Science.gov

Sample records for air-sea exchanges oceanologica

  1. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  2. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  3. ASGAMAGE, the Air-Sea Gas Exchange/MAGE experiment

    NASA Astrophysics Data System (ADS)

    Oost, Wiebe; Jacobs, Cor; Kohsiek, Wim; Goossens, Guus; van der Horn, Jaap; Sprung, Detlev; Rapsomanikis, Spyros; Kenntner, Thomas; Reiner, Thomas; Bowyer, Peter; Larsen, Søren; de Leeuw, Gerrit; Kunz, Gerard; Hall, Alan; Liss, Peter; Malin, Gill; Upstill-Goddard, Rob; Woolf, David; Graham, Angus; Nightingale, Phil; Fairall, Chris; Hare, Jeff; Dissly, Richard; Tans, Pieter; Anderson, Bob; Smith, Stu

    The ASGAMAGE project addressed the problem of the large discrepancy between the chemistry based and micrometeorological methods and aimed to determine any geophysical parameters apart from the wind speed that affect air-sea gas exchange in an effort to reduce the uncertainty in the global carbon balance. Experiments were performed in the spring and fall of 1996 at and near a research platform off the Dutch coast and two surface layer models were developed for the gas exchange process. The results gave a reduction of the difference between the two types of methods from an order of magnitude to a factor of two as well as indications for the causes of the remaining difference.

  4. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  5. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  6. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  7. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  8. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  9. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  10. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  11. Occurrence and air-sea exchange of phthalates in the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Lohmann, Rainer; Caba, Armando; Ruck, Wolfgang

    2007-07-01

    Air and seawater samples were taken simultaneously to investigate the distribution and air-sea gas exchange of phthalates in the Arctic onboard the German Research Ship FS Polarstern. Samples were collected on expeditions ARK XX1&2 from the North Sea to the high Arctic (60 degrees N-85 degrees N) in the summer of 2004. The concentration of sigma6 phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-i-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and diethylhexyl phthalate (DEHP)) ranged from 30 to 5030 pg L(-1) in the aqueous dissolved phase and from 1110 to 3090 pg m(-3) in the atmospheric gas phase. A decreasing latitudinal trend was present in the seawater and to a lesser degree in the atmosphere from the Norwegian coast to the high Arctic. Overall, deposition dominated the air-sea gas exchange for DEHP, while volatilization from seawater took place in the near-coast environment. The estimated net gas deposition of DEHP was 5, 30, and 190 t year(-1) for the Norwegian Sea, the Greenland Sea, and the Arctic, respectively. This suggests that atmospheric transport and deposition of phthalates is a significant process for their occurrence in the remote Atlantic and Arctic Ocean.

  12. DOGEE-SOLAS: The Role of Surfactants in Air-Sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Upstill-Goddard, R. C.; Nightingale, P.

    2008-12-01

    One of the major aims of DOGEE-SOLAS was to improve our understanding of the role of surfactants in air- sea gas exchange. With this in mind we carried out a number of artificial surfactant releases on a research cruise in the North Atlantic (D320), during June-July of 2007. We used oleyl alcohol, a surrogate for natural surfactants which is relatively cheap and easy to obtain (it is used in the manufacture of cosmetics). The main release overlaid a dual tracer "patch" of SF6 and 3He; our aim was to directly compare values of the gas transfer velocity, kw, estimated within the surfactant covered patch with those estimated quasi- simultaneously in a second, surfactant-free patch about 20km away. A second release in conjunction with colleagues from the University of Hawaii had the aim of measuring DMS fluxes by eddy correlation both inside and outside a surfactant slick, and a third was undertaken in the path of one of two 14m ASIS (Air-Sea Interaction Spar) buoys operated by the University of Miami for direct comparison of surfactant effects on the fluxes of CO2, H2O, heat and momentum (eddy correlation) etc. We present here some preliminary findings from the work.

  13. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes

    NASA Astrophysics Data System (ADS)

    Glazman, R. E.

    The book is based on the proceedings of the 1983 Whitecap Workshop, held at University College, Galway, Ireland. The 22 full-length papers and 18 abstracts of poster presentations that it contains cover a wide range of topics. The small-scale air-sea exchange processes triggered by the breaking of wind-generated gravity waves serve as the common ground from which specialized excursions are made into the fields of acoustics and optics of bubbly water, statistics and hydrodynamics of water waves, remote sensing, atmospheric electricity, and physicochemical hydrodynamics of bubbles, droplets, and water surfaces coated with organic films. The book opens with “The Life and Science of Alfred H. Woodcock” by Duncan Blanchard (State University of New York, Albany).

  14. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  15. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  16. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  17. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  18. Impacts of Atmospheric Modes of Variability on Air-Sea Heat Exchange in the Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Papadopoulos, Vassilis P.; Josey, Simon A.; Hoteit, Ibrahim; Kontoyiannis, Harilaos; Raitsos, Dionissios E.

    2014-05-01

    The potential impacts on Red Sea surface heat exchange of various major modes of atmospheric variability are investigated using the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis and the Objectively Analyzed Air-Sea Flux dataset (OAFlux) merged satellite+reanalysis dataset. The mode impacts on surface net heat flux are quantified by calculating the heat flux anomaly that corresponds to a unit positive value of each index for each grid point. The seasonal effects of the atmospheric forcing are investigated considering two and four typical seasons of a calendar year. Considering two seasons, the impacts are strongest during the winter-centered part of the year (October to March) mainly over the northern sub-basin. The North Atlantic Oscillation (NAO), the East Atlