oxygen fluxes after the limited frequency response of the sensor was corrected for. For fluxes of carbon dioxide the LICOR-7500 instrument was used. Using flux data to estimate transfer velocities indicates higher transfer velocity for oxygen compared to carbon dioxide for winds above 5 m/s. There are too few data for any extensive conclusions, but a least-square fit of the data gives a cubic wind speed dependence of oxygen corresponding to k 660 = 0.074U 3 10. The more effective transfer for oxygen compared to carbon dioxide above 5 m/s is most likely due to enhanced efficiency of oxygen exchange across the surface. Oxygen has lower solubility compared with carbon dioxide and might be more influenced by near surface processes such as microscale wave breaking or sea spray.

  18. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  19. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  20. Decadal trends in air-sea CO2 exchange in the Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Arrigo, Kevin R.

    2016-05-01

    Highly productive Antarctic shelf systems, like the Ross Sea, play important roles in regional carbon budgets, but the drivers of local variations are poorly quantified. We assess the variability in the Ross Sea carbon cycle using a regional physical-biogeochemical model. Regionally, total partial pressure of CO2 (pCO2) increases are largely controlled by the biological pump and broadly similar to those in the offshore Southern Ocean. However, this masks substantial local variability within the Ross Sea, where interannual fluctuations in total pCO2 are driven by the biological pump and alkalinity, whereas those for anthropogenic pCO2 are related to physical processes. Overall, the high degree of spatial variability in the Ross Sea carbon cycle causes extremes in aragonite saturation that can be as large as long-term trends. Therefore, Antarctic shelf polynya systems like the Ross Sea will be strongly affected by local processes in addition to larger-scale phenomena.

  1. Climatic Impacts of a Stochastic Parameterization of Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The atmosphere and ocean are coupled by the exchange of fluxes across the ocean surface. Air-sea fluxes vary partly on scales that are too small and fast to be resolved explicitly in numerical models of weather and climate, making them a candidate for stochastic parameterization. This presentation proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even though the mean fluctuation is zero. The mechanism relies on a fundamental asymmetry in the physics of the ocean mixed layer: positive surface buoyancy fluctuations cannot undo the vertical mixing caused by negative fluctuations. The mechanism has much in common with Stommel's mixed-layer demon. The presentation demonstrates the mechanism in climate simulations with a comprehensive coupled atmosphere-ocean general circulation model (SINTEX-G). In the SINTEX-G simulations with stochastic air-sea buoyancy fluxes, significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  2. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  3. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  4. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  5. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    NASA Astrophysics Data System (ADS)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  6. An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Chang, You-Soon; Drevillon, Marie; Ferry, Nicolas; Fujii, Yosuke; Köhl, Armin; Storto, Andrea; Toyoda, Takahiro; Wang, Xiaochun; Waters, Jennifer; Xue, Yan; Yin, Yonghong; Barnier, Bernard; Hernandez, Fabrice; Kumar, Arun; Lee, Tong; Masina, Simona; Andrew Peterson, K.

    2015-10-01

    Sixteen monthly air-sea heat flux products from global ocean/coupled reanalyses are compared over 1993-2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993-2009 of 4.2 ± 1.1 W m-2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1-2 W m-2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m-2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m-2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S-15°N) over 2007-2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001-2009, also show the ORA-IP ensemble has 16 W m-2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

  7. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  8. The spatial-temporal variability of air-sea momentum fluxes observed at a tidal inlet

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Laxague, N. J. M.; Reniers, A. J. H. M.; Graber, H. C.

    2015-02-01

    Coastal waters are an aerodynamically unique environment that has been little explored from an air-sea interaction point of view. Consequently, most studies must assume that open ocean-derived parameterizations of the air-sea momentum flux are representative of the nearshore wind forcing. Observations made at the New River Inlet in North Carolina, during the Riverine and Estuarine Transport experiment (RIVET), were used to evaluate the suitability of wind speed-dependent, wind stress parameterizations in coastal waters. As part of the field campaign, a small, agile research vessel was deployed to make high-resolution wind velocity measurements in and around the tidal inlet. The eddy covariance method was employed to recover direct estimates of the 10 m neutral atmospheric drag coefficient from the three-dimensional winds. Observations of wind stress angle, near-surface currents, and heat flux were used to analyze the cross-shore variability of wind stress steering off the mean wind azimuth. In general, for onshore winds above 5 m/s, the drag coefficient was observed to be two and a half times the predicted open ocean value. Significant wind stress steering is observed within 2 km of the inlet mouth, which is observed to be correlated with the horizontal current shear. Other mechanisms such as the reduction in wave celerity or depth-limited breaking could also play a role. It was determined that outside the influence of these typical coastal processes, the open ocean parameterizations generally represent the wind stress field. The nearshore stress variability has significant implications for observations and simulations of coastal transport, circulation, mixing, and general surf-zone dynamics.

  9. Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.

    2015-12-01

    The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.

  10. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  11. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  12. Global CO2 simulation using GOSAT-based surface CO2 flux estimates

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Oda, T.; Saito, M.; Valsala, V.; Belikov, D.; Saeki, T.; Saito, R.; Morino, I.; Uchino, O.; Yoshida, Y.; Yokota, Y.; Bril, A.; Oshchepkov, S.; Andres, R. J.; Maksyutov, S.

    2012-04-01

    Investigating the distribution and temporal variability of surface CO2 fluxes is an active research topic in the field of contemporary carbon cycle dynamics. The technique central to this effort is atmospheric inverse modeling with which surface CO2 fluxes are estimated by making corrections to a priori flux estimates such that mismatches between model-predicted and observed CO2 concentrations are minimized. Past investigations were carried out by utilizing CO2 measurements collected in global networks of surface-based monitoring sites. Now, datasets of column-averaged CO2 dry air mole fraction (XCO2) retrieved from spectral soundings collected by GOSAT are available for complementing the surface-based CO2 observations. These space-based XCO2 data are expected to enhance the spatiotemporal coverage of the existing surface observation network and thus reduce uncertainty associated with the surface flux estimates. We estimated monthly CO2 fluxes in 64 sub-continental regions from a subset of the surface-based GLOBALVIEW CO2 data and the GOSAT FTS SWIR Level 2 XCO2 retrievals. We further simulated CO2 concentrations in 3-D model space using the surface flux estimates obtained. In this presentation, we report the result of a comparison between the simulated CO2 concentrations and independent surface observations. As part of an effort in inter-comparing GOSAT-based surface CO2 flux estimates, we also look at results yielded with XCO2 data retrieved with the PPDF-DOAS algorithm and those made available by the NASA Atmospheric CO2 Observations from Space team. For this study, we used version 08.1 of the National Institute for Environmental Studies atmospheric transport model, which was driven by the Japan Meteorological Agency's JCDAS wind analysis data. The CO2 forward simulations were performed on 2.5° × 2.5° horizontal grids at 32 vertical levels between the surface and the top of the atmosphere. The a priori flux dataset used was comprised of the sum of four

  13. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  14. Soil surface CO2 fluxes on the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  15. Assessment of CO2 flux measurements in different soil types

    NASA Astrophysics Data System (ADS)

    Xia, L.; Szlavecz, K.; Musaloiu, R.; Cupchup, J.; Pitz, S.

    2008-12-01

    Accurate measurements of soil CO2 efflux are extraordinarily challenging due to the very properties of CO2 transport in a porous medium of soil. The most commonly used method today is the chamber method, which provides direct measurements of CO2 efflux at the soil surface, but it can not measure the soil CO2 flux continuously. In order to develop new measurement methods in soil CO2 efflux, small solid-state CO2 sensors have been used to continuously to monitor soil CO2 profiles by burying these sensors at different soil depths. Using this method we compared soil CO2 efflux of four different soil types: forests soil, grassland soil (collected in Maryland) commercial potting soil and pure sand as control. CO2 concentration varied between 500 ppm in sand and 8000 ppm in forest soil at depth 12 cm. CO2 flux had the following order: Forest (0.3~0.4 mg CO2 m-2 s-1), potting soil (0.1~0.14 mg CO2 m-2 s-1 ), grassland (0.03~0.05 mg CO2 m-2 s-1), sand ( 0 mg CO2 m-2 s-1 ). Exponential relationship between temperature and CO2 flux was established for forest soil and potting soil only. Leaf litter, often thick layer in many terrestrial ecosystems and a significant source of CO2 production, is not part of the of the diffusivity models. We are currently conducting experiments which include the effect of leaf litter and soil invertebrates into soil respiration.

  16. Constraining the climatology of CO2 ocean surface flux for North Atlantic and the Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2015-04-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, constraining the net flux into the ocean sink is crucial for understanding the global carbon cycle. The air-sea interface flux is calculated from millions of measurements of CO2 partial pressures. However the regional and temporal means depend on parametrization of gas transfer velocity as well as on the wind/waves fields used for calculations. A recently developed tool, FluxEngine, created within the ESA funded (SOLAS related) OceanFlux Greenhouse Gases project, creates an opportunity to create an ensemble of regional CO2 flux climatologies for the North Atlantic and Arctic waters using multiple combinations of forcing fields and gas transfer velocity parameterizations. The aim of the study is to provide constraints on the regional monthly averages for the chosen area for the whole "climatology ensemble". This approach is similar to the one used by IPCC for the whole model ensemble used for modeling of the climate. Doing a regional study provides an additional test of the parameterizations because the local flux averages may differ even for parameterizations giving similar global averages. We present the methodology and CO2 flux climatology constrains for selected regions and seasons, the preliminary results of a study which aim is to cover the whole North Atlantic and ice-free areas of Arctic Ocean. The study is done within the new ESA funded OceanFlux Evolution project we are part of and at the same time is part of a PhD thesis funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science).

  17. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D

  18. A review of the sources of uncertainties when estimating global-scale turbulent air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Brodeau, Laurent; Barnier, Bernard

    2015-04-01

    Bulk formulae are used to estimate turbulent air-sea fluxes needed to provide surface boundary conditions to most of present-day OGCMs, AGCMs and coupled Earth systems. This study aims at making an inventory of the major sources of uncertainties and errors made when estimating turbulent air-sea fluxes with the bulk method, namely wind stress, evaporation (latent heat flux) and sensible heat flux. We use 6-hourly near-surface atmospheric fields and daily SST of ERA-Interim to compute global estimates of these fluxes during the last three decades. Those fluxes are computed using different bulk routines and different types of physical and numerical simplifications widely used within the GCM community. Moreover, to assess the sensitivity of these flux estimates to possible errors in the input atmospheric fields and SST, user-controlled biases are applied to each of these fields prior to bulk computation. As a result, a quantification of the potential sources of uncertainties related to the accuracy of both the parametrization and input fields is proposed. Any parametrization-related approximation can also be expressed in terms of a bias on a given input field. We find that the largest source of flux uncertainties is the choice of the bulk algorithm used to estimate the bulk transfer coefficients. The resulting disagreement in terms of globally-averaged heat flux and evaporation is 8 W/m2 and 1 Sv. In mid latitudes, this heat flux disagreement is about 10 W/m2, which independently compares to a bias of 1 m/s in surface wind speed, 3° in SST, 0.5° in surface temperature, or a modification of 5% in the surface humidity. Our study also underlies the relative importance of the accuracy of the estimate of the air density and the specific humidity at saturation.

  19. Can subterranean cave systems affect soil CO2 fluxes?

    NASA Astrophysics Data System (ADS)

    Krajnc, Bor; Ferlan, Mitja; Ogrinc, Nives

    2015-04-01

    Main factors affecting soil CO2 fluxes in most ecosystems are soil temperature and soil moisture. Nevertheless occasionally high soil CO2 fluxes were observed at carst areas, which could result from ventilation of subterranean cavities (Ferlan et al., 2011). The aim of this work was to determine the influence of cave ventilation to soil CO2 fluxes. Research was done in a dead-end passage of Postojna cave (Pisani rov) and on the surface area above the passage (Velika Jeršanova dolina) in south-western Slovenia. Inside the cave we measured CO2 concentrations, its carbon (13C) stable isotope composition, 222Rn activity concentrations, temperatures and air pressure. At the surface we had chosen two sampling plots; test plot above the cave and control. At both plots we measured soil CO2 fluxes with automatic chambers, CO2 concentrations, temperatures and carbon stable isotope composition of soil air at three different depths (0.2 m, 0.5 m and 0.8 m) and different meteorological parameters such as: air temperature, air pressure, wind speed an precipitation. To detect the cave influence, we compared two surface CO2 flux measurements with air temperatures and changes of CO2 concentrations in the cave atmosphere. Our results on CO2 concentrations in the gallery of the cave indicated that the ventilation of this particular gallery also depends on outside air temperatures. Outside temperature increased and corresponded to higher CO2 concentrations, whereas at lower temperatures (T < 9 oC) cave started to ventilate and exhaled CO2 reach air through unknown fissures and cracks. At the control plot the soil CO2 fluxes were in a good correlation with soil temperatures (r = 0.789, p =0.01), where greater soil temperatures correspond to greater soil CO2 fluxes. Soil CO2 fluxes at the plot above the cave did not show statistically significant correlations with soil temperatures or soil moisture indicating that other factors possibly cave ventilation could influence it. References

  20. Direct measurements of CO2 flux in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, Siv K.; McGillis, Wade R.; Bariteau, Ludovic; Fairall, C. W.; Johannessen, Truls; Olsen, Are; Zappa, Christopher J.

    2011-06-01

    During summer 2006 eddy correlation CO2 fluxes were measured in the Greenland Sea using a novel system set-up with two shrouded LICOR-7500 detectors. One detector was used exclusively to determine, and allow the removal of, the bias on CO2 fluxes due to sensor motion. A recently published correction method for the CO2-H2O cross-correlation was applied to the data set. We show that even with shrouded sensors the data require significant correction due to this cross-correlation. This correction adjusts the average CO2 flux by an order of magnitude from -6.7 × 10-2 mol m-2 day-1 to -0.61 × 10-2 mol m-2 day-1, making the corrected fluxes comparable to those calculated using established parameterizations for transfer velocity.

  1. CO2 fluxes near a forest edge: a numerical study.

    PubMed

    Sogachev, Andrey; Leclerc, Monique Y; Zhang, Gengsheng; Rannik, Ullar; Vesala, Timo

    2008-09-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated in the upper part of the canopy. These results can be useful both for interpretation of existing measurements of net ecosystem exchange of CO2 (NEE) from flux towers in limited fetch conditions and in planning future CO2 transport experiments. PMID:18767622

  2. Quantifying the "chamber effect" in CO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  3. [CO2 fluxes in mire and grassland on Ruoergai plateau].

    PubMed

    Wang, De-Xuan; Song, Chang-Chun; Wang, Yi-Yong; Zhao, Zhi-Chun

    2008-02-01

    With closed chamber and GC technique, a comparative study was conducted on the CO2 fluxes in mire and grassland on Ruoergai plateau during the plant growth period in 2003-2005. The results showed that the mean value of the CO2 fluxes in the three years was 203.22 mg x m(-2) x h(-1) in mire and 323.03 mg x m(-2) x h(-1) in grassland, with the former being only about 60% of the latter. The perennially water-logging of mire limited the decomposition of plant residues, roots and organic substances, resulting in a lower CO2 flux in mire than in grassland. The seasonal changes of CO2 fluxes in mire and grassland were positively correlated with air temperature, the peak value being usually appeared in July or August, and the diurnal changes of the CO2 fluxes were also positively correlated with air temperature, the peak value being usually appeared between 11:00 and 17:00. The CO2 fluxes had a higher correlation with the soil temperature at the depth of 5 cm than at the depths of 10 cm and 15 cm. PMID:18464633

  4. Open ocean gas transfer velocity derived from long-term direct measurements of the CO2 flux

    NASA Astrophysics Data System (ADS)

    Prytherch, John; Yelland, Margaret J.; Pascal, Robin W.; Moat, Bengamin I.; Skjelvan, Ingunn; Srokosz, Meric A.

    2010-12-01

    Air-sea open ocean CO2 flux measurements have been made using the Eddy Covariance (EC) technique onboard the weathership Polarfront in the North Atlantic between September 2006 and December 2009. Flux measurements were made using an autonomous system ‘AutoFlux’. CO2 mass density was measured with an open-path infrared gas analyzer. Following quality control procedures, 3938 20-minute flux measurements were made at mean wind speeds up to 19.6 m/s, significantly higher wind speeds than previously published results. The uncertainty in the determination of gas transfer velocities is large, but the mean relationship to wind speed allows a new parameterisation of the gas transfer velocity to be determined. A cubic dependence of gas transfer on wind speed is found, suggesting a significant influence of bubble-mediated exchange on gas transfer.

  5. High temporal resolution dynamics of wintertime soil CO2 flux

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; McArthur, G. S.; Nickerson, N. R.; Beltrami, H.

    2009-12-01

    Few studies have undertaken soil CO2 flux measurements during winter, despite the fact that even in temperate zones, winter-like conditions may persist for one-third of the year or more. When growing season monitoring equipment is stowed for the winter, we potentially miss a large portion of the carbon budget, and may also fail to develop an adequate appreciation of winter c production dynamics. These are critical gaps, especially with respect to soil carbon stability and CO2 emissions in northern and permafrost areas, which are expected to accelerate as a consequence of climate change and which may create a positive feedback on atmospheric CO2 concentrations. This study undertakes a thorough examination of overwinter soil CO2 dynamics at two contrasting sites; one with deeply frozen soils where snow cover is absent as a result of sustained high winds; and another site with heavy snow load (>150 cm typical) where soils underneath remain frost-free because of snowpack insulation. Our overwinter soil-surface CO2 flux measurements were facilitated by use of a new instrumental technique called Continuous Timeseries - Forced Diffusion (CT-FD) to record soil CO2 fluxes continuously at a temporal resolution of 60 seconds. The high frequency monitoring allows us to look not only at magnitudes of change and carbon budgets, but also in detail at the temporal characteristics of response to environmental forcings. Here, we concentrate our analysis on rates of change near critical thresholds such as freeze-thaw. At the deep snowpack site where soil frost was absent, we observed pronounced diurnal cyclicity in CO2 flux even under a >150 cm snowpack, marked moisture response after midwinter rain events, and a springtime respiratory burst that began slightly before full snowpack melt. The CO2 emission dynamics from the frozen soils of the snow-free site were dominated by respiratory bursts at freeze-thaw thresholds when solar heating and warm air temperatures created a thin active

  6. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    PubMed Central

    Mayol, Eva; Jiménez, María A.; Herndl, Gerhard J.; Duarte, Carlos M.; Arrieta, Jesús M.

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 104 and 1.6 × 107 microbes per m2 of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m2 every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  7. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  8. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  9. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N

    NASA Astrophysics Data System (ADS)

    Kelley, Cheryl A.; Jeffrey, Wade H.

    2002-07-01

    Water column samples from a transect cruise from southern Chile through the Panama Canal to the Gulf of Mexico were used to determine dissolved methane depth profiles and air-sea methane fluxes. In the Gulf of Mexico, surface concentrations were approximately 40% supersaturated with respect to the atmosphere, whereas near the equator and in the Peru upwelling region, 10-20% supersaturation generally occurred. These saturation ratios translate into an average flux of methane from the sea surface to the atmosphere of 0.38 μmol m-2 d-1. In addition, water column profiles of dissolved methane indicate that subsurface maxima in dissolved methane concentrations are a consistent feature of the open ocean, except near the equator. At the equator, the subsurface peak at the base of the mixed layer may be bowed down by the Equatorial Undercurrent. The highest methane concentration (12 nM) was observed in the Peru upwelling region.

  10. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  11. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2016-06-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  12. Measuring Regional CO2 Fluxes Using a Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Martins, D. K.; Sweeney, C.; Stirm, B. H.; Shepson, P. B.

    2008-12-01

    The difficulty of measuring regional fluxes of CO2 has limited our understanding of the global carbon budget and the processes controlling carbon exchange across politically relevant spatial scales. A Lagrangian experiment was conducted over Iowa on June 19, 2007 as part of the North American Carbon Program's Mid-Continent Intensive using a light-weight, cost-effective aircraft to measure a net drawdown of CO2 concentration within the boundary layer. The drawdown is related to photosynthetic uptake when emission footprints are considered using a combination of emission inventories from the Vulcan project and HYSPLIT source contributions. Entrainment through the top of the boundary layer is measured directly using turbulence measurements from an onboard probe capable of measuring winds in 3-dimensions. Results show a total average CO2 flux of -5.3±0.7 μmol m-2 s-1. The average flux from fossil fuels over the measurement area is 2.8±0.4 μmol m-2 s-1. Thus, the CO2 flux attributable to the vegetation is -8.1±0.8 μmol m-2 s-1. The magnitude of the vegetative flux is comparable to other studies using the Lagrangian approach, but it is smaller than tower- based eddy covariance fluxes over the same period and measurement area. Sensitivities to analysis procedures and discrepancies between aircraft and tower-based measurements are discussed. We describe an aircraft Lagrangian experiment that offers direct, reliable, and cost-effective means for measuring CO2 fluxes at regional scales that can be used to compare to ecosystem models or to satellite measurements.

  13. Detecting regional patterns of changing CO2 flux in Alaska.

    PubMed

    Parazoo, Nicholas C; Commane, Roisin; Wofsy, Steven C; Koven, Charles D; Sweeney, Colm; Lawrence, David M; Lindaas, Jakob; Chang, Rachel Y-W; Miller, Charles E

    2016-07-12

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511

  14. Detecting regional patterns of changing CO2 flux in Alaska

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.

    2016-07-01

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

  15. Detecting anomalous CO 2 flux using space borne spectroscopy

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Prasun K.; van der Meer, Freek; van Dijk, Paul

    2009-02-01

    Over the time-scale, earth's atmospheric CO 2 concentration has varied and that is mostly determined by balance among the geochemical processes including burial of organic carbon in sediments, silicate rock weathering and volcanic activity. The best recorded atmospheric CO 2 variability is derived from Vostok ice core that records last four glacial/interglacial cycles. The present CO 2 concentration of earth's atmosphere has exceeded far that it was predicted from the ice core data. Other than rapid industrialization and urbanization since last century, geo-natural hazards such as volcanic activity, leakage from hydrocarbon reservoirs and spontaneous combustion of coal contribute a considerable amount of CO 2 to the atmosphere. Spontaneous combustion of coal is common occurrence in most coal producing countries and sometimes it could be in an enormous scale. Remote sensing has already proved to be a significant tool in coalfire identification and monitoring studies. However, coalfire related CO 2 quantification from remote sensing data has not endeavoured yet by scientific communities because of low spectral resolution of commercially available remote sensing data and relatively sparse CO 2 plume than other geological hazards like volcanic activity. The present research has attempted two methods to identify the CO 2 flux emitted from coalfires in a coalmining region in north China. Firstly, a band rationing method was used for column atmospheric retrieval of CO 2 and secondly atmospheric models were simulated in fast atmospheric signature code (FASCOD) to understand the local radiation transport and then the model was implemented with the inputs from hyperspectral remote sensing data. It was observed that retrieval of columnar abundance of CO 2 with the band rationing method is faster as less simulation required in FASCOD. Alternatively, the inversion model could retrieve CO 2 concentration from a (certain) source because it excludes the uncertainties in the higher

  16. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  17. CO2 Flux Inversion Error Analyses for Future Active Space CO2 Missions like ASCENDS

    NASA Astrophysics Data System (ADS)

    Baker, D. F.; Kawa, S. R.; Rayner, P. J.; Browell, E. V.; Menzies, R. T.; Abshire, J. B.

    2011-12-01

    We assess the ability of different proposed CO2 lidar measurement approaches to constrain surface CO2 fluxes, as part of the development of science requirements for NASA's ASCENDS mission. Observing system simulation experiments (OSSEs) are performed for different overall measurement uncertainty levels and vertical weightings to determine what designs will yield useful new information on the global carbon cycle. The OSSEs are based on a variational data assimilation method that models the measurements at the time and location they occur with minimal averaging and solves for the surface fluxes at regional spatial scales. Measurements are simulated using the PCTM off-line atmospheric transport model driven by GEOS5 analysis data (winds and vertical mixing parameters) and forced by realistic modeled CO2 fluxes. Both day- and night-side fluxes are estimated in weekly blocks at 4.5°x6° resolution (lat/lon) using a full year of simulated data. Error estimates are computed by direct comparison to the known truth; only random errors in the measurements and assumed flux prior are considered here. Relative measurement uncertainties and vertical averaging kernels have been derived for lidar measurements made using CO2 absorption lines in the 1.57 and 2.06 micron bands using realistic assumptions about clouds, aerosols, and surface reflectivity taken from CALIPSO and MODIS. Two measurement cases are considered for the 1.57 μm band, one using a vertical weighting function weighted to the mid- to lower troposphere, and one combining this with a function peaking near the tropopause. A third case is considered for measurements in the 2.06 μm band, with a vertical weighting peaking strongly near the surface. For each of these cases, three overall measurement uncertainty levels are examined (tied to reference uncertainties of 1.0, 0.5, and 0.2 ppm (1σ) at Railroad Valley, Nevada). OSSEs with simple measurement biases are run to test how the random-error-only findings hold in

  18. CO2 fluxes in the Tropical Atlantic during FOCAL cruises

    NASA Astrophysics Data System (ADS)

    Andrié, Chantal; Oudot, Claude; Genthon, Christophe; Merlivat, Liliane

    1986-10-01

    CO2 partial pressures in the atmosphere and in surface seawater have been measured in the equatorial Atlantic Ocean during Programme Français Océan-Climat en Atlantique Equatorial cruises extending from July 1982 to August 1984 along the 4°W, 22°W, and 35°W meridians. Gas transfer coefficients based on recently reported field data combined with information deduced from wind tunnel experiments are used to compute the CO2 fluxes. The global mean net flux between 5°N and 5°S is equal to 1.05 mmol m-2 d-1 and is from the ocean to the atmosphere. The escape of CO2 increases strongly from the east to the west and is always lower in the north than in the south. The importance of wind speed, pCO2 in atmosphere, PCO2 in surface seawater, and temperature on the flux variability is discussed. The relative influence of the equatorial upwelling on one hand and of the advection and warming of surface waters on the other hand is studied in order to explain high partial pressure in seawater.

  19. An overview of sea state conditions and air-sea fluxes during RaDyO

    NASA Astrophysics Data System (ADS)

    Zappa, Christopher J.; Banner, Michael L.; Schultz, Howard; Gemmrich, Johannes R.; Morison, Russel P.; Lebel, Deborah A.; Dickey, Tommy

    2012-07-01

    Refining radiative-transfer modeling capabilities for light transmission through the sea surface requires a more detailed prescription of the sea surface roughness beyond the probability density function of the sea surface slope field. To meet this need, exciting new measurement methodologies now provide the opportunity to enhance present knowledge of sea surface roughness, especially at the microscale. In this context, two intensive field experiments using R/PFloating Instrument Platformwere staged within the Office of Naval Research's Radiance in a Dynamic Ocean (RaDyO) field program in the Santa Barbara Channel and in the central Pacific Ocean south of Hawaii. As part of this program, our team gathered and analyzed a comprehensive suite of sea surface roughness measurements designed to provide optimal coverage of fundamental optical distortion processes associated with the air-sea interface. This contribution describes the ensemble of instrumentation deployed. It provides a detailed documentation of the ambient environmental conditions that prevailed during the RaDyO field experiments. It also highlights exciting new sea surface roughness measurement capabilities that underpin a number of the scientific advances resulting from the RaDyO program. For instance, a new polarimetric imaging camera highlights the complex interplay of wind and surface currents in shaping the roughness of the sea surface that suggests the traditional Cox-Munk framework is not sufficient. In addition, the breaking crest length spectral density derived from visible and infrared imagery is shown to be modulated by the development of the wavefield (wave age) and alignment of wind and surface currents at the intermediate (dominant) scale of wave breaking.

  20. THE USDA-ARS CO2 FLUX NETWORK: VARIATION IN RANGELAND CO2 FLUX ACROSS YEARS AND ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research effort involved numerous ARS rangeland and pasture scientists from ten western states (ND, OK, TX, AZ, CO, WY, MT, UT, ID, OR) in cooperation with the Texas A&M University Blackland Research Center. The project focused on assessment of CO2 flux over native rangeland at each of the loc...

  1. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in delta37Cl--a statistical inference.

    PubMed

    Shirodkar, P V; Xiao, Y K; Sarkar, A; Dalal, S G; Chivas, A R

    2006-02-01

    The behaviors of chlorine isotopes in relation to air-sea flux variables have been investigated through multivariate statistical analyses (MSA). The MSA technique provides an approach to reduce the data set and was applied to a set of 7 air-sea flux variables to supplement and describe the variation in chlorine isotopic compositions (delta37Cl) of ocean water. The variation in delta37Cl values of surface ocean water from 51 stations in 4 major world oceans--the Pacific, Atlantic, Indian and the Southern Ocean has been observed from -0.76 to +0.74 per thousand (av. 0.039+/-0.04 per thousand). The observed delta37Cl values show basic homogeneity and indicate that the air-sea fluxes act differently in different oceanic regions and help to maintain the balance between delta37Cl values of the world oceans. The study showed that it is possible to model the behavior of chlorine isotopes to the extent of 38-73% for different geographical regions. The models offered here are purely statistical in nature; however, the relationships uncovered by these models extend our understanding of the constancy in delta37Cl of ocean water in relation to air-sea flux variables. PMID:16214214

  2. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  3. Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions

    NASA Astrophysics Data System (ADS)

    Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale

    2014-05-01

    Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between

  4. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  5. (13) CO2 /(12) CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components.

    PubMed

    Gong, Xiao Ying; Schäufele, Rudi; Feneis, Wolfgang; Schnyder, Hans

    2015-11-01

    Leaks and isotopic disequilibria represent potential errors and artefacts during combined measurements of gas exchange and carbon isotope discrimination (Δ). This paper presents new protocols to quantify, minimize, and correct such phenomena. We performed experiments with gradients of CO2 concentration (up to ±250 μmol mol(-1) ) and δ(13) CCO2 (34‰), between a clamp-on leaf cuvette (LI-6400) and surrounding air, to assess (1) leak coefficients for CO2 , (12) CO2 , and (13) CO2 with the empty cuvette and with intact leaves of Holcus lanatus (C3 ) or Sorghum bicolor (C4 ) in the cuvette; and (2) isotopic disequilibria between net photosynthesis and dark respiration in light. Leak coefficients were virtually identical for (12) CO2 and (13) CO2 , but ∼8 times higher with leaves in the cuvette. Leaks generated errors on Δ up to 6‰ for H. lanatus and 2‰ for S. bicolor in full light; isotopic disequilibria produced similar variation of Δ. Leak errors in Δ in darkness were much larger due to small biological : leak flux ratios. Leak artefacts were fully corrected with leak coefficients determined on the same leaves as Δ measurements. Analysis of isotopic disequilibria enabled partitioning of net photosynthesis and dark respiration, and indicated inhibitions of dark respiration in full light (H. lanatus: 14%, S. bicolor: 58%). PMID:25944155

  6. Direct Measurement of CO2 Fluxes in Marine Whitings

    SciTech Connect

    Lisa L. Robbins; Kimberly K. Yates

    2001-07-05

    Clean, affordable energy is a requisite for the United States in the 21st Century Scientists continue to debate over whether increases in CO{sub 2} emissions to the atmosphere from anthropogenic sources, including electricity generation, transportation and building systems may be altering the Earth's climate. While global climate change continues to be debated, it is likely that significant cuts in net CO{sub 2} emissions will be mandated over the next 50-100 years. To this end, a number of viable means of CO{sub 2} sequestration need to be identified and implemented. One potential mechanism for CO{sub 2} sequestration is the use of naturally-occurring biological processes. Biosequestration of CO{sub 2} remains one of the most poorly understood processes, yet environmentally safe means for trapping and storing CO{sub 2}. Our investigation focused on the biogeochemical cycling of carbon in microbial precipitations of CaCO{sub 3}. Specifically, we investigated modern whitings (microbially-induced precipitates of the stable mineral calcium carbonate) as a potential, natural mechanism for CO{sub 2} abatement. This process is driven by photosynthetic metabolism of cyanobacteria and microalgae. We analyzed net air: sea CO{sub 2} fluxes, net calcification and photosynthetic rates in whitings. Both field and laboratory investigations have demonstrated that atmospheric CO{sub 2}decreases during the process of microbial calcification.

  7. Erosion-induced CO2 flux of small watersheds

    NASA Astrophysics Data System (ADS)

    Ni, Jinren; Yue, Yao; Borthwick, Alistair G. L.; Li, Tianhong; Miao, Chiyuan; He, Xiaojia

    2012-08-01

    Soil erosion not only results in severe ecological damage, but also interferes with soil organic carbon formation and decomposition, influencing the global green-house effect. However, there is controversy as to whether a typical small watershed presumed as the basic unit of sediment yield acts as a CO2 sink or source. This paper proposes a discriminant equation for the direction of CO2 flux in small watersheds, basing on the concept of Sediment Delivery Ratio (SDR). Using this equation, watersheds can be classified as Sink Watersheds, Source Watersheds, or Transition Watersheds, noting that small watersheds can act either as a CO2 sink or as a CO2 source. A mathematical model for calculating the two discriminant coefficients in the equation is set up to analyze the conditions under which each type of watershed would occur. After assigning the model parameter values at three levels (low, medium, and high), and considering 486 scenarios in total, the influences are examined for turnover rate of the carbon pool, erosion rate, deposition rate, cultivation depth and period. The effect of adopting conservation measures like residue return, contour farming, terracing, and conservation tillage is also analyzed. The results show that Sink Watersheds are more likely to result in conditions of high erosion rate, long cultivation period, high deposition rate, fast carbon pool turnover rate, and small depth of cultivation; otherwise, Source Watersheds would possibly occur. The results also indicate that residue return and conservation tillage are beneficial for CO2 sequestration.

  8. CO2-fluxing collapses metal mobility in magmatic vapour

    DOE PAGESBeta

    van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; Williams-Jones, A. E.

    2016-05-18

    Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanism for metalmore » deposition.« less

  9. Sensitivity of modelled sulfate radiative forcing to DMS concentration and air-sea flux formulation

    NASA Astrophysics Data System (ADS)

    Tesdal, J.-E.; Christian, J. R.; Monahan, A. H.; von Salzen, K.

    2015-09-01

    In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global mean radiative forcing is approximately linearly proportional to the global mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation balance. The effect of the spatial structure, however, generates statistically significant changes in the global mean concentrations of some aerosol species. The effect of seasonality on net radiative forcing is larger than that of spatial distribution, and is significant at global scale.

  10. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  11. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux

    NASA Astrophysics Data System (ADS)

    Maher, D. T.; Eyre, B. D.

    2012-03-01

    Estuaries are `hot spots' in the global carbon cycle, yet data on carbon dynamics, in particular air-sea CO2 fluxes, from autotrophic systems are rare. Estuarine carbon budgets were constructed for three geomorphically distinct warm temperate Australian estuaries over an annual cycle. All three estuaries were net autotrophic, with annual net ecosystem metabolism (NEM) ranging from 8 ± 13.4 molC m-2 yr-1 to 10 ± 14 molC m-2 yr-1. There was a net flux of CO2 from the atmosphere to the estuaries of between 0.4 ± 0.6 molC m-2 yr-1 and 2 ± 0.9 molC m-2 yr-1. Loading of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) to the estuaries varied markedly within and between the estuaries, and was directly related to freshwater inflow. While NEM was similar in all three estuaries, the ratio of benthic versus pelagic contributions to NEM differed, with NEM dominated by pelagic production in the river dominated system, benthic production dominating in the intermediate estuary, and equal contributions of benthic and pelagic production in the marine dominated lagoon. All three estuaries exported more organic carbon than was imported, fueled by additional organic carbon supplied by NEM. The estuaries essentially acted as bioreactors, transforming DIC to organic carbon. Burial of organic carbon ranged from 1.2 ± 0.3 molC m-2 yr-1 to 4.4 ± 1.2 molC m-2 yr-1 and represented up to half of NEM. The annual net uptake of atmospheric CO2 in these systems, along with previous estimates of the global estuarine CO2flux being based predominantly on heterotrophic, large river dominated estuarine systems, indicates that the global estimate of the estuarine air-water CO2flux may be over-estimated due to the lack of studies from autotrophic marine dominated estuaries.

  12. Measurement of Urban fluxes of CO2 and water

    NASA Astrophysics Data System (ADS)

    Grimmond, S.; Crawford, B.; Offerle, B.; Hom, J.

    2006-05-01

    Measurements of surface-atmosphere fluxes of carbon dioxide (FCO2) and latent heat in urban environments are rare even though cities are a major source of atmospheric CO2 and users of water. In this paper, an overview of urban FCO2 measurements will be presented to illustrate how and where such measurements are being conducted and emerging results to date. Most of these studies have been conducted over short periods of time; few studies have considered annual sources/sinks. More investigations have been conducted, and are planned, in European cities than elsewhere, most commonly in areas of medium density urban development. The most dense urban sites are significant net sources of carbon. However, in areas where there is large amounts of vegetation present, there is a net sink of carbon during the summertime. In the second part of the presentation, more detailed attention will be directed to an ongoing measurement program in Baltimore, MD (part of the Baltimore Ecosystem Study). Eddy covariance instrumentation mounted on a tall-tower at 41.2 m has continuously measured local-scale fluxes of carbon dioxide from a suburban environment since 2001. Several features make this particular study unique: 1) for an urban area, the study site is extensively vegetated, 2) the period of record (2001-2005) is among the longest available for urban FCO2 measurements, 3) both closed-path and open-path infrared gas analyzers are used for observations, and 4) several unique data quality control and gap-filling methods have been developed for use in an urban environment. Additionally, detailed surface datasets and GIS software are used to perform flux source area analysis. Results from Baltimore indicate that FCO2 is very dependent on source area land-cover characteristics, particularly the proportion of vegetated and built surfaces. Over the course of a year, the urban surface is a strong net source of CO2, though there is considerable inter-annual variability depending on

  13. A Synthesized Model-Observation Approach to Constraining Gross Urban CO2 Fluxes Using 14CO2 and carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    LaFranchi, B. W.; Campbell, J. E.; Cameron-Smith, P. J.; Bambha, R.; Michelsen, H. A.

    2013-12-01

    Urbanized regions are responsible for a disproportionately large percentage (30-40%) of global anthropogenic greenhouse gas (GHG) emissions, despite covering only 2% of the Earth's surface area [Satterthwaite, 2008]. As a result, policies enacted at the local level in these urban areas can, in aggregate, have a large global impact, both positive and negative. In order to address the scientific questions that are required to drive these policy decisions, methods are needed that resolve gross CO2 flux components from the net flux. Recent work suggests that the critical knowledge gaps in CO2 surface fluxes could be addressed through the combined analysis of atmospheric carbonyl sulfide (COS) and radiocarbon in atmospheric CO2 (14CO2) [e.g. Campbell et al., 2008; Graven et al., 2009]. The 14CO2 approach relies on mass balance assumptions about atmospheric CO2 and the large differences in 14CO2 abundance between fossil and natural sources of CO2 [Levin et al., 2003]. COS, meanwhile, is a potentially transformative tracer of photosynthesis because its variability in the atmosphere has been found to be influenced primarily by vegetative uptake, scaling linearly will gross primary production (GPP) [Kettle et al., 20027]. Taken together, these two observations provide constraints on two of the three main components of the CO2 budget at the urban scale: photosynthesis and fossil fuel emissions. The third component, respiration, can then be determined by difference if the net flux is known. Here we present a general overview of our synthesized model-observation approach for improving surface flux estimates of CO2 for the upwind fetch of a ~30m tower located in Livermore, CA, USA, a suburb (pop. ~80,000) at the eastern edge of the San Francisco Bay Area. Additionally, we will present initial results from a one week observational intensive, which includes continuous CO2, CH4, CO, SO2, NOx, and O3 observations in addition to measurements of 14CO2 and COS from air samples

  14. pCO2 in sea ice and CO2 fluxes estimates : where do we stand today ? (Invited)

    NASA Astrophysics Data System (ADS)

    Tison, J.; Delille, B.; Papakyriakou, T. N.; Vancoppenolle, M.; Carnat, G.; Geilfus, N.

    2009-12-01

    CO2 exchanges between sea ice and the atmosphere have long been considered as negligible, because of the insulating effect of the sea ice cover. There is now growing evidence from detailed sea ice microstructure studies, sea ice permeability models and “in situ” measurements of brine pC02 in sea ice that even if this is probably the case for deep winter periods, it is not for several months along the sea ice growth and decay cycle (autumn, spring and summer). Experimental work and field observations on the growth of young sea ice and early stages of sea ice warming in Spring indicate limited periods of CO2 degassing to the atmosphere (CO2 source), mainly as the result of enhanced pCO2 in the brine network linked to the physical process of brine concentration on cooling and potential dissolved CO2 increase during calcium carbonate precipitation. However, as the ice warms up in Spring and Summer, three mechanisms concur to quickly reverse the trend towards CO2 fluxes from the atmosphere to the sea ice cover (CO2 sink): a) dilution of brines from inclusions wall melting, b) dissolution of calcium carbonate precipitates and c) photosynthetic absorption from sympagic algae. This paper describes recent progress that has been made on four main forefronts within the last two years: a) extending our antarctic sea ice brine pCO2 and CO2 fluxes data set (ARISE - Australian Sector, 2003; ISPOL - Eastern Weddell Sea, 2004) with results from the Amundsen Sea (SIMBA cruise, N.B. Palmer, 2007) in the Spring, b) building up a new original Arctic sea ice brine pCO2 data set during the year-round IPY Canadian CFL experiment and discussing similarities between the two data sets and peculiarities of the Arctic one, c) updating our estimates of potential contribution of Antarctic sea ice fluxes to the whole Southern Ocean including a 3-D modeling approach of sea ice surface temperatures to derive CO2 fluxes and d) gaining better insights on the crucial role of the snow cover and

  15. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing

  16. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  17. Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured CO2 and evapotranspiration (ET) fluxes above a Chihuahuan desert grassland from 1996 through 2001. Averaged across six years, this ecosystem was a source (positive flux)of CO2 in every month. Over that period, sustained periods of carbon uptake (negative flux)were rare. Averaged across a...

  18. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  19. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-12-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea-ice-covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea-ice as "melt ponds" and below sea-ice as "interface waters") and mixed-layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At 19 stations, the salinity (∼0.5 to <6.5), dissolved inorganic carbon (DIC; ∼20 to <550 μmol kg-1) and total alkalinity (TA; ∼30 to <500 μmol kg-1) of above-ice melt pond water was low compared to the co-located underlying mixed layer. The partial pressure of CO2 (pCO2) in these melt ponds was highly variable (∼<10 to >1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (>8.2 to 10.8). All of the observed melt ponds had very low (<0.1) saturation states (Ω) for calcium carbonate (CaCO3) minerals such as aragonite (Ωaragonite). Our data suggest that sea-ice generated alkaline or acidic type melt pond water. This melt water chemistry dictates whether the ponds are sources of CO2 to the atmosphere or CO2 sinks. Below-ice interface water CO2-carbonate chemistry data also indicated substantial generation of alkalinity, presumably owing to dissolution of CaCO3 in sea-ice. The interface waters generally had lower pCO2 and higher pH/Ωaragonite than the co-located mixed layer beneath. Sea-ice melt thus contributed to the suppression of mixed-layer pCO2, thereby enhancing the surface ocean's capacity to uptake CO2 from the atmosphere. Our observations contribute to growing evidence that sea-ice CO2-carbonate chemistry is highly variable and its contribution to the complex factors that influence the balance of CO2 sinks and sources (and thereby ocean acidification) is difficult to

  20. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  1. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  2. Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.

    2006-01-01

    Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2.

  3. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.

    2014-09-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining

  4. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  5. Assessing the impact of urban land cover composition on CO2 flux

    NASA Astrophysics Data System (ADS)

    Becker, K.; Hinkle, C.

    2013-12-01

    Urbanization is an ever increasing trend in global land use change, and has been identified as a key driver of CO2 emissions. Therefore, understanding how urbanization affects CO2 flux across a range of climatic zones and development patterns is critical to projecting the impact of future land use on CO2 flux dynamics. A growing number of studies are applying the eddy covariance method to urban areas to quantify the CO2 flux dynamics of these systems. However, interpretation of eddy covariance data in these urban systems presents a challenge, particularly in areas with high heterogeneity due to a mixing of built and green space. Here we present a study aimed at establishing a relationship between land cover composition and CO2 flux for a heterogeneous urban area of Orlando, FL. CO2 flux has been measured at this site for > 4 years using an open path eddy covariance system. Land cover at this site was classified into built and green space, and relative weight of both land covers were calculated for each 30 min CO2 flux measurement using the Schuepp model and a source area based on +/- one standard deviation of wind direction. The results of this analysis established a relationship between built land cover and CO2 flux within the measured footprint of this urban area. These results, in combination with future projected land use data, will be a valuable resource for providing insight into the impact of future urbanization on CO2 flux dynamics in this region.

  6. Potential of satellite CO2 data to infer CO2 fluxes, using atmospheric inversion: influence of data uncertainty correlations

    NASA Astrophysics Data System (ADS)

    Montandon, V.; Peylin, P.; Bousquet, P.; Ciais, P.; Breon, F.-M.

    2003-04-01

    Knowledge of present surface sources and sinks of atmospheric CO2 is crucial to quantify the future man-induced green-house effect. Measurements of radiation from space potentially offer denser samplings of CO2 column amount, both in time and space than in situ measurements. This could allow in turn to decrease the uncertainties of CO2 flux estimates, depending on the achievable precision of CO2 retrievals from space, and on the removal of any spatially coherent bias. In the framework of the COCO project, shaped to take advantage of the sooncoming or present satellite missions, we enriched some investigations about the satellite observations potential to improve the atmospheric CO2 sinks and sources knowledge. Our particular study dealt with the introduction of spatial correlations between the individual measurement errors of CO2 column amount, to inverstigate possible coherent biases between satellite data. One year of pseudo-data was generated according to the CARBOSAT project instrumental and orbital characteristics. These individual data were then grouped month by month onto the grid of the LMDZ transport model. The classical independance assumption made in all priors study about the measurement errors lead to a large decrease of the final satellite data uncertainty. However, spatially coherent bias would bring correlated data uncertainties, a feature that would largely affect the results. We quantified here the influence of these correlations on the retrieved CO2 flux uncertainties. Several transport model grids (regular / non regular) were used to aggregate the individual measurements, and their influence is also discussed. Such results could also be applied to other reactive chemical species like CH4, CO, ...

  7. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-01-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea ice covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea ice as "melt ponds" and below sea ice as "interface waters") and mixed layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At nineteen stations, the salinity (~ 0.5 to < 6.5), dissolved inorganic carbon (DIC; ~ 20 to < 550 μmol kg-1) and total alkalinity (TA; ~ 30 to < 500 μmol kg-1) of above-ice melt pond water was low compared to water in the underlying mixed layer. The partial pressure of CO2 (pCO2) in these melt ponds was highly variable (~ < 10 to > 1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (8 to 10.7). All of observed melt ponds had very low (< 0.1) saturation states (Ω) for calcium carbonate (CaCO3) minerals such as aragonite (Ωaragonite). Our data suggests that sea ice generated "alkaline" or "acidic" melt pond water. This melt-water chemistry dictates whether the ponds are sources of CO2 to the atmosphere or CO2 sinks. Below-ice interface water CO2-carbonate chemistry data also indicated substantial generation of alkalinity, presumably owing to dissolution of calcium CaCO3 in sea ice. The interface waters generally had lower pCO2 and higher pH/Ωaragonite than the co-located mixed layer beneath. Sea-ice melt thus contributed to the suppression of mixed layer pCO2 enhancing the surface ocean's capacity to uptake CO2 from the atmosphere. Meltwater contributions to changes in mixed-layer DIC were also used to estimate net community production rates (mean of 46.9 ±29.8 g C m-2 for the early-season period) under sea-ice cover. Although sea-ice melt is a transient seasonal feature, above-ice melt

  8. Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.

    2011-01-01

    The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.

  9. Development of an Eddy Covariance System for Air-Sea Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Marandino, C. A.; McCormick, C.; Saltzman, E. S.

    2006-12-01

    We are developing a ship-based system to measure the air-sea pCO2 gradient and air-sea turbulent flux of CO2 over the ocean. The eddy covariance flux system uses off-the-shelf instruments to measure the turbulent wind vector (Campbell Scientific CSAT3 sonic anemometer), platform motion (Systron Donner Motion Pak II), and carbon dioxide molar density (LiCor 7000 Infrared Gas Analyzer). Two major sources of uncertainty in calculated fluxes are the effect of water vapor fluctuations on air density fluctuations (the WPL effect, Webb, Pearman and Leuning. 1980), and a spurious CO2 signal due to the sensitivity of the gas analyzer to platform motion (McGillis et al., 1998). Two flux systems were deployed side-by-side on a cruise from Manzanillo, Mexico to Puntas Arenas, Chile, in January 2006. Results from the cruise are presented, with a focus on our attempts to reduce biases in the calculated air-sea CO2 flux due to the WPL effect and the motion sensitivity of the gas analyzer.

  10. Soil CO2 flux in response to wheel traffic in a no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of soil CO2 flux in the absence of living plants can be used to evaluate the effectiveness of soil management practices for C sequestration, but field CO2 flux is spatially variable and may be affected by soil compaction and percentage of total pore space filled with water (%WFPS). The ...

  11. Comparing carbon dioxide (CO2) flux between no-till and conventional tillage agriculture in Lesotho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil management practices can either sequester or emit carbon (C). Feeding seven billion people mandates that soils be used intensively for food production, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). However, the lack of CO2 flux measurements on African subs...

  12. Diurnal variation in respiratory CO2 flux in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Warneke, Thorsten; Sabbatini, Simone; Höpker, Martin; Chiti, Tommaso; Nicolini, Giacomo; Papale, Dario; Böhm, Michael; Notholt, Justus

    2016-04-01

    The application of stable isotopes to study ecosystem processes is increasingly used. However, continuous in-situ observation of CO2 concentrations, CO2 fluxes, and their isotopic components are still sparse. In this study, we present results from an arid grassland in Italy, in which continuous measurements of δ13CO2 and CO2 were performed by means of an in-situ Fourier Transform Infrared Spectrometer connected to a concentration-tower set up and to soil flux chambers. By use of Keeling plots, daily nighttime Keeling plot-intercepts and hourly flux chamber Keeling plot-intercepts could be derived. The flux chambers solely showed CO2 emission, with respiration peaks during the day. Keeling plot intercepts from the tower, overlooking the arid grassland, showed more enriched δ13CO2 values than Keeling plot intercepts derived from chamber measurements, indicating different dominating respiratory sources in their footprint. Flux chamber respiratory δ13CO2 values showed a daily pattern with on average 3.5‰ more depleted δ13CO2 fluxes during the night. It is hypothesized that the observed diurnal variation in respiratory δ13CO2 is a consequence of the physical process of diffusive fractionation taking place during the nocturnal boundary layer build up.

  13. Optimization of the seasonal cycles of simulated CO2 flux by fitting simulated atmospheric CO2 to observed vertical profiles

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Maksyutov, S.

    2009-06-01

    An inverse of a combination of atmospheric transport and flux models was used to optimize model parameters of the Carnegie-Ames-Stanford Approach (CASA) terrestrial ecosystem model. The method employed in the present study is based on minimizing an appropriate cost function (i.e. the weighted differences between the simulated and observed seasonal cycles of CO2 concentrations). We tried to reduce impacts that the inaccuracy of a vertical mixing in a transport model has on the simulated amplitudes of seasonal cycles of carbon flux by using airborne observations of CO2 vertical profile aggregated to a partial column. Effect of the vertical mixing on optimized NEP was evaluated by carrying out 2 sets of inverse calculations: one with partial-column concentration data from 15 locations and another with near-surface CO2 concentration data from the same 15 locations. We found that the values of simulated growing season net flux (GSNF) and net primary productivity (NPP) are affected by the rate of vertical mixing in a transport model used in the optimization. Optimized GSNF and NPP are higher when optimized with partial column data as compared to the case with near-surface data only due to the weak vertical mixing in the transport model used in this study.

  14. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2016-04-01

    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures

  15. BOREAS TF-4 CO2 and CH4 Chamber Flux Data from the SSA

    NASA Technical Reports Server (NTRS)

    Anderson, Dean; Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-4 team measured fluxes of CO2 and CH4 across the soil-air interface in four ages of jack pine forest at the BOREAS SSA during August 1993 to March 1995. Gross and net flux of CO2 and flux of CH4 between soil and air are presented for 24 chamber sites in mature jack pine forest, 20-year-old, 4-year-old, and clear cut areas. The data are stored in tabular ASCII files.

  16. Soil surface CO2 fluxes and the carbon budget of a grassland

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  17. Soil surface CO2 fluxes and the carbon budget of a grassland

    NASA Astrophysics Data System (ADS)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-11-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m3 chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20%. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a root-mean-square (rms) error of 1.2 μmol m-2 s-1 for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 m-2 d-1; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  18. Kinetics of CO(2) fluxes outgassing from champagne glasses in tasting conditions: the role of temperature.

    PubMed

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2009-03-11

    Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results. PMID:19215133

  19. BOREAS TF-3 Automated Chamber CO2 Flux Data from the NSA-OBS

    NASA Technical Reports Server (NTRS)

    Goulden, Michael L.; Crill, Patrick M.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOReal Ecosystem Atmosphere Study Tower Flux (BOREAS TF-3) and Trace Gas Biogeochemistry (TGB-1) teams collected automated CO2 chamber flux data in their efforts to fully describe the CO2 flux at the Northern Study Area-Old Black Spruce (NSA-OBS) site. This data set contains fluxes of CO2 at the NSA-OBS site measured using automated chambers. In addition to reporting the CO2 flux, it reports chamber air temperature, moss temperature, and light levels during each measurement. The data set covers the period from 23-Sep-1995 through 26-Oct-1995 and from 28-May-1996 through 21-Oct-1996. The data are stored in tabular ASCII files.

  20. Atmospheric observations inform CO2 flux responses to enviroclimatic drivers

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Michalak, Anna M.

    2015-05-01

    Understanding the response of the terrestrial biospheric carbon cycle to variability in enviroclimatic drivers is critical for predicting climate-carbon interactions. Here we apply an atmospheric-inversion-based framework to assess the relationships between the spatiotemporal patterns of net ecosystem CO2 exchange (NEE) and those of enviroclimatic drivers. We show that those relationships can be directly observed at 1° × 1° 3-hourly resolution from atmospheric CO2 measurements for four of seven large biomes in North America, namely, (i) boreal forests and taiga; (ii) temperate coniferous forests; (iii) temperate grasslands, savannas, and shrublands; and (iv) temperate broadleaf and mixed forests. We find that shortwave radiation plays a dominant role during the growing season over all four biomes. Specific humidity and precipitation also play key roles and are associated with decreased CO2 uptake (or increased release). The explanatory power of specific humidity is especially strong during transition seasons, while that of precipitation appears during both the growing and dormant seasons. We further find that the ability of four prototypical terrestrial biospheric models (TBMs) to represent the spatiotemporal variability of NEE improves as the influence of radiation becomes more dominant, implying that TBMs have a better skill in representing the impact of radiation relative to other drivers. Even so, we show that TBMs underestimate the strength of the relationship to radiation and do not fully capture its seasonality. Furthermore, the TBMs appear to misrepresent the relationship to precipitation and specific humidity at the examined scales, with relationships that are not consistent in terms of sign, seasonality, or significance relative to observations. More broadly, we demonstrate the feasibility of directly probing relationships between NEE and enviroclimatic drivers at scales with no direct measurements of NEE, opening the door to the study of emergent

  1. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    PubMed

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution. PMID:25757306

  2. Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Jacob, Daniel J.; Palmer, Paul I.; Logan, Jennifer A.; Yantosca, Robert M.; Xiao, Yaping; Evans, Mathew J.; Streets, David G.; Vay, Stephanie L.; Sachse, Glen W.

    2004-09-01

    We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February-April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10-20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from [2003] (anthropogenic), the CASA model (biospheric), and [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March-April 2001 is 3200 Gg C/d, which represents a 45% reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese CO emissions must be ˜50% higher than in 's [2003] inventory. We find that such an adjustment improves the simulation of the CO2/CO slopes and that it likely represents both an underreporting of sector activity (domestic and industrial combustion) and an underestimate of CO emission factors. Increases in sector activity would imply increases in Chinese anthropogenic CO2 emissions and would also imply a further reduction of the Chinese biospheric CO2 source to reconcile simulated and observed CO2 concentrations.

  3. Comparison of the data-driven top-down and bottom-up global terrestrial CO2 exchanges: GOSAT CO2 inversion and empirical eddy flux upscaling

    NASA Astrophysics Data System (ADS)

    Kondo, Masayuki; Ichii, Kazuhito; Takagi, Hiroshi; Sasakawa, Motoki

    2015-07-01

    We examined the consistency between terrestrial biosphere fluxes (terrestrial CO2 exchanges) from data-driven top-down (GOSAT CO2 inversion) and bottom-up (empirical eddy flux upscaling based on a support vector regression (SVR) model) approaches over 42 global terrestrial regions from June 2009 to October 2011. Seasonal variations of the biosphere fluxes by the two approaches agreed well in boreal and temperate regions across the Northern Hemisphere. Both fluxes also exhibited strong anomalous signals in response to contrasting anomalous spring temperatures observed in North America and boreal Eurasia. This indicates that the CO2 concentration data integrated in the GOSAT inversion and the meteorological and vegetation data in the SVR models are equally effective in producing spatiotemporal variations of biosphere flux. Meanwhile, large differences in seasonality were found in subtropical and tropical South America, South Asia, and Africa. The GOSAT inversion showed seasonal variations that pivoted around CO2 neutral, while the SVR model showed seasonal variations that tended toward CO2 sink. Thus, a large difference in CO2 budget was identified between the two approaches in subtropical and tropical regions across the Southern Hemisphere. Examination of the integrated data revealed that the large tropical sink of CO2 by the SVR model was an artifact due to the underrepresented biosphere fluxes predicted by limited eddy flux data for tropical biomes. Because of the global coverage of CO2 concentration data, the GOSAT inversion provides better estimates of continental CO2 flux than the SVR model in the Southern Hemisphere.

  4. Mathematical Modeling and In-Situ Measurements of Soil CO2/O2 Flux Dynamics

    NASA Astrophysics Data System (ADS)

    Turcu, V. E.; Or, D.

    2002-12-01

    Gaseous exchange between soil and atmosphere consist primarily of CO2 and O2 fluxes induced by concentration gradients resulting from respiration within the soil profile. Despite their crucial role in the biosphere, dynamics of CO2/O2 concentrations in soil and surface fluxes are rarely measured continuously. A new gradient-based method for continuous monitoring of soil CO2/O2 concentrations was tested in the laboratory and in the field and compared to closed-chamber measurements. In situ measurements were made in different plant communities within a semi-arid ecosystem. A one-dimensional vertical model for soil CO2/O2 fluxes that considers bio-geo-chemical and environmental factors within the basic governing equations for gaseous transport in porous media was developed. Comparisons between model simulations and continuous in-situ measurements of CO2 and O2 concentrations (and fluxes) were in reasonable agreement. Simultaneous measurements of soil CO2 and O2 concentrations provide insights on soil respiration characteristics such as the respiratory quotient (CO2/O2) that ranged from 0.7 to 1.2 and tended to remain remarkably stable under particular experimental conditions. Conversion of measured concentration gradients into surface fluxes was critically dependent on proper estimation of water content profile that affects soil diffusion coefficients. Continuous monitoring in the soil is particularly important following rainfall events where spatial (vertical) and temporal patterns of gaseous fluxes are complex and are unobservable by common surface chamber methods.

  5. CO2 Flux From Antarctic Dry Valley Soils: Determining the Source and Environmental Controls

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; Macintyre, C. M.; Shanhun, F.; Almond, P. C.; Lee, C.; Cary, C.

    2014-12-01

    Soils within the McMurdo Dry Valleys are known to respire carbon dioxide (CO2), but considerable debate surrounds the contributing sources and mechanisms that drive temporal variability. While some of the CO2 is of biological origin, other known contributors to variability include geochemical sources within, or beneath, the soil column. The relative contribution from each of these sources will depend on seasonal and environmental drivers such as temperature and wind that exert influence on temporal dynamics. To supplement a long term CO2­ surface flux monitoring station that has now recorded fluxes over three full annual cycles, in January 2014 an automated flux and depth concentration monitoring system was installed in the Spaulding Pond area of Taylor Valley, along with standard meteorological sensors, to assist in defining source contributions through time. During two weeks of data we observed marked diel variability in CO2 concentrations within the profile (~100 ppm CO2 above or below atmospheric), and of CO2 moving across the soil surface. The pattern at many depths suggested an alternating diel-scale transition from source to sink that seemed clearly correlated with temperature-driven changes in the solubility of CO2 in water films. This CO2 solution storage flux was very highly coupled to soil temperature. A small depth source of unknown origin also appeared to be present. A controlled laboratory soil experiment was conducted to confirm the magnitude of fluxes into and out of soil water films, and confirmed the field results and temperature dependence. Ultimately, this solution storage flux needs to be well understood if the small biological fluxes from these soils are to be properly quantified and monitored for change. Here, we present results from the 2013/2014 field season and these supplementary experiments, placed in the context of 3 year long term continuous measurement of soil CO2 flux within the Dry Valleys.

  6. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study - an elemental mass balance approach

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.

    2013-05-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of

  7. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  8. New constraints on the volcanic CO2 flux from an extended MultiGAS dataset

    NASA Astrophysics Data System (ADS)

    Aiuppa, A.

    2012-12-01

    Refining the currently available CO2 degassing budgets for active and dormant volcanoes is critical to a better understanding of global geochemical cycles, and brings promises to contribute substantially to better understanding of how volcanoes work, and ultimately to forecast their behaviour. While remote (e.g., from space) and direct CO2 flux observations from individual volcanoes remain the future of volcanic gas research, ground-based in-situ techniques still remain the major source of information. Since its advent in the middle of the last decade, the MultiGAS technique, independently developed in Italy and Japan, has fuelled improved indirect observations of volcanic CO2 fluxes, by enabling us to capture 0.1-1 Hz time-series of volcanic gas plume CO2/SO2 ratio compositions. Here, I review the last 7 years of MultiGAS observations, with a focus on CO2 flux emissions from open-vent basaltic volcanism. I show that at Stromboli and Etna, for which the most continuous and longest records are available, the MultiGAS has allowed refining previous CO2 flux inventories, and has become a most unique tool to interpret - and often predict - transition from quiescence to eruption. I also review recently acquired MultiGAS observations taken (during surveys on permanent installations) at a number of degassing volcanoes, in the attempt to add new piece of information to the growing puzzle of global volcanic CO2 flux emissions.

  9. Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases

    NASA Astrophysics Data System (ADS)

    Snell, H. S. K.; Robinson, D.; Midwood, A. J.

    2014-12-01

    Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle

  10. Fluxes of deep CO 2 in the volcanic areas of central-southern Italy

    NASA Astrophysics Data System (ADS)

    Gambardella, Barbara; Cardellini, Carlo; Chiodini, Giovanni; Frondini, Francesco; Marini, Luigi; Ottonello, Giulio; Vetuschi Zuccolini, Marino

    2004-08-01

    Both the shallow (organic-derived) and deep (mantellic-magmatic-metamorphic) fluxes of CO 2 [ ΦCO 2, mass time -1] and specific fluxes of CO 2 [ ϕCO 2 mass time -1 surface -1] dissolving in the shallow groundwaters of the volcanic areas of Amiata, Vulsini-Vico-Sabatini, Albani, Roccamonfina, Vesuvio, Vulture, and Etna were evaluated by partitioning the composed population of total dissolved inorganic carbon in two individual populations and subsequent subtraction of local background population. The flux of deep CO 2 released from the geothermal fields of Piancastagnaio (Amiata), Torre Alfina, Latera, Marta, Bracciano south, Cesano, and Mofete and from the Overall Northern Latium Hydrothermal Reservoir were also evaluated by means of the total surface heat flux and the enthalpy and CO 2 molality of the single liquid phase circulating in each geothermal reservoir. These data suggest that the ϕCO 2 released to the atmosphere varies from 9.5×10 6 to 3.0×10 6 mol year -1 km -2, over the geothermal fields of Bracciano south and Cesano, respectively, and that a total ΦCO 2 of 3.8×10 8 mol year -1 is cumulatively released from the geothermal fields of Torre Alfina, Latera and Cesano extending over an area of only 66 km 2. In addition, a flux of ˜2.2×10 11 to 3.8×10 11 mol year -1 of gaseous CO 2 entering the atmosphere is obtained for the entire anomalous area of central Italy, extending from the Tyrrhenian coastline to the Apennine chain (45,000 km 2). Thus terrestrial CO 2 emission in central-southern Italy appears to be a significant carbon source.

  11. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.

    PubMed

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-01-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies. PMID:27363345

  12. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia

    PubMed Central

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-01-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth’s surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies. PMID:27363345

  13. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  14. The role of vegetation in the CO2 flux from a tropical urban neighbourhood

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.

    2013-10-01

    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the flux associated with the aboveground vegetation. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation sequesters 8% of the total emitted CO2 in the residential neighbourhood studied. An uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1) was estimated as the difference between assimilation by photosynthesis minus the aboveground biomass respiration during daytime (4.0 ton km-2 day-1) and release by plant respiration at night (2.6 ton km-2 day-1). However, when soil respiration is added to the daily aboveground flux, the biogenic component becomes a net source amounting to 4% of the total CO2 flux and represents the total contribution of urban vegetation to the carbon flux to the atmosphere.

  15. Developing a high-resolution CO2 flux inversion model for global and regional scale studies

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Janardanan Achari, R.; Oda, T.; Ito, A.; Saito, M.; W Kaiser, J.; Belikov, D.; Ganshin, A.; Valsala, V.; Sasakawa, M.; Machida, T.

    2015-12-01

    We develop and test an iterative inversion framework that is designed for estimating surface CO2 fluxes at a high spatial resolution using a Lagrangian-Eulerian coupled tracer transport model and atmospheric CO2 data collected by the global in-situ network and satellite observations. In our inverse modeling system, we employ the Lagrangian particle dispersion model FLEXPART that was coupled to the Eulerian atmospheric tracer transport model (NIES-TM). We also derived an adjoint of the coupled model. Weekly corrections to prior fluxes are calculated at a spatial resolution of the FLEXPART-simulated surface flux responses (0.1 degree). Fossil fuel (ODIAC) and biomass burning (GFAS) emissions are given at original model spatial resolutions (0.1 degree), while other fluxes are interpolated from a coarser resolution. The terrestrial biosphere fluxes are simulated with the VISIT model at 0.5 degree resolution. Ocean fluxes are calculated using a 4D-Var assimilation system (OTTM) of the surface pCO2 observations. The flux response functions simulated with FLEXPART are used in forward and adjoint runs of the coupled transport model. To obtain a best fit to the observations we tested a set of optimization algorithms, including quasi-Newtonian algorithms and implicitly restarted Lanczos method. The square root of covariance matrix for surface fluxes is implemented as implicit diffusion operator, while the adjoint of it is derived using automatic code differentiation tool. The prior and posterior flux uncertainties are evaluated using singular vectors of scaled tracer transport operator. The weekly flux uncertainties and flux uncertainty reduction due to assimilating GOSAT XCO2 data were estimated for a period of one year. The model was applied to assimilating one year of Obspack data, and produced satisfactory flux correction results. Regional version of the model was applied to inverse model analysis of the CO2 flux distrubution in West Siberia using continuous observation

  16. The abiotic contribution to total CO2 flux for soils in arid zone

    NASA Astrophysics Data System (ADS)

    Ma, J.; Li, Y.; Liu, R.

    2015-07-01

    As an important component of ecosystem carbon budgets, soil carbon dioxide (CO2) flux is determined by a combination of a series of biotic and abiotic processes. Although there is evidence that the abiotic component can be important in total soil CO2 flux, its relative importance has never been systematically assessed. In this study, the total soil CO2 flux (Rtotal) was partitioned into biotic (Rbiotic) and abiotic (Rabiotic) components over eight typical landscapes in a desert-oasis ecotone, including cotton field, hops field, halophyte garden, reservoir edge, native saline desert, alkaline soil, dune crest and interdune lowland in the Gurbantunggut Desert, and the relative importance of these two components was analyzed. Results showed that Rabiotic always contributed to Rtotal for the eight landscapes, but the degree of contribution varied greatly. In the cotton and hops fields, the ratio of Rabiotic to Rtotal was extremely low (< 10 %); whereas Rabiotic was dominant in the alkaline soil and dune crest. Statistically, Rabiotic/Rtotal decreased logarithmically with rising Rbiotic, suggesting that Rabiotic strongly affected Rtotal when Rbiotic was low. This pattern confirms that soil CO2 flux is predominantly biological in most ecosystems, but Rabiotic can dominate when biological processes are weak. On a diurnal basis, Rabiotic resulted in no net gain or loss of carbon but its effect on instantaneous CO2 flux was significant. Temperature dependence of Rtotal varied among the eight landscapes, determined by the predominant components of CO2 flux: with Rbiotic driven by soil temperature and Rabiotic regulated by the rate of change in temperature. Namely, declining temperature resulted in negative Rabiotic (CO2 went into soil), while rising temperature resulted in a positive Rabiotic (CO2 released from soil). Furthermore, without recognition of Rabiotic, Rbiotic would have been either overestimated (for daytime) or underestimated (for nighttime). Thus, recognition

  17. On the benefit of GOSAT observations to the estimation of regional CO2 fluxes

    SciTech Connect

    Takagi, H; Saeki, T; Oda, T; Saito, M; Valsala, V; Belikov, D; Saito, R; Yoshida, Y; Morino, I; Uchino, O; Andres, Robert Joseph; Yokota, T; Maksyutov, S

    2011-01-01

    We assessed the utility of global CO{sub 2} distributions brought by the Greenhouse gases Observing SATellite (GOSAT) in the estimation of regional CO{sub 2} fluxes. We did so by estimating monthly fluxes and their uncertainty over a one-year period between June 2009 and May 2010 from (1) observational data collected in existing networks of surface CO2 measurement sites (GLOBALVIEWCO2 2010; extrapolated to the year 2010) and (2) both the surface observations and column-averaged dry air mole fractions of CO{sub 2} (X{sub CO2}) retrieved from GOSAT soundings. Monthly means of the surface observations and GOSAT X{sub CO2} retrievals gridded to 5{sup o} x 5{sup o} cells were used here. The estimation was performed for 64 subcontinental-scale regions. We compared these two sets of results in terms of change in uncertainty associated with the flux estimates. The rate of reduction in the flux uncertainty, which represents the degree to which the GOSAT X{sub CO2} retrievals contribute to constraining the fluxes, was evaluated. We found that the GOSAT X{sub CO2} retrievals could lower the flux uncertainty by as much as 48% (annual mean). Pronounced uncertainty reduction was found in the fluxes estimated for regions in Africa, South America, and Asia, where the sparsity of the surface monitoring sites is most evident.

  18. The role of vegetation in the CO2 flux from a tropical urban neighbourhood

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.

    2013-03-01

    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. Negative daytime CO2 fluxes, for example have been observed during the growing season at suburban sites characterized by abundant vegetation and low population density. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the biogenic flux. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation captures 8% of the total emitted CO2 in the residential neighbourhood studied. A net uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1 ) was estimated from the difference between the daily CO2 uptake by photosynthesis (3.95 ton km-2 ) and release by respiration (2.55 ton km-2). The study shows the importance of urban vegetation at the local scale for climate change mitigation in the tropics.

  19. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, M.A.; Striegl, R.G.; Prudic, D.E.; Stonestrom, D.A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured PCO2 ??13C (in CO2), and ??14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ???97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ???0.1 mol m-2 yr-1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled ??14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  20. Interannual variability in atmospheric CO2 uptake on the northeast U.S. continental shelf

    NASA Astrophysics Data System (ADS)

    Previdi, Michael; Fennel, Katja; Wilkin, John; Haidvogel, Dale

    2009-12-01

    Continental shelf systems are thought to play an important role in the exchange of carbon dioxide (CO2) between the atmosphere and ocean. Currently, our ability to quantify the air-sea flux of CO2 on continental shelves is limited due to large spatial and temporal variability coupled with historically sparse oceanographic measurements (e.g., of surface water pCO2). Here we use the Regional Ocean Modeling System (ROMS) to quantify the air-sea flux of CO2 and its interannual variability on the northeast U.S. continental shelf, which includes the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM). Two years marked by opposite phases of the North Atlantic Oscillation (NAO) are considered in the study. A novel analysis method, second-order Taylor series decomposition, is used to identify the important processes responsible for producing NAO-related changes in the CO2 air-sea flux. On the northeast U.S. shelf, atmospheric CO2 uptake as simulated by ROMS decreases from 2.4 Mt C yr-1 in 1985 (low NAO) to 1.8 Mt C yr-1 in 1990 (high NAO), with most of this decrease (0.5 Mt C yr-1) occurring in the MAB. In the MAB the difference in annual air-sea flux of CO2 is due mainly to changes in near-surface wind speed, while the flux difference in the GOM is controlled primarily by surface water pCO2 (CO2 partial pressure) changes resulting from changes in sea surface temperature and new production. The large magnitude of interannual variability in the air-sea flux of CO2 simulated here suggests the potential for even more significant flux changes in the future as climate change accelerates.

  1. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Peng, Shushi; Ciais, Philippe; Chevallier, Frédéric; Peylin, Philippe; Cadule, Patricia; Sitch, Stephen; Piao, Shilong; Ahlström, Anders; Huntingford, Chris; Levy, Peter; Li, Xiran; Liu, Yongwen; Lomas, Mark; Poulter, Benjamin; Viovy, Nicolas; Wang, Tao; Wang, Xuhui; Zaehle, Sönke; Zeng, Ning; Zhao, Fang; Zhao, Hongfang

    2015-01-01

    We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (XCO2) measurements from the Total Carbon Column Observing Network (TCCON). For comparison with atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE. Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with TCCON data also shows that the seasonal amplitude of XCO2 is underestimated by more than 10% for seven out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained amplitude of NEE over the Northern Hemisphere is of 1.6 ± 0.4 gC m-2 d-1, which translates into a net CO2 uptake during the carbon uptake period in the Northern Hemisphere of 7.9 ± 2.0 PgC yr-1.

  2. CO2-flux measurements above the Baltic Sea at two heights: flux gradients in the surface layer?

    NASA Astrophysics Data System (ADS)

    Lammert, A.; Ament, F.

    2015-11-01

    The estimation of CO2 exchange between the ocean and the atmosphere is essential to understand the global carbon cycle. The eddy-covariance technique offers a very direct approach to observe these fluxes. The turbulent CO2 flux is measured, as well as the sensible and latent heat flux and the momentum flux, a few meters above the ocean in the atmosphere. Assuming a constant-flux layer in the near-surface part of the atmospheric boundary layer, this flux equals the exchange flux between ocean and atmosphere. The purpose of this paper is the comparison of long-term flux measurements at two different heights above the Baltic Sea to investigate this assumption. The results are based on a 1.5-year record of quality-controlled eddy-covariance measurements. Concerning the flux of momentum and of sensible and latent heat, the constant-flux layer theory can be confirmed because flux differences between the two heights are insignificantly small more than 95 % of the time. In contrast, significant differences, which are larger than the measurement error, occur in the CO2 flux about 35 % of the time. Data used for this paper are published at http://doi.pangaea.de/10.1594/PANGAEA.808714.

  3. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  4. Influence of Land Cover and Climate on CO2 and CH4 fluxes from Urban Soils

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; Groffman, P. M.; Kaushal, S.; Gold, A.; Cole, J. N.

    2015-12-01

    Soils are important sinks for greenhouse gases globally. Urbanization influences biogeochemical processes and gas fluxes through increased nitrogen deposition, heat island effects, and vegetation management. Previous work at the Baltimore Ecosystem Study LTER site has reported elevated CO2 fluxes and reduced CH4 consumption in urban soils. Differences among soils (urban forest, rural forest, lawns) have been linked to nitrogen cycling and may also be driven by temperature differences between land cover types. A combination of site-specific changes (land cover, nitrogen availability) and climatological (temperature, soil moisture) factors are likely to influence long-term patterns in gas fluxes and therefore carbon storage in growing urban regions. We utilized 15 years of measured gas fluxes and continuous temperature and soil moisture data to model CO2 emissions and CH4 consumption under different vegetation classes. We scaled these fluxes to the metropolitan region using high-resolution spatial, and found that regional CH4 consumption and CO2 fluxes are sensitive to changes in temperature and land cover. For instance, in 2007 land cover in Baltimore City had 21% lawn and 22% forest cover. If all of the lawn area in the city were converted to urban forest, CH4 consumption by urban soils would increase by 70% and CO2 emissions would decrease by 20%. In suburban Baltimore County, lawns and urban forests comprised 35 and 50% of land cover respectively. If all lawns in the county were converted to urban forest, soil CH4 consumption would increase by 55% and soil CO2 flux would decrease by 20%. Soil CO2 fluxes also increase by approximately 0.1g C m-2 d-1 for every 1° C increase across all land cover classes. CH4 consumption increases with temperature in urban and rural forest soils. Our results highlight the interacting effects of land cover change and climate on carbon fluxes from urban soils.

  5. Changes in fluxes of heat, H2O, CO2 caused by a large wind farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Crop Wind Energy Experiment (CWEX) provides a platform to investigate the effect of wind turbines and large wind farms on surface fluxes of momentum, heat, moisture and carbon dioxide (CO2). In 2010 and 2011, eddy covariance flux stations were installed between two lines of turbines at the south...

  6. CO2 volume fluxes outgassing from champagne glasses: the impact of champagne ageing.

    PubMed

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2010-02-15

    It was demonstrated that CO(2) volume fluxes outgassing from a flute poured with a young champagne (elaborated in 2007) are much higher than those outgassing from the same flute poured with an older champagne (elaborated in the early 1990s). The difference in dissolved-CO(2) concentrations between the two types of champagne samples was found to be a crucial parameter responsible for differences in CO(2) volume fluxes outgassing from one champagne to another. Nevertheless, it was shown that, for a given identical dissolved-CO(2) concentration in both champagne types, the CO(2) volume flux outgassing from the flute poured with the old champagne is, in average, significantly lower than that outgassing from the flute poured with the young one. Therefore, CO(2) seems to "escape" more easily from the young champagne than from the older one. The diffusion coefficient of CO(2) in both champagne types was pointed as a key parameter to thoroughly determine in the future, in order to unravel our experimental observation. PMID:20103140

  7. Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pedone, M.; Aiuppa, A.; Giudice, G.; Grassa, F.; Cardellini, C.; Chiodini, G.; Valenza, M.

    2014-04-01

    Near-infrared room temperature tunable diode lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross sections of the atmospheric plumes of two major fumarolic fields (Solfatara and Pisciarelli). By using a tomographic post-processing routine, we resolved, for each of the two fields, the contour maps of CO2 mixing ratios in the atmosphere, from the integration of which (and after multiplication by the plumes' transport speeds) the CO2 fluxes were finally obtained. We evaluate a total CO2 output from the Campi Flegrei fumaroles of ˜490 Mg/day, in line with independent estimates based on in situ (Multi-GAS) observations. We conclude that TDL technique may enable CO2 flux quantification at other volcanoes worldwide.

  8. Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2012-01-01

    The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.

  9. A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.

    2012-12-01

    The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.

  10. CO2 Flux from Coarse Woody Debris from a Tropical Forest at the FLONA Tapajos, Brazil

    NASA Astrophysics Data System (ADS)

    Silva, H.; Crill, P.; Keller, M.

    2004-12-01

    The release of carbon dioxide (CO2) from tropical forests has a strong effect on the global carbon cycle due to fast turnover rates of organic matter than for other biomes. Despite its importance coarse woody debris (CWD) pools have been overlooked for estimates of carbon balance and especially in tropical forests where few studies have been conducted. Measurements were made on CWD in areas of undisturbed tropical forests and areas under selective logging. CO2 emissions from CWD averaged 1.95 \\pm 1.95 \\mu mol CO2 m2 Wood surf^{-1}$ s^{-1} for undisturbed forests and 2.61 ± 1.44 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1} for selective logging areas. For selective logging areas, a chronosequence study was established to follow up the five years of logging. Three wood species were sorted due differences in density to be studied and observe differences in CO_{2} efflux. Andiroba (Carapa guianensis) showed a average flux of 3.15 ± 3.2 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1}, tauari (Couratari stellata) with 2.88 ± 2.03 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1} and macaranduba (Manilkara huberi) with an average flux of 1.69 ± 1.6 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1}. An area of undisturbed forest was studied to quantify the efflux of CO_{2} in natural conditions. CO_{2} emissions from CWD were of 3.76 Mg C ha^{-1} y{-1} in logged areas and 1.43 Mg C ha^{-1} y{-1} for undisturbed forests. Wood water content and wood decay classes (year of logging) were some of the factors studied on controlling of CO_{2}$ efflux from CWD.

  11. Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Eberwein, J. R.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-03-01

    Carbon (C) and nitrogen (N) interactions contribute to uncertainty in current biogeochemical models that aim to estimate greenhouse gas (GHG, including CO2 and N2O) emissions from soil to atmosphere. In this study, we quantified CO2 and N2O flux patterns and their relationship along with increasing C additions only, N additions only, a C gradient combined with excess N, and an N gradient with excess C via laboratory incubations. Conventional trends, where labile C or N addition results in higher CO2 or N2O fluxes, were observed. However, at low levels of C availability, saturating N amendments reduced soil CO2 flux while with high C availability N amendments enhanced it. At saturating C conditions increasing N amendments first reduced and then increased CO2 fluxes. Similarly, N2O fluxes were initially reduced by adding labile C under N limited conditions, but additional C enhanced N2O fluxes by more than two orders of magnitude in the saturating N environment. Changes in C or N use efficiency could explain the altered gas flux patterns and imply a critical level in the interactions between N and C availability that regulate soil trace gas emissions and biogeochemical cycling. Compared to either N or C amendment alone, the interaction of N and C caused ∼60 and ∼5 times the total GHG emission, respectively. Our findings suggested that the response of CO2 and N2O fluxes along stoichiometric gradients in C and N availability should be accounted for interpreting or modeling the biogeochemistry of GHG emissions.

  12. Sea-air CO2 fluxes in the Southern Ocean for the period 1990-2009

    NASA Astrophysics Data System (ADS)

    Lenton, A.; Tilbrook, B.; Law, R.; Bakker, D.; Doney, S. C.; Gruber, N.; Hoppema, M.; Ishii, M.; Lovenduski, N. S.; Matear, R. J.; McNeil, B. I.; Metzl, N.; Mikaloff Fletcher, S. E.; Monteiro, P.; Rödenbeck, C.; Sweeney, C.; Takahashi, T.

    2013-01-01

    The Southern Ocean (44° S-75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990-2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of -0.42 ± 0.07 Pg C yr-1 for the 44° S-75° S region is consistent with the -0.27 ± 0.13 Pg C yr-1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: -0.04 ± 0.07 Pg C yr-1 and observations: +0.04 ± 0.02 Pg C yr-1), with most of the net annual flux located in the 44° S to 58° S circumpolar band (model and inversion median: -0.36 ± 0.09 Pg C yr-1 and observations: -0.35 ± 0.09 Pg C yr-1). Seasonally, in the 44° S-58° S region, the median of 5 ocean biogeochemical models captures the observed sea-air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea-air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux with 25% of this

  13. Soil CO2, N2O and Nox Flux Responses to Biofuel Crop Plantation

    NASA Astrophysics Data System (ADS)

    Liang, L.; Eberwein, J.; Allsman, L.; Grantz, D. A.; Jenerette, D.

    2014-12-01

    Biofuel crops in high temperature environments, e.g, sorghum in southern California, USA, have a high capacity to assimilate atmospheric CO2. Photosynthates from the canopy may provide extra labile carbon source to feed soil microorganisms and influence trace gas fluxes, including CO2, N2O and NOx. Understanding how soil microorganisms balance the carbon (energy) and nitrogen (nutrients) allocation between growing microbial biomass and respiration is critical for evaluating the GHG emissions and emissions of regional air quality pollutants. We conducted experiments in a high temperature agroecosystem both in fallow and sorghum production fields with an experimental nitrogen gradient (0,50 and 100 kg/ha, marked as control, low and high with triplicate repeat) to investigate the CO2, N2O and NOx flux responses. All gas fluxes were measured simultaneously from three replicate locations for each treatment in the field biweekly. Measurements were performed 2-5 days after irrigation. We found that planting sorghum has significant effects on soil CO2 (p<0.0001), N2O (p<0.0001) and NOx (p=0.04) fluxes, but nitrogen amendments only have marginally significant effects on CO2 flux (p=0.07). Surprisingly, no significant response of N2O (p=0.27) and NOx (p=0.61) were observed in responses to N amendments. Compared to the fallow field, the CO2 flux in sorghum field increased 77%, 134% and 202% in control, low and high N level amendments, respectively. N2O flux from the sorghum field are consistently higher than from fallow field, with 207%, 174% and 1064% increase in control, low and high N level amendments, respectively. For the NOx flux, no significant difference was found between fallow and sorghum field. Although nitrogen amendments did not show significant effects on CO2, N2O and NOx flux, the high N treatment in sorghum field continuously gains the highest flux rates. Our results suggested additional C inputs may be an important factor regulating CO2, N2O and NOx fluxes in

  14. CO2 flux from tundra lichen, moss, and tussock, Council, Alaska: Assessment of spatial representativeness

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Chae, N.

    2012-12-01

    CO2 flux-measurement in dominant tundra vegetation on the Seward Peninsula of Alaska was examined for spatial representativeness, using a manual chamber system. In order to assess the representativeness of CO2 flux, a 40 m × 40 m (5-m interval; 81 total points) plot was used in June, August, and September of 2011. Average CO2 fluxes in lichen, moss, and tussock tundra were 3.4 ± 2.7, 4.5 ± 2.9, and 7.2 ± 5.7 mgCO2/m2/m during growing season, respectively, suggesting that tussock tundra is a significant CO2 source, especially considering the wide distribution of tussock tundra in the circumpolar region. Further, soil temperature, rather than soil moisture, held the key role in regulating CO2 flux at the study site: CO2 flux from tussock increased linearly as soil temperature increased, while the flux from lichen and moss followed soil temperature nearly exponentially, reflecting differences in surface area covered by the chamber system. Regarding sample size, the 81 total sampling points over June, August, and September satisfy an experimental average that falls within ±10% of full sample average, with a 95% confidence level. However, the number of sampling points for each variety of vegetation during each month must provide at least ±20%, with an 80% confidence level. In order to overcome the logistical constraints, we were required to identify the site's characteristics with a manual chamber system over a 40 m × 40 m plot and to subsequently employ an automated chamber for spatiotemporal representativeness.

  15. Influence of Fossil Fuel Emissions on CO2 Flux Estimation by Atmospheric Inversions

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.; van der Laan-Luijkx, I. T.; Peters, W.

    2015-12-01

    Top-down approaches (or atmospheric inversions) using atmospheric transport models with CO2 observations are an effective way to estimate carbon fluxes at global and regional scales. CO2 flux estimation by Bayesian inversions require a priori knowledge of terrestrial biosphere and oceanic fluxes and fossil fuel (FF) CO2 emissions. In most inversion frameworks, FF CO2 is assumed to be a known quantity because FF CO2 based on world statistics are thought to be more reliable than natural CO2 fluxes. However different databases of FF CO2 emissions may have different temporal and spatial variations especially at locations where statistics are not so accurate. In this study, we use 3 datasets of fossil fuel emissions in inversion estimations and evaluate the sensitivity of the optimized CO2 fluxes to FF emissions with two different inverse models, JAMSTEC's ACTM and CarbonTracker Europe (CTE). Interannually varying a priori FF CO2 emissions were based on 1) CDIAC database, 2) EDGARv4.2 database, and 3) IEA database, with some modifications. Biosphere and oceanic fluxes were optimized. Except for FF emissions, other conditions were kept the same in our inverse experiments. The three a priori FF emissions showed ~5% (~0.3GtC/yr) differences in their global total emissions in the early 2000's and the differences reached ~9% (~0.9 GtC/yr) in 2010. This resulted in 0.5-1 GtC/yr (2001-2011) and 0.3-0.6 GtC/yr (2007-2011) differences in the estimated global total emissions for the ACTM and CTE inversions, respectively. Regional differences in the FF emissions were relatively large in East Asia (~0.5 GtC/yr for ACTM and ~0.3 GtC/yr for CTE) and Europe (~0.3 GtC/yr for ACTM). These a priori flux differences caused differences in the estimated biosphere fluxes for ACTM in East Asia and Europe and also their neighboring regions such as West Asia, Boreal Eurasia, and North Africa. The main differences in the biosphere fluxes for CTE were found in Asia and the Americas.

  16. On Using CO2 Concentration Measurements at Mountain top and Valley Locations in Regional Flux Studies.

    NASA Astrophysics Data System (ADS)

    de Wekker, S. F.; Song, G.; Stephens, B. B.

    2007-12-01

    Data from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) are used to investigate atmospheric controls on temporal and spatial variability of CO2 in mountainous terrain and the usefulness of mountain top and valley measurement for the estimation of regional CO2 fluxes. Rocky RACCOON consists of four sites installed in fall of 2005 and spring of 2006: Niwot Ridge, near Ward, Colorado; Storm Peak Laboratory near Steamboat Springs, Colorado; Fraser Experimental Forest, near Fraser Colorado; and Hidden Peak, near Snowbird, Utah. The network uses the NCAR-developed Autonomous Inexpensive Robust CO2 Analyzer. These units measure CO2 concentrations at three levels on a tower, producing individual measurements every 2.5 minutes precise to 0.1 ppm CO2 and closely tied to the WMO CO2 scale. Three of the sites are located on a mountain top while one site is located in a valley. Initial analyses show interesting relationships between CO2 concentration and atmospheric parameters, such as wind speed and direction, temperature, and incoming solar radiation. The nature of these relationships is further investigated with an atmospheric mesoscale model. Idealized and realistic simulations are able to capture the observed behavior of spatial and temporal CO2 variability and reveal the responsible physical processes. The implications of the results and the value of the measurements for providing information on local to regional scale respiration and photosynthesis rates in the Rockies are discussed.

  17. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  18. [Effects of organic manures on CO2 and CH4 fluxes of farmland].

    PubMed

    Dong, Yuhong; Ouyang, Zhu

    2005-07-01

    This paper studied the effects of chicken manure, swine waste and cattle manure on the CO2 and CH4 fluxes of a farmland planted with summer maize. The results showed that the CO2 flux had the same trend under different organic manure application, which was influenced by soil temperature and soil water content. The flux was significantly related with air temperature, soil surface temperature and soil temperature (P < 0.05). When soil temperature was not a limiting factor, soil water content was significantly related with soil CO2 flux. At most maize growth stages, soil was a sink of CH4. The variation of CH4 source-sink was influenced by environmental factors, but the correlation was not significant. The mean seasonal flux of CO2 was from 0.5124 to 0.8518 g x m(-2) x h(-1), and that of CH4 was from - 0.0068 to - 0.0484 mg x m(-2) x h(-1). Compared with CK2, maize planting and organic manure application enhanced CO2 emission. The application of organic manures inhibited the CH4 uptake by soil, and higher application rate had a higher inhibitory effect. PMID:16252872

  19. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  20. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  1. Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Yan, Hongqiang; Yu, Kefu; Shi, Qi; Tan, Yehui; Liu, Guohui; Zhao, Meixia; Li, Shu; Chen, Tianran; Wang, Yinghui

    2016-01-01

    Evidence based on four field surveys conducted between July 2009 and April 2011 indicates that both sea surface partial pressures of CO2 (pCO2) and sea-air CO2 fluxes at Luhuitou fringing reef in Sanya, Hainan Island, northern South China Sea (SCS) are subject to significant seasonal variations. The diurnal variation of seawater pCO2 ranges from 264 to 579 μatm in summer, which is much larger than that in autumn (152-335 μatm), in winter (84-260 μatm), and in spring (114-228 μatm). The sea-air CO2 flux in summer (˜9.6 mmol CO2 m-2 d-1) is also larger than that in other seasons (i.e.,˜3 mmol CO2 m-2 d-1 in spring, ˜3.5 mmol CO2 m-2 d-1 in autumn, and ˜2.7 mmol CO2 m-2 d-1 in winter). The atmospheric pCO2 in this reef shows small diurnal and seasonal variations. The integration of the time-series pCO2 data shows that the reef area is a weak source of atmospheric CO2 at ˜0.54 mol CO2 m-2 yr-1. Further analyses indicate that the seasonal variations of the surface seawater pCO2 in Luhuitou fringing reef are mainly affected by seasonally-dependent biological metabolic processes (organic processe and inorganic process), and that the organic process play a more important role than the inorganic process. Seasonal sea surface temperature (SST) variations and hydrodynamic processes may also have some influence on seawater pCO2 variation.

  2. CO2 flux spatial variability in a tropical reservoir in the Central Amazonia

    NASA Astrophysics Data System (ADS)

    Santana, R. A. S. D.; do Vale, R. S.; Tota, J.; Miller, S. D.; Ferreira, R. B., Jr.; Alves, E. G.; Batalha, S. S. A.; Souza, R. A. F. D.

    2014-12-01

    The carbon budget over water surfaces in the Amazon has an important role in the total budget of this greenhouse gas a regional and global scale. However, more accurate estimates of the spatial and temporal distribution of the CO2 flux over those water surfaces are still required. In this context, this study aims to understand the spatial distribution of CO2 flux in the Balbina hydroelectric reservoir, located at Presidente Figueiredo city, Amazonas, Brazil. The floating chamber method was used to measure and calculate the CO2 flux. This method coup a chamber of known volume with an infrared gas analyzer (LiCor, LI-840A). Measurements were performed at 1 Hz during 20-30 minutes at 5 different points of the reservoir, four upstream (two near the edge and two in the middle) and one downstream of the dam. At all locations the surface water was supersaturated in pCO2 and fluxes were from the water to the atmosphere. The maximum CO2 flux observed was 1.2 μmol m-2 s-1 at the center point of the reservoir upstream the dam. The minimum CO2 flux was 0.05 μmol m-2 s-1, observed near the edge on the upstream side of the dam. On average, CO2 fluxes were larger downstream of the dam, 0.7 μmol m-2 s-1, compared to upstream, 0.45 μmol m-2 s-1. This pattern is consistent with that found in previous studies at this site using other flux estimation methods, and is consistent with turbulent mixing promoted by the water turbine. However, the mean CO2 flux for all measured points using the chambers, 0.47 μmol m-2 s-1, was much lower than those previously found using other methods. The reason for the difference between methods is unclear. In situ deployment of multiple flux estimation methods would be valuable, as would longer periods of measurements.

  3. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990-2009

    NASA Astrophysics Data System (ADS)

    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; Landschützer, P.; Lefèvre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Rödenbeck, C.; Santana-Casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.

    2013-01-01

    The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is -0.49 ± 0.05 Pg C yr-1, and by the Arctic it is -0.12 ± 0.06 Pg C yr-1, leading to a combined sea-air flux of -0.61 ± 0.06 Pg C yr-1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.

  4. Atlantic and Arctic sea-air CO2 fluxes, 1990-2009

    NASA Astrophysics Data System (ADS)

    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; Landschützer, P.; Lefèvre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Rödenbeck, C.; Santana-Casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.

    2012-08-01

    The Atlantic and Arctic oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales, for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modelling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our best estimate of the contemporary sea-to-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is -0.49 ± 0.11 Pg C yr-1 and by the Arctic is -0.12 ± 0.06 Pg C yr-1, leading to a combined sea-to-air flux of -0.61 ± 0.12 Pg C yr-1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor; and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and South Subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and South Subtropics.

  5. CO2 volume fluxes outgassing from champagne glasses in tasting conditions: flute versus coupe.

    PubMed

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Polidori, Guillaume; Jeandet, Philippe

    2009-06-10

    Measurements of CO(2) fluxes outgassing from glasses containing a standard Champagne wine initially holding about 11.5 g L(-1) of dissolved CO(2) were presented, in tasting conditions, during the first 10 min following the pouring process. Experiments were performed at room temperature, with a flute and a coupe, respectively. The progressive loss of dissolved CO(2) concentration with time was found to be significantly higher in the coupe than in the flute, which finally constitutes the first analytical proof that the flute prolongs the drink's chill and helps it to retain its effervescence in contrast with the coupe. Moreover, CO(2) volume fluxes outgassing from the coupe were found to be much higher in the coupe than in the flute in the early moments following pouring, whereas this tendency reverses from about 3 min after pouring. Correlations were proposed between CO(2) volume fluxes outgassing from the flute and the coupe and their continuously decreasing dissolved CO(2) concentration. The contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by use of results developed over recent years. Due to a much shallower liquid level in the coupe, bubbles collapsing at the free surface of the coupe were found to be significantly smaller than those collapsing at the free surface of the flute, and CO(2) volume fluxes released by collapsing bubbles only were found to be approximately 60% smaller in the coupe than in the flute. Finally, the contributions of gas discharge by invisible diffusion through the free surface areas of the flute and coupe were also approached and compared for each type of drinking vessel. PMID:19419170

  6. Soil CO2 flux in hydrothermal areas of the Tatun Volcano Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wen, Hsin-Yi; Yang, Tsanyao F.; Lan, Tefang F.; Lee, Hsiao-Fen; Lin, Cheng-Horng; Sano, Yuji; Chen, Cheng-Hong

    2016-07-01

    We measured soil CO2 flux in the representative hydrothermal areas of the Tatun Volcano Group (TVG), to better understand the volcano's dynamic nature, and to estimate its soil CO2 degassing output. Results show that the average soil CO2 fluxes obtained at Da-You-Keng (DYK), Geng-Tze-Ping (GTP), She-Haung-Ping (SHP), and Tatun Natural Park (TNP) were 128 g m- 2 d- 1, 518 g m- 2 d- 1, 420 g m- 2 d- 1, and 25 g m- 2 d- 1, respectively. The range is comparable to other active volcanic/hydrothermal areas in the world. Along with Liu-Huang-Ku (LHK), where the soil CO2 flux is known, the total soil CO2 output from measured areas is evaluated at 82 t d- 1. Furthermore, a first total soil CO2 output from the whole hydrothermal areas of the TVG is roughly estimated at 113 t d- 1, which includes 15 t d- 1 mantle contribution. Considering the mantle-derived CO2 flux and H2O/CO2 ratio of fumarolic gas, thermal energy associated with the diffuse degassing at the TVG hydrothermal area is estimated at 8.2 MW. Carbon (δ13C) and helium (3He/4He) isotopic ratios of soil samples of the studied areas ranged from - 4.4 to - 6.7‰, and 2.45 to 6.98 RA, respectively. The extent of air involvement in the soil-degassing system, as constrained by the helium and carbon isotopic compositions, provides essential information for depicting regional degassing features of the hydrothermal areas.

  7. [Net CO2 exchange and carbon isotope flux in Acacia mangium plantation].

    PubMed

    Zou, Lu-Liu; Sun, Gu-Chou; Zhao, Ping; Cai, Xi-An; Zeng, Xiao-Ping; Wang, Quan

    2009-11-01

    By using stable carbon isotope technique, the leaf-level 13C discrimination was integrated to canopy-scale photosynthetic discrimination (Deltacanopy) through weighted the net CO2 assimilation (Anet) of sunlit and shaded leaves and the stand leaf area index (L) in an A. mangium plantation, and the carbon isotope fluxes from photosynthesis and respiration as well as their net exchange flux were obtained. There was an obvious diurnal variation in Deltacanopy, being lower at dawn and at noon time (18.47 per thousand and 19.87 per thousand, respectively) and the highest (21.21 per thousand) at dusk. From the end of November to next May, the Deltacanopy had an increasing trend, with an annual average of (20.37 +/- 0.29) per thousand. The carbon isotope ratios of CO2 from autotrophic respiration (excluding daytime foliar respiration) and heterotrophic respiration were respectively (- 28.70 +/- 0.75) per thousand and (- 26.75 +/- 1.3) per thousand in average. The delta13 C of nighttime ecosystem-respired CO2 in May was the lowest (-30.14 per thousand), while that in November was the highest (-28.01 per thousand). The carbon isotope flux of CO2 between A. mangium forest and atmosphere showed a midday peak of 178.5 and 217 micromol x m(-2) x s(-1) x per thousand in May and July, with the daily average of 638.4 and 873.2 micromol x m(-2) x s(-1) x per thousand, respectively. The carbon isotope flux of CO2 absorbed by canopy leaves was 1.6-2.5 times higher than that of CO2 emitted from respiration, suggesting that a large sum of CO2 was absorbed by A. mangium, which decreased the atmospheric CO2 concentration and improved the environment. PMID:20135988

  8. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; Eldering, Annmarie; Gunson, Michael; Kawa, Stephan R.

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  9. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  10. CO2 Fluxes: The Upwelling Systems of South America & South Africa

    NASA Astrophysics Data System (ADS)

    Karagali, Ioanna; Badger, Merete; Soresen, Lise Lotte

    2010-12-01

    In order to estimate the atmospheric concentration of car- bon dioxide knowledge of the fluxes between the ocean and atmosphere are important. Different ocean regions can act as sinks or sources of CO2 depending on temperature, salinity and biological activity. The flux of CO2 depends on the partial pressures of atmospheric and oceanic CO2 and the exchange velocity which is commonly parametrized by the wind speed. Direct in-situ measurements are expensive, operationally demanding and of low spatial resolution. It has been shown that in- direct estimation of oceanic pCO2 is possible due to its strong dependence on temperature, however primary production also influences the concentration of CO2 in the water. The present study aims at estimating the oceanic pCO2 with the use of satellite measurements for water temperature and chlorophyll-a (chl-A). Envisat MERIS Level 2 Reduced Resolution products were used for the chl-A concentration. Sea Surface Temperature data were taken from a composite optimally interpolated SST product of the Danish Meteorological Institute (DMI). In-situ measurements were retrieved during the Danish Galathea III expedition, from August 2006 until April 2007. Based on [4] and [5], empirical algorithms for the estimation of pCO2,w were created using regression analyses. The final result was an estimate of the pCO2,w along the known upwelling systems of North Chile-Peru and Namibia. Estimates of pCO2,w produced by different combinations of physical parameters are compared with measurements. Correlation coefficients show that there was a dependency of pCO2,w with SST, Salinity and chl-A.

  11. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    NASA Astrophysics Data System (ADS)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  12. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  13. Comparing CO2 flux data from eddy covariance methods with bowen ratio energy balance methods from contrasting soil management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring CO2 fluxes from contrasting soil management practices is important for understanding the role of agriculture in source-sink relationship with CO2 flux. There are several micrometeorological methods for measuring CO2 emissions, however all are expensive and thus do not easily lend themselve...

  14. New ground-based lidar enables volcanic CO2 flux measurements

    PubMed Central

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-01-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest. PMID:26324399

  15. New ground-based lidar enables volcanic CO2 flux measurements.

    PubMed

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-01-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest. PMID:26324399

  16. METEOPOLE-FLUX: an observatory of terrestrial water, energy, and CO2 fluxes in Toulouse

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Roujean, Jean-Louis; Zhang, Sibo; Maurel, William; Piguet, Bruno; Barrié, Joël; Bouhours, Gilles; Couzinier, Jacques; Garrouste, Olivier; Girres, Sandrine; Suquia, David; Tzanos, Diane

    2016-04-01

    The METEOPOLE-FLUX project (http://www.cnrm.meteo.fr/spip.php?article874&lang=en) aims at monitoring a large suburban set-aside field in the city of Toulouse (43.572898 N, 1.374384 E). Since June 2012, these data contribute to the international effort to monitor terrestrial ecosystems (grasslands in particular), to the validation of land surface models, and to the near real time quality monitoring of operational weather forecast models. Various variables are monitored at a subhourly rate: wind speed, air temperature, air humidity, atmospheric pressure, precipitation, turbulent fluxes (H, LE, CO2), downwelling and upwelling solar and infrared radiation, downwelling and upwelling PAR, fraction of diffuse incoming PAR, presence of water intercepted by vegetation (rain, dew), soil moisture profile, soil temperature profile, surface albedo, transmissivity of PAR in vegetation canopy. Moreover, local observations are performed using remote sensing techniques: infrared radiometry, GNSS reflectometry, and multi-band surface reflectometry using an aerosol photometer from the AERONET network. Destructive measurements of LAI, green/brown above-ground biomass, and necromass are performed twice a year. This site is characterized by a large fraction of gravels and stones in the soil, ranging from 17% to 35% in the top soil layer (down to 0.6 m), and peaking at 81% at 0.7 m. The impact of gravels and stones on thermal and moisture fluxes in the soil has not been much addressed in the past and is not represented in most land surface models. Their impact on the available water content for plant transpiration and plant growth is not much documented so far. The long term monitoring of this site will therefore improve the knowledge on land processes. The data will be used together with urban meteorological data to characterize the urban heat island. Finally, this site will be used for the CAL/VAL of various satellite products in conjunction with the SMOSMANIA soil moisture network

  17. Biological soil crusts as key drivers for CO2 fluxes in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Miralles, Isabel; Rodríguez-Caballero, Emilio; Ortega, Raúl; Ladrón de Guevara, Mónica; Luna, Lourdes; Cantón, Yolanda

    2014-05-01

    The quantification of carbon (C) fluxes for the different ecosystems and the knowledge of whether they act as sources or sinks of C has acquired especial importance during the last years. This is particularly demanding for arid and semiarid ecosystems, for which the available information is very scarce. In these ecosystems, the interplant spaces are commonly covered by a thin layer of organisms including cyanobacteria, green algae, lichens and mosses, which are known as biological soil crusts (BSCs) and, though practically negligible, play a fundamental role in regulating gas exchange into and from soil. BSCs represent the main organisms capable of respiration and photosynthesis in the interplant spaces and are considered the main source of organic carbon in many arid and semiarid areas. Although several studies have pointed to the predominant role of BSCs as sources of CO2, on the contrary, other studies have emphasized their important role as sinks of CO2, being required to establish their precise effect regulating CO2 fluxes. The main purpose of this study was to enlighten the role of BSCs on CO2 fluxes. With this aim, CO2 fluxes were measured on different BSC types (cyanobacteria-, lichen- and moss-dominated BSCs) after several rainfalls and periods of soil drying in two semiarid ecosystems of SE Spain. CO2 exchange was measured using infrared gas analyzers (IRGA): net flux was measured with a transparent custom chamber attached to a Licor Li-6400, and respiration with a respirometer EGM-4 (PPsystems). Photosynthesis was determined as the difference between both measurements. Our results showed that moisture was the major factor controlling CO2 fluxes in BSCs. During the summer season, when soil was dry, all BSCs showed CO2 fluxes close to 0. However, once it rains and BSCs become active, a significant increase in photosynthesis and respiration rates was found. Whereas respiration was the main CO2 flux in bare soils, in BSCs regardless respiration was higher

  18. Coastal CO2 climatology of Oahu, Hawaii: Six years of high resolution time-series data

    NASA Astrophysics Data System (ADS)

    Terlouw, G. J.; Drupp, P. S.; De Carlo, E. H.; Tomlinson, M.

    2014-12-01

    Six years of high resolution pCO2, water quality, and meteorological data were used to calculate air-sea CO2 fluxes on yearly, seasonal and monthly timescales, and relate the temporal and spatial variation in CO2 fluxes to meteorological events and land derived inputs. Three MAPCO2 buoys are deployed in coastal waters of Oahu as part of the NOAA/PMEL Carbon Program, that autonomously collects CO2 and water quality data at 3-hour intervals. The buoys are located on a backreef in Kaneohe Bay and two fringing reef sites on Oahu's south shore, the latter two in open ocean like conditions but with one also influenced by fluvial inputs. Data for this study were collected from June 2008 to July 2014. Mean pCO2 values at the Ala Wai, Kilo Nalu and CRIMP2 buoys were 396, 381 and 447μatm, respectively, with mean daily ranges of 51, 32 and 190 μatm, respectively. The daily range in pCO2 is largest at CRIMP2, reflecting a combination of higher primary production and respiration, vigorous calcification and longer water residence time within the barrier reef environment. Net annualized air-sea CO2 fluxes of the entire study period were 0.083, -0.014 and 1.167 mol C m-2 year-1 for Ala Wai, Kilo Nalu and CRIMP2, respectively. Positive values indicate a CO2 flux from the water to the atmosphere (source behavior), and negative values from the atmosphere to the water (sink behavior). This presentation will also discuss the effects physical and biogeochemical processes on the magnitude and variability of air-sea CO2 fluxes. We observe a negative correlation between CO2 flux and rainfall over monthly, seasonal, and annual timescales. This correlation however, can partly be explained by temperature, because increased rainfall is more common during the colder winter months. Nevertheless, rainfall affects CO2 fluxes, both by rain-induced nutrient and organic matter runoff, as well as the physical effect of raindrops on air-sea gas exchange and the dilution of the air-sea boundary layer

  19. Dimethyl sulfide air-sea fluxes and biogenic sulfur as a source of new aerosols in the Arctic fall

    NASA Astrophysics Data System (ADS)

    Rempillo, Ofelia; Seguin, Alison Michelle; Norman, Ann-Lise; Scarratt, Michael; Michaud, Sonia; Chang, Rachel; Sjostedt, Steve; Abbatt, Jon; Else, Brent; Papakyriakou, Tim; Sharma, Sangeeta; Grasby, Steve; Levasseur, Maurice

    2011-09-01

    Dimethyl sulfide (DMS) and its oxidation products, which have been proposed to provide a climate feedback mechanism by affecting aerosol and cloud radiative properties, were measured on board the Canadian Coast Guard ship Amundsen in sampling campaigns in the Arctic in the fall of 2007 and 2008. DMS flux was calculated based on the surface water measurements and yielded 0.1-2.6 μmol m-2 d-1 along the Northwest Passage in 2007 and 0.2-1.3 μmol m-2 d-1 along Baffin Bay in 2008. DMS oxidation products, sulfur dioxide (SO2), methane sulfonic acid (MSA), and sulfate in aerosols were also measured. The amounts of biogenic SO2 and sulfate were approximated using stable isotope apportionment techniques. Calculating the threshold amount of SO2 needed for significant new particle formation from the formulation by Pirjola et al. (1999), the study suggests that instances of elevated biogenic SO2 concentrations (between 8 and 9 September 2008) derived using conservative assumptions may have been sufficient to form new aerosols in clean air conditions in the Arctic region.

  20. CO2 flux emissions from the Holuhraun eruption, Iceland (August 2014- present)

    NASA Astrophysics Data System (ADS)

    Bergsson, Baldur; Aiuppa, Alessandro; Pfeffer, Melissa; Donovan, Amy; Galle, Bo; Ingvarsson, Þorgils; Arngrímsson, Hermann; Ilyinskaya, Evgenia

    2015-04-01

    Key words: Holuhraun, CO2, SO2, MultiGAS At the time of writing, the gas-rich fissure eruption in Holuhraun, Iceland is still ongoing. This eruption provided a unique opportunity to characterise composition and fluxes of magmatic gases released by a long-lived Iceland eruption. Here, we report on a volcanic gas dataset gathered using a Multi-component Gas Analyzer System (Multi-GAS); giving an evaluation of the CO2 flux from the eruption by combining the measured CO2/SO2 ratios with SO2 fluxes measured by near-source DOAS traverses. This demonstrates work within the FP7 EU-funded project FUTUREVOLC, aimed at making Iceland a supersite for volcanological research. Within this project we developed a field-ready MultiGAS that was deployed to the eruption site as soon as there were surface manifestations of the unrest. Due to difficulties in locating a suitable location at the eruption, a permanent site for the MultiGAS has not yet been found. Campaign measurements were made during the first 2 months of the eruption and will be made as conditions allow. Measurements of plume composition were made both of emissions from the main vent and at the edges of the degassing lava flows. Multi-GAS results show that, after a brief phase of CO2-rich gas being released at the eruption onset (CO2/SO2 up to 30), the ratio between CO2 and SO2 in the plume was around 1. Based on near-source DOAS traverses made in the middle of September, the CO2 flux has been between 20000-40000 tons/day, similar to values typically measured at Mount Etna during eruptive.

  1. Variability of Atmospheric CO2 Over India and Surrounding Oceans and Control by Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Nayak, R. K.; Dadhwal, V. K.; Majumdar, A.; Patel, N. R.; Dutt, C. B. S.

    2011-08-01

    In the present study, seasonal and inter-annual variability of atmospheric CO2 concentration over India and surrounding oceans during 2002-2010 derived from Atmospheric InfrarRed Sounder observation and their relation with the natural flux exchanges over terrestrial Indian and surrounding oceans were analyzed. The natural fluxes over the terrestrial Indian in the form of net primary productivity (NPP) were simulated based on a terrestrial biosphere model governed by time varying climate parameters (solar radiation, air temperature, precipitation etc) and satellite greenness index together with the land use land cover and soil attribute maps. The flux exchanges over the oceans around India (Tropical Indian Ocean: TIO) were calculated based on a empirical model of CO2 gas dissolution in the oceanic water governed by time varying upper ocean parameters such as gradient of partial pressure of CO2 between ocean and atmosphere, winds, sea surface temperature and salinity. Comparison between the variability of atmospheric CO2 anomaly with the anomaly of surface fluxes over India and surrounding oceans suggests that biosphere uptake over India and oceanic uptake over the south Indian Ocean could play positive role on the control of seasonal variability of atmospheric carbon dioxide growth rate. On inter-annual scale, flux exchanges over the tropical north Indian Ocean could play positive role on the control of atmospheric carbon dioxide growth rate.

  2. Daily European CO2 fluxes inferred by inversion of atmospheric transport

    NASA Astrophysics Data System (ADS)

    Bousquet, P.; Peylin, P.; Rayner, P.; Carouge, C.; Rivier, L.; Ciais, P.; Heinrich, P.; Hourdin, F.

    2002-12-01

    Continuous measurements of atmospheric CO2 over continental areas offer the potential to better understand the carbon fluxes between the terrestrial biosphere and the atmosphere. Up to now, most atmospheric inversions have provided monthly fluxes averaged over large sub continental regions. Refining space and time resolution of European fluxes calculated by inversion of atmospheric transport requires i) continuous CO2 measurements over Europe, ii) a high resolution transport model that can reproduce the variability of CO2 over continents and provide continuous response functions at model resolution, and iii) an updated inverse procedure that can use the increased associated information. We use here continuous CO2 measurements obtained through AEROCARB EU project (part of CARBOEUROPE cluster) for year 1998 at 10 continental stations to retrieve daily fluxes over Europe at model resolution with LMDZ transport model. LMDZ model is a global transport model with zoom and back-transport capabilities. A zoom was defined over Europe, with 0.4° maximum resolution. Back transport is based on self-adjoint property of atmospheric transport that makes it possible to get model daily response functions at model resolution and at low computing cost. In this talk, we present the new features of the inverse procedure and we detail the LMDZ back transport. First results obtained for daily European fluxes of the two last months of 1998 are presented and analysed. The question of retrieving fossil emissions from continuous measurements is also developed.

  3. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation

  4. Diurnal variations in CO2 flux from peatland floodplains: Implications for models of ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Goulsbra, Claire; Rickards, Nathan; Brown, Sarah; Evans, Martin; Boult, Stephen; Alderson, Danielle

    2016-04-01

    Peatlands are important terrestrial carbon stores, and within these environments, floodplains have been identified as hotspots of carbon processing, potentially releasing substantial amounts of CO2 into the atmosphere. Previous monitoring campaigns have shown that such CO2 release from ecosystem respiration is linked not only to soil temperature and water table depth, but also to CO2 sequestration via primary productivity, thought to be because the root exudates produced during photosynthesis stimulate microbial activity. This suggests that extrapolation models that are parameterised on data collected during day light hours, when vegetation is photosynthesising, may overestimate ecosystem respiration rates at night, which has important implications for estimates of annual CO2 flux and carbon budgeting. To investigate this hypothesis, monitoring data is collected on the CO2 flux from UK peatland floodplains over the full diurnal cycle. This is done via ex-situ manual data collection from mesocosms using an infra-red gas analyser, and the in-situ automated collection of CO2 concentration data from boreholes within the peat using GasClams®. Preliminary data collected during the summer months suggest that night time respiration is suppressed compared to that during the day, and that the significant predictors of respiration are different when examining day and night time data. This highlights the importance of incorporating diurnal variations into models of ecosystem respiration.

  5. Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from Rn-222 and pCO2 measurements

    NASA Technical Reports Server (NTRS)

    Smethie, W. M., Jr.; Takahashi, T.; Chipman, D. W.; Ledwell, J. R.

    1985-01-01

    The piston velocity for the tropical Atlantic Ocean has been determined from 29 radon profiles measured during the TTO Tropical Atlantic Study. By combining these data with the pCO2 data measured in the surface water and air samples, the net flux of CO2 across the sea-air interface has been calculated for the tropical Atlantic. The dependence of the piston velocity on wind speed is discussed, and possible causes for the high sea-to-air CO2 flux observed in the equatorial zone are examined.

  6. Seasonal changes in soil water repellency and their effect on soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil water repellency (SWR) is a seasonally variable phenomenon controlled by moisture content and at the same time a regulator of the distribution and conductivity of water in the soil. The distribution and availability of water in soil is also an important factor for microbial activity, decomposition of soil organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. It has been therefore hypothesised that SWR by restricting water availability in soil can affect the production and the transport of CO2 in the soil and between the soil and the atmosphere. This study investigates the effect of seasonal changes in soil moisture and water repellency on CO2 fluxes from soil. The study was conducted for 3 year at four grassland and pine forest sites in the UK with contrasting precipitation. The results show the temporal changes in soil moisture content and SWR are affected by rainfall intensity and the length of dry periods between the storms. Soils exposed to very high annual rainfall (>1200mm) can still exhibit high levels of SWR for relatively long periods of time. The spatial variation in soil moisture resulting from SWR affects soil CO2 fluxes, but the most profound effect is visible during and immediately after the rainfall events. Keywords: soil water repellency, CO2 flux, hydrophobicity, preferential flow, gas exchange, rainfall

  7. Using Boundary Layer Equilibrium to Reduce Uncertainties in CO2 Flux Inversions

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Riley, W. J.; Torn, M. S.; Berry, J. A.; Biraud, S. C.

    2010-12-01

    A strong timescale dependence of atmospheric CO2 budgets is demonstrated in high frequency observations from the U.S. Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility, and in a global data assimilation system. The relationship between CO2 concentration gradients and timescales of transport and mixing is explored and used to test the feasibility of previously proposed hypotheses for errors in CO2 flux inversions and atmospheric transport models. A simple model for CO2 vertical concentration gradients is developed based on the approximate equilibrium between surface fluxes and vertical and horizontal transport over seasonal and longer timescales. The finite timescale over which concentration gradients relax toward equilibrium is a diagnostic of the rate at which surface CO2 is exchanged with the free-troposphere, and can be applied to observations and model simulations of any conserved boundary layer tracer with surface sources and sinks. This diagnostic does not require dynamical variables from the transport models, and is independent of the prior- and post-inversion seasonal surface fluxes that may have complicated previous interpretations of concentration gradients in terms of modeled mixing rates. Results indicate that observations frequently cited as evidence for systematic biases in atmospheric transport models are insufficient to prove that such biases exist, and in some cases model errors proposed to reconcile carbon inventory and inverse estimates of global carbon sinks could further confound these estimates.

  8. Seasonal Change Of CO2 Flux At Tundra Vegetation In Interior Alaska

    NASA Astrophysics Data System (ADS)

    Nojiri, A.; Harazono, Y.; Ohtaki, E.; Iwata, T.

    2003-12-01

    CO2 flux and micrometeorology have been measured to reveal the responses of forest at permafrost to climate change since October in 2002. The vegetation was black spruce and tussock tundra located in the campus (147° 51'W, 64° 51N) of the University of Alaska Fairbanks, Alaska. There have been significant gaps of flux measurements in the interior Alaska where it is generally warmer in summer and has different climate conditions. CO2 uptake started in March when the tussock tundra was still under snow cover. CO2 uptake increased after spring thaw in mid April that ranged -0.3mg/m2/s and increased gradually until early May (DOY135). After that, daily maximum CO2 uptake kept almost upper-limit level of -1mg/m2/s during summer (June and July). Day-length was longer at the site so the nighttime CO2 respiration was defined as CO2 efflux when PAR was less than 10 mol/m2/s. Averages of CO2 respiration were 0.042mg/m2/s in mid April (DOY100-109), 0.021mg/m2/s in mid May (DOY130-139), 0.15mg/m2/s in mid June (DOY160-169), and 0.15mg/m2/s in mid July (DOY190-199), respectively. Air temperature in mid summer did not changed remarkably and daily average temperature in June and July were almost the same as between 10 and 20. These were caused by lower solar radiation and higher level of precipitation in 2003 summer than the normal year. Observed CO2 flux was limited period and the CO2 budget over tussock tundra in interior Alaska was a source from spring to summer in 2003. Long term CO2 budget study is demanded to reveal whether anthropogenic or natural variation is major effect on climate change, thus it is important to continue the flux measurements and to reveal the relationships between the atmosphere and the vegetation.

  9. Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems.

    PubMed

    Atwood, T B; Hammill, E; Kratina, P; Greig, H S; Shurin, J B; Richardson, J S

    2015-12-01

    Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO2 uptake by mesocosms in early dawn. However, a 3°C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration. PMID:26631247

  10. Comparison of CO2 fluxes from eddy covariance and soil chambers measurements in a vineyard

    NASA Astrophysics Data System (ADS)

    Vendrame, Nadia; Tezza, Luca; Meggio, Franco; Pitacco, Andrea

    2015-04-01

    In order to study the processes involved in the carbon balance of a vineyard, we set up a long-term monitoring station of CO2, water vapour and energyfluxes. The experimental site is located in an extensive flat vineyard in the north-east of Italy. We measure the net ecosystem exchange with the eddy covariance (EC) technique using a Campbell Scientific closed-path IRGA and sonic anemometer, and the soil CO2 flux using a Li-Cor multiplexed system connected with six automatic dynamic chambers. Ancillary meteorological and soil variables are also measured. The vineyard is planted with north-south oriented rows spaced 2.2 m apart. Floor is grass covered, and a strip 0.6 m wide on the rows is chemically treated. To represent the different soil conditions existing in the EC footprint and to study the components of the CO2 soil flux, we placed dark soil chambers both on the vineyard rows and in the inter-row space. A well-known limit of the EC technique is the underestimation of fluxes during calm wind periods, mainly occurring at night. In the autumn/winter vine dormancy period, the EC and soil chambers CO2 fluxes should be similar. We compared the CO2 fluxes measured using the two methods to evaluate the reliability of EC measurements at different atmospheric turbulent mixing conditions and stability. The EC technique underestimates the ecosystem respiration during night time periods with friction velocity lower than 0.1 m/s. The present comparison could enable the assessment of a friction velocity threshold, representing the limit above which the EC fluxes can be considered representative of the vegetation-atmosphere exchanges at our specific site.

  11. BOREAS TF-11 SSA-Fen Soil Surface CO2 Flux Data

    NASA Technical Reports Server (NTRS)

    Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. These data are soil surface CO 2 flux data at the SSA-Fen site from 27- May-1994 to 23-Sep-1994 and from 13-May-1995 to 03-Oct-1995. A portable gas exchange system was used to make these measurements. The data are stored in tabular ASCII files.

  12. CO2 soil fluxes at bog and forest ecosystems in southern taiga of European Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitrii; Ivanov, Aleksey; Vasenev, Ivan; Kurbatova, Juliya

    2015-04-01

    Bogs and spruce forests are typical natural ecosystems of the southern taiga of European Russia. They play an important role in carbon balance between soil and atmosphere. In the Central Forest Reserve (33°00' E, 56°30' N) for over 15 years conduct research of these processes. One of the research methods of CO2 emissions is the chamber method, which allows to analyze the local variation of the intensity of fluxes and its depending of the type of vegetation, microrelief and meteorological parameters. Period of measurements was 5 months - from June to November 2013-2014. In the bog were investigated 3 areas - pine boggy forest, as well as hummocks and hollows in the middle of bog. As the forest ecosystem was chosen paludified shallow-peat spruce forest. From the data obtained it can be concluded that in all ecosystems were observed 2 periods with a minimum values of CO2 emission: the first - in early July, associated with a high level of ground water and decrease the intensity of decomposition of organic matter, and the second - in November, associated with natural processes and seasonal cooling. The average intensity of CO2 emissions in summer-autumn season between all ecosystems varied greatly: in the boggy pine forest - 500 mgCO2/m2*h), hummocks - 550 mgCO2/m2*h, hollows - 290 mgCO2/m2*h) and paludified shallow-peat spruce forest - 750 mgCO2/m2*h. Based on these researches, it was found that the intensity of CO2 emissions significantly below in the bog than in paludified shallow-peat spruce forest because it is limited by the level of ground water. In the paludified shallow-peat spruce forest, fluxes are more depend on soil temperature and less on the groundwater level.

  13. THE ARS RANGELANDS CO2 FLUX NETWORK: DO RANGELANDS SEQUESTER CARBON?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term measurements of CO2 fluxes in major terrestrial ecosystems are required to determine which ecosystems account for the C sink thought to exist in North America. Considerable information has accumulated regarding C storage on crop lands, and other networks are measuring net C accumulation i...

  14. Linkages between CO2 and H2O fluxes over corn and soybean canopies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of CO2 and H2O vapor exchanges are becoming routine observations over many surfaces. These data are generally used to estimate the fluxes of these two critical gases as part of the energy exchanges between the plant and atmosphere. The value in these observations extends beyond that con...

  15. Linkages between CO2 and H2O fluxes over corn and soybean canopies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of CO2 and H2O vapor exchanges are becoming routine observations over many surfaces. These data are generally used to estimate the fluxes of two critical gases as part of the energy exchanges between a vegetated surface and lowest boundary-layer of the atmosphere. The value in these typ...

  16. Effects of elevated CO2 and agricultural management on flux of greenhouse gases from soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the contribution of agriculture to climate change, flux of greenhouse gases from different cropping systems must be assessed. Measurement of soil efflux of greenhouse gases (CO2, N2O, and CH4) from conservation and conventional tillage systems that have been under the influence of eleva...

  17. Self-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Connor, C.; Stix, J.; Spinner, W.

    2003-08-01

    We investigate the spatial relationship between self-potential (SP), soil CO2 flux, and temperature and the mechanisms that produce SP anomalies on the flanks of Masaya volcano, Nicaragua. We measured SP, soil CO2 fluxes (<1 to 5.0 × 104 g m-2 d-1), and temperatures (26 to 80°C) within an area surrounding a normal fault, adjacent to Comalito cinder cone (2002-2003). These variables are well spatially correlated. Wavelengths of SP anomalies are <=100 m, and high horizontal SP gradients flank the region of elevated flux and temperature. Carbon isotopic compositions of soil CO2 (δ13C = -3.3 to -1.1‰) indicate a deep gas origin. Given the presence of a deep water table (100 to 150 m), high gas flow rates, and subsurface temperatures above liquid boiling points, we suggest that rapid fluid disruption is primarily responsible for positive SP anomalies here. Concurrent measurement of SP, soil CO2 flux, and temperature may be a useful tool to monitor intrusive activity.

  18. Surface Ocean pCO2 Seasonality and Sea-Air CO2 Flux Estimates for the North American East Coast

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio; Mannino, Antonio; Najjar, Raymond G., Jr.; Friedrichs, Marjorie A. M.; Cai, Wei-Jun; Salisbury, Joe; Wang, Zhaohui Aleck; Thomas, Helmuth; Shadwick, Elizabeth

    2013-01-01

    Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010.

  19. Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA's Carbon Monitoring Flux Pilot Project

    NASA Astrophysics Data System (ADS)

    Ott, Lesley E.; Pawson, Steven; Collatz, George J.; Gregg, Watson W.; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile S.; Bowman, Kevin W.; Liu, Junjie; Eldering, Annmarie; Gunson, Michael R.; Kawa, Stephan R.

    2015-01-01

    Carbon Monitoring System Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing data sets. Here we report on simulations using NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally informed land and ocean fluxes with atmospheric CO2 records. Despite the observation inputs, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames Carnegie-Ames-Stanford-Approach (CASA) and CASA-Global Fire Emissions Database version 3 (GFED)) models is 1.7 Pg C for 2009-2010. Ocean models (NASA's Ocean Biogeochemical Model (NOBM) and Estimating the Circulation and Climate of the Ocean Phase II (ECCO2)-Darwin) differ by 35% in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at Northern Hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at Southern Hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of Atmospheric Infrared Sounder observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppm at the surface and 3 ppm in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from inherent measurement variability, regardless of the measurement platform.

  20. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with

  1. CO2, CH4 and particles flux measurements in Florence, Italy

    NASA Astrophysics Data System (ADS)

    Gioli, Beniamino; Toscano, Piero; Zaldei, Alessandro; Fratini, Gerardo; Miglietta, Franco

    2013-04-01

    We report a synthesis of seven years of eddy covariance (EC) flux measurements in the city of Florence, Italy. The measurement site is located in a densely urbanized area in the central city area, where fluxes are governed by anthropogenic emissions, considering the lack of green-space in the flux footprint. EC flux measurements of CO2 are made long-term since seven years, while short-term campaigns have been aimed at measuring CH4 and particles fluxes. CO2 and CH4 densities are measured with fast open-path sensors, while particles in the range 0.32 - 7.00 µm optical diameter are measured with a custom-built optical counter. CO2 long-term fluxes are always a net source, with a small inter-annual variability associated with a high seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively. CH4 fluxes to the atmosphere are relevant, representing about 8% of CO2-equivalent emissions, and do not exhibit any significant seasonality. Relative contributions of road traffic and domestic heating to observed emissions has been estimated through multi-variate analysis combined with inventorial data and emission proxies such as traffic counters and gas network flow rates, revealing that domestic heating accounts for more than 80% of observed CO2 fluxes. Heating and road traffic are instead responsible for only 14% of observed CH4 fluxes, while the major residual part is likely dominated by gas network leakages. Particles flux data show a smaller seasonal trend and a pronounced weekend decrease, highlighting that the contribution of heating to particle emissions is relatively small compared to road traffic. Dynamics at hourly time scales during week and week-end days allows the analysis of the coupled role of emission strength and atmospheric processes such as advection and entrainment in regulating atmospheric concentrations. This set of observations highlights the potential of urban EC flux measurements as a validation tool for

  2. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air-sea fluxes, and ocean eddies

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian A.; Miller, Arthur J.; Seo, Hyodae

    2013-05-01

    Ocean-atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean-atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000-2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)-flux coupler is invoked in a separate run to isolate the impact of the mesoscale (˜50-200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST-wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST-wind stress and SST-heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean

  3. Comparing Amazon Basin CO2 fluxes from an atmospheric inversion with TRENDY biosphere models

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Alden, C. B.; Harper, A. B.; Ahlström, A.; Touma, D. E.; Miller, J. B.; Gatti, L. V.; Gloor, M.

    2015-12-01

    Net exchange of carbon dioxide (CO2) between the atmosphere and the terrestrial biosphere is sensitive to environmental conditions, including extreme heat and drought. Of particular importance for local and global carbon balance and climate are the expansive tracts of tropical rainforest located in the Amazon Basin. Because of the Basin's size and ecological heterogeneity, net biosphere CO2 exchange with the atmosphere remains largely un-constrained. In particular, the response of net CO2 exchange to changes in environmental conditions such as temperature and precipitation are not yet well known. However, proper representation of these relationships in biosphere models is a necessary constraint for accurately modeling future climate and climate-carbon cycle feedbacks. In an effort to compare biosphere response to climate across different biosphere models, the TRENDY model intercomparison project coordinated the simulation of CO2 fluxes between the biosphere and atmosphere, in response to historical climate forcing, by 9 different Dynamic Global Vegetation Models. We examine the TRENDY model results in the Amazon Basin, and compare this "bottom-up" method with fluxes derived from a "top-down" approach to estimating net CO2 fluxes, obtained through atmospheric inverse modeling using CO2 measurements sampled by aircraft above the basin. We compare the "bottom-up" and "top-down" fluxes in 5 sub-regions of the Amazon basin on a monthly basis for 2010-2012. Our results show important periods of agreement between some models in the TRENDY suite and atmospheric inverse model results, notably the simulation of increased biosphere CO2 loss during wet season heat in the Central Amazon. During the dry season, however, model ability to simulate observed response of net CO2 exchange to drought was varied, with few models able to reproduce the "top-down" inversion flux signals. Our results highlight the value of atmospheric trace gas observations for helping to narrow the

  4. Measurements of Urban Area-Wide CO2 and CH4 Fluxes as part of the Indianapolis Flux Experiment (INFLUX)

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Callahan, B.; Cambaliza, M. L.; Davis, K. J.; Hardesty, R.; Iraci, L. T.; Gurney, K. R.; Karion, A.; Lauvaux, T.; McGowan, L. E.; Miles, N. L.; Moser, B.; Newberger, T.; Possolo, A.; Razlivanov, I. N.; Richardson, S.; Samarov, D. V.; Sarmiento, D.; Stirm, B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.

    2012-12-01

    The Indianapolis Flux Experiment (INFLUX) was created in order to develop and evaluate methods for the measurement of greenhouse gas emission fluxes from urban environments. Such methods are important for a variety of reasons, including that more than half the global population now resides in cities, and because it is likely that many CO2 emissions reductions strategies will be implemented on local, largely urban, scales. INFLUX is using Indianapolis as a test case for measurements of urban scale greenhouse gas fluxes, because it is a fairly isolated urban environment with tractable meteorology, and a well-developed emission inventory (Vulcan/Hestia). INFLUX aims to quantify and reduce the uncertainty limits for such flux determinations, and to define the uncertainties for individual and combined approaches. The project currently combines a network of towers (currently 10 with 12 possible by the end of 2012) at which CO, CO2 and CH4 are measured, along with periodic flask sampling for 14CO2 and ~50 other trace gases and isotopes. Aircraft-based measurements of CO2, CH4 and H2O, along with flask samples for a variety of gases including 14CO2 are conducted from a light twin aircraft that enables flux measurements using the on-board turbulence/wind measurements via mass balance or eddy covariance methods. As of August of 2012 INFLUX has a Total Carbon Column Observing Network (TCCON) Fourier Transform Spectrometer at a downwind site, measuring column total CO2, CH4, H2O (and other greenhouse gases). The data from these tower, TCCON and aircraft measurements are then used in an inverse-modeling approach, using the Weather Research and Forecast model with chemistry (WRF-Chem) and the Lagrangian Particle Dispersion Model (LDPM) to yield estimates of the urban area flux at 1 km2 resolution. When aggregated these fluxes can be compared to estimates derived from aircraft mass-balance estimates, and the 14CO2 and CO data are used to extract the fossil fuel component of the

  5. Riverine GHG emissions: one year of CO2, 13CO2 and CH4 flux measurements on Vistula river in Krakow, southern Poland

    NASA Astrophysics Data System (ADS)

    Jasek, Alina; Wachniew, Przemyslaw; Zimnoch, Miroslaw

    2013-04-01

    Terrestrial surface waters are generally considered to be sources of carbon dioxide and methane, because respiration of organic matter via aerobic and anaerobic pathways causes supersaturation of surface waters with respect to CO2 and CH4, respectively. In rivers, these processes are influenced by such anthropogenic factors as changes of land-use, wastewater and alteration of river channels. The research object is Vistula, the largest Polish river. It has the length of 1047 km and annual runoff of 6.2x1010m3. The urban section of Vistula in Krakow receives large amounts of organic matter from highly urbanized catchment and point discharges of urban waste waters within the city limits. The river was sampled regularly at three points: the entrance to the city, the center and the point where Vistula leaves the agglomeration. A floating chamber coupled with Picarro G2101-i analyzer was applied to quantify CO2, 13CO2 and CH4 fluxes leaving the surface of the river. A floating chamber was equipped with sensors to measure air pressure, temperature and humidity inside the chamber and the temperature of water. The chamber was equipped with a set of floats and an anchor. The measurements started in October 2011, and were repeated with approximately monthly frequency. Physicochemical properties of water (temperature, conductivity, pH, CO2 partial pressure over the water surface and alkalinity) were also measured during each measurement campaign. In addition, at each site short-term variability of the measured fluxes was also investigated. Additionally, short-term variability of the measured fluxes of CO2, 13CO2 and CH4 were performed in all three sites. The results indicate that fluxes of CO2 released from the river are comparable with the soil emissions of this gas measured in Krakow area. The δ13CO2 signature of riverine CO2 flux allowed to identify decomposition of C3 organic matter as the major source of this gas. No distinct seasonal variability of the CO2 emission and

  6. Quantifying the magnitude, spatiotemporal variation and age of aquatic CO2 fluxes in western Greenland

    NASA Astrophysics Data System (ADS)

    Long, Hazel; Waldron, Susan; Hoey, Trevor; Garnett, Mark; Newton, Jason

    2015-04-01

    High latitude regions are experiencing accelerated atmospheric warming, and understanding the terrestrial response to this is of crucial importance as: a) permafrost soils hold vast amounts (1672 Pg; Tarnocai et al., 2009) of carbon (C) which may be released and feedback to climate change; and, b) ice sheet melt in this region is accelerating, and whilst this will cause albedo and heat flux changes, the role of this in atmospheric gas release is poorly known. To understand how sensitive arctic environments may respond to future warming, we need measurements that document current C flux rates and help to understand C cycling pathways. Although it has been widely hypothesised that Arctic regions may become increasingly significant C sources, the contribution of aquatic C fluxes which integrate catchment-wide sources has been little studied. Using a floating chamber method we directly measured CO2 fluxes from spatially distributed freshwaters (ice sheet melt, permafrost melt, and lakes/ponds) in the Kangerlussuaq region of western Greenland during the early part of the summer 2014 melt season. Fluxes from freshwaters with permafrost sources were in the range -3.15 to +1.28 μmol CO2 m-2 s-1. Fluxes from a river draining the ice sheet and the Russell Glacier were between -2.19 and +4.31 μmol CO2 m-2 s-1. These ranges show the systems can be both sources (efflux) and sinks (influx) of CO2. Much freshwater data worldwide shows CO2 efflux, and recording river/stream systems being a CO2 sink is unusual. Analysis of dissolved inorganic carbon (DIC) concentrations of the water sources revealed higher concentrations of DIC in the meltwater of permafrost systems (0.66-1.92 mmol) than the ice melt system (0.07 to 0.17 mmol), as well as differences in the carbon stable isotope ratio ranges (δ13C permafrost-melt, -9.5 to -1.2 permil; δ13C ice-melt, -11.7 to 7.3 permil). Where we recorded CO2 efflux we collected effluxed CO2 for radiocarbon analysis, and here we will present

  7. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  8. CO2 flux in the oxygen minimum zone of the Mexican Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Franco-Novela, A. C.; Hernandez-Ayon, M.; Beier, E.; Sosa-Ávalos, R.; Castro, R.; Farber-Lorda, J.; Siqueiros-Valencia, A.

    2012-12-01

    The contribution of the coastal ocean to the global carbon budget is still in debate, as these regions may work either as a source or sink of carbon dioxide (CO2). Particularly, there is a lack of studies in the coastal zone off the Mexican Tropical Pacific (MTP), which is characterized by a prominent Oxygen Minimum Zone (OMZ). In this region, very low oxygen concentrations (< 20 μmol/kg) and high values of partial pressure of carbon dioxide (pCO2) are present below the thermocline/oxycline, generally very strong and shallow (~ 70 m). The main purpose of this work is to calculate the sea - air CO2 flux in the OMZ of the MTP. High positive fluxes (from sea to air) are expected due to the influence of the high carbon concentration of the subsurface waters. In order to assess this, two cruises were conducted in the MTP, and samples of dissolved inorganic carbon (DIC) and total alkalinity (TA) were measured. From this measurements the pCO2 and the sea - air CO2 flux were calculated. The results showed that the high carbon content of the subsurface water does not have any influence on the surface carbon exchange. However, it was found that the main factor controlling these variables is the horizontal advection of the surface water masses, and that the presence of Surface Tropical Water favored that the region acted as a sink of CO2, while in the presence of Subtropical Surface Water the zone was in equilibrium with the atmosphere.

  9. The long-term studies of CO2 fluxes in southern taiga of European Russia

    NASA Astrophysics Data System (ADS)

    Kurbatova, Juliya; Varlagin, Andrei; Tatarinov, Fedor; Avilov, Vitalii; Astafieva, Elena; Ivanov, Dmitrii; Olchev, Alexander; Valentini, Riccardo

    2013-04-01

    Wetlands and bogged forests located in forest zone are main elements of natural landscapes of Russia, covering about 10% of country. The long-term studies (from 1998 - for present) of CO2 fluxes have conducted in southern taiga of European Russia (Central Forest reserve, Tver region) at ombrotrophic bog and bogged spruce forest. To estimate of seasonal and interannual variations of CO2 fluxes different methods such as eddy covariance, chamber methods and modeling calculations were used. Our researches have allowed to evaluate long-term variations of net ecosystems exchange, soil respiration, gross primary production and their depending on environmental factors. The results of researches have confirmed strong relations between CO2 fluxes and precipitations and/or temperatures and level of ground water. Wetlands and bogged forests can be as sink as source of CO2 for atmosphere. Variation in water level dynamics alone could significantly affect the C balance in wetland ecosystems mainly through altering the decomposition rate of the organic matter accumulated in the soil profile. The modeled results supported the hypothesis that the soil processes, especially the decomposition process, in wetlands could play an important role in altering the C dynamics in the ecosystems.

  10. Regional CO2 fluxes for eastern Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    Gatti, L. V.; Miller, J. B.; D'Amelio, M. T.; Wofsy, S.; Tans, P.

    2008-12-01

    We have determined regional scale (~105 - 106 km2) CO2 fluxes using atmospheric measurements from aircraft vertical profiles over eastern Amazonia (site SAN: 02°51'S; 54°57'W). Profiles started December 2000 and have continued through 2008. 17 air samples per profile were collected aboard light aircraft between the surface and 4-5 km using the NOAA/ESRL semi- automatic portable flask package. We use a column integration technique to determine the CO2 flux for each vertical profile, where the measured CO2 profile is differenced from a CO2 background, which was determined using co-measured SF6 as a transport tracer. Two NOAA/ESRL background sites, Ascension Island (ASC) located in the Atlantic Ocean (8°S, 14°W) and Barbados (RPB) located in the Atlantic Ocean (12°N, 59°W) were used to calculate the fractions of air arriving at the sites studied. Back trajectories from the HYSPLIT model were calculated for every profile every 500m of altitude to determine the time the air mass took to travel between the coast and SAN. The observed flux, which is representative of that between the coast and measurement sites, averaged -0.03 ± 1.5 g C m-2day-1 for the wet season and 0.3 ± 0.9 g C m-2day-1 for the dry season. The flux variability is high, probably reflecting the dynamic nature of the response of the terrestrial biosphere to environmental conditions. We have attempted to remove the influence of biomass burning from the fluxes using measurements of co-measured CO. This reduces the dry season flux to -0.04 ± 1.2 g C m- 2day-1. We will compare these results to the seasonality found in eddy covariance measurements and to that estimated from models of the terrestrial biosphere.

  11. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  12. Summertime CO2 fluxes and ecosystem respiration from marine animal colony tundra in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua; Liu, Yashu

    2014-12-01

    Net ecosystem CO2 exchange (NEE) and ecosystem respiration (ER) were investigated at penguin, seal and skua colony tundra and the adjacent animal-lacking tundra sites in maritime Antarctica. Net CO2 fluxes showed a large difference between marine animal colonies and animal-lacking tundra sites. The mean NEE from penguin, seal and skua colony tundra sites ranged from -37.2 to 5.2 mg CO2 m-2 h-1, whereas animal-lacking tundra sites experienced a larger net gain of CO2 with the mean flux range from -85.6 to -23.9 mg CO2 m-2 h-1. Ecosystem respiration rates at penguin colony tundra sites (mean 201.3 ± 31.4 mg CO2 m-2 h-1) were significantly higher (P < 0.01) than those at penguin-lacking tundra sites (64.0-87.1 mg CO2 m-2 h-1). The gross photosynthesis (Pg) showed a consistent trend to ER with the highest mean Pg (219.7 ± 34.5 mg CO2 m-2 h-1) at penguin colony tundra sites. When all the data were combined from different types of tundra ecosystems, summertime tundra NEE showed a weak or strong positive correlation with air temperature, 0-10 cm soil temperature or precipitation. The NEE from marine animal colony and animal-lacking tundra was significantly positively correlated (P < 0.001) with soil organic carbon (SOC), total nitrogen (TN) contents and C:N ratios. The ER showed a significant exponential correlation (P < 0.01) with mean 0-15 cm soil temperature, and much higher Q10 value (9.97) was obtained compared with other terrestrial ecosystems, indicating greater temperature sensitivity of tundra ecosystem respiration. Our results indicate that marine animals and the deposition of their excreta might have an important effect on tundra CO2 exchanges and ecosystem respiration, and current climate warming will further decrease tundra CO2 sink in maritime Antarctica.

  13. Effects of biased CO2 flux measurements by open-path sensors on the interpretation of CO2 flux dynamics at contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Helbig, Manuel; Humphreys, Elyn; Bogoev, Ivan; Quinton, William L.; Wischnweski, Karoline; Sonnentag, Oliver

    2015-04-01

    Long-term measurements of net ecosystem exchange of CO2 (NEE) are conducted across a global network of flux tower sites. These sites are characterised by varying climatic and vegetation conditions, but also differ in the type of CO2/H2O gas analyser used to obtain NEE. Several studies have observed a systematic bias in measured NEE when comparing open-path (OP) and closed-path (CP) sensors with consistently more negative daytime NEE measurements when using OP sensors, both during the growing and non-growing season. A surface heating correction has been proposed in the literature, but seems not to be universally applicable. Systematic biases in NEE measurements are particularly problematic for synthesis papers and inter-comparison studies between sites where the 'true' NEE is small compared to the potential instrument bias. For example, NEE estimates for boreal forest sites derived from OP sensors show large, ecologically unreasonable winter CO2 uptake. To better understand the causes and the magnitude of this potential bias, we conducted a sensor inter-comparison study at the Mer Bleue peatland near Ottawa, ON, Canada. An eddy covariance system with a CP (LI7000 & GILL R3-50) and an OP sensor (EC150 & CSAT3A) was used. Measurements were made between September 2012 and January 2013 and covered late summer, fall, and winter conditions. Flux calculations were made as consistently as possible to minimise differences due to differing processing procedures (e.g. spectral corrections). The latent (LE, slope of orthogonal linear regression of LEOP on LECP: 1.02 ± 0.01 & intercept: -0.2 ± 0.6 W m-2 and sensible heat fluxes (H, slope of HCSAT3A on HGILL: 0.96 ± 0.01 & intercept: 0.1 ± 0.03 W m-2) did not show any significant bias. However, a significant bias was apparent in the NEE measurements (slope of NEEOP on NEECP: 1.36 ± 0.02 & intercept: -0.1 ± 0.05). The differences between NEEOP and NEECP were linearly related to the magnitude of HCSAT3A with a slope of -0

  14. Soil CO2 Flux in the Amargosa Desert, Nevada, during El Nino 1998 and La Nina 1999

    USGS Publications Warehouse

    Riggs, Alan C.; Stannard, David I.; Maestas, Florentino B.; Karlinger, Michael R.; Striegl, Robert G.

    2009-01-01

    Mean annual soil CO2 fluxes from normally bare mineral soil in the Amargosa Desert in southern Nevada, United States, measured with clear and opaque soil CO2-flux chambers (autochambers) were small - <5 millimoles per square meter per day - during both El Nino 1998 and La Nina 1999. The 1998 opaque-chamber flux exceeded 1999 opaque-chamber flux by an order of magnitude, whereas the 1998 clear-chamber flux exceeded 1999 clear-chamber flux by less than a factor of two. These data suggest that above-normal soil moisture stimulated increased metabolic activity, but that much of the extra CO2 produced was recaptured by plants. Fluxes from warm moist soil were the largest sustained fluxes measured, and their hourly pattern is consistent with enhanced soil metabolic activity at some depth in the soil and photosynthetic uptake of a substantial portion of the CO2 released. Flux from cool moist soil was smaller than flux from warm moist soil. Flux from hot dry soil was intermediate between warm-moist and cool-moist fluxes, and clear-chamber flux was more than double the opaque-chamber flux, apparently due to a chamber artifact stemming from a thermally controlled CO2 reservoir near the soil surface. There was no demonstrable metabolic contribution to the very small flux from cool dry soil, which was dominated by diffusive up-flux of CO2 from the water table and temperature-controlled CO2-reservoir up- and down-fluxes. These flux patterns suggest that transfer of CO2 across the land surface is a complex process that is difficult to accurately measure.

  15. Joint CO2 state and flux estimation with the 4D-Var system EURAD-IM

    NASA Astrophysics Data System (ADS)

    Klimpt, Johannes; Elbern, Hendrik

    2016-04-01

    Atmospheric CO2 inversion studies seek to improve CO2 surface-atmosphere fluxes with the usage of adjoint transport models and CO2 concentration measurements. Terrestrial CO2 fluxes -anthropogenic emissions, photosynthesis, and respiration- bear large spatial and temporal variability and are highly uncertain. Additionally to the high uncertainty of the three CO2 fluxes itself, regional inversion studies suffer from uncertainty of the boundary layer height and atmospheric transport especially during night, leading to uncertainty of atmospheric CO2 mixing ratios during sunrise. This study assesses the potential of the 4-dimensional variational (4D-Var) method to estimate CO2 fluxes and atmospheric CO2 concentrations jointly at each grid cell on a regional scale. Identical twin experiments are executed with the nested EURopean Air pollution Dispersion-Inverse Model (EURAD-IM) with 5 km resolution in Central Europe with synthetic half hourly measurements from eleven concentration towers. The assimilation window is chosen to start from sunrise for 12 hours. We find that joint estimation of CO2 fluxes and initial states requires a more careful balance of the background error covariance matrices but enables a more detailed analysis of atmospheric CO2 and the surface-atmosphere fluxes.

  16. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

    NASA Technical Reports Server (NTRS)

    James, P. B.

    1985-01-01

    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  17. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial

  18. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations

    NASA Astrophysics Data System (ADS)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.

    2012-12-01

    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The

  19. The effect of nitrogen fertilization on soil surface CO2 fluxes in Siberian forest soils

    NASA Astrophysics Data System (ADS)

    Matvienko, Anastasia; Menyailo, Oleg

    2015-04-01

    Human activities, production of nitrogen fertilizers have altered the global nitrogen cycle greater than the carbon cycle. The purpose of our study was to investigate the effect of nitrogen application on the CO2 flux under two tree species - Siberian larch and Scots pine. To estimate nitrogen effect on heterotrophic and autotrophic components of soil respiration the three-year experiment with deep and shallow collars was carried out. Collars were installed in May of 2010. Nitrogen was applied in June of 2010 in the form of ammonium nitrate (dry) at the rate of 50 kg N/ha on the four replicated plots under both tree species. The emission of CO2 was measured every 2 weeks from May to October over three years with LI-8100A CO2 analyzer. Nitrogen application positively affected soil surface CO2 flux under both tree species. The effect of N was even significant for annual CO2 production. Under Scots pine, the N fertilization increased annual CO2 production during the first and second year of measurements, under larch only for the first year. For the third year the effect of N has disappeared under both tree species. The total losses of soil carbon due to N application were 600-650 kg C/ha under Siberian larch and three times higher (1800-2000 kg C/ha) under Scots pine. Different collar types revealed that the effect was mostly due to increased activity of heterotrophs and subsequent laboratory incubations proved that this activity was accelerated by N mostly in the litter layers. Overall, our results suggest that in N unpolluted Siberia, the application of N leads to soil C losses, mainly due to accelerated decomposition of forest floor. The losses of soil C might exceed N-driven C sequestration in tree biomass, negating thus positive effect of N addition on net C sequestration.

  20. Volcanic CO2 mapping and flux measurements at Campi Flegrei by Tunable Diode Laser absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pedone, Maria; Aiuppa, Alessandro; Giudice, Gaetano; Grassa, Fausto; Chiodini, Giovanni; Valenza, Mariano

    2014-05-01

    Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in Volcanology are still limited to a few examples. Here, we explored the potentiality of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) to measurement of volcanic CO2 flux emissions. Our field tests were conducted at Campi Flegrei (near Pozzuoli, Southern Italy), where the GasFinder was used (during three campaigns in October 2012, January 2013 and May 2013) to repeatedly measure the path-integrated concentrations of CO2 along cross-sections of the atmospheric plumes of the two main fumarolic fields in the area (Solfatara and Pisciarelli). By using ad-hoc designed field-set-up and a tomographic post-processing routine, we resolved, for each of the 2 manifestations, the contour maps of CO2 concentrations in their atmospheric plumes, from the integration of which (and after multiplication by the plumes' transport speeds) the CO2 fluxes were finally obtained [1]. The so-calculated fluxes average of 490 tons/day, which agrees well with independent evaluations of Aiuppa et al. (2013) [2] (460 tons/day on average), and support a significant contribution of fumaroles to the total CO2 budget. The cumulative (fumarole [this study] +soil [2]) CO2 output from Campi Flegrei is finally evaluated at 1600 tons/day. The application of lasers to volcanic gas studies is still an emerging (though intriguing) research field, and requires more testing and validation experiments. We conclude that TDL technique may valuably assist CO2 flux quantification at a number of volcanic targets worldwide. [1] Pedone M. et al. (2013) Gold2013:abs:5563, Goldschmidt Conference, session 11a. [2] Aiuppa A. et al. (2013) Geochemistry Geophysics Geosystems. doi: 10.1002/ggge.20261. [3] Chiodini G. et al. (2010) Journal of Geophysical Research, Volume 115, B03205. doi:10.1029/2008JB006258.

  1. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation

    USGS Publications Warehouse

    Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, D.A.; Rogie, J.D.; Shuster, D.L.

    2001-01-01

    Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22

  2. Bayesian belief network for CO2 leak detection by near-surface flux rates for CO2 and perfluorocarbon (PFC) tracer

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Small, M. J.; Ogretim, E.; Gray, D. D.; Bromhal, G. S.; Strazisar, B. R.; Wells, A. W.

    2010-12-01

    To incorporate the use of multiple geologic sequestration monitoring techniques, a Bayesian Belief Network (BBN) for leak detection inference is applied to integrate the information provided by different techniques deployed at a site. In this study, two monitoring methods, near-surface soil CO2 flux and perfluorocarbon (PFC) tracer concentration, are included in the BBN. First, possible near-surface flux rates for CO2 and PFC tracer as a function of distance from a leakage point are simulated by TOUGH2, given different leakage rates and permeabilities. Then, the natural near-surface CO2 flux and background PFC tracer concentration measured at the Zero Emission Research and Technology (ZERT) site are used to determine critical values for leak inference and to calculate the probabilities of leak detection given a monitoring network. A BBN of leak detection is established by combing the TOUGH2 simulations and the background characterization of near-surface CO2 flux and PFC tracer at the sequestration site. The results show a positive correlation between the detection abilities of PFC tracer and soil CO2 flux, but the PFC tracer is more sensitive for detecting a leak in most cases. The BBN of leak detection including both soil CO2 flux and PFC tracer concentration gives an integrated probability estimation of leak detection for different permeability and leakage rates for a given monitoring network. A BBN developed using the proposed methodology can be used to help site engineers and decision makers to evaluate leakage signals and the risk of undetected leakage, given a suite of monitoring techniques and site conditions.

  3. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  4. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Melling, Lulie; Hatano, Ryusuke; Goh, Kah Joo

    2005-02-01

    Soil CO2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO2 flux ranged from 100 to 533 mg C m-2 h-1 for the forest ecosystem, 63 to 245 mg C m-2 h-1 for the sago and 46 to 335 mg C m-2 h-1 for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C m-2 yr-1 followed by oil palm at 1.5 kg C m-2 yr-1 and sago at 1.1 kg C m-2 yr

  5. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-07-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  6. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-10-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  7. Sea-air CO2 fluxes in the Southern Ocean for the period 1990-2009

    NASA Astrophysics Data System (ADS)

    Lenton, A.; Tilbrook, B.; Law, R. M.; Bakker, D.; Doney, S. C.; Gruber, N.; Ishii, M.; Hoppema, M.; Lovenduski, N. S.; Matear, R. J.; McNeil, B. I.; Metzl, N.; Mikaloff Fletcher, S. E.; Monteiro, P. M. S.; Rödenbeck, C.; Sweeney, C.; Takahashi, T.

    2013-06-01

    The Southern Ocean (44-75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990-2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of -0.42 ± 0.07 Pg C yr-1 for the 44-75° S region, is consistent with the -0.27 ± 0.13 Pg C yr-1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: -0.04 ± 0.07 Pg C yr-1 and observations: +0.04 ± 0.02 Pg C yr-1), with most of the net annual flux located in the 44 to 58° S circumpolar band (model and inversion median: -0.36 ± 0.09 Pg C yr-1 and observations: -0.35 ± 0.09 Pg C yr-1). Seasonally, in the 44-58° S region, the median of 5 ocean biogeochemical models captures the observed sea-air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea-air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux, with 25% of this interannual

  8. Seasonal and diurnal variations of CO2 fluxes over a hemiboreal forest

    NASA Astrophysics Data System (ADS)

    Krasnova, Alisa; Noe, Steffen M.; Krasnov, Dmitrii; Niinemets, Ülo

    2014-05-01

    Forest ecosystems are a major part of the biosphere and control land surface-atmosphere interactions. They influence atmospheric composition and climate significantly being sources and sinks of trace gases and energy. Hemiboreal forests are located in the transitional zone between boreal and temperate forest bioms. Mixed stands of both coniferous and deciduous tree species are characterized by a greater seasonal variability of forest microclimate, canopy shape and density compared to boreal forests. A 20 m height scaffolding tower located in Järvselja (58°16'N 27°16'E) in a forest stand dominated by Norway spruce (Picea abies (L.) Karst.) with co-domination of Silver birch (Betula pendula Roth.) and Black alder (Alnus glutinosa L.) was used for the CO2 flux measurements. We present two years (2011-2012) of continuous eddy covariance CO2 fluxes over a mixed hemiboreal forest at the SMEAR Estonia (Station for Measuring Forest Ecosystem-Atmosphere Relations).

  9. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange

    NASA Astrophysics Data System (ADS)

    de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.

    2015-11-01

    The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas air-sea exchange in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating

  10. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    NASA Astrophysics Data System (ADS)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  11. BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  12. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  13. Interannual variability of the regional CO2 and CH4 fluxes estimated with GOSAT observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Takagi, Hiroshi; Kim, Heon-Sook; Saito, Makoto; Mabuchi, Kazuo; Matsunaga, Tsuneo; Ito, Akihiko; Belikov, Dmitry; Oda, Tomohiro; Valsala, Vinu; Morino, Isamu; Yoshida, Yukio; Yokota, Tatsuya

    2014-05-01

    GOSAT Level 4 products - monthly regional surface flux estimates by inverse modeling from CO2 and CH4 GOSAT column-averaged mixing ratios and ground-based observational data using a global atmospheric transport model - have been updated recently to cover the 2-year period starting June 2009. This temporal extension provides look at the interannual flux variability including events of CO2 and CH4 emissions from a large-scale climate anomaly and resultant forest fires in Russia in 2010. Higher emissions of CO2 and CH4 in western Russia in the summer of 2010 are estimated when GOSAT observations are also included in the inverse modeling compared to just using ground-based data. The estimated summer emissions in 2010 are also higher than in the same season of the adjacent years. GOSAT compliments the ground-based networks by observing the concentration response to emissions closer to fire locations, resulting in the inverse models identifying emission regions more accurately. Elsewhere, GOSAT-aided flux estimates point to higher CH4 emissions (compared to ground-based only estimates) in the remote sub-tropical regions of the South America, Africa and South-East Asia. Higher emissions over South America can be attributed to biomass burning and anthropogenic sources, while in South-East Asia those are likely to be caused by agriculture and natural ecosystems.

  14. Estimating annual CO(2) flux for Lutjewad station using three different gap-filling techniques.

    PubMed

    Dragomir, Carmelia M; Klaassen, Wim; Voiculescu, Mirela; Georgescu, Lucian P; van der Laan, Sander

    2012-01-01

    Long-term measurements of CO(2) flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO(2) flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R(2)), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO(2) fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements. PMID:22566781

  15. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h-1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m-2 d-1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  16. Seasonal Variations in CO2 Fluxes in Fluvial Systems in Southstern of Amazonia (acre, Brazil)

    NASA Astrophysics Data System (ADS)

    Sousa, E.; Krusche, A. V.; Salimon, C. I.; Victoria, R. L.; Sawakuchi, H.

    2012-12-01

    Our main objective was to measure the CO2 fluxes in 5 (five) rivers and 2 (two) streams in the Purus Basin. These rivers and streams have different size, water chemical characteristics and type soil, despite all are classified as white-water rivers. We toke measures of pH, electrical conductivity, pCO2, DOC and DIC concentrations and CO2 fluxes in two seasonal periods: Wet Season (dez2010-abr2011 and dez2011-abr2012) and Dry Season (jul2011-set2011). Water samples were taken to DOC (filtered with quartz filters and preserved with hydrochloric acid), DIC (filtered with cellulose acetate filters and preserved with thymol) and δ13C of DIC. These water samples were sent to CENA/USP to be analyzed. EC and pH measurements were made with portable meters. Partial pressure of CO2 (pCO2) was measure with an equilibrator and CO2 fluxes with a floating chamber. Precipitation, water stage and discharge data was obtained by UFAC climatological station and ANA (National Water Agency). Statistical analysis were made using R Program. DOC and DIC concentrations presented significant differences between the periods. In the wet season were observed the highest values to DOC concentrations in all rivers and streams. In the rivers, these concentrations varied between 7.09±3.10 (Acre River) and 9.32±2.31 mg.L-1 (Rôla River). In the dry season, the values observed were 3.15±1.11 (Acre River) and 7.96±0.11 (Caeté River). In the streams, these concentrations also higher in the wet season, with 1.68±0.32 mg.L-1 in the Floresta stream and 3.22±1.08 mg.L-1 in the Escondido stream. To DIC concentrations, this pattern was inverted, with higher concentrations observed in the dry season. Iaco River presented the higher concentration (50.8±4.7 mg.L-1) and Acre River the lower concentration (11.30±2.77 mg.L-1). Despite the DIC concentrations were higher in the dry season, the pCO2 and CO2 fluxes values were higher in the wet season. In the rivers, the pCO2 values varied between 4,189±1

  17. Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Lewicki, J.L.; Bergfeld, D.; Cardellini, C.; Chiodini, G.; Granieri, D.; Varley, N.; Werner, C.

    2005-01-01

    We present a comparative study of soil CO2 flux (FCO2) measured by five groups (Groups 1-5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1-5 measured (FCO2) using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1-3 during an afternoon (PM) period. Measured (FCO2 ranged from 218 to 14,719 g m-2 day-1. The variability of the five measurements made at each grid point ranged from ??5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ??22%. All three groups that made PM measurements reported an 8-19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial FCO2 distribution, we compared six geostatistical methods: Arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ??4.4%, the FCO2 maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of FCO2, but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research. ?? Springer-Verlag 2005.

  18. Differences in satellite CO2 data coverage and their influence on regional flux constraints

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Andres, R. J.; Belikov, D. A.; Boesch, H.; Bril, A.; Butz, A.; Inoue, M.; Morino, I.; Oda, T.; O'Dell, C.; Oshchepkov, S.; Parker, R.; Saito, M.; Uchino, O.; Valsala, V.; Yokota, T.; Yoshida, Y.; Maksyutov, S. S.

    2014-12-01

    Inverse modeling of atmospheric transport is a technique that systematically searches for space-time distributions of trace gas fluxes that yield modeled atmospheric concentrations close to observations. This technique has been employed for the estimation of surface CO2 flux distributions in better understanding the mechanisms of the global carbon cycle. As this inference relies on observations, several studies were conducted in the past to see the sensitivity of flux estimates to the expansion of surface monitoring networks over time and the choice of data-providing sites in the estimation. These studies showed that changes in the geographical distribution of the surface data have a large impact on regional-scale flux estimates. With the advent of the Greenhouse gases Observing SATellite (GOSAT) in early 2009, the spatial coverage by the surface monitoring networks can now be widely expanded with the spaceborne soundings, from which column-averaged CO2 concentrations (XCO2) are retrieved. These GOSAT-based XCO2 retrievals are made available by five research groups, and their precisions have been reported to be below 2 ppm level. Where they coincide, the five XCO2 retrievals (all biases corrected) agree within one standard deviation of less than 1 ppm. On one hand, the extent that each of the XCO2 retrieval data product covers the surface differs from one to another, owing to differences in the retrieval algorithms and data screening criteria, and the coverage differences were found to be dependent on geographical locations. We investigated the extent to which these data-coverage differences alter constraints on individual regional CO2 flux estimates. For this, we used a diagnostic known as the resolution kernel, which quantifies how well the regional flux estimates can be resolved by the observations. The inversion system used here is the same as what is used to generate the GOSAT Level 4 regional flux data product, and consists of NIES 08.1i transport model and

  19. Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.

    2013-12-01

    Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net

  20. CO2 and energy fluxes from an oil palm plantation in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Meijide, Ana; Herbst, Mathias; Knohl, Alexander

    2014-05-01

    Oil palm plantations are expanding in Indonesia due to global increased demand of palm oil. Such plantations are usually set in previously forested land and in Sumatra, massive transformation of lowland forest into oil palm plantations is taking place. These land transformations have been identified as a potential driver of climate change, as they might result in changes of greenhouse gas (GHG) fluxes. However, very limited information is available on GHG fluxes from oil palm plantations and their sink or source strength at ecosystem scale is yet unknown. An eddy covariance tower was therefore installed in a 2 year old oil palm plantation in the province of Jambi, Sumatra (1° 50' 7'S, 103° 17' 44'E), with the aim of studying carbon dioxide, water and energy fluxes during the non-productive phase of oil palm cultivation. The canopy was not yet closed and trees were around 2m high. The eddy covariance system consists of a Licor 7500A and an ultrasonic Metek Anemometer, operating at 10 Hz and installed on a 7m tower. In addition to the eddy covariance measurements, the site is equipped with a weather station, measuring short and long wave radiation, PAR, rainfall, profiles of air temperature, air humidity and wind speed, soil temperature and moisture and soil heat fluxes. Measurements started in July 2013 until January 2014, in order to capture possible differences which may happen during the dry (July-October) and wet (November-February) seasons. A large CO2 uptake would have been expected at this young oil palm plantation, as palm trees during this period of their cultivation are growing fast. However, our preliminary results show that during the first 5 months of measurements, the ecosystem was a small carbon source (below 10 g CO2 m-2). Latent heat flux was higher than sensible heat flux during the period of study, indicative of the high evaporation taking place. Our results show that both for CO2 and energy fluxes, large differences were observed between the

  1. A downward CO2 flux seems to have nowhere to go

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y.

    2014-07-01

    Recent studies have suggested that deserts, which are a long-neglected region in global carbon budgeting, have strong downward CO2 fluxes and might be a significant carbon sink. This finding, however, has been strongly challenged because neither the reliability of the flux measurements nor the exact location of the fixed carbon has been determined. This paper shows, with a full chain of evidence, that there is indeed strong carbon flux into saline/alkaline land in arid regions. Based on continuous measurement of CO2 exchange from 2002 to 2012 (except for 2003), the saline desert in western China was a carbon sink for 9 out of the 10 years, and average yearly net ecosystem exchange of carbon (NEE) for the 10 years was -25.00 ± 12.70 g C m-2yr-1. Supporting evidence for the validity of these NEE estimates comes from the close agreement of NEE values obtained from the chamber and eddy-covariance methods. After ruling out the possibility of changes in C stored in plant biomass or soils, the C uptake was found to be leached downwards into the groundwater body in the process of groundwater fluctuation: rising groundwater absorbs soil dissolved inorganic carbon (DIC), and falling groundwater transports the DIC downward. Horizontal groundwater flow may send this DIC farther away and prevent it from being observed locally. This process has been called "passive leaching" of DIC, in comparison with the active DIC leaching that occurs during groundwater recharge. This passive leaching significantly expands the area where DIC leaching occurs and creates a literally "hidden" carbon sink process under the desert. This study tells us that when a downward CO2 flux is observed, but seems to have nowhere to go, it should not be concluded that the flux measurement is unreliable. By looking deeper and farther away, a place and a process may be found that are "hidden" underground.

  2. A downward CO2 flux seems to have nowhere to go

    NASA Astrophysics Data System (ADS)

    Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y.

    2014-11-01

    Recent studies have suggested that deserts, which are a long-neglected region in global carbon budgeting, have strong downward CO2 fluxes and might be a significant carbon sink. This finding, however, has been strongly challenged because neither the reliability of the flux measurements nor the exact location of the fixed carbon has been determined. This paper shows, with a full chain of evidence, that there is indeed strong carbon flux into saline/alkaline land in arid regions. Based on continuous measurement of net ecosystem CO2 exchange (NEE) from 2002 to 2012 (except for 2003), the saline desert in western China was a carbon sink for 9 out of 10 years, and the average yearly NEE for the 10 years was -25.00 ± 12.70 g C m-2 year-1. Supporting evidence for the validity of these NEE estimates comes from the close agreement of NEE values obtained from the chamber and eddy-covariance methods. After ruling out the possibility of changes in C stored in plant biomass or soils, the C uptake was found to be leached downwards into the groundwater body in the process of groundwater fluctuation: rising groundwater absorbs soil dissolved inorganic carbon (DIC), and falling groundwater transports the DIC downward. Horizontal groundwater flow may send this DIC farther away and prevent it from being observed locally. This process has been called "passive leaching" of DIC, in comparison with the active DIC leaching that occurs during groundwater recharge. This passive leaching significantly expands the area where DIC leaching occurs and creates a literally "hidden" carbon sink process under the desert. This study tells us that when a downward CO2 flux is observed, but seems to have nowhere to go, it does not necessarily mean that the flux measurement is unreliable. By looking deeper and farther away, a place and a process may be found "hidden" underground.

  3. Comparative soil CO2 flux measurements and geostatisticalestimation methods on masaya volcano, nicaragua

    SciTech Connect

    Lewicki, J.L.; Bergfeld, D.; Cardellini, C.; Chiodini, G.; Granieri, D.; Varley, N.; Werner, C.

    2004-04-27

    We present a comparative study of soil CO{sub 2} flux (F{sub CO2}) measured by five groups (Groups 1-5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1-5 measured F{sub CO2} using the accumulation chamber method at 5-m spacing within a 900 m{sup 2} grid during a morning (AM) period. These measurements were repeated by Groups 1-3 during an afternoon (PM) period. All measured F{sub CO2} ranged from 218 to 14,719 g m{sup -2}d{sup -1}. Arithmetic means and associated CO{sub 2} emission rate estimates for the AM data sets varied between groups by {+-}22%. The variability of the five measurements made at each grid point ranged from {+-}5 to 167% and increased with the arithmetic mean. Based on a comparison of measurements made by Groups 1-3 during AM and PM times, this variability is likely due in large part to natural temporal variability of gas flow, rather than to measurement error. We compared six geostatistical methods (arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods) to estimate the mean and associated CO{sub 2} emission rate of one data set and to map the spatial F{sub CO2} distribution. While the CO{sub 2} emission rates estimated using the different techniques only varied by {+-}1.1%, the F{sub CO2} maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of F{sub CO2} and is most appropriate for volcano monitoring applications.

  4. Sensitivity of Flux Accuracy to Setup of Fossil Fuel and Biogenic CO2 Inverse System in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Wu, K.; Lauvaux, T.; Deng, A.; Lopez-Coto, I.; Gurney, K. R.; Patarasuk, R.; Turnbull, J. C.; Davis, K. J.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to utilize a variety of measurements and a high resolution inversion system to estimate the spatial distribution and the temporal variation of anthropogenic greenhouse gas (GHG) emissions from the city of Indianapolis. We separated biogenic and fossil fuel CO2 fluxes and tested the sensitivity of inverse flux estimates to inverse system configurations by performing Observing System Simulation Experiments (OSSEs). The a priori CO2 emissions from Hestia were aggregated to 1 km resolution to represent emissions from the Indianapolis metropolitan area and its surroundings. With the Weather Research and Forecasting (WRF) model coupled to a Lagrangian Particle Dispersion Model (LPDM), the physical relations between concentrations at the tower locations and emissions at the surface were simulated at 1 km spatial resolution, hourly. Within a Bayesian synthesis inversion framework, we tested the effect of multiple parameters on our ability to infer fossil fuel CO2 fluxes: the presence of biogenic CO2 fluxes in the optimization procedure, the use of fossil fuel CO2 concentration measurements, the impact of reduced transport errors, the sensitivity to observation density, and the spatio-temporal properties of prior errors. The results indicate that the presence of biogenic CO2 fluxes obviously weakens the ability to invert for the fossil fuel CO2 emissions in an urban environment, but having relatively accurate fossil fuel CO2 concentration measurements can effectively compensate the interference from the biogenic flux component. Reduced transport error and more intensive measurement networks are two possible approaches to retrieve the spatial pattern of the fluxes and decrease the bias in inferred whole-city fossil fuel CO2 emissions. The accuracy of posterior fluxes is very sensitive to the spatial correlation length in the prior flux errors which, if they exist, can enhance significantly our ability to recover the known fluxes

  5. Estimation of CO2 Surface Fluxes From Satellite Data using a 2-step Approach

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Chevallier, F.

    2009-12-01

    Over the last several years considerable effort has been put in extracting information about atmospheric CO2 from satellite sounders. The main driving force has been the potential improvement of atmospheric flux inversions, which are still limited by the amount of available accurate observations. Significant progress has been made in expanding the surface based observation networks as well as the airborne CO2 observations, but most of these observations are still confined to developed countries, which leaves large gaps for instance in the tropics. Satellite data are well suited to fill these gaps, but the first dedicated CO2 observing instrument (GOSAT) was only just launched in January 2009. In the meantime, however, there is already a potential wealth of information through the various infrared sounding instruments. As part of the European GEMS and MACC projects, a data assimilation system to monitor atmospheric concentrations of CO2 and their fluxes has been built. The system consists of a four-dimensional variational (4D-Var) atmospheric data assimilation system and a variational CO2 flux inversion system. The aim is to assimilate observations from various satellite instruments, such as AIRS, IASI, and GOSAT to obtain a consistent estimate of the atmospheric CO2 concentrations. These atmospheric concentration fields are then subsequently used in the off-line surface flux inversion. This two-step approach was chosen over a direct flux inversion approach for the following reasons. Firstly, an atmospheric data assimilation system based on systems developed for numerical weather prediction (NWP) has the capability of assimilating satellite observed radiances instead of retrieval products, which makes it easier to have consistent prior information among all instruments. The radiance assimilation is possible because the observations are processed in small chunks (typically 12 h intervals), which makes the extra computations feasible, and because all the needed

  6. Application of the flux noise reducing filter for CO2 inverse modelling

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Yaremchuk, Alexey

    2010-05-01

    Recent atmospheric remote sensing products from AIRS and GOSAT provide large volume of the observations but with larger errors and variance as compared to in-situ measurements, so efficient noise reduction techniques are required for inverse modeling of the surface fluxes. Inverse models of the atmospheric transport optimize regional or grid resolving surface CO2 fluxes to fit transport model simulation optimally to the observations. The optimization problem appears to be ill-posed so it is usually solved by applying regularization techniques. Most widely used regularization methods apply constraints on flux deviation from prior and/or from adjacent regions of same surface type (land-ocean, vegetation type), and from adjacent time periods. Convenient method for solving the problem of limited dimension is based on singular value decomposition (SVD) of the transport matrix, because it can decompose the solution space into a combination of the independent singular vectors. Introducing a simple constraint on fluxes limits amplitude of the corresponding singular vectors with larger reduction for smaller singular values. However this amplitude reduction is not sufficient in practice for inverse modeling of the regional CO2 fluxes, when we have large underconstrained regions in tropics. Alternatively other means of the amplitude reduction are also used, such as truncation, when all amplitudes below threshold singular value are set to zero. We apply a filter which is less abrupt is less abrupt compared to truncation but still suppressing strongly small singular value related vectors. Setting strength of a constraint is often done empirically. To decide a proper value of the cut-off singular value we suggest analyzing a dependence of the singular vector amplitude vs the singular value and set the cut-off value aiming at retaining most of useful information from observation. A graphical tool based on a plot of amplitude spectra is proposed. Advantage of the technique is

  7. Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: concentration, spatial-temporal distribution and air/sea flux.

    PubMed

    Ci, Zhijia; Wang, Chunjie; Wang, Zhangwei; Zhang, Xiaoshan

    2015-01-01

    The Yellow Sea in East Asia receives great Hg input from regional emissions. However, Hg cycling in this marine system is poorly investigated. In late spring and late fall 2012, we determined gaseous elemental Hg (GEM or Hg(0)) in air and dissolved gaseous Hg (DGM, mainly Hg(0)) in surface waters to explore the spatial-temporal variations of Hg(0) and further to estimate the air/sea Hg(0) flux in the Yellow Sea. The results showed that the GEM concentrations in the two cruises were similar (spring: 1.86±0.40 ng m(-3); fall: 1.84±0.50 ng m(-3)) and presented similar spatial variation pattern with elevated concentrations along the coast of China and lower concentrations in the open ocean. The DGM concentrations of the two cruises were also similar with 27.0±6.8 pg L(-1) in the spring cruise and 28.2±9.0 pg L(-1) in the fall cruise and showed substantial spatial variation. The air/sea Hg(0) fluxes in the spring cruise and fall cruise were estimated to be 1.06±0.86 ng m(-2) h(-1) and 2.53±2.12 ng m(-2) h(-1), respectively. The combination of this study and our previous summer cruise showed that the summer cruise presented enhanced values of GEM, DGM and air/sea Hg(0) flux. The possible reason for this trend was that high solar radiation in summer promoted Hg(0) formation in seawater, and the high wind speed during the summer cruise significantly increased Hg(0) emission from sea surface to atmosphere and subsequently enhanced the GEM levels. PMID:24999267

  8. Detectability of CO2 Flux Signals by a Space-Based Lidar Mission

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Kawa, S. Randolph; Schaefer, Kevin; Doney, Scott; Michalak, Anna M.

    2015-01-01

    Satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for improving our quantitative understanding of the carbon cycle. Prospective observations include those from space-based lidar such as the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. Here we explore the ability of such a mission to detect regional changes in CO2 fluxes. We investigate these using three prototypical case studies, namely the thawing of permafrost in the Northern High Latitudes, the shifting of fossil fuel emissions from Europe to China, and changes in the source-sink characteristics of the Southern Ocean. These three scenarios were used to design signal detection studies to investigate the ability to detect the unfolding of these scenarios compared to a baseline scenario. Results indicate that the ASCENDS mission could detect the types of signals investigated in this study, with the caveat that the study is based on some simplifying assumptions. The permafrost thawing flux perturbation is readily detectable at a high level of significance. The fossil fuel emission detectability is directly related to the strength of the signal and the level of measurement noise. For a nominal (lower) fossil fuel emission signal, only the idealized noise-free instrument test case produces a clearly detectable signal, while experiments with more realistic noise levels capture the signal only in the higher (exaggerated) signal case. For the Southern Ocean scenario, differences due to the natural variability in the ENSO climatic mode are primarily detectable as a zonal increase.

  9. High-frequency analysis of the complex linkage between soil CO(2) fluxes, photosynthesis and environmental variables.

    PubMed

    Martin, Jonathan G; Phillips, Claire L; Schmidt, Andres; Irvine, James; Law, Beverly E

    2012-01-01

    High-frequency soil CO(2) flux data are valuable for providing new insights into the processes of soil CO(2) production. A record of hourly soil CO(2) fluxes from a semi-arid ponderosa pine stand was spatially and temporally deconstructed in attempts to determine if variation could be explained by logical drivers using (i) CO(2) production depths, (ii) relationships and lags between fluxes and soil temperatures, or (iii) the role of canopy assimilation in soil CO(2) flux variation. Relationships between temperature and soil fluxes were difficult to establish at the hourly scale because diel cycles of soil fluxes varied seasonally, with the peak of flux rates occurring later in the day as soil water content decreased. Using a simple heat transport/gas diffusion model to estimate the time and depth of CO(2) flux production, we determined that the variation in diel soil CO(2) flux patterns could not be explained by changes in diffusion rates or production from deeper soil profiles. We tested for the effect of gross ecosystem productivity (GEP) by minimizing soil flux covariance with temperature and moisture using only data from discrete bins of environmental conditions (±1 °C soil temperature at multiple depths, precipitation-free periods and stable soil moisture). Gross ecosystem productivity was identified as a possible driver of variability at the hourly scale during the growing season, with multiple lags between ~5, 15 and 23 days. Additionally, the chamber-specific lags between GEP and soil CO(2) fluxes appeared to relate to combined path length for carbon flow (top of tree to chamber center). In this sparse and heterogeneous forested system, the potential link between CO(2) assimilation and soil CO(2) flux may be quite variable both temporally and spatially. For model applications, it is important to note that soil CO(2) fluxes are influenced by many biophysical factors, which may confound or obscure relationships with logical environmental drivers and act at

  10. Simultaneous measurements of OCS and CO2 isotopic composition during photosynthetic uptake and soil respiration to constrain ecosystem gross CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Berkelhammer, M. B.; Asaf, D.; Yakir, D.; Gupta, M.; Dong, F.; Provencal, R. A.; Miller, J. B.; Sweeney, C.; Chen, H.; Montzka, S. A.; Vaughn, B. H.; Noone, D. C.

    2012-12-01

    New measurements of atmosphere-land gross carbon fluxes are needed to constrain carbon budgets at a variety of scales and to enhance our understanding of these fundamental aspects of biospheric function and their response to global change. Quantifying photosynthesis in particular has been hampered by a lack of direct measurements of this quantity at scales beyond the leaf, as atmospheric CO2 concentrations reflect multiple carbon exchanges between the atmosphere and the land surface. Both the carbon and oxygen isotope composition of CO2 have been used as tracers of gross fluxes. The oxygen isotope composition of CO2 in particular holds promise in this regard as the component fluxes are often isotopically distinct owing to the exchange of oxygen isotopes between CO2 and H2O in leaves and soils. A recently proposed tracer of photosynthesis is atmospheric carbonyl sulfide (OCS), which is consumed in leaves by the same enzyme, carbonic anhydrase, that catalyzes the exchange of oxygen isotopes between H2O and CO2 in leaves and possibly soils. Thus, measurements of both quantities above ecosystems should provide complementary constraints on the magnitude and dynamics of gross photosynthetic fluxes. However, for both tracers, additional measurements of the separate plant and soil contributions are required. For example, OCS is also consumed by soils, complicating its use as a photosynthetic proxy. Recent advances in laser spectroscopy have enabled high-frequency, in situ measurements of the isotopic composition of greenhouse gases like CO2, along with other trace gases of interest for terrestrial metabolism. We report here on simultaneous concentration measurements of several gases (CO2, H2O, and OCS), along with the carbon and oxygen isotope composition of CO2. These gases were measured in background, ambient air and in air that had either passed through a bag enclosing a branch with actively photosynthesizing leaves or through a chamber covering respiring soil. For this

  11. Land surface phenology, hydrology and CO2 fluxes of forests and grasslands in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Li, C.; Kurbatova, J.; Varlagin, A.; Zhang, J.; Wu, J.; Wu, W.; Biradar, C.; Chen, J.

    2008-12-01

    Land surface phenology (LSP) is a key indicator of ecosystem dynamics under a changing environment. Changes in phenology of plants affect the carbon cycle, water cycle, climate through photosynthesis and evapotranspiration. We have combined satellite observations, CO2 eddy flux tower sites and process-based biogeochemical model to improve our understanding of the effect of land surface phenology and hydrology on gross primary production (GPP), ecosystem respiration and net ecosystem exchange of CO2 (NEE) from a variety of ecosystem types. In this paper, we will present case studies from two spruce forest sites (wet spruce forest and dry spruce forest) in Russia, a deciduous broadleaf forest site and a grassland site in Northern China. Among the three vegetation indices (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI), both LSWI and EVI agreed well with the photosynthetically active period (as defined by estimated GPP data from CO2 eddy flux tower sites) than NDVI does. The Vegetation Photosynthesis Model (VPM), which uses EVI and LSWI data as input, provides improved prediction of GPP for various types of terrestrial ecosystems. NEE is the difference between GPP and ecosystem respiration. Simulations of processed-based DNDC model for two spruce forests (wet and dry spruce forests) suggested that ecosystem respiration (and consequently NEE) fluxes are highly sensitive to water table depth at the sites. Because Northern Eurasia has a large area of wetlands and underwent significant climate change, potential change in water table due to hydrological processes could have significant implication to the carbon fluxes and carbon balance (carbon sink or source) in the region.

  12. Post processing of CO2 flux measurements from an urban landscape

    NASA Astrophysics Data System (ADS)

    Menzer, O.; Meiring, W.; Kyriakidis, P. C.; McFadden, J. P.

    2013-12-01

    Tower based measurements of CO2 fluxes by the eddy covariance method are subject to random error, systematic error, and missing data (gaps). In homogeneous ecosystems such as forests and grasslands, the post processing methods to address these problems are relatively well established. In the urban environment, however, the assumptions of most such methods are violated due to spatial heterogeneity in the tower footprint and localized CO2 sources such as traffic emission. For this reason, work is needed to develop and test methods appropriate to the urban setting. Here, we report comparisons of post processing methods for >3 years of flux measurements from the KUOM tall tower in a suburban neighborhood of Minneapolis, Minnesota, USA. Machine learning regression approaches including Artificial Neural Networks and Gaussian Processes were used to integrate observations from remote sensing, traffic and weather stations, and to extract complex underlying functional relationships, in order to improve gap-filling and minimize uncertainties. Specifically, we tested the sensitivity of the measurements to vehicle emissions by incorporating traffic counts from nearby roads and highways. Also, the selection of the friction velocity (u*) threshold was found to be sensitive to the wind direction but consistent between years. We calculated carbon flux sums for both residential and recreational land use types in the tower footprint, and assessed the random and systematic uncertainties caused by gap-filling and u*-filtering. While these post processing methods are essential for interpreting CO2 flux measurements in urban environments, they may also be useful for other inhomogeneous sites such as logged forests or ecosystems under disturbance from fire or pests.

  13. Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates

    NASA Astrophysics Data System (ADS)

    Deng, Feng; Jones, Dylan B. A.; O'Dell, Christopher W.; Nassar, Ray; Parazoo, Nicholas C.

    2016-02-01

    We used the GEOS-Chem data assimilation system to examine the impact of combining Greenhouse Gases Observing Satellite (GOSAT) XCO2 data over land and ocean on regional CO2 flux estimates for 2010-2012. We found that compared to assimilating only land data, combining land and ocean data produced an a posteriori CO2 distribution that is in better agreement with independent data and fluxes that are in closer agreement with existing top-down and bottom-up estimates. Adding XCO2 data over oceans changed the tropical land regions from a source of 0.64 Pg C/yr to a sink of -0.60 Pg C/yr and produced a corresponding reduction in the estimated sink in northern and southern land regions by 0.49 Pg C/yr and 0.80 Pg C/yr, respectively. This highlights the importance of improved observational coverage in the tropics to better quantify the latitudinal distribution of the terrestrial fluxes. Based only on land XCO2 data, we estimated a strong source in northern tropical South America, which experienced wet conditions in 2010-2012. In contrast, with the land and ocean data, we estimated a sink for this wet region in the north, and a source for the seasonally dry regions in the south and east, which is consistent with our understanding of the impact of moisture availability on the carbon balance of the region. Our results suggest that using satellite data with a more zonally balanced observational coverage could help mitigate discrepancies in CO2 flux estimates; further improvement could be expected with the greater observational coverage provided by the Orbiting Carbon Observatory-2.

  14. Does Terrestrial Drought Explain Global CO2 Flux Anomalies Induced by El Nino?

    NASA Technical Reports Server (NTRS)

    Schwalm. C. R.; Williams, C. A.; Schaefer, K.; Baker, I.; Collatz, G. J.; Roedenbeck, C.

    2011-01-01

    The El Nino Southern Oscillation is the dominant year-to-year mode of global climate variability. El Nino effects on terrestrial carbon cycling are mediated by associated climate anomalies, primarily drought, influencing fire emissions and biotic net ecosystem exchange (NEE). Here we evaluate whether El Nino produces a consistent response from the global carbon cycle. We apply a novel bottom-up approach to estimating global NEE anomalies based on FLUXNET data using land cover maps and weather reanalysis. We analyze 13 years (1997-2009) of globally gridded observational NEE anomalies derived from eddy covariance flux data, remotely-sensed fire emissions at the monthly time step, and NEE estimated from an atmospheric transport inversion. We evaluate the overall consistency of biospheric response to El Nino and, more generally, the link between global CO2 flux anomalies and El Nino-induced drought. Our findings, which are robust relative to uncertainty in both methods and time-lags in response, indicate that each event has a different spatial signature with only limited spatial coherence in Amazonia, Australia and southern Africa. For most regions, the sign of response changed across El Nino events. Biotic NEE anomalies, across 5 El Nino events, ranged from -1.34 to +0.98 Pg Cyr(exp -1, whereas fire emissions anomalies were generally smaller in magnitude (ranging from -0.49 to +0.53 Pg C yr(exp -1). Overall drought does not appear to impose consistent terrestrial CO2 flux anomalies during El Ninos, finding large variation in globally integrated responses from 11.15 to +0.49 Pg Cyr(exp -1). Despite the significant correlation between the CO2 flux and El Nino indices, we find that El Nino events have, when globally integrated, both enhanced and weakened terrestrial sink strength, with no consistent response across events

  15. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Waldrop, M. P.; Mangan, M.

    2011-12-01

    The biomass, composition, and activity of the soil microbial community is tightly linked to the composition of the aboveground plant community. Microorganisms in aerobic surface soils, both free-living and plant-associated are largely structured by the availability of growth limiting carbon (C) substrates derived from plant inputs. When C availability declines following a catastrophic event such as the death of large swaths of trees, the number and composition of microorganisms in soil would be expected to decline and/or shift to unique microorganisms that have better survival strategies under starvation conditions. High concentrations of volcanic cold CO2 emanating from Mammoth Mountain near Horseshoe Lake on the southwestern edge of Long Valley Caldera, CA has resulted in a large kill zone of tree species, and associated soil microbial species. In July 2010, we assessed belowground microbial community structure in response to disturbance of the plant community along a gradient of soil CO2 concentrations grading from <0.6% (ambient forest) to >80% (no plant life). We employed a microbial community fingerprinting technique (automated ribosomal intergenic spacer analysis) to determine changes in overall community composition for three broad functional groups: fungi, bacteria, and archaea. To evaluate changes in ectomycorrhizal fungal associates along the CO2 gradient, we harvested root tips from lodgepole pine seedlings collected in unaffected forest as well as at the leading edge of colonization into the kill zone. We also measured soil C fractions (dissolved organic C, microbial biomass C, and non-extractable C) at 10 and 30 cm depth, as well as NH4+. Not surprisingly, our results indicate a precipitous decline in soil C, and microbial C with increasing soil CO2; phospholipid fatty acid analysis in conjunction with community fingerprinting indicate both a loss of fungal diversity as well as a dramatic decrease in biomass as one proceeds further into the kill zone

  16. [Effects of biological soil crust at different succession stages in hilly region of Loess Plateau on soil CO2 flux].

    PubMed

    Wang, Ai-Guo; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Ming, Jiao

    2013-03-01

    Biological soil crust (biocrust) is a compact complex layer of soil, which has photosynthetic activity and is one of the factors affecting the CO2flux of soil-atmosphere interface. In this paper, the soil CO, flux under the effects of biocrust at different succession stages on the re-vegetated grassland in the hilly region of Loess Plateau was measured by a modified LI-8100 automated CO, flux system. Under light condition, the soil CO2 flux under effects of cyanobacteria crust and moss crust was significantly decreased by 92% and 305%, respectively, as compared with the flux without the effects of the biocrusts. The decrement of the soil CO, flux by the biocrusts was related to the biocrusts components and their biomass. Under the effects of dark colored cyanobacteria crust and moss crust, the soil CO2 flux was decreased by 141% and 484%, respectively, as compared with that in bare land. The diurnal curve of soil CO2 flux under effects of biocrusts presented a trend of 'drop-rise-drop' , with the maximum carbon uptake under effects of cyanobacteria crust and moss crust being 0.13 and -1.02 micromol CO2.m-2.s-1 and occurred at about 8:00 and 9:00 am, respectively, while that in bare land was unimodal. In a day (24 h) , the total CO2 flux under effects of cyanobacteria crust was increased by 7.7% , while that under effects of moss crust was decreased by 29.6%, as compared with the total CO2 flux in bare land. This study suggested that in the hilly region of Loess Plateau, biocrust had significant effects on soil CO2 flux, which should be taken into consideration when assessing the carbon budget of the 'Grain for Green' eco-project. PMID:23755478

  17. Tracing CO2 fluxes and plant volatile organic compound emissions by stable isotopes

    NASA Astrophysics Data System (ADS)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2014-05-01

    Plant metabolic processes exert a large influence on global climate and air quality through the emission of the greenhouse gas CO2 and volatile organic compounds (VOCs). Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as respiratory CO2 emission and VOC synthesis, remains unclear. The vegetation exerts a large isotopic imprint on the atmosphere through both, photosynthetic carbon isotope discrimination and fractionation during respiratory CO2 release (δ13Cres). While the former is well understood, many processes driving carbon isotope fractionation during respiration are unknown1. There are striking differences in variations of δ13Cres between plant functional groups, which have been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate2. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate if carbon isotope fractionation in light and dark respired CO2 is associated with VOC emissions in the atmosphere. Specifically, we hypothesize that a high carbon flux through the pyruvate into various VOC synthesis pathways is associated with a pronounced 13C-enrichment of respired CO2 above the putative substrate, as it involves the decarboxylation of the 13C-enriched C-1 from pyruvate. Based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS) we traced carbon flow into these pathways by pyruvate positional labeling. We demonstrated that in a Mediterranean shrub the 13C-enriched C-1 from pyruvate is released in substantial amounts as

  18. Temporal variability of CO2 and CH4 fluxes of a rewetted fen in NE Germany

    NASA Astrophysics Data System (ADS)

    Franz, Daniela; Larmanou, Eric; Koebsch, Franziska; Augustin, Jürgen; Sachs, Torsten

    2015-04-01

    During the last 20 years, restoring degraded peatlands became common practice in the context of climate protection, as it is expected to reduce their greenhouse gas (GHG) contribution to the atmosphere in the long term. However, suboptimal management decisions can even impair the GHG budget beyond the "restoration effect" during the first years of the rewetting. To improve future restoration management, the GHG dynamics following rewetting have to be quantified and understood. Apart from this, knowledge on the variability of the gas exchange and the respective drivers over different time scales is still lacking, though especially important for process understanding and advancement of estimations. Using the eddy covariance (EC) technique we investigate CH4 and CO2 flux dynamics between the atmosphere and a highly degraded minerotrophic fen grassland flooded in 2004/2005. The study site is located in the Peene River valley (53°52'N, 12°52'E), NE Germany. It is part of the Terrestrial Environmental Observatories Network (TERENO) spanning across Germany. In the course of flooding, a shallow lake (30-80 cm depth) developed in the centre of the rewetted area and persisted until now. The footprint of the EC measurements covers both the shallow lake and non-permanently inundated parts surrounding the lake. We will present CO2 and CH4 flux data covering one year since the system was newly established. We applied wavelet analysis and wavelet coherence to detect the multi-scale temporal variability of ecosystem gas exchange and the respective drivers by splitting time series into spectral and temporal components. Thus, transitions of ecosystem processes during the observation period are considered. Both methods are performed on continuous EC data over one year in case of CO2 and shorter measurement periods in the course of the growing season for CH4, due to data gaps. The addressed scales of temporal variation range from hour to week and season for CH4 and CO2, respectively.

  19. Importance of non CO2 fluxes for agricultural ecosystems - understanding the mechanisms and drivers

    NASA Astrophysics Data System (ADS)

    Klumpp, Katja

    2014-05-01

    In agriculture, a large proportion (about 89%) of greenhouse gas (GHG) emission saving potential may be achieved by means of soil C sequestration. Not surprising that exchange of carbon dioxide (CO2) has been a main research objective during last decades. In spite of this, in agricultural ecosytems (i.e. grassland and croplands) a large proportion of total emissions (about 18% in CO2e worldwide) are linked to non CO2 fluxes (about 50% N2O, 40% CH4 in contraste to 10%CO2). Those emissions are however, diffuse, for example N2O, is emitted on almost all cultivated land, and all humid grasslands emit CH4 related to watertable. However, those emissions can vary largely from one site to another or from one farming system to another, while some studies even report a fixation of CH4 and N2O by grass- and croplands, not to mention the impacts of climate change on fluxes. Finally, given the large number of findings, along with their significant diversity, complicates both estimation of these emissions and the mechanism that the public authorities could implement to encourage their reduction. To determine effective mitigation options, a better knowledge on the drivers of CH4/N2O as well as their temporal and spatial variability are of particular interest. At present, more information is needed on i) the impact of agricultural practices and the contribution of CH4 and N2O to the GHG budgets within contrasting systems, ii) differences among climate regions and climate impacts, and iii) impact of managing soil microbial functioning (through plant diverstiy, litter inputs, etc). This presentation will review recent studies to highlight some new findings on the mentioned topics.

  20. Estimates of evapotranspiration and CO2 fluxes in a biofiltration system

    NASA Astrophysics Data System (ADS)

    Daly, E.; Niculescu, A.; Beringer, J.; Deletic, A.

    2009-12-01

    Biofiltration systems (or biofilters, bioretention systems or rain gardens) have been adopted to improve the quality of urban aquatic ecosystems and to reduce volumes and peaks of stormwater runoff. Given their good performances, it is likely that the implementation of such systems in urban areas will greatly increase in the future. As an example, the city of Melbourne (Australia) is planning to install 10,000 biofiltration systems within its area by 2013. Because biofiltration systems are commonly installed in urban areas, along roads and highways, their vegetation is often under atmospheric CO2 concentrations higher than average ambient conditions (i.e., above 380 ppm). Additionally, since these systems are designed to receive runoff from large catchment areas (typically around 50-100 times the area of the biofilter), their vegetation rarely experiences water and nitrogen limitations. These surrounding environmental conditions suggest that biofilters might experience high evapotranspiration (ET) rates and CO2 assimilation via photosynthesis, which could potentially provide benefits to the local microclimate in terms of temperature reduction (cooling due to enhanced ET) and CO2 uptake from the atmosphere, in addition to the benefit related to stormwater treatment. These hypotheses have been strengthen by preliminary tests based on laboratory experiments with soil columns vegetated with C.appressa, in which ET has been estimated to be as high as 0.7-0.8 cm per day. To further study these processes, several measurements are being performed in a biofiltration system installed at Monash University, Clayton Campus (Melbourne, VIC). This biofilter receives runoff diverted from a 100% impervious car park and discharges the treated stormwater to an adjacent pond. A chamber that encloses part of the vegetation in the biofilter has been constructed to monitor water and greenhouse gas fluxes. Preliminary results on daily patterns of water and CO2 fluxes within the system in

  1. An Assessment of the Effect of Sea-Surface Surfactants on Global Atmosphere-Ocean CO2 Flux

    NASA Astrophysics Data System (ADS)

    Tsai, W.; Liu, K.

    2001-05-01

    \\def\\ea{et al.} \\def\\CO2{CO2} \\def\\dpCO2{Δ pCO2} We assess the possible impact of the distribution of naturally occurring surfactants on the direct integration of the global atmosphere-ocean \\CO2 flux across the ocean surface. The global atmosphere-ocean \\CO2 flux is calculated using the monthly mean \\dpCO2 climatology compiled by Takahashi \\ea\\ [1997] as well as satellite wind speed and sea-surface temperature data. In the absence of any global map of surfactant coverage, and as it is known that phytoplankton exudates and degradation products are the major sources of marine surfactants, ocean primary productivity, which can be derived from the satellite-based estimate of chlorophyll concentration, is used as an indicator of the presence of surfactants. From the calculated results, it is found that suppression of the upward and downward \\CO2 fluxes by marine surfactants exhibits an asymmetric effect. For almost half of the year (between January and May), the presence of surfactants does not affect \\CO2 outgassing from global oceans. In contrast, throughout the entire year, the presence of surfactants suppresses \\CO2 absorption by the oceans. The average percent reduction of absorption flux by surfactants is about twice that of outgassing, which results in an overall decrease in the net global \\CO2 uptake by the oceans. The major reduction in absorption fluxes occurs in the northern Pacific and Atlantic (10oN to 70oN) in all seasons and in the Southern Ocean (south of 40oS) in austral spring and summer. However, the most significant decrease in outgassing fluxes occurs in the equatorial and southern Pacific Ocean (40oS to 10oN), particularly in the eastern equatorial and subtropical waters off the southern American coast, in the period of austral spring and summer.

  2. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S. L.; Stephens, B.; Watt, A.

    2007-12-01

    We will present preliminary carbon flux estimates from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). In order to improve our understanding of regional carbon fluxes in the Rocky Mountain West, we have developed and deployed autonomous, inexpensive, and robust CO2 analyzers (AIRCOA) at five sites throughout Colorado and Utah, and plan additional deployments on the Navajo Reservation, Arizona in September 2007 and atop Mount Kenya, Africa in November 2007. We have used a one- dimensional CO2 budget equation, following Bakwin et al. (2004), to estimate regional monthly-mean fluxes from our continuous CO2 concentrations. These comparisons between our measurements and estimates of free- tropospheric background concentrations reveal regional-scale CO2 flux signals that are generally consistent with one another across the Rocky RACCOON sites. We will compare the timing and magnitude of these estimates with expectations from local-scale eddy-correlation flux measurements and bottom-up ecosystem models. We will also interpret the differences in monthly-mean flux signals between our sites in terms of their varying upwind areas of influence and inferred regional variations in CO2 fluxes. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO2 concentrations in continental boundary layers, and at mountaintop sites in particular. We will present an analysis of the diurnal cycles in CO2 concentration and CO2 variability at our sites, and compare these to various model estimates. Several of our sites near major population centers reflect the influence of industrial CO2 sources in afternoon upslope flows, with CO2 concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO2

  3. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  4. Spatial resolution of tropical terrestrial CO2 fluxes inferred using space-borne column CO2 sampled in different earth orbits: the role of spatial error correlations

    NASA Astrophysics Data System (ADS)

    Palmer, P. I.; Feng, L.; Bösch, H.

    2011-09-01

    We use realistic numerical experiments to assess the sensitivity of 8-day CO2 flux estimates, inferred from space-borne short-wave infrared measurements of column-averaged CO2 dry air mixing ratio XCO2, to the choice of Earth observing orbit. We focus on three orbits: (1) a low-inclination circular orbit used by the NASA Tropical Rainfall Measuring Mission (TRMM); (2) a sun-synchronous orbit used by the Japanese Greenhouse Gases Observing SATellite (GOSAT) and proposed for the NASA Orbiting Carbon Observatory (OCO-2) instrument; and (3) a precessing orbit used by the International Space Station (ISS). For each orbit, we assume an instrument based on the specification of the OCO-2; for GOSAT we use the relevant instrument specification. Sun-synchronous orbits offer near global coverage within a few days but have implications for the density of clear-sky measurements. The TRMM and ISS orbits intensively sample tropical latitudes, with sun-lit clear-sky measurements evenly distributed between a.m./p.m. For a specified spatial resolution for inferred fluxes, we show there is a critical number of measurements beyond which there is a disproportionately small decrease in flux uncertainty. We also show that including spatial correlations for measurements and model errors (of length 300 km) reduces the effectiveness of high measurement density for flux estimation, as expected, and so should be considered when deciding sampling strategies. We show that cloud-free data from the TRMM orbit generally can improve the spatial resolution of CO2 fluxes achieved by OCO-2 over tropical South America, for example, from 950 km to 630 km, and that combining data from these low-inclination and sun-synchronous orbits have the potential to reduce this spatial length further. Decreasing the length of the error correlations to 50 km, reflecting anticipated future improvements to transport models, results in CO2 flux estimates on spatial scales that approach those observed by regional

  5. Spatial resolution of tropical terrestrial CO2 fluxes inferred using space-borne column CO2 sampled in different earth orbits: the role of spatial error correlations

    NASA Astrophysics Data System (ADS)

    Palmer, P. I.; Feng, L.; Bösch, H.

    2011-05-01

    We use realistic numerical experiments to assess the sensitivity of 8-day CO2 flux estimates, inferred from space-borne short-wave infrared measurements of column-averaged CO2 dry air mixing ratio XCO2, to the choice of Earth observing orbit. We focus on three orbits: (1) a low-inclination circular orbit used by the NASA Tropical Rainfall Measuring Mission (TRMM); (2) a sun-synchronous orbit used by the Japanese Greenhouse Gases Observing SATellite (GOSAT) and proposed for the NASA Orbiting Carbon Observatory (OCO-2) instrument; and (3) a precessing orbit used by the International Space Station (ISS). For each orbit, we assume an instrument based on the specification of the OCO-2; for GOSAT we use the relevant instrument specification. Sun-synchronous orbits offer near global coverage within a few days but have implications for the density of clear-sky measurements. The TRMM and ISS orbits intensively sample tropical latitudes, with sun-lit clear-sky measurements evenly distributed between a.m./p.m. For a specified spatial resolution for inferred fluxes, we find there is a critical number of measurements beyond which there is a disproportionately small decrease in flux uncertainty. We also find that including spatial correlations for measurements and model errors (of length 300 km) reduces the effectiveness of high measurement density for flux estimation and so should be considered when deciding sampling strategies. We show that cloud-free data from the TRMM orbit generally can improve the spatial resolution of CO2 fluxes achieved by OCO-2 over tropical South America, for example, from 950 km to 630 km, and that combining data from these low-inclination and sun-synchronous orbits have the potential to reduce this spatial length further. Decreasing the length of the error correlations to 50 km, reflecting anticipated future improvements to transport models, results in CO2 flux estimates on spatial scales that approach those observed by regional aircraft.

  6. Unraveling the Complex Drivers of CO2 and CH4 Flux in Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Lynch, L. M.; Calderon, F.; Brewer, P. E.; Wallenstein, M. D.

    2014-12-01

    Permafrost contains large stocks of organic carbon (C) that are vulnerable to decomposition following thaw, which could increase greenhouse gas (GHG) emissions leading to a potential C-climate feedback. Despite their global importance, GHG emissions from thawing permafrost are difficult to predict due to their complex mechanisms. The objective of this study was to determine the mechanisms controlling GHG flux from permafrost soil, comparing CH4 and CO2 production. We simulated permafrost thaw under drained and anoxic conditions at 1 and 15 °C, and measured CH4 and CO2 production. We also measured soil chemical and biological parameters (e.g. mid-infrared spectroscopy, iron speciation, soil redox, and next generation sequencing of the 16S gene). All treatments produced considerable amounts of CO2 (oxic, 15 °C: 0.3-2.0 mg CO2-C gdws-1). CH4 production was highly variable (anoxic, 15 °C: 0.4-67 μg CH4-C gdws-1), which was not explained by soil C content (2-603 μg CH4 g soil C-1). We explored the reasons behind this seemingly random variability in CH4 production, and found that it can be explained by the activity of non-methanogenic anaerobes and substrate supply. For example, we found that the activity of iron reducers improved the fit of CH4 production model, reducing second order bias correction (AICc) from 80 to 38, as did a gross measure of anaerobic activity (AICc reduced from 80 to 60), however neither was statistically significant (p>0.05). In methanogenesis, the lability, rather than the total chemistry of the dissolved organic matter, was important for determining gas production, but the opposite was found to be important for predicting CO2 production. Differences in methanogen populations likely also contributed to the variability in the CH4 production, and further analysis of the 16S gene abundances will elucidate this. In summary, production of CH4 depends not only on the methanogens themselves, but also on the activity of the non

  7. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground

    NASA Astrophysics Data System (ADS)

    Krevor, Samuel; Benson, Sally; Rella, Chris; Perrin, Jean-Christophe; Esposito, Ariel; Crosson, Eric

    2010-05-01

    The surface monitoring of CO2 over geologic sequestration sites will be an essential tool in the monitoring and verification of sequestration projects. Surface monitoring is the only tool that currently provides the opportunity to detect and quantify leakages on the order of 1000 tons/year CO2. Near-surface detection and quantification can be made complicated, however, due to large temporal and spatial variations in natural background CO2 fluxes from biological processes. In addition, current surface monitoring technologies, such as the use of IR spectroscopy in eddy covariance towers and aerial surveys, radioactive or noble gas isotopic tracers, and flux chamber gas measurements can generally accomplish one or two of the necessary tasks of leak detection, identification, and quantification, at both large spatial scales and high spatial resolution. It would be useful, however, to combine the utility of these technologies so that a much simplified surface monitoring program can be deployed. Carbon isotopes of CO2 provide an opportunity to distinguish between natural biogenic CO2 fluxes from the ground and CO2 leaking from a sequestration reservoir that has ultimate origins in a process giving it a distinct isotopic signature such as natural gas processing. Until recently, measuring isotopic compositions of gases was a time-consuming and expensive process utilizing mass-spectrometry, not practical for deployment in a high-resolution survey of a potential leakage site at the surface. Recent developments in commercially available instruments utilizing wavelength scanned cavity ringdown spectroscopy (WS-CRDS) and Fourier transform infrared spectroscopy (FT-IR) have made it possible to rapidly measure the isotopic composition of gases including the 13C and 12C isotopic composition of CO2 in a field setting. A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to rapidly detect and

  8. Consequences and feedbacks on CO2 fluxes of climate change impacts on alpine vegetation

    NASA Astrophysics Data System (ADS)

    Cannone, N.; Guglielmin, M.

    2009-04-01

    The vegetation in a high alpine site of the European Alps experienced changes in area between 1953 and 2003 as a result of climate change (Cannone et al. 2007). Shrubs showed rapid expansion rates of 5.6% per decade at altitudes between 2400 m and 2500 m. Above 2500 m, vegetation coverage exhibited unexpected patterns of regression associated with increased precipitation and permafrost degradation. The warming of air temperature induced a cascade effect, with changes in the all ecological series (from the shrubland to the nival snowbed vegetation), with the arrival of the alpine shrubland and upward displacement of the alpine grassland (especially between 2230 and 2500 m). During the growing season 2008 (since the late-spring snowmelt to the start of the continuous snow cover in fall) we analyzed and measured the CO2 fluxes associated to the vegetation types exhibiting the highest changes since 1953 until today. In particular, we monitored two different ecological types of shrubland vegetations (the chionophilous alpine shrubs dominated by Rhododendron ferrugineum and the wind-swept community of dwarf shrubs dominated by Loiseleuria procumbens), the climax alpine grassland (dominated by Carex curvula), the pioneer discontinuous alpine vegetation, the snowbed vegetation (dominated by Salix herbacea) and the barren ground. CO2 fluxes (i.e. net ecosystem exchange, ecosystem photosynthesis and ecosystem respiration), biomass, soil C and N were measured for all these vegetation types. Implications of the changes occurred to the CO2 fluxes above 2200 m a.s.l. in response to the areal changes of spatial distribution of the investigated vegetation types and their potential feedbacks are discussed. Nicoletta Cannone, Sergio Sgorbati, and Mauro Guglielmin 2007. Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 2007; 5(7): 360-364

  9. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground

    NASA Astrophysics Data System (ADS)

    Krevor, S.; Perrin, J.; Esposito, A.; Rella, C.; Benson, S. M.

    2009-12-01

    side of the pipeline with the end of the gas inlet tube approximate 9 cm above the ground at a walking speed of 1-2m/sec. This simulates the type of survey that could be easily performed if the actual or potential site of a leak was known to within an area on the order of 100 square kilometers or less, the scale of expected industrial CO2 sequestration operations. The surveys were performed both during the day and during the evening when CO2 flux due to respiration from the soil is markedly different. Keeling plots were used to characterize the spatially varying 13C composition of ground source CO2 across the site. A map constructed from this data shows that CO2 flux from sources of leakage was characterized by a δ 13C of -40‰ or less whereas locations away from the leakage spots had much higher δ 13C signatures, -25‰ or higher. The distinct isotopic signature allows for a clear discernment between leakage of petrogenic CO2 and that of natural CO2 fluxes from soil respiration. This is particularly valuable in the circumstance where the leak is slow enough that it could not be identified from CO2 concentration or flux changes above the natural background signal alone.

  10. The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI

    NASA Astrophysics Data System (ADS)

    Basu, S.; Krol, M.; Butz, A.; Clerbaux, C.; Sawa, Y.; Machida, T.; Matsueda, H.; Frankenberg, C.; Hasekamp, O. P.; Aben, I.

    2014-03-01

    We estimate the CO2 flux over Tropical Asia in 2009, 2010, and 2011 using Greenhouse Gases Observing Satellite (GOSAT) total column CO2(XCO2) and in situ measurements of CO2. Compared to flux estimates from assimilating surface measurements of CO2, GOSAT XCO2 estimates a more dynamic seasonal cycle and a large source in March-May 2010. The more dynamic seasonal cycle is consistent with earlier work by Patra et al. (2011), and the enhanced 2010 source is supported by independent upper air CO2 measurements from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. Using Infrared Atmospheric Sounding Interferometer (IASI) measurements of total column CO (XCO), we show that biomass burning CO2 can explain neither the dynamic seasonal cycle nor the 2010 source. We conclude that both features must come from the terrestrial biosphere. In particular, the 2010 source points to biosphere response to above-average temperatures that year.

  11. Global climate impacts of bioenergy from forests: implications from biogenic CO2 fluxes and surface albedo

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Bright, Ryan; Strømman, Anders

    2013-04-01

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, is given to the assessment of direct land surface-atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. In this work, we assess bioenergy systems representative of various biomass species (spruce, pine, aspen, etc.) and climatic regions (US, Canada, Norway, etc.), for both stationary and vehicle applications. In addition to conventional greenhouse gas (GHG) emissions through life cycle activities (harvest, transport, processing, etc.), we evaluate the contributions to global warming of temporary effects resulting from the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes and in surface reflectivity (albedo). Biogenic CO2 fluxes on site after harvest are directly measured through Net Ecosystem Productivity (NEP) chronosequences from flux towers established at the interface between the forest canopy and the atmosphere and are inclusive of all CO2 exchanges occurring in the forest (e.g., sequestration of CO2 in growing trees, emissions from soil respiration and decomposition of dead organic materials). These primary data based on empirical measurements provide an accurate representation of the forest carbon sink behavior over time, and they are used in the elaboration of high-resolution IRFs for biogenic CO2 emissions. Chronosequence of albedo values from clear-cut to pre-harvest levels are gathered from satellite data (MODIS black-sky shortwave broadband, Collection 5, MCD43A). Following the cause-effect chain from emissions to damages, through radiative forcing and changes

  12. Seasonal variability of CO2 and H2O fluxes in tropical pasture and afforestation

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Eugster, W.; Buchmann, N.

    2011-12-01

    Tropical ecosystems play an important role for the global carbon and water cycle. However, eddy covariance flux measurements in the tropics are still scarce and previous studies have been predominantly conducted in tropical forests. With ongoing deforestation, the tropics are increasingly influenced by agroecosystems and pastures but only few observations have covered these land-use types so far. Comparative eddy covariance measurements of carbon dioxide and water vapour fluxes were performed in a tropical pasture and an adjacent afforestation site in Sardinilla, Panama from 2007 to 2009. We observed a larger seasonal variability of ecosystem CO2 and H2O fluxes at the pasture compared to the afforestation site, which was largely related to the rooting depth of grasses versus trees. Radiation and soil moisture were the main environmental controls of these fluxes in both ecosystems. The pasture ecosystem was more sensitive to water limitations by seasonal drought and in addition, periodical overgrazing significantly contributed to persisting carbon losses from the pasture. Substantial carbon sequestration was found at the afforestation site and was in agreement with independent assessments of biomass and soil inventories. In contrast to the largely differing carbon budgets, the afforestation of tropical pasture only marginally increased total annual evapotranspiration in Sardinilla. Our results clearly indicate the potential for carbon sequestration of tropical afforestation but also highlight the risk of carbon losses from pasture ecosystems in a seasonal tropical climate. Predicted increases in precipitation variability will very likely impact the seasonal variability of CO2 and H2O fluxes in Panama, in particular of pasture ecosystems. At the end of this talk, the overall significance of seasonality in tropical ecosystems will be discussed.

  13. Effects of increased upward flux of dissolved salts caused by CO2 storage or other factors

    SciTech Connect

    Murdoch, Lawrence C.; Xie, Shuangshuang; Falta, Ronald W.; Ruprecht, Catherine

    2015-08-01

    Injection of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. Saline groundwater occurs naturally at shallow depths in many sedimentary basins, so an upward flux of solutes could degrade the quality of freshwater aquifers and threaten aquatic ecosystems. One problem could occur where saline water flowed upward along preferential paths, like faults or improperly abandoned wells. Diffuse upward flow through the natural stratigraphy could also occur in response to basin pressurization. This process would be slower, but diffuse upward flow could affect larger areas than flow through preferential paths, and this motivated us to evaluate this process. We analyzed idealized 2D and 3D geometries representing the essential details of a shallow, freshwater aquifer underlain by saline ground water in a sedimentary basin. The analysis was conducted in two stages, one that simulated the development of a freshwater aquifer by flushing out saline water, and another that simulated the effect of a pulse-like increase in the upward flux from the basin. The results showed that increasing the upward flux from a basin increased the salt concentration and mass loading of salt to streams, and decrease the depth to the fresh/salt transition. The magnitude of these effects varied widely, however, from a small, slow process that would be challenging to detect, to a large, rapid response that could be an environmental catastrophe. The magnitude of the increased flux, and the initial depth to the fresh/salt transition in groundwater controlled the severity of the response. We identified risk categories for salt concentration, mass loading, and freshwater aquifer thickness, and we used these categories to characterize the severity of the response. This showed that risks would

  14. BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites

    NASA Technical Reports Server (NTRS)

    Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.

  15. Net drainage effects on CO2 fluxes of a permafrost ecosystem through eddy-covariance measurements

    NASA Astrophysics Data System (ADS)

    Kittler, Fanny; Burjack, Ina; Zimov, Nikita; Zimov, Sergey; Heimann, Martin; Göckede, Mathias

    2015-04-01

    Permafrost landscapes in the Northern high latitudes with their massive organic carbon stocks are critically important for the global carbon cycle, yet feedback processes with the atmosphere under future climate conditions are uncertain. To improve the understanding of mechanisms and drivers dominating permafrost carbon cycling, we established a continuous observation program in moist tussock tundra ecosystem near Cherskiy in North-eastern Siberia (68.75°N, 161.33°E). The experiment has been designed to monitor carbon cycle fluxes at different scales with different approaches, including e.g. the eddy-covariance technique, and their environmental drivers. Recent observations started mid July 2013 and are still ongoing, while 'historic' measurements are available for the period 2002-2005. Since 2004 part of the observation area has been disturbed by a drainage ditch ring, altering the soil water conditions in the surrounding area in a way that is expected for degrading ice-rich permafrost under a warming climate. With parallel observations over the disturbed (drained) area and a reference area nearby, respectively, we aim to evaluate the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. Here, findings based on over 1.5 years of continuous eddy-covariance CO2 flux measurements (July 2013 - March 2015) for both observation areas are presented. Results show systematic shifts in the tundra ecosystem as a result of 10 years of disturbance in the drained area, with significant effects on biotic and abiotic site conditions as well as on the carbon cycle dynamics. Comparing the net budget fluxes between both observations areas indicates a reduction of the net sink strength for CO2 of the drained ecosystem during the summer season in comparison to natural conditions, mostly caused by reduced CO2 uptake with low water levels in late summer. Regarding the long-term CO2 uptake dynamics of the disturbance regime (2005 vs. 2013/14) the

  16. Expanding Spatial and Temporal Coverage of Arctic CH4 and CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Murphy, P.; Oechel, W. C.; Moreaux, V.; Losacco, S.; Zona, D.

    2013-12-01

    Carbon storage and exchange in Arctic ecosystems is the subject of intensive study focused on determining rates, controls, and mechanisms of CH4 and CO2 fluxes. The Arctic contains more than 1 Gt of Carbon in the upper meter of soil, both in the active layer and permafrost (Schuur et al., 2008; Tarnocai et al., 2009). However, the annual pattern and controls on the release of CH4 is inadequately understood in Arctic tundra ecosystems. Annual methane budgets are poorly understood, and very few studies measure fluxes through the freeze-up cycle during autumn months (Mastepanov et al., 2008; Mastepanov et al., 2010; Sturtevant et al., 2012). There is no known, relatively continuous, CH4 flux record for the Arctic. Clearly, the datasets that currently exist for budget calculations and model parameterization and verification are inadequate. This is likely due to the difficult nature of flux measurements in the Arctic. In September 2012, we initiated a research project towards continuous methane flux measurements along a latitudinal transect in Northern Alaska. The eddy-covariance (EC) technique is challenging in such extreme weather conditions due to the effects of ice formation and precipitation on instrumentation, including gas analyzers and sonic anemometers. The challenge is greater in remote areas of the Arctic, when low power availability and limited communication can lead to delays in data retrieval or data loss. For these reasons, a combination of open- and closed-path gas analyzers, and several sonic anemometers (including one with heating), have been installed on EC towers to allow for cross-comparison and cross-referencing of calculated fluxes. Newer instruments for fast CH4 flux determination include: the Los Gatos Research Fast Greenhouse Gas Analyzer and the Li-Cor LI-7700. We also included the self-heated Metek Class-A uSonic-3 Anemometer as a new instrument. Previously existing instruments used for comparison include the Li-Cor LI-7500; Li-Cor LI-7200

  17. BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA

    NASA Technical Reports Server (NTRS)

    Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.

  18. CO2 and CH4 Fluxes across Polygon Geomorphic Types, Barrow, Alaska, 2006-2010

    DOE Data Explorer

    Tweedie,Craig; Lara, Mark

    2014-09-17

    Carbon flux data are reported as Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange (GEE), Ecosystem Respiration (ER), and Methane (CH4) flux. Measurements were made at 82 plots across various polygon geomorphic classes at research sites on the Barrow Environmental Observatory (BEO), the Biocomplexity Experiment site on the BEO, and the International Biological Program (IBP) site a little west of the BEO. This product is a compilation of data from 27 plots as presented in Lara et al. (2012), data from six plots presented in Olivas et al. (2010); and from 49 plots described in (Lara et al. 2014). Measurements were made during the peak of the growing seasons during 2006 to 2010. At each of the measurement plots (except Olivas et al., 2010) four different thicknesses of shade cloth were used to generate CO2 light response curves. Light response curves were used to normalize photosynthetically active radiation that is diurnally variable to a peak growing season average ~400 umolm-2sec-1. At the Olivas et al. (2010) plots, diurnal patterns were characterized by repeated sampling. CO2 measurements were made using a closed-chamber photosynthesis system and CH4 measurements were made using a photo-acoustic multi-gas analyzer. In addition, plot-level measurements for thaw depth (TD), water table depth (WTD), leaf area index (LAI), and normalized difference vegetation index (NDVI) are summarized by geomorphic polygon type.

  19. Global CO2 flux estimation using GOSAT: An inter-comparison of inversion results

    NASA Astrophysics Data System (ADS)

    Houweling, S.; Basu, S.; Chevallier, F.; Feng, L.; Ganshin, A.; Maksyutov, S.; Palmer, P. I.; Peylin, P.; Poussi, Z.; Takagi, H.; Zhuravlev, R.

    2012-12-01

    A unique global data archive is under construction of total column CO2 measurements retrieved from the Greenhouse gas Observing SATellite, currently spanning more than three years of data. Several groups are investigating the application of these data to global atmospheric inverse modelling for studying the global carbon cycle. It is known from inverse modeling using surface measurements that the robustness of the inversion-estimated fluxes is best analyzed using a multi-model approach. So far, this has not been demonstrated for inversions using satellite data, but but some of the known sources of uncertainty are difficult to account for in a single inversion, such as transport model uncertainties and differences between retrieval methods. We have organized an inversion inter-comparison experiment to investigate whether, despite these uncertainties, robust signals of sources and sinks can be inferred from the GOSAT data. The current experiment allows full freedom in inversion set-up in order to avoid limiting the range of possible outcomes. Each participating group is free to use their preferred inversion set-up, transport model, and measurements, but is asked to report in a common format and for a common time period of one year to allow one-to-one comparison. We will present an overview of the status of the experiment, including a preliminary synthesis of large-scale CO2 fluxes from a statistical analysis of the ensemble of inversion results and verification of the performance of the inversions using independent measurements.

  20. Using Carbonyl Sulfide Column Measurements and a Chemical Transport Model to Investigate Variability in Biospheric CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Baker, I. T.; Berry, J. A.; Suntharalingam, P.; Campbell, J. E.; Wolf, A.

    2014-12-01

    Understanding the CO2 processes on land is of great importance, because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrieval of the atmospheric concentrations of both CO2 and OCS. Here, we investigate co-located and nearly simultaneous measurements of OCS and CO2 measured at 3 sites via FTIR spectrometers. These northern-hemispheric sites span a wide range of latitudes and all have multiple year time-series. The sites include Ny-Alesund (79°N), Bremen (53°N) and Paramaribo (6°N). We compare these measurements to simulations of OCS and CO2 using the GEOS-Chem model. The simulations are driven by different land biospheric fluxes of OCS and CO2 to match the seasonality of the measurements. The simple biosphere model (SiB-COS) are used in the study because it simultaneously calculates the biospheric fluxes of both OCS and CO2. The CO2 simulation with SiB fluxes agrees with the measurements better than a simulation using CASA. Comparison of the OCS simulations with different fluxes indicates that the latitudinal distribution of the OCS fluxes within SiB needs to be adjusted.

  1. Using Carbonyl Sulfide column measurements and a Chemical Transport Model to investigate variability in biospheric CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Petri, Christof; Palm, Mathias; Warneke, Thorsten; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Campbell, Elliott; Wolf, Adam; Deutscher, Nick; Notholt, Justus

    2015-04-01

    Understanding the CO2 processes on land is of great importance, because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrieval of the atmospheric concentrations of both CO2 and OCS. Here, we investigate co-located and nearly simultaneous measurements of OCS and CO2 measured at 3 sites via FTIR spectrometers. These northern-hemispheric sites span a wide range of latitudes and all have multiple year time-series. The sites include Ny-Alesund (79°N), Bremen (53°N) and Paramaribo (6°N). We compare these measurements to simulations of OCS and CO2 using the GEOS-Chem model. The simulations are driven by different land biospheric fluxes of OCS and CO2 to match the seasonality of the measurements. The simple biosphere model (SiB-COS) are used in the study because it simultaneously calculates the biospheric fluxes of both OCS and CO2. The CO2 simulation with SiB fluxes agrees with the measurements better than a simulation using CASA. Comparison of the OCS simulations with different fluxes indicates that the latitudinal distribution of the OCS fluxes within SiB needs to be adjusted.

  2. New observational evidence of CO2 degassing anomalies on the Piton de la Fournaise and the relationship between seismotectonic structures and CO2 flux from the soil

    NASA Astrophysics Data System (ADS)

    Liuzzo, Marco; Giudice, Gaetano; Di Muro, Andrea; Ferrazzini, Valérie; Michon, Laurent

    2014-05-01

    Piton de la Fournaise (PdF) is recognised as one of the world's most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced, yet this activity seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence, with the sole exception of a rather modest intracrateric fumarole activity. The most significant gas emissions are evident only during eruptive episodes and disappear at the cessation of these, all of which making PdF a vulcano that is rather hostile to investigations in terms of gas geochemistry, and, therefore, all the more fascinating to explore. Here we report the results of a campaign to measure CO2 soil flux, focusing on the identification of potential degassing areas and their relation with the main seismotectonic features that involve PdF with the aim of developing a broader understanding of the geometry of the degassing system of the volcano. In order to assess the possible existence of anomalous CO2 soil flux emissions, 395 measurements were taken along transepts roughly orthogonal to the known tectonic lineaments linked to PdF, with allowances made for problems presented by the urbanization of the areas involved and in particular some obstacles and difficult morphology. In addition, samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 value (in general CO2 flux more than 80 g m-2d-1). The results of the investigation reveal a distribution of anomalous CO2 degassing which occurs along the main tectonic structures that intersect PdF and which also correspond to areas that have the highest density of pyroclastic cones. Furthermore there is a particularly interesting correspondence between the highest levels of anomalous CO2 degassing and the distribution of earthquakes occurring at depths greater than 15km. The results of the survey suggest that there is a potential connection between the areas of anomalous

  3. The importance of replication of CO2 flux measurements in forest clearcuts

    NASA Astrophysics Data System (ADS)

    Paul-Limoges, E.; Black, T. A.; Christen, A.; Nesic, Z.; Ketler, R.; Grant, N. J.; Baker, T. D.; Jassal, R. S.; Humphreys, E.

    2013-12-01

    Stand-replacing disturbances, such as harvesting, have a major impact on the exchange of carbon dioxide (CO2) between forested land and the atmosphere. The former forest CO2 sinks become net CO2 sources due to the continued respiratory losses of CO2 and to the significantly reduced photosynthetic uptake of CO2. The duration and magnitude of this carbon loss has now been quantified for many single sites representing ecosystems worldwide through Fluxnet. However, differences in the characteristics of harvested sites can influence vegetation recovery and respiratory fluxes of such stands and replicated observations are required to quantify the possible differences which can arise within an ecosystem following a stand-replacing disturbance. This study uses data from the well-studied Fluxnet-Canada Douglas-fir chronosequence on Vancouver Island, where the most mature site recently reached harvesting age and was commercially harvested. We compare the first two years following harvesting of eddy-covariance (EC) measurements of CO2 exchange at this recently clearcut harvested site (HDF11) with those from a previously clearcut harvested Douglas-fir site (HDF00) in the chronosequence. The weather conditions during the years used in this analysis were similar and within the climate normals for the area. Half-hourly energy-balance closure was greater than 80% in both clearcuts. Our results for the first two years post-harvest show that both clearcuts were large annual carbon sources (i.e., net ecosystem productivity (NEP) < 0) with HDF11 being a much stronger source. NEP at HDF11 recovered from -1000 g C m-2 yr-1 in the first year to -700 g C m-2 yr-1 in the second year while HDF00 recovered from -620 g C m-2 yr-1 to -520 g C m-2 yr-1. Vegetation recovery was slower at HDF11 with a gross primary productivity (GPP) of 130 g C m-2 yr-1 in the first year and 385 g C m-2 yr-1 in the second year, while HDF00 had a GPP of 220 and 530 g C m-2 yr-1 in the respective years. Ecosystem

  4. Effects of regional differences in the long term carbon balance on predicted net CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Ziehn, Tilo; Scholze, Marko; Knorr, Wolfgang

    2010-05-01

    The Carbon Cycle Data Assimilation System (CCDAS) allows the current fluxes of CO2 to the atmosphere to be mapped and the evolution of these fluxes into the future to be predicted. In this work we concentrate on the calibration mode of CCDAS where an optimal parameter set is derived from 10 years of atmospheric CO2 concentration observations using an adjoint approach. Global and regional process parameters are considered via a mapping routine. The parameters are then optimised by calculating the mismatch of the observations and prior knowledge of the parameters via a defined cost function. Further, parameter uncertainty estimates, which are obtained during the parameter optimisation step, can be propagated in order to estimate uncertainties of any given output such as of the predicted net CO2 fluxes. The process based terrestrial biosphere model BETHY is the core of CCDAS. It simulates carbon assimilation and soil respiration within a full energy and water balance and phenology scheme. Produced fluxes are then mapped onto atmospheric concentrations using the atmospheric transport model TM2. BETHY has 20 parameters for each plant functional type (PFT). There is a choice from a single global description up to independent parameter sets for every grid point. In the base case, all parameters are applied globally. Additionally, the key photosynthetic parameters (maximum electron transport and maximum carboxylation rate) and the key carbon storage parameter β vary with each of the 13 PFTs which gives a total of 56 control parameters. The β parameter is a scaling parameter for a constraint that exists for the long term carbon balance. This constraint is implemented in BETHY in order to consider unknown processes such as climate forcing and disturbance. On the contrary to the other process parameters, β is not necessarily a global parameter. In fact, there might be a strong regional dependency, because β represents information about the history of the site and the

  5. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow

    SciTech Connect

    Saleska, Scott R.; Harte, John; Torn, Margaret S.

    1997-07-01

    Climatic change is predicted to alter rates of soil respiration and assimilation of carbon by plants. Net loss of carbon from ecosystems would form a positive feedback enhancing anthropogenic global warming. We tested the effect of increased heat input, one of the most certain impacts of global warming, on net ecosystem carbon exchange in a Rocky Mountain montane meadow. Overhead heaters were used to increase the radiative heat flux into plots spanning a moisture and vegetation gradient. We measured net whole-ecosystem CO2 fluxes using a closed-path chamber system, relatively nondisturbing bases, and a simple model to compensate for both slow chamber leaks and the CO2 concentration-dependence of photosynthetic uptake, in 1993 and 1994. In 1994, we also measured soil respiration separately. The heating treatment altered the timing and magnitude of net carbon fluxes into the dry zone of the plots in 1993 (reducing uptake by 100 g carbon m2), but had an undetectable effect on carbon fluxes into the moist zone. During a strong drought year (1994), heating altered the timing, but did not significantly alter the cumulative magnitude, of net carbon uptake in the dry zone. Soil respiration measurements showed that when differences were detected in dry zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by temperature-driven changes in carbon output from soil respiration. When differences were detected in dry-zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by a temperature-driven changes in carbon output from soil respiration. Regression analysis suggested that the reduction in carbon inputs from plants was due to a combination of two soil moisture effects: a direct physiological response to decreased soil moisture, and a shift in plant community composition from high-productivity species to low-productivity species that are more drought tolerant. These results partially support predictions that

  6. Heterogeneity of CH4 and net CO2 Fluxes Using Nested Chamber, Tower, Aircraft, Remote Sensing, and Modeling Approaches in Arctic Alaska for Regional Flux Estimation

    NASA Astrophysics Data System (ADS)

    Oechel, W. C.; Moreaux, V.; Kalhori, A. A. M.; Murphy, P.; Wilkman, E.; Sturtevant, C. S.; Zhuang, Q.; Miller, C. E.; Dinardo, S. J.; Fisher, J. B.; Gioli, B.; Zona, D.

    2014-12-01

    The topographic, environmental, biotic, and metabolic heterogeneity of terrestrial ecosystems and landscapes can be large even despite a seemingly homogeneous landscape. The error of estimating and simulating fluxes due to extant heterogeneity is commonly overlooked in regional and global estimates. Here we evaluate the pattern and controls on spatial heterogeneity on CH4 and CO2 fluxes over varying spatial scales. Data from the north slope of Alaska from chambers, up to a 16 year CO2 flux record from up to 7 permanent towers, over 20 portable tower locations, eddy covariance CH4 fluxes over several years and sites, new year-around CO2 and CH4 flux installations, hundreds of hours of aircraft concentration and fluxes, and terrestrial biosphere and flux inverse modeling, are used to evaluate the spatial variability of fluxes and to better estimate regional fluxes. Significant heterogeneity of fluxes is identified at varying scales from sub-meter scale to >100km. A careful consideration of the effect that heterogeneity causes when estimating ecosystem fluxes is critical to reliable regional and global estimates. The combination of eddy covariance tower flux, aircraft, remote sensing, and modeling can be used to provide reliable, accurate, regional assessments of CH4 and CO2 fluxes from large areas of heterogeneous landscape.

  7. Effects of Elevated CO2 and Nitrogen Deposition on Ecosystem Carbon Fluxes on the Sanjiang Plain Wetland in Northeast China

    PubMed Central

    Wang, Jianbo; Zhu, Tingcheng; Ni, Hongwei; Zhong, Haixiu; Fu, Xiaoling; Wang, Jifeng

    2013-01-01

    Background Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. Methodology/Principal Findings Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. Conclusion/Significance In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition. PMID:23818943

  8. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  9. Estimation of the CO2 flux from Furnas volcanic Lake (São Miguel, Azores)

    NASA Astrophysics Data System (ADS)

    Andrade, César; Viveiros, Fátima; Cruz, J. Virgílio; Coutinho, Rui; Silva, Catarina

    2016-04-01

    A study on diffuse CO2 degassing was undertaken at Furnas lake (São Miguel island, Azores) in order to estimate the total diffuse CO2 output and identify anomalous degassing areas over the lake. Furnas lake is located in Furnas Volcano, the easternmost of the three active central volcanoes of the São Miguel island. The lake has an area of 1.87 km2 and a maximum length and width equal to 2025 and 1600 m, respectively. The maximum depth of the water column is 15 m and the estimated water storage is 14 × 106 m3. Lake water temperature is cold, with temperature values between 13 °C and 15 °C in the winter period and 18.9 °C to 19.3 °C in early autumn, and the variation along the water column suggests a monomictic character. The major-ion relative composition is in decreasing order Na+ > K+ > Ca2+ > Mg2 + for cations and HCO3- > Cl- > SO42- for anions, and conductivity and pH measurements, respectively in the range of 152 to 165 μS cm- 1 and 5.3 to 8.7, suggests that Furnas has neutral-diluted waters and can be classified as a non-active lake. Diffuse CO2 flux measurements were made using the accumulation chamber method with a total of 1537 and 2577 measurements performed in two different sampling campaigns. The total amount of diffuse CO2 emitted to the atmosphere was estimated between 28 and 321 t km- 2 d- 1, respectively, in the second and first sampling campaigns, corresponding to ~ 52 and ~ 600 t d- 1. The main anomalous degassing area identified over the Furnas lake during both surveys is probably associated to a WNW-ESE trending tectonic structure. Other secondary areas are also suggested to be tectonically influenced. Identified anomalous areas showed similarities to the ones observed during previous soil CO2 degassing studies.

  10. Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje

    2014-05-01

    Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.

  11. Comparing surface and mid-troposphere CO2 concentration and fluxes from central U.S. grasslands

    NASA Astrophysics Data System (ADS)

    Cochran, F. V.; Brunsell, N. A.; Quick, A. T.

    2010-12-01

    Terrestrial ecosystem dynamics influence the Earth’s climate system, which is affected by variations in atmospheric carbon dioxide (CO2). Assessments of CO2 concentration and net fluxes at regional scales are needed to diminish uncertainties related to the effects of land-use change on ecosystem processes, to identify land management practices that have the potential to mitigate CO2 emissions, and to discern sources and sinks within geopolitical boundaries for reasons of carbon accountability. Understanding how surface CO2 concentration and flux dynamics within heterogeneous landscapes scale to mid-troposphere concentrations is the focus of this study. CO2 flux data from three eddy covariance (EC) towers in northeastern Kansas are compared to mid-tropospheric data collected by the Atmospheric Infrared Sounder (AIRS). EC tower data from two watershed sites on the Konza Prairie Biological Station (KPBS) for the period 2006-2010 and one study site at the Nelson Environmental Study Area (NESA) for the period 2007-2010 are examined. KPBS site 1D is primarily C4 grasses, burned annually; KPBS site 4B is a mix of C3 forbs and C4 grasses, burned every four years; and the NESA site is a mix of C3/C4 grasses, burned approximately every five years, and experiencing woody encroachment. Results show higher concentration of CO2 in the mid-troposphere. Furthermore, mid-troposphere CO2 exhibited daily and seasonal lags and decreased amplitude in flux dynamics compared to surface CO2. Long-term, combined observations of surface and atmospheric CO2 offer the potential for a better understanding of the natural processes and anthropogenic activities related to CO2 source-sink dynamics, seasonal and interannual variability, and climate forcings, including temperature and precipitation changes.

  12. Simultaneous Flux Measurements of CO2, its Stable Isotope Ratios and Trace Gases Based on Eddy Accumulation Technique for Flux Partitioning

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hirata, R.

    2007-12-01

    For the purpose of determining the CO2 uptake by terrestrial ecosystem, eddy covariance method (EC) is commonly used in the tower-flux measurements. The flux measured by this method is called 'enet ecosystem exchange (NEE)'. NEE has the meaning of difference between two component fluxes, photosynthetic uptake and respiratory release of CO2. Magnitude of both the component fluxes is far larger than NEE. Both the component fluxes have difference in response function against changes in environmental factors, such as temperature and water. Therefore it is important to evaluate the characteristics of variations in the comporent fluxes individually in the future prediction of CO2 uptake by terrestrial ecosystem. Separation of NEE into the componet fluxes is usually done by using an approximate temperature expression of respiratory flux. This approximate expression is based on the assumption that the NEE observed at nighttime equals to the respiratory flux. The photosynthetic uptake of CO2 is defined as difference between the observed NEE and 'respiration' approximated as a temperature-function. Because of its technical simplicity, this approach has provided useful information about climatology of the gross CO2 fluxes. However, the temperature expression of respiratory flux has several limitations in its application. We are now developing a flux-partitioning method using chemical tracers (e.g. stable isotopes of CO2 and carbonyl sulfide) as additional constraints. The flux partitioning using stable isotopes of CO2 is based on the imbalance of net flux of the CO2 isotopes between 'respiration' and 'photosynthesis'. On the other hand, because of this similarity in the control factors for uptake ratio, the net flux of carbonyl sulfide (COS) is regarded as a possible constraint for the functioning of variations in photosynthetic CO2 uptake by terrestrial ecosystem. Field observation of fluxes of those chemical tracers by EC method is difficult due to stringent requirements

  13. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  14. The Stoichiometry between CO2 and H+ Fluxes Involved in the Transport of Inorganic Carbon in Cyanobacteria 1

    PubMed Central

    Ogawa, Teruo; Kaplan, Aaron

    1987-01-01

    The pH of the medium during CO2 uptake into the intracellular inorganic carbon (Ci) pool of a high CO2-requiring mutant (E1) and wild type of Anacystis nidulans R2 was measured. Experiments were performed under conditions where photosynthetic CO2 fixation is inhibited. There was an acidification of the medium during CO2 uptake in the light and an alkalization during CO2 efflux after darkening. A one to one stoichiometry existed between the amounts of H+ appearing in the medium and CO2 taken up into the intracellular Ci pool, regardless of the carbon species transported. The results indicate that (a) CO2 is taken up simultaneously with an efflux of equimolar H+, probably produced as a result of CO2 hydration during transport and (b) HCO3− produced by hydration of CO2 in the medium was transported into the cells without accompanying net flux of H+ or OH−. The influx and efflux of Ci during Ci transport produced nonequilibrium between CO2 and HCO3− in the medium, with the concentration of HCO3− being higher than that expected under equilibrium conditions. The nonequilibrium was present even under the conditions where the influx of Ci is compensated by its efflux. The direction of this nonequilibrium suggested that efflux of HCO3− occurs during uptake of Ci. PMID:16665357

  15. Combined FTIR-micrometeorological techniques for long term flux measurements of greenhouse gases and their applicability for 13CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Warneke, Thorsten; Caldow, Chris; Griffith, David

    2010-05-01

    Fourier Transform InfraRed (FTIR) spectrometry has been deployed for continuous long term flux measurements on a flat, homogeneous circular grass paddock in New South Wales, Australia. The rationale for using FTIR spectrometry is its capability to measure many species simultaneously. The flux measurement techniques combined with FTIR - spectrometry in this study were Disjunct Eddy Accumulation (DEA) and Flux-Gradient (FG). The fluxes of CO2 derived from the FTIR-DEA and FTIR-FG measurements agree well and have been validated by Eddy Covariance Licor measurements. Variations in the observed fluxes could be attributed to temperature increase and water availability over the 5 months measurement period. In addition to CO2, CH4, CO and N2O FTIR-spectrometry is also capable to measure 13CO2. The isotopic fluxes of CO2 allow to separate net ecosystem exchange of CO2 into its gross one-way component fluxes, ecosystem respiration and photosynthesis. It has been shown that it is possible to measure the isoflux of CO2.

  16. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    PubMed Central

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  17. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation.

    PubMed

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-06-01

    'Blue Carbon', which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  18. A Global Synthesis Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using Gosat and in Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Collatz, G. J.

    2014-12-01

    About one-half of the CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two, and the location and year-to-year variability of the CO2 sinks are, however, not well understood. We use a batch Bayesian inversion approach to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. For prior constraints, we utilize fluxes from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates, and fixed fossil CO2 emissions. Here, we present results from our inversions that incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals. Relationships between fluxes and atmospheric concentrations are derived using the PCTM atmospheric transport model run at 2° x 2.5° (latitude/longitude) resolution driven by meteorology from the MERRA reanalysis. We evaluate the posterior CO2 concentrations using independent aircraft and other data sets. The optimized fluxes generally resemble those from other inversion systems using different techniques, for example indicating a net terrestrial biospheric CO2 sink, and a shift in the sink from tropics to northern high latitudes when going from an in-situ-only inversion to a GOSAT inversion. We show that in this inversion framework, GOSAT provides better flux estimates in most regions with its greater spatial coverage, but we also discuss impacts of possible remaining biases in the data.

  19. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    PubMed

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P < 0.01) in EUp (132.6 mg/(m2 x hr)) and ACp (139.8 mg/(m2 x hr)) than in Tp (94.0 mg/(m2 x hr)) and THp (102.9 mg/(m2 x hr)). Soil CO2 fluxes in UR and CA were significantly higher (P < 0.01) among the four treatments, with values of 105.7, 120.4, 133.6 and 112.2 mg/(m2 x hr) for UR+CA, UR, CA and CK, respectively. Soil CO2 fluxes were positively correlated with soil temperature (P < 0.01), soil moisture (P < 0.01), NO3(-)-N (P < 0.05), and litterfall (P < 0.01), indicating that all these factors might be important controlling variables for soil CO2 fluxes. This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices. PMID:22066218

  20. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    NASA Astrophysics Data System (ADS)

    van Haren, Joost L. M.; de Oliveira, R. Cosme; Restrepo-Coupe, Natalia; Hutyra, Lucy; de Camargo, Plinio B.; Keller, Michael; Saleska, Scott R.

    2010-09-01

    To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to ˜300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO2 flux variability. Soil N2O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N2O fluxes, accounting for more than twice the N2O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N2O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N2O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO2 and N2O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N2O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO2 and N2O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.

  1. Seasonal variation in measured H2O and CO2 flux of irrigated rice in the Mid-South

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice production in the Lower Mississippi River Basin constitutes over half of US rice production, but little research has been done on water and carbon flux in this region at the field scale. Eddy covariance measurements of water and CO2 flux allow for an integrated field measurement of the interac...

  2. Gas composition and soil CO2 flux at Changbaishan intra-plate volcano, NE China

    NASA Astrophysics Data System (ADS)

    wen, H.; Yang, T. F.; Guo, Z.; Fu, C.; Zhang, M.

    2011-12-01

    Changbaishan, located on the border of China and North Korea, is one of the most active volcanoes in China. This volcano violently erupted 1000 years ago and produced massive magma and widespread volcanic ash, resulting in one of the largest explosive eruptions during the last 2000 years. Recent gas emissions and seismic events in the Tianchi area suggested potential increasing volcanic activities. If that is so, then 1 million residents living on the crater flank shall be endangered by enormous volcanic hazards, including the threat of 2 billion tons of water in the crater lake . In order to better understand current status of Changbaishan, we investigated gas geochemistry in samples from the Tianchi crater lake and surrounding areas. Bubbling gas from hot springs were collected and analyzed. The results show that CO2 is the major component gas for most samples. The maximum value of helium isotopic ratio 5.8 RA (where RA = 3He/4He in air) implies more than 60% of helium is contributed by mantle component, while carbon isotope values fall in the range of -5.8 to -2.0% (vs. PDB), indicating magmatic source signatures as well. Nitrogen dominated samples, 18Dawgo, have helium isotopic ratio 0.7 RA and carbon isotope value -11.4% implying the gas source might be associated with regional crustal components in 18Dawgo. The first-time systematic soil CO2 flux measurements indicate the flux is 22.8 g m-2 day-1 at the western flank of Changbaishan, which is at the same level as the background value in the Tatun Volcano Group (24.6 g m-2 day-1), implying that it may not be as active as TVG.

  3. Factors regulating soil surface CO2 and NOx flux in response to high temperature, pulse water events, and nutrient fertilization

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Grantz, D. A.; Chatterjee, A.; Eberwein, J. R.; Allsman, L. A.; Jenerette, D.

    2012-12-01

    Trace gas emissions from the soil surface are often underestimated due to poor understanding of the factors regulating fluxes under extreme conditions when moisture can be highly variable. In particular, dynamics of soil surface trace gas emissions from hot agricultural regions can be difficult to predict due to the sporadic use of flood irrigation and nitrogen fertilization. Soil surface CO2 and NOx fluxes are especially difficult to predict due to nonlinear responses to pulse water and fertilization events. Additionally, models such as Lloyd and Taylor (1994) and Yienger and Levy II (1995) are not well parameterized for soil surface CO2 and NOx flux, respectively, under excessively high temperatures. We measured soil surface CO2 and NOx flux in an agricultural field transitioning from fallow to biofuel crop production (Sorghum bicolor). Soil surface CO2 flux was measured using CO2 probes coupled with the flux-gradient method. NOx measurements were made using chambers coupled with a NOx monitor. Our field site is located at the University of California Desert Research and Extension Center in the Imperial Valley of CA. Air temperatures regularly exceed 42°C in the summer. Flood irrigation is used at the site as well as nitrogen fertilizers. Soil respiration ranged from 0-15 μmoles CO2 m-2 s-1, with strong hysteresis observed both with and without plants. Soil CO2 fluxes measured in the fallow field before the biofuel crop was planted were temperature independent and mainly regulated by soil moisture. When plants were introduced, temperature became an important predictor for soil respiration as well as canopy height. NOx fluxes were highest at intermediate soil moisture and varied significantly across an irrigation cycle. NOx emissions were temperature dependent, ranging from 3-113 ng N cm-2 hr-1. Neither CO2 nor NOx emissions showed inhibition at soil temperatures up to 55°C. Models may underestimate fluxes of CO2 and NOx from hot agricultural regions due to

  4. Spatial source attribution of measured urban eddy covariance CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Crawford, B.; Christen, A.

    2015-02-01

    Interpretation of tower-based eddy covariance (EC) carbon dioxide flux ( F C ) measurements in urban areas is challenging because of the location bias of EC instruments. This bias results from EC point measurements taken above a complex CO2 source/sink surface that is spatially heterogeneous at scales approaching or exceeding those of the turbulent flux source areas. This makes it difficult to accomplish traditional measurement objectives such as calculating spatially unbiased ecosystem-wide cumulative F C totals or objectively comparing F C during different environmental conditions (e.g., day vs. night or seasonal differences). This study uses a multiyear F C dataset measured over a residential area of Vancouver, BC, Canada from a 30-m flux tower in close proximity to a busy traffic intersection on one side. The F C measurements are analyzed using surface geospatial data and turbulent flux source area models to exploit location bias to develop methods to statistically model individual emissions and uptake processes in terms of environmental controls and surface land cover. The empirical relations between controls and measured F C are used to spatially and temporally downscale individual CO2 emissions/uptake processes that are then used to create high-resolution maps (20 m) and calculate ecosystem-wide F C at temporal resolutions of 30 min to 1 year. At this site, the modeled ecosystem-wide annual net F C total is calculated as 6.42 kg C m-2 year-1 with traffic emissions estimated to account for 68.8 % of the total net emissions. Building sources contribute 27.9 %, respiration from soil and vegetation is 5.5 %, respiration from humans 5.0 %, and photosynthesis offsets are -7.2 % of the annual net total. The statistical models developed here are then tested by direct comparison to independent EC measurements using land cover scalings derived from 30-min source area models. Results are also scaled to ecosystem-averaged land cover to compare results to independent

  5. CO2 and CH4 fluxes of an Alpine peatland during extraordinary summer drought

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Glatzel, Stephan

    2016-04-01

    In peatland ecosystems, plant production exceeds decomposition due to their typical characteristic of waterlogged soils leading to peatland growth and an accumulation of thick organic soil layers. As a result, peatlands constitute a major global storage of carbon (C) by storing about 612 PgC in their peat, thus representing the most space-effective C stocks of all terrestrial ecosystems, similar in magnitude as the increasing atmospheric C pool (~ 850 PgC). However, little is known about the effects of climate change on peatlands and the contribution of Alpine peatlands as a source of greenhouse gases in the course of a changing climate. It is debatable how land-use changes and ongoing degradation of Alpine peatlands affect the peatland-atmosphere C exchange. On the one hand, more C may sequester due to increased plant growth in a warmer climate, on the other hand large amounts of respired C may release as a consequence of higher temperatures and lowered peatland water table depths due to increasing evaporation rates and extending drought periods. To examine the potential effects of climate change on the peatland carbon exchange with the atmosphere, we calculated CO2 and CH4 fluxes using the eddy covariance method. The investigated ombrotrophic peatland is located on the bottom of the Styrian Enns valley at an altitude of 632 m above sea level. It is a slightly degraded pine peat bog (62 ha) with a closed peat moss cover featuring the three plant associations Pino mugo-Sphagnetum magellanici, Sphagnetum magellanici, and Caricetum limosae, according to the prevailing hydrological site conditions. During summer drought in 2015, the water level decreased from an annual average water level of -10.44 cm to -28.50 cm below surface at the centre of the peat bog. Here, we present diurnal pattern of CO2 and CH4 fluxes during an extraordinary dry summer and compare them to calculated fluxes during periods characterised by precipitation and higher peat water levels of the

  6. Using a Process-Based Numerical Model and Simple Empirical Relationships to Evaluate CO2 Fluxes from Agricultural Soils.

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Simunek, J.; Dane, J. H.; King, A. P.; Lee, J.; Rolston, D. E.; Hopmans, J. W.

    2007-12-01

    Carbon dioxide emissions from an agricultural field in the Sacramento Valley, California, were evaluated using the process-based SOILCO2 module of the HYDRUS-1D software package and a simple empirical model. CO2 fluxes, meteorological variables, soil temperatures, and water contents were measured during years 2004-2006 at multiple locations in an agricultural field, half of which had been subjected to standard tillage and the other half to minimum tillage. Furrow irrigation was applied on a regular basis. While HYDRUS-1D simulates dynamic interactions between soil water contents, temperatures, soil CO2 concentrations, and soil respiration by numerically solving partially-differential water flow (Richards), and heat and CO2 transport (convection- dispersion) equations, an empirical model is based on simple reduction functions, closely resembling the CO2 production function of SOILCO2. It is assumed in this function that overall CO2 production in the soil profile is the sum of the soil and plant respiration, optimal values of which are affected by time, depth, water contents, temperatures, soil salinity, and CO2 concentrations in the soil profile. The effect of these environmental factors is introduced using various reduction functions that multiply the optimal soil CO2 production. While in the SOILCO2 module it is assumed that CO2 is produced in the soil profile and then transported, depending mainly on water contents, toward the soil surface, an empirical model relates CO2 emissions directly to various environmental factors. It was shown that both the numerical model and the simple reduction functions could reasonably well predict the CO2 fluxes across the soil surface. Regression coefficients between measured CO2 emissions and those predicted by the numerical and simple empirical models are compared.

  7. Effects of biomass burning aerosols on CO2 fluxes on Amazon Region

    NASA Astrophysics Data System (ADS)

    Soares Moreira, Demerval; Freitas, Saulo; Longo, Karla; Rosario, Nilton

    2015-04-01

    During the dry season in Central Brazil and Southern Amazon, there is an usually high concentration of aerosol particles associated with intense human activities, with extensive biomass burning. It has been observed through remote sensing that the smoke clouds in these areas often cover an area of about 4 to 5 million km2. Thus, the average aerosol optical depth of these regions at 500 ηm, is usually below 0.1 during the rainy season and can exceed 0.9 in the fire season. Aerosol particles act as condensation nuclei and also increase scattering and absorption of the incident radiation. Therefore, the layer of the aerosol alters the precipitation rate; reduces the amount of solar energy that reaches the surface, producing a cooling; and causes an increase of diffuse radiation. These factors directly and indirectly affect the CO2 fluxes at the surface. In this work, the chemical-atmospheric model CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System) coupled to the surface model JULES (Joint UK Land Environment Simulator) was used to simulate the effects of biomass burning aerosols in CO2 fluxes in the Amazon region. Both the total effect of the aerosols and the contribution related only to the increase of the diffuse fraction caused by the their presence were analyzed. The results show that the effect of the scattered fraction is dominant over all other effects. It was also noted that the presence of aerosols from fires can substantially change biophysiological processes of the carbon cycle. In some situations, it can lead to a sign change in the net ecosystem exchange (NEE), turning it from a source of CO2 to the atmosphere, when the aerosol is not considered in the simulations, to a sink, when it is considered. Thus, this work demonstrates the importance of considering the presence of aerosols in numerical simulations of weather and climate, since carbon dioxide is a major

  8. What, Where, When, Who and How: Accounting for Biogenic CO2 Emissions Fluxes

    NASA Astrophysics Data System (ADS)

    Ohrel, S. B.

    2013-12-01

    production on U.S. land use, supply of non-energy commodities (e.g., timber, food crops), and related GHG emission fluxes. This paper first assesses current methods for accounting for land use sector biogenic CO2 emissions (i.e., IPCC approach). Based on the finding that no current methods exist for linking stationary source emissions with the land producing biogenic feedstocks, a unique method is needed that takes into consideration the biological cycling of carbon when accounting for biogenic emissions from energy use. The paper then describes the key technical and scientific considerations that should be taken in account, such as: the implications of baseline chosen; the important roles of temporal and spatial scales; emissions fluxes during feedstock production as well as transportation, storage and processing; the role of land use management and change, etc. It also discusses how these considerations can vary depending on feedstock type (e.g., long versus short rotation).

  9. Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Alisa, Mast M.; Wickland, K.P.; Striegl, R.T.; Clow, D.W.

    1998-01-01

    Fluxes of CO2 and CH4 through a seasonal snowpack were measured in and adjacent to a subalpine wetland in Rocky Mountain National Park, Colorado. Gas diffusion through the snow was controlled by gas production or consumption in the soil and by physical snowpack properties. The snowpack insulated soils from cold midwinter air temperatures allowing microbial activity to continue through the winter. All soil types studied were net sources of CO2 to the atmosphere through the winter, whereas saturated soils in the wetland center were net emitters of CH4 and soils adjacent to the wetland were net CH4 consumers. Most sites showed similar temporal patterns in winter gas fluxes; the lowest fluxes occurred in early winter, and maximum fluxes occurred at the onset of snowmelt. Temporal changes in fluxes probably were related to changes in soil-moisture conditions and hydrology because soil temperatures were relatively constant under the snowpack. Average winter CO2 fluxes were 42.3, 31.2, and 14.6 mmol m-2 d-1 over dry, moist, and saturated soils, respectively, which accounted for 8 to 23% of the gross annual CO2 emissions from these soils. Average winter CH4 fluxes were -0.016, 0.274, and 2.87 mmol m-2 d-1 over dry, moist, and saturated soils, respectively. Microbial activity under snow cover accounted for 12% of the annual CH4 consumption in dry soils and 58 and 12% of the annual CH4 emitted from moist and saturated soils, respectively. The observed ranges in CO2 and CH4 flux through snow indicated that winter fluxes are an important part of the annual carbon budget in seasonally snow-covered terrains.

  10. Estimating CO2 Fluxes Pre and Post Drought Using Remote Sensing Data in the Sierra Nevada Range

    NASA Astrophysics Data System (ADS)

    Mazzi, J. R.; Grigsby, S.; Goulden, M.; Ustin, S.

    2015-12-01

    The recent California drought presents an opportunity to study CO2 flux changes over time due to insufficient water uptake by plant life using remote sensing data. Three flux towers were used to create linear regressions between AVIRIS derived Net Ecosystem Exchange (NEE = PRI * NDVI * PAR) and tower measured CO2 flux in the San Joaquin Experimental Range. To estimate CO2 from NEE, two linear regressions were used based on time of day and season, with R2 values of 0.85 and 0.87 respectively. Per-pixel CO2 flux was estimated for AVIRIS flights flown in June 2013, 2014, and 2015, as well as September 2011 and October 2014. There was a significant decrease in post drought photosynthetic CO2 uptake over the 6,700 km2 studied, totaling 2,977 grams per minute less (15.9% decrease) from June 2013 to June 2014. Data from the 2015 HyspIRI flights suggest a continuation of this trend for June 2015. Pre-drought conditions over a 33 km2 area show that the photosynthetic CO2 uptake dropped from 74 mg per minute on September 24, 2011, to 35 mg per minute on October 6, 2014 (a 53% decrease). HyspIRI flight lines also include 434 km2 of the Rim Fire, an area that saw a decrease in CO2 uptake of 413 grams per minute (71.7% decrease from June 2013 to June 2014) from the burn alone. It is estimated that the entire Rim Fire (1,041 km2) has caused a total decrease in photosynthetic CO2 uptake totaling 988 grams less per minute from 2013 to 2014, with some recovery evident in 2015.

  11. CO2 flux and seasonal variability in the turbidity maximum zone and surrounding area in the Changjiang River estuary

    NASA Astrophysics Data System (ADS)

    Li, Xuegang; Song, Jinming; Yuan, Huamao; Li, Ning; Duan, Liqin; Qu, Baoxiao

    2015-01-01

    The turbidity maximum zone (TMZ) is one of the most important regions in an estuary. However, the high concentration of suspended material makes it difficult to measure the partial pressure of CO2 ( pCO2) in these regions. Therefore, very little data is available on the pCO2 levels in TMZs. To relatively accurately evaluate the CO2 flux in an example estuary, we studied the TMZ and surrounding area in the Changjiang (Yangtze) River estuary. From seasonal cruises during February, August, November 2010, and May 2012, the pCO2 in the TMZ and surrounding area was calculated from pH and total alkalinity (TA) measured in situ, from which the CO2 flux was calculated. Overall, the TMZ and surrounding area acted as a source of atmosphere CO2 in February and November, and as a sink in May and August. The average FCO2 was -9, -16, 5, and 5 mmol/(m2·d) in May, August, November, and February, respectively. The TMZ's role as a source or sink of atmosphere CO2 was quite different to the outer estuary. In the TMZ and surrounding area, suspended matter, phytoplankton, and pH were the main factors controlling the FCO2, but here the influence of temperature, salinity, and total alkalinity on the FCO2 was weak. Organic carbon decomposition in suspended matter was the main reason for the region acting as a CO2 source in winter, and phytoplankton production was the main reason the region was a CO2 sink in summer.

  12. A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes

    NASA Astrophysics Data System (ADS)

    Watts, J. D.; Kimball, J. S.; Parmentier, F. J. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W.; Tagesson, T.; Jackowicz-Korczyński, M.; Aurela, M.

    2014-04-01

    The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (Reco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over pan-Arctic eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO2 and CH4 emissions using in situ or remote sensing and reanalysis-based climate data as inputs. The TCF model simulations using in situ data explained > 70% of the r2 variability in the 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) records accounted for approximately 69% and 75% of the respective r2 variability in the tower CO2 and CH4 records, with corresponding RMSE uncertainties of ≤ 1.3 g C m-2 d-1 (CO2) and 18.2 mg C m-2 d-1 (CH4). Although the estimated annual CH4 emissions were small (< 18 g C m-2 yr-1) relative to Reco (> 180 g C m-2 yr-1), they reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 ± 128 g CO2eq m-2 yr-1 when considered over a 100 year time span. This model evaluation indicates a strong potential for using the TCF model approach to document landscape-scale variability in CO2 and CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.

  13. Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2

    SciTech Connect

    Gu, Lianhong; Van Gorsel, Eva; Leuning, Ray; Delpierre, Nicolas; Black, Andy; Chen, Baozhang; Munger, J. William; Wofsy, Steve; Aubinet, M.

    2009-11-01

    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397 403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime

  14. Diffuse Soil CO2 Degassing at Solfatara of Pozzuoli (Campi Flegrei, Italy): 1998-2015, Sixteen Years of Flux Measurement.

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Chiodini, G.; Caliro, S.; Quareni, F.; Frondini, F.; Rosiello, A.; Avino, R.; Bagnato, E.

    2015-12-01

    Solfatara of Pozzuoli is one of the largest studied volcanic-hydrothermal system of the world releasing a large amount of deeply derived fluids. Since 1998, extensive soil CO2 flux surveys where performed using the accumulation chamber method over a large area (1.45 km2). The statistical analysis of CO2 flux, coupled with the investigation of the CO2 efflux isotopic composition, allowed to characterize the different CO2 sources and to investigate their temporal variability. The geostatistical elaboration of CO2 fluxes allowed to define the spatial structure of the degassing area, as well as the total amount of released CO2, pointing out the presence of a well defined diffuse degassing structure interested by the release of deeply derived CO2 (Solfatara DDS). The extension of the DDS experienced relevant variations with two major enlargements, the first consisted in its doubling in 2003-2004 and the second in further enlargement of about 30% in 2011-2012. These variations mainly occurred external to the crater area in correspondence of a NE-SW fault system (Pisciarelli area). The first event was previously correlated with the occurrence in 2000 of a relatively deep seismic swarm, which was interpreted as the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower portion of the hydrothermal system; the second enlargement well correlates with the recent unrest phase of the system, characterized by an acceleration of the ground uplift. The amount of released CO2 has been estimated ranging between about 700 t/d and about 1500 t/d (with errors between 9 and 15 %) until the January 2015 when there was an increase up to 2800 t/d. The CO2 variations in the last two years seems to follow the trend depicted by ground deformations, with increases of fluxes during the uplift accelerations and decreases of fluxes during the phases of relative "no-uplift". The comparison of the CO2 flux data with the chemical composition of

  15. Soil Carbon Pools and CO2 Fluxes in the GISS Land Model

    NASA Astrophysics Data System (ADS)

    Kharecha, P. A.; Kiang, N. Y.; Aleinov, I.; Moorcroft, P.; Koster, R.; Rind, D.

    2006-12-01

    Determining whether the terrestrial biosphere will act as a sink or source of carbon in the future is crucial for understanding the feedbacks that will affect future global warming. To this end, a growing number of GCMs now include interactive global carbon cycle models (Friedlingstein et al., J. Clim. 19, 2006). To allow for the prediction of net CO2 fluxes from land in the NASA-GISS GCM, we have added a soil biogeochemistry submodel to the Ent dynamic global vegetation model currently under development for the GISS GCM . This submodel is a modified version of the soil submodel in the CASA biosphere model (Potter et al., Glob. Biogeoch. Cyc. 7, 1993). It is driven by vegetation litterfall from the Ent model and litter quality parameters for the Ent vegetation types (in addition to soil temperature, texture, and volumetric moisture) and calculates soil carbon and nitrogen pools and heterotrophic (microbial) respiration. The latter quantity is then used by the Ent model to calculate net CO2 from the global land surface. Here we describe the results of both offline Ent/soil model runs as well as runs in which the model is coupled to the GISS GCM, using prescribed land cover and seasonal variation, and biophysics from Friend and Kiang (J. Clim. 18, 2005). To spin up the soil submodel offline, we conducted 700-1000 year runs using 1986-1995 climatological datasets from the GSWP-2 multi-model analysis (Intl. GEWEX Project Office, 2002, avail. at http://grads.iges.org/gswp/publications.html). The equilibrium soil pools are compared to soil carbon and nitrogen data from the ISRIC-WISE database (Batjes, 2000, avail. at http://www.daac.ornl.gov). This work has been done in the context of incorporation of a dynamic global carbon cycle into the GISS GCM.

  16. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes

  17. Surface CO2 and CH4 fluxes simultaneously inferred from proxy GOSAT XCH4:XCO2 retrievals

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Palmer, Paul I.; Parker, Robert; Boesch, Hartmut

    2016-04-01

    The Japanese Greenhouse gases Observing SATellite (GOSAT) has collected atmospheric column measurements of CO2 and CH4 since it was launched in 2009. Observed atmospheric column variations of CO2 and CH4 can in principle be used to infer the responsible surface fluxes. A major advantage of space-based observations over conventional in-situ measurement networks is their better global coverage. However, to improve our current quantitative understanding of CH4 and CO2 fluxes from in-situ data, space-borne column measurements have to exceed strict precision requirements. Uncharacterized systematic errors at regional or sub-regional spatial scales can compromise the ability of these data to infer surface fluxes. Previous work has demonstrated how to infer simultaneously regional CO2 and CH4 flux estimates directly from the XCH4:XCO2 ratio retrieved using the proxy approach. The proxy retrieval method fits CO2 and CH4 gases in nearby spectral windows (at 1.65 μm and 1.61 μm) under the assumption that the ratio between XCH4 and XCO2 reduces the sensitivity to fitting artefacts common to both gases (e.g. aerosol and clouds). The proxy method is also simpler than the full physics approach, and more robust against scattering, resulting in more useful retrievals over regions, such as the Tropical South America, which currently represent the largest uncertainties in our current understanding of the global carbon cycle. We present monthly regional CO2 and CH4 fluxes from 2009 to 2014 inferred from GOSAT XCH4:XCO2 proxy retrievals and NOAA in-situ atmospheric CO2 and CH4 mole fraction measurements. To improve the spatial resolution as well as the numerical efficiency we use an ensemble Kalman Filter to assimilate each single GOSAT and NOAA observation. We show that the CO2 and CH4 fluxes inferred from the proxy retrieval have generally much lower posterior uncertainties than using the full physics GOSAT retrievals of XCO2 and XCH4 or using the NOAA in-situ data. We find

  18. A comparison of CO2 fluxes for one year at three Irish sites: two grassland pastures and one blanket peatland.

    NASA Astrophysics Data System (ADS)

    Kiely, G.; Albertson, J.; Katul, G.; Oren, R.; Scanlon, T.

    2003-04-01

    The Dripsey CO_2 flux site in Cork, Ireland is a perennial ryegrass (C3 category) pasture and is grazed for approximately 8 to 10 months of the year. Local farmers own and operate the farms, which are fertilised with approximately 200kg/ha/year of nitrogen. The flux tower monitoring CO_2, water vapour and energy was established in June 2001. The Cork site also includes streamflow hydrology and stream water chemistry. A second CO_2 flux site was established in a managed grassland pasture of the Irish Agricultural Research station in the South East of Ireland in Wexford (180 km east of Cork) in October 2002. Management and fertilisation practices are well documented. A third CO_2 flux site was established in a pristine blanket peatland (depth approximately 3m of peat) in the South West of Ireland in Kerry (140km west of Cork) in July 2002. The three sites use the eddy covariance flux system with a LICOR 7500 open path CO_2/water vapour analyser in conjunction with an RMYoung 3D sonic anemometer. We present the results and analysis for the three sites to date. For eight months of the year in the Cork pasture, the grass/soil ecosystem has a net uptake of CO_2 (varying from 50 to 360 g/m2 per month). For four months (October, November, December and January), the ecosystem is a net source of CO_2 (varying from 0 to -110g/m2 per month). The cumulative one-year carbon uptake is 3.9t/ha. The estimated carbon required for grass and silage growth is 3.6t/ha. For the one year being reported, this suggests that these pastures are a carbon sink of size approximately 0.3t carbon/ha. The Wexford site is drier (approximately 1200mm/annum) and warmer with very slightly greater fluxes of CO_2. The CO_2 fluxes in the blanket peatland are approximately one third those of the grassland sites. This work is part of a five-year (2002-2006) research project funded by the Irish Environmental Protection Agency.

  19. A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes

    NASA Astrophysics Data System (ADS)

    Watts, J. D.; Kimball, J. S.; Parmentier, F.-J. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W.; Tagesson, T.; Jackowicz-Korczyński, M.; Aurela, M.

    2013-10-01

    The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset ecosystem respiration (Reco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing applications to estimate peatland and tundra CO2 and CH4 fluxes over a pan-Arctic network of eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO2 and CH4 emissions using either in-situ or remote sensing based climate data as input. TCF simulations driven using in-situ data explained >70% of the r2 variability in 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) data as inputs also reproduced the variability in the EC measured fluxes relatively well for GPP (r2 = 0.75), Reco (r2 = 0.71), net ecosystem CO2 exchange (NEE, r2 = 0.62) and CH4 emissions (r2 = 0.75). Although the estimated annual CH4 emissions were small (<18 g C m-2 yr-1) relative to Reco (>180 g C m-2 yr-1), they reduced the across-site NECB by 23% and contributed to a global warming potential of approximately 165 ± 128 g CO2eq m-2 yr-1 when considered over a 100 yr time span. This model evaluation indicates a strong potential for using the TCF model approach to document landscape scale variability in CO2 and CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems.

  20. CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.

    2012-04-01

    CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems Terenzio Zenone1-2, Jiquan Chen1-2, Ilya Gelfand3-4, G. Philip Robertson3-4 1 Department of Environmental Sciences, University of Toledo, Toledo, OH USA 2 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA 3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI USA 4Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI USA Environmental sustainability of bioenergy crop cultivation represents an important challenge and is a topic of intensive scientific and political debate worldwide due to increasing societal needs for renewable energy. Despite the increasing knowledge related to potential bioenergy systems, the effect of land use change (LUC) on GHG fluxes during the conversion remains poorly understood but is likely to be substantial. In order to tackle this issue the Great lake Bioenergy Research Center (GLBRC) of the US Department of Energy (DOE) has established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance during the conversion and establishment years in a permanent prairie and four types of candidate biofuel systems [Conservation Reserve Program (CRP) grassland, switchgrass, mixed-species restored prairie and corn]. Six sites were converted to soybean in 2009 before establishing the bioenergy systems in 2010 while one site was kept grassland as reference. Soil N2O and CH4 fluxes were measured biweekly with static chambers in four replicate locations in each fields, within the footprint of the eddy covariance tower using static chamber GHG flux protocols of the KBS LTER site. Our field observations, made between January 2009 through December 2010, showed that conversion of CRP to soybean induced net C emissions during the conversion year that ranging from 288 g C m-2, to 173 g C m-2 . while

  1. Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs)

    NASA Technical Reports Server (NTRS)

    Hamilton, J. David; Kelly, Carol A.; Rudd, John W. M.; Hesslein, Raymond H.; Roulet, Nigel T.

    1994-01-01

    Ponds on peatlands of the Hudson Bay lowlands (HBLs) are complex ecosystems in which the fluxes to the atmosphere of CH4 and CO2 were controlled by interacting physical and biological factors. This resulted in strong diel variations of both dissolved gas concentrations and gas fluxes to the atmosphere, necessitating frequent sampling on a 24-hour schedule to enable accurate estimates of daily fluxes. Ponds at three sites on the HBL were constant net sources of CH4 and CO2 to the atmosphere at mean rates of 110-180 mg CH4 m(exp -2)/d and 3700-11,000 mg CO2 m(exp -2)/d. Rates peaked in August and September. For CH4 the pond fluxes were 3-30 times higher than adjacent vegetated surfaces. For CO2 the net pond fluxes were similar in magnitude to the vegetated fluxes but the direction of the flux was opposite, toward atmosphere. Even though ponds cover only 8-12% of the HBL area, they accounted for 30% of its total CH4 flux to the atmosphere. There is some circumstantial evidence that the ponds are being formed by decomposition of the underlying peat and that this decomposition is being stimulated by the activity of N2 fixing cyanobacteria that grow in mats at the peat-water interface. The fact that the gas fluxes from the ponds were so different from the surrounding vegetated surfaces means that any change in the ratio of pond to vegetated area, as may occur in response to climate change, would affect the total HBL fluxes.

  2. Estimating regional fluxes of CO2 and CH4 using space-borne observations of XCH4 : XCO2

    NASA Astrophysics Data System (ADS)

    Fraser, A.; Palmer, P. I.; Feng, L.; Bösch, H.; Parker, R.; Dlugokencky, E. J.; Krummel, P. B.; Langenfelds, R. L.

    2014-06-01

    We use the GEOS-Chem global 3-D atmospheric chemistry transport model to interpret XCH4:XCO2 column ratios retrieved using a proxy method from the Japanese Greenhouse gases Observing SATellite (GOSAT). The advantage of these data over CO2 and CH4 columns retrieved independently using a full physics optimal estimation algorithm is that they suffer less from scattering-related regional bias. We show the model is able to reproduce observed global and regional spatial (mean bias =0.7%) and temporal variations (global r2=0.92) of this ratio with model bias <2.5%. We also show these variations are driven by emissions of CO2 and CH4 that are typically six months out of phase which may reduce the sensitivity of the ratio to changes in either gas. To simultaneously estimate fluxes of CO2 and CH4 we use a formal Bayesian inverse model infrastructure. We use two approaches to independently resolve flux estimates of these two gases using GOSAT observations of XCH4:XCO2: (1) the a priori error covariance between CO2 and CH4 describing common source from biomass burning; and (2) also fitting independent surface atmospheric measurements of CH4 and CO2 mole fraction that provide additional constraints, improving the effectiveness of the observed GOSAT ratio to constrain fluxes. We demonstrate the impact of these two approaches using Observing System Simulation Experiments. A posteriori flux estimates inferred using only the GOSAT ratios and taking advantage of the error covariance due to biomass burning are not consistent with the true fluxes in our experiments, as the inversion system cannot judge which species' fluxes to adjust. This can result in a posteriori fluxes that are further from the truth than the a priori fluxes. We find that adding the surface data to the inversion dramatically improves the ability of the GOSAT ratios to infer both CH4 and CO2 fluxes. We show that using real GOSAT XCH4:XCO2 ratios together with the surface data during 2010 outcompetes inversions

  3. Environment and phenology: CO2 net ecosystem exchange and CO2 flux partitioning at an acid and oligotrophic mire system in northern Sweden

    NASA Astrophysics Data System (ADS)

    Gažovič, Michal; Peichl, Matthias; Vermeij, Ilse; Limpens, Juul; Nilsson, Mats. B.

    2015-04-01

    Static chamber and environmental measurements in combination with vegetation indices (i.e. vascular green area (VGA) and the greenness chromatic color index (gcc) derived from digital camera images) were used to investigate effects of environment and phenology on the CO2 net ecosystem exchange (NEE) and CO2 flux partitioning at the Degerö Stormyr site in northern Sweden (64°11' 23.565" N, 19°33' 55.291 E) during two environmentally different years. Our measurement design included a control plot, a moss plot (where vascular plants were removed by clipping) and four heterotrophic respiration (RH) collars (where all green moss and vascular plant biomass were removed) to partition between soil heterotrophic and plant autotrophic (moss and vascular plants) respiration (RA), as well as between moss and vascular plant gross primary production (GPP). Environmental conditions, especially the shallow snow cover, peat soil frost and cold spring in 2014 caused delayed onset of spring green up, reduced soil respiration flux and reduced GPP of vascular plants. Soil temperature measured in 26 cm depth started to rise from spring temperatures of ~ 0.6 °C in 2013 and 0.15 °C in 2014 about 20 days earlier in 2013 compared to 2014. With earlier onset of the growing season and higher soil temperatures in 2013, heterotrophic soil respiration was higher in year 2013 than in year 2014. In 2013, RH dominated the total ecosystem respiration in all months but June and August. On contrary, autotrophic respiration dominated ecosystem respiration in all months of 2014. In both years, vascular plants and mosses were more or less equally contributing to autotrophic respiration. We measured higher GPP in year 2013 compared to year 2014. Also VGA and gcc were higher in spring and throughout the rest of 2013 compared to 2014. The onset of VGA was delayed by ~ 10 days in 2014. In general, total GPP was dominated by GPP of vascular plants in both years, although moss GPP had substantial

  4. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes. PMID:25377990

  5. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  6. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  7. A Global Synthesis Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Collatz, G. J.

    2013-12-01

    Around one-half of the CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two, and the location and year-to-year variability of the CO2 sinks are not well understood though. We use a batch Bayesian inversion approach to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. For prior constraints, we utilize fluxes from the CASA-GFED v.3 model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates from Takahashi et al. [2009], and fixed fossil CO2 emissions from the CDIAC dataset. Here, we present preliminary results from our inversions that incorporate column CO2 measurements from the GOSAT satellite, ground-based observations (individual flask and afternoon-average continuous observations), and aircraft observations to estimate fluxes in 108 regions over 8-day intervals. Relationships between fluxes and atmospheric concentrations are derived using the PCTM atmospheric transport model run at 2° x 2.5° (latitude/longitude) resolution driven by meteorology from the MERRA reanalysis. We obtain spatiotemporal distributions of fluxes resembling those from other inversions, including NOAA's CarbonTracker. We compare the a posteriori fluxes obtained with and without the addition of GOSAT observations to the in situ network, and discuss possible impacts of biases in the GOSAT data.

  8. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  9. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux

    NASA Astrophysics Data System (ADS)

    Tsai, Wu-Ting; Liu, Kon-Kee

    2003-04-01

    We assess the possible impact of the distribution of naturally occurring surfactants on the direct integration of the global atmosphere-ocean CO2 flux across the ocean surface. The global atmosphere-ocean CO2 flux is calculated using the monthly mean ΔpCO2 climatology compiled by [1997] as well as satellite wind speed and sea-surface temperature data. In the absence of any global map of surfactant coverage and as it is known that phytoplankton exudates and degradation products are the major sources of marine surfactants, ocean primary productivity, which can be derived from the satellite-based estimate of chlorophyll concentration, is used as an indicator of the presence of surfactants as proposed by [1997]. From the calculated results it is found that suppression of the upward and downward CO2 fluxes by marine surfactants exhibits an asymmetric effect: The average percent reduction of absorption flux by surfactants is about twice that of outgassing, which results in an overall decrease in the net global CO2 uptake by the oceans. For almost half of the year (between January and May) the presence of surfactants does not affect CO2 outgassing from global oceans. In contrast, throughout the entire year the presence of surfactants suppresses CO2 absorption by the oceans. The major reduction in absorption fluxes occurs in the northern Pacific and Atlantic (10°N to 70°N) in all seasons and in the Southern Ocean (south of 40°S) in austral spring and summer. However, the most significant decrease in outgassing fluxes occurs in the equatorial and southern Pacific Ocean (40°S to 10°N), particularly in the eastern equatorial and subtropical waters off the southern American coast, in the period of austral spring and summer. Annual net CO2 flux is reduced by approximately 20% under the surfactant coverage condition that the primary productivity is above a threshold value of 25 g-C m-2 mom-1 and by about 50% with a threshold of 15 g-C m-2 mom-1.

  10. CO2 Flux from a Subtropical Mangrove Ecosystem in Magdalena Bay BCS, Mexico Josediego Uribe, Walter C. Oechel

    NASA Astrophysics Data System (ADS)

    Uribe, J.; Oechel, W. C.

    2012-12-01

    Mangrove forests are among the most productive ecosystems within the tropical and subtropical coastlines of the world. There is currently limited research on mangrove carbon sequestration potentials but with ongoing climate change and rising atmospheric carbon dioxide (CO2) levels, an understanding of carbon exchange in mangroves forests and the environmental controls influencing fluxes is extremely important for understanding their role in the global carbon cycle and their potential as stores of CO2. In this study, CO2 flux was evaluated for a subtropical mangrove ecosystem in the arid region of Magdalena Bay BCS, Mexico. Measurements were taken using an eddy covariance system above the canopy during January 8 to the 30, and currently from June 21 to August 28, in 2012. The mangrove forest is located (N25° 15'75", W112° 04'79") near the town of Puerto Lopez Mateos, Mexico. During this time period environmental variables such as Net Radiation, photosynthetically active radiation (PAR), air temperature, humidity, ground heat flux, soil temperature and tidal height were measured together with the CO2 flux in order to determine the environmental influence on the fluxes. Preliminary results showed a clear diurnal pattern in CO2 flux that showed high sinks when light availability was high. During January, the winter dry season environmental conditions remained relatively cool with an average air temperature of 17 oC and consistently cloudless days. During this period CO2 flux was -1.3 μmol C m-2s-1, which means that for the month of January, there was a net uptake of carbon by the mangrove ecosystem. For the summer period the development of the data collection for a longer term as well as further correlation analysis with environmental data is currently underway, however expectations are that seasonal variations of CO2 flux can be seen due to longer and more intense periods of solar irradiance as well as the effect of high temperature (+30° C) days. Indirect effects

  11. Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes

    PubMed Central

    Quirk, Joe; Andrews, Megan Y.; Leake, Jonathan R.; Banwart, Steve A.; Beerling, David J.

    2014-01-01

    Field studies indicate an intensification of mineral weathering with advancement from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal (EM) fungal partners of gymnosperm and angiosperm trees. We test the hypothesis that this intensification is driven by increasing photosynthate carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer experiments with representative tree–fungus mycorrhizal partnerships. Trees were grown in either a simulated past CO2 atmosphere (1500 ppm)—under which EM fungi evolved—or near-current CO2 (450 ppm). We report a direct linkage between photosynthate-energy fluxes from trees to EM and AM mycorrhizal mycelium and rates of calcium silicate weathering. Calcium dissolution rates halved for both AM and EM trees as CO2 fell from 1500 to 450 ppm, but silicate weathering by AM trees at high CO2 approached rates for EM trees at near-current CO2. Our findings provide mechanistic insights into the involvement of EM-associating forest trees in strengthening biological feedbacks on the geochemical carbon cycle that regulate atmospheric CO2 over millions of years. PMID:25115032

  12. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    PubMed

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. PMID:23417984

  13. Temporal variability and spatial dynamics of CO2 and CH4 concentrations and fluxes in the Zambezi River system

    NASA Astrophysics Data System (ADS)

    Teodoru, Cristian; Borges, Alberto; Bouillon, Steven; Nyoni, Frank; Nyambe, Imasiku

    2014-05-01

    Spanning over 2900 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. Yet, there is surprisingly little or no information on carbon (C) cycling in this large river system. As part of a broader study on the riverine biogeochemistry in the Zambezi River basin, we present here mainstream dissolved CO2 and CH4 data collected during 2012 and 2013 over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity of partial pressure of CO2 (pCO2) and CH4 concentrations and fluxes along the aquatic continuum, in relation to physico-chemical parameters (temperature, conductivity, oxygen, and pH) and various carbon pools (dissolved and particulate, organic and inorganic carbon, total alkalinity, primary production, respiration and net aquatic metabolism). Both pCO2 and CH4 variability was high, ranging from minimal values of 150 ppm and 7 nM, respectively, mainly in the two large reservoirs (the Kariba and the Cabora Bassa characterized by high pH and oxygen and low DOC), up to maximum values of 12,500 ppm and 12,130 nM, CO2 and CH4, respectively, mostly below floodplains/wetlands (low pH and oxygen levels, high DOC and POC concentrations). The interannual variability was relatively large for both CO2 and CH4 (mean pCO2: 2350 ppm in 2013 vs. 3180 ppm in 2013; mean CH4: 600 nM in 2012 vs. 1000 nM in 2013) and significantly higher (up to two fold) during wet season compared to dry season closely linked to distinct seasonal hydrological characteristics. Overall, no clear pattern was observed along the longitudinal gradient as river CO2 and CH4 concentrations are largely influenced by the presence of floodplains/wetlands, anthropogenic reservoirs or natural barriers (waterfalls/ rapids). Following closely the concentration patterns, river CO2 and CH4 mean fluxes of 3440 mg C-CO2 m

  14. Regional modelling of water and CO2-fluxes with a one-dimensional SVAT model

    NASA Astrophysics Data System (ADS)

    Kuhnert, M.; Köstner, B.

    2009-04-01

    Climate change affects site conditions for vegetation and may affect changes in the distribution of plant species. Investigations of these effects are difficult, because other influences on plant performance like land use and management also need to be considered. Carbon gain can be used as a sensitive indicator for changes in the vitality of the considered vegetation types that are affected by different climate and weather patterns. The objective of the presented study is the quantification of net photosynthesis rate, respiration and transpiration of different vegetation types on the regional scale. The study regions are the Weißeritz catchment in the Ore Mountains and the region Torgau-Oschatz in the Elbe basin both located in Saxony (East Germany) but significantly differing in elevation and site conditions. The carbon and water fluxes are simulated by an ecophysiological based Soil-Vegetation-Atmosphere-Transfer model for three periods (1996-2006, 2015-2025 and 2035-2045). The considered vegetation types are forest and grassland. The used model SVAT-CN is a multi-layer model, which enables the calculation of hourly carbon gain by coupling micrometerological data with ecophysiological processes. The calculations are based on the equations of Farquhar and Ball for net photosynthesis rate and stomata conductivity, respectively. It is a one-dimensional model which also considers soil water processes. The soil is coupled with the vegetation by one factor that depends on the matric potential and steers the calculation of the stomata conductivity. The equations of the soil water processes are based on a combination of bucket model and Richard's equation. Simulations are based on measured weather data (Dept. of Meteorology at Technische Universität Dresden and LfL Sachsen) with varying levels of atmospheric CO2 concentrations up to 580 ppm. Further, climate projections (ECHAM5-OM, IPCC emission scenario A1B), with downscaling to a 18x18km grid by the regional climate

  15. Stable Isotope Fluxes of CO2 and H2O for a Temperate Deciduous Forest in Canada

    NASA Astrophysics Data System (ADS)

    Santos, E. A.; Wagner-Riddle, C.; Warland, J. S.; Brown, S. E.; Lee, X.; Kim, K.; Staebler, R. M.

    2009-12-01

    Stable isotopes of carbon dioxide and water vapor, including 13CO2, C18O16O, HDO and H218O have been used to study the carbon and water cycle. These stable isotopes are particularly useful to separate the contribution of different ecosystem components to the net flux. For example, 13CO2 can be applied as a tracer at sites where soil organic matter and plants present a different isotopic ratio. C18O16O can be used to partitioning soil from foliar respiration, since leaf water is significantly enriched in 18O during the day as a result of leaf transpiration. Continuous measurements of CO2 and H2O exchange and their isotopic values in ecosystems are necessary to better understand the processes related to isotope discrimination. The objective of this study was to investigate the isotopic fluxes of CO2 and H2O continuously in a temperate deciduous forest. The experiment was conducted at the Environment Canada research station, Camp Borden, ON, Canada from June to August 2009. Mixing ratios of C16O2, 13CO2, C18O16O, H216O, HDO and H218O in the sampled air were measured continuously using two tunable diode laser trace gas analyzers (TGA 100A, Campbell Sci., UT, USA). Air was sampled at two heights above the canopy and two heights in the under-storey. The TGA mixing ratio measurements were calibrated by regularly measuring tanks with known concentrations of CO2 isotopic species and water vapor of known isotopic ratios. Atmospheric carbon dioxide (δ13C, and δ18O) and water vapor isotope ratios were calculated, and the isotope signatures of CO2 (δ13N and δ18N) and water vapor flux were obtained based on the flux ratio method. Atmospheric δ13C ranged from -7 (during daytime) to -10 per mil during nighttime, while δ18O values ranged from -1 to -3 per mil. The isotope ratio of the CO2 fluxes in the overstorey ranged from -15 to -22 per mil for δ18N and -22 to -32 per mil for δ13N. These preliminary data will be discussed in light of H2O vapor and flux isotopic ratio

  16. Evaluating CO2 and CH4 fluxes in Arctic peatland and tundra using a satellite remote sensing driven biophysical model

    NASA Astrophysics Data System (ADS)

    Watts, J.; Kimball, J. S.; Parmentier, F. W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W. C.; Tagesson, T.

    2013-12-01

    The Arctic terrestrial carbon sink is contingent on the balance between vegetation gross primary productivity (GPP) and emissions of carbon dioxide (CO2) and methane (CH4). With climate change, warming temperatures could increase GPP within high latitude systems but may also accelerate soil decomposition and CO2 loss. Regional wetting may also shift carbon emissions towards greater CH4 release, a greenhouse gas at least 25 times more potent than CO2. However, an effective framework for monitoring changes in the Arctic net ecosystem carbon balance (NECB) is lacking. Here we introduce an integrated terrestrial carbon flux (TCF) model approach to estimate CO2 and CH4 fluxes from northern peatland and tundra ecosystems at a daily time step. The TCF model framework uses a light-use efficiency (LUE) algorithm to estimate GPP according to satellite NDVI inputs and estimated moisture and temperature constraints. Ecosystem respiration is derived using a three-pool soil organic carbon decomposition model regulated by surface (< 10 cm depth) soil temperature and volumetric moisture inputs. A TCF-CH4 component simulates gas production according to near-surface temperature, anaerobic soil fractions and labile soil carbon inputs derived during model spin-up. Plant transport, soil diffusion and ebullition pathways are used to regulate CH4 emissions into the atmosphere. The combined TCF CO2 and CH4 model was evaluated against tower eddy covariance (EC) flux datasets from six peatland and tundra sites in North America, Eurasia and Greenland. TCF model simulations driven with site information explained on average > 70% (r^2; p < 0.05) of the respective EC record 8-day cumulative CO2 and CH4 fluxes. The TCF results from model simulations using coarser satellite (MODIS 250-m resolution) and reanalysis (MERRA; 1/2 x 2/3° resolution) inputs were more variable, but captured the overall seasonality and magnitude of ecosystem carbon exchange. Model simulations of annual carbon fluxes

  17. Nitrogen fertility rates and landscape positions impacts on CO2 and CH4 fluxes from a landscape seeded to switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted in north central US (Bristol, SD) to evaluate the impacts of nitrogen (N) fertility management and landscape positions on carbon dioxide (CO2) and methane (CH4) fluxes from switchgrass (Panicum virgatum L.). The experimental layout was a factorial design of three N levels (l...

  18. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem re...

  19. Changes In CO2 Gas Flux And Soil Temperatures Induced By A Vibratory Seismic Source At Solfatara (Phlegrean Fields, Italy).

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Gresse, M.; Chiodini, G.; Byrdina, S.; Woith, H.; Bruno, P. P.

    2014-12-01

    Solfatara, the most active crater of Phlegrean Fields (Italy) is characterized by a fumarolic activity and an intense diffuse degassing, with 1500 tons of CO2 and > 3000 tons of water vapor released per day. A major part of the emitted water vapor is condensed at the near surface producing a thermal power flux around 100 MW, and contributing substantially to the total water input into the hydrothermal system. On May 2014, during a seismic experiment (RICEN) in the frame of the MED-SUV European project, a Minivib vibratory seismic source was used to generate a frequency modulated seismic signal at different points of Solfatara. We performed CO2 flux measurements at a few meters from the seismic source during the vibrations. In certain points, the vibrations induced a remarkable increase in the CO2 diffuse degassing, with a flux that doubled during the low-frequency seismic vibrations and returned to previous values afterwards. The observed CO2 flux increase could be due to permeability enhancement in the sub-surface soil layers during the seismic vibrations. Close to Fangaia mud pool, we also monitored the soil temperature at different levels above the condensation depth and observed transient temperature changes during the vibrations but also outside the vibration periods. Seismic vibrations likely favor the triggering of thermal instabilities of gravitational or convective origin in the liquid-saturated condensate layer.

  20. Combining Simultaneous Heat and Water (SHAW) with photosynthesis model to simulate water and CO2 fluxes over wheat canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy, water and CO2 flux at the soil-atmosphere interface is a key interest among ecosystem researchers. The Simultaneous Heat and Water (SHAW) Model describes radiation energy balance, heat transfer and water movement within the Soil-Plant-Atmosphere Continuum, but has no provisions for carbon as...

  1. Comparing the CarbonTracker and M5-4DVar data assimilation systems for CO2 surface flux inversions

    NASA Astrophysics Data System (ADS)

    Babenhauserheide, A.; Basu, S.; Houweling, S.; Peters, W.; Butz, A.

    2015-09-01

    Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than 1 year of atmospheric in situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar (Transport Model 5 - Four-Dimensional Variational model), for CO2 flux estimation. CarbonTracker uses an ensemble Kalman filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude-latitude grid. Harmonizing the input data allows for analyzing the strengths and weaknesses of the two approaches by direct comparison of the modeled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as the length of the assimilation time window. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the distant surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of the measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  2. Temperature drives inter-annual variability of growing season CO2 and CH4 fluxes of Siberian lowland tundra

    NASA Astrophysics Data System (ADS)

    Kutzbach, Lars; Wille, Christian; Runkle, Benjamin; Schreiber, Peter; Sachs, Torsten; Langer, Moritz; Boike, Julia; Pfeiffer, Eva-Maria

    2015-04-01

    Due to the logistic and technical difficulties associated with experimental work in high latitudes, long-term measurements of CO2 and CH4 fluxes from arctic ecosystems are still rare, and published trace gas balances often rely on measurements from one or few growing seasons. The inter-annual variability of environmental conditions such as temperature, precipitation, snow cover, and timing of snow melt can be high in the Arctic, especially for regions which are influenced by both continental and maritime climates, such as the Siberian arctic lowlands. For these ecosystems, we must also expect a great inter-annual variability in the balance of trace gases. Multi-annual data sets are needed to investigate this variability and its drivers. Here we present multi-annual late summer CO2 and CH4 flux data from the Lena River Delta in the Siberian Arctic (72° N, 126° E). The study site Samoylov Island is characterized by polygonal lowland tundra, a vegetation dominated by mosses and sedges, a soil complex of Glacic, Turbic and Histic Cryosols, and an active layer depth of on average 0.5 m. Seasonal flux measurements were carried out with the eddy covariance technique during the 13-year period 2002 - 2014. Within this period, CO2 flux data overlaps during 37 days (20 July - 25 August) for 12 years, and CH4 flux data overlaps during 25 days (28 July - 21 August) for 9 years. Cumulative net ecosystem CO2 exchange (NEE) during the late summer overlap period is fairly consistent for 9 out of 12 years with a CO2 uptake of 1.9 ± 0.1 mol m-2. Three years show a clearly smaller uptake of

  3. Temporal and spatial variations of CO2, CH4 and N2O fluxes at three differently managed grasslands

    NASA Astrophysics Data System (ADS)

    Imer, D.; Merbold, L.; Eugster, W.; Buchmann, N.

    2013-02-01

    A profound understanding of temporal and spatial variabilities of CO2, CH4 and N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three greenhouse gas (GHG) fluxes are due to environmental drivers as well as to fertilizer applications, grazing and cutting events. To assess how these affect GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed) to 1000 m a.s.l. (moderately intensive managed) to 2000 m a.s.l. (extensively managed). Temporal and spatial variabilities of GHG fluxes were quantified along small-scale transects of 16 static soil chambers at each site. We then established functional relationships between drivers and the observed fluxes on diel and annual time scales. Furthermore, spatial variabilities and their effect on representative site-specific mean chamber GHG fluxes were assessed using geostatistical semivariogram approaches. All three grasslands were N2O sources, with mean annual fluxes ranging from 0.15 to 1.28 nmol m-2 s-1. Contrastingly, all sites were net CH4 sinks, with uptake rates ranging from -0.56 to -0.15 nmol m-2 s-1. Mean annual respiration losses of CO2, as measured with opaque chambers, ranged from 5.2 to 6.5 μmol m-2 s-1. While the environmental drivers and their respective explanatory power for N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42), CH4 and CO2 fluxes were much better constrained (adjusted r2 ranging from 0.41 to 0.83), in particular by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for N2O and CH4 fluxes. We found permanent hot spots for N2O emissions and CH4 uptake at the extensively managed site

  4. Modeling plant-atmosphere carbon and water fluxes along a CO2 gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At short time scales (hourly to daily), plant photosynthesis and transpiration respond nonlinearly to atmospheric CO2 concentration and vapor pressure deficit, depending on plant water status and thus soil moisture. Modeling vegetation and soil responses to different values of CO2 at multiple time s...

  5. Methane and CO2 fluxes of moving point sources - Beyond or within the limits of eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Felber, Raphael; Neftel, Albrecht; Münger, Andreas; Ammann, Christof

    2014-05-01

    The eddy covariance (EC) technique has been extensively used for CO2 and energy exchange measurements over different ecosystems. For some years, it has been also becoming widely used to investigate CH4 and N2O exchange over ecosystems including grazing systems. EC measurements represent a spatially integrated flux over an upwind area (footprint). Whereas for extended homogenous areas EC measurements work well, the animals in a grazing system are a challenge as they represent moving point sources that create inhomogeneous conditions in space and time. The main issues which have to be taken into account when applying EC flux measurements over a grazed system are: i) In the presence of animals the high time resolution concentration measurements show large spikes in the signal. These spikes may be filtered/reduced by standard quality control software in order to avoid wrong measurements. ii) Data on the position of the animals relative to the flux footprint is needed to quantify the contribution of the grazing animals to the measured flux. For one grazing season we investigated the ability of EC flux measurements to reliably quantify the contribution of the grazing animals to the CH4 and CO2 exchange over pasture systems. For this purpose, a field experiment with a herd of twenty dairy cows in a full-day rotational grazing system was carried out on the Swiss central plateau. Net CH4 and CO2 exchange of the pasture system was measured continuously by the eddy covariance technique (Sonic Anemometer HS-50, Gill Instruments Ltd; FGGA, Los Gatos Research Inc.). To quantify the contribution of the animals to the net flux, the position of the individual cows was recorded using GPS (5 s time resolution) on each animal. An existing footprint calculation tool (ART footprint tool) was adapted and CH4 emissions of the cows were calculated. CH4 emissions from cows could be used as a tracer to investigate the quality of the evaluation of the EC data, since the background exchange of

  6. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland.

    PubMed

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. PMID:27155405

  7. The role of photo- and thermal degradation for CO2 and CO fluxes in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    van Asperen, H.; Warneke, T.; Sabbatini, S.; Nicolini, G.; Papale, D.; Notholt, J.

    2015-02-01

    Recent studies have suggested the potential importance of abiotic degradation in arid ecosystems. In this study, the role of photo- and thermal degradation in ecosystem CO2 and CO exchange is assessed. A field experiment was performed in Italy using a FTIR-spectrometer coupled to a flux gradient system and to flux chambers. In a laboratory experiment, field samples were exposed to different temperatures and radiation intensities. No photodegradation-induced CO2 and CO fluxes were found in the field and in the laboratory study. In the laboratory, thermal degradation fluxes for CO2 and CO have been observed. In the field, CO uptake and emission have been observed and are proposed to be a result of biological uptake and abiotic thermal degradation-production. We suggest that previous studies, studying direct photodegradation, have overestimated the role of photodegradation and observed fluxes might be due to thermal degradation, which is an indirect effect of radiation. The potential importance of abiotic decompostion in the form of thermal degradation, especially for arid regions, should be considered in future studies.

  8. The role of photo- and thermal degradation for CO2 and CO fluxes in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    van Asperen, H.; Warneke, T.; Sabbatini, S.; Nicolini, G.; Papale, D.; Notholt, J.

    2015-07-01

    Recent studies have suggested the potential importance of abiotic degradation in arid ecosystems. In this study, the role of photo- and thermal degradation in ecosystem CO2 and CO exchange is assessed. A field experiment was performed in Italy using an FTIR-spectrometer (Fourier Transform Infrared) coupled to a flux gradient system and to flux chambers. In a laboratory experiment, field samples were exposed to different temperatures and radiation intensities. No photodegradation-induced CO2 and CO fluxes of in literature suggested magnitudes were found in the field nor in the laboratory study. In the laboratory, we measured CO2 and CO fluxes that were derived from thermal degradation. In the field experiment, CO uptake and emission have been measured and are proposed to be a result of biological uptake and abiotic thermal degradation-production. We suggest that previous studies, addressing direct photodegradation, have overestimated the role of photodegradation and observed fluxes might be due to thermal degradation, which is an indirect effect of radiation. The potential importance of abiotic decomposition in the form of thermal degradation, especially for arid regions, should be considered in future studies.

  9. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    PubMed

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  10. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    PubMed Central

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  11. Lateral transport of soil carbon and land‑atmosphere CO2 flux induced by water erosion in China

    NASA Astrophysics Data System (ADS)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land‑atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy‑1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy‑1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm‑2ṡy‑1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  12. [Error analysis of CO2 storage flux in a temperate deciduous broadleaved forest based on different scalar variables].

    PubMed

    Wang, Jing; Wang, Xing-chang; Wang, Chuan-kuan

    2013-04-01

    Using the measurement data from an 8-level vertical profile of CO2/H2 0 in a temperate deciduous broadleaved forest at the Maoershan Forest Ecosystem Research Station, Northeast China, this paper quantified the errors of CO2 storage flux (Fs ) calculated with three scalar variables, i. e. , CO2 density (rho c), molar fraction (cc), and molar mixing ratio relative to dry air (Xc). The dry air storage in the control volume of flux measurement was not a constant, and thus, the fluctuation of the dry air storage could cause the CO2 molecules transporting out of or into the control volume, i. e. , the variation of the dry air storage adjustment term (Fsd). During nighttime and day-night transition periods, the relative magnitude of Fsd to eddy flux was larger, and ignoring the Fsd could introduce errors in calculating the net CO2 exchange between the forest ecosystem and the atmosphere. Three error sources in the Fs calculation could be introduced from the atmospheric hydrothermal processes, i. e. , 1) air temperature fluctuation, which could cause the largest error, with one order of magnitude larger than that caused by atmospheric pressure (P) , 2) water vapor, its effect being larger than that of P in warm and moist summer but smaller in cold and dry winter, and 3) P, whose effect was generally smaller throughout the year. In estimating the effective CO2 storage (Fs_E) , the Fs value calculated with rho c, cc, and Xc was overestimated averagely by 8. 5%, suggested that in the calculation of Fs, adopting the Xc conservation to atmospheric hydrothermal processes could be more appropriate to minimize the potential errors. PMID:23898654

  13. Phase I Final Report: New Technology Platform to Measure Atmospheric Fluxes and Concentrations of Carbon Isotopes in CO2

    SciTech Connect

    Miles J. Weida, Ph.D. Senior Scientist, Applications Development

    2009-03-24

    There were four goals of the Phase I research carried out to develop the basis for a new technology platform to measure atmospheric fluxes and concentrations of carbon isotopes in CO2. The first was to extend the Daylight Solutions external cavity quantum cascade laser (ECqcL) package to allow continuous, rapid (<10 msec) sweeping of the laser wavelength to acquire spectra. This involved developing a rapid tuning mechanism for our broadly tunable quantum cascade (QC) lasers that meets the requirements of a CO2 isotopologue sensing application. The second goal was to undertake QC device development to procure QC devices capable of lasing in the 4.3 to 4.5 μm spectral region necessary for CO2 isotopologue detection. Final devices procured from this process were to be mounted, coated, and tested to demonstrate their suitability for scanning from 4.3 to 4.5 μm. The third goal was to develop spectral acquisition and analysis algorithms to enable real-time data acquisition and spectral fitting to determine gas temperature and isotopologue concentrations. This involved determining the best spectral analysis algorithm for retrieving CO2 isotopologue temperature and concentration information based on a targeted (i.e. 5% to 10% of center wavelength) scan of CO2 isotopologue absorption features. The culminating goal of Phase I was integration of these three components into a bench-top prototype that can measure CO2 isotopologue ratios in the laboratory.

  14. Automated modeling of ecosystem CO2 fluxes based on closed chamber measurements: A standardized conceptual and practical approach

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Albiac Borraz, Elisa; Hagemann, Ulrike; Sommer, Michael; Augustin, Jürgen

    2015-04-01

    Closed chamber measurements are widely used for determining the CO2 exchange of small-scale or heterogeneous ecosystems. Among the chamber design and operational handling, the data processing procedure is a considerable source of uncertainty of obtained results. We developed a standardized automatic data processing algorithm, based on the language and statistical computing environment R© to (i) calculate measured CO2 flux rates, (ii) parameterize ecosystem respiration (Reco) and gross primary production (GPP) models, (iii) optionally compute an adaptive temperature model, (iv) model Reco, GPP and net ecosystem exchange (NEE), and (v) evaluate model uncertainty (calibration, validation and uncertainty prediction). The algorithm was tested for different manual and automatic chamber measurement systems (such as e.g. automated NEE-chambers and the LI-8100A soil CO2 Flux system) and ecosystems. Our study shows that even minor changes within the modelling approach may result in considerable differences of calculated flux rates, derived photosynthetic active radiation and temperature dependencies and subsequently modeled Reco, GPP and NEE balance of up to 25%. Thus, certain modeling implications will be given, since automated and standardized data processing procedures, based on clearly defined criteria, such as statistical parameters and thresholds are a prerequisite and highly desirable to guarantee the reproducibility, traceability of modelling results and encourage a better comparability between closed chamber based CO2 measurements.

  15. Estimating carbon fluxes for North America from a joint inversion for CO2 and COS using STILT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Petron, G.; Trudeau, M. E.; Karion, A.; Koch, F. T.; Kretschmer, R.; Gerbig, C.; Campbell, J. E.; Berry, J. A.; Baker, I. T.; Nehrkorn, T.; Eluszkiewicz, J.; Miller, B. R.; Montzka, S. A.; Jacobson, A. R.; Sweeney, C.; Andrews, A. E.; Tans, P. P.

    2011-12-01

    Understanding biospheric CO2 fluxes is paramount if climate studies are to be able to analyze the response of terrestrial ecosystems to climate change and monitor fossil fuel emissions reductions. Carbonyl sulfide (COS) may be a useful tracer to provide a constraint on photosynthesis [gross primary production (GPP)]. Here we simulate both COS and CO2 using the Stochastic Time-Inverted Lagrangian Transport (STILT) model coupled with various biospheric fluxes, such as fluxes estimated from the Vegetation Photosynthesis and Respiration Model (VPRM), CarbonTracker, and from the Carnegie-Ames-Stanford Approach (CASA) model. The STILT model is driven by Weather Research and Forecast (WRF) meteorological fields. The WRF-STILT system is compared with the STILT driven by the ECMWF (European Center for Medium range Weather Forecasting) meteorology for the North American domain. This study uses measurements of COS and CO2 in 2008 from the NOAA/ESRL tall tower and aircraft air sampling networks, with ~ 6,000 observations in total. Biospheric COS fluxes will be estimated from a GPP-based model coupled with the GPP estimates from above mentioned biosphere models. Soil uptakes of COS are derived from a biosphere model (SiB) that assimilates the soil moisture and temperature. Estimation of other COS fluxes, such as anthropogenic, biomass burning are based on existing analyses of temporal and spatial variations. Empirical boundary curtains are built based on observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles, and are utilized as the lateral boundary conditions for COS and CO2 for North America. Comparison of the simulations for both COS and CO2 using different biospheric fluxes provides an opportunity to assess the performance of both the biospheric models and the representation of atmospheric transport. In addition, we will estimate the carbon fluxes for North America from a joint inversion for COS and CO2 in a Bayesian synthesis

  16. An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Baker, D. F.; Collatz, G. J.; Ott, L. E.

    2015-12-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3° x 3.75° weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a

  17. An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Wang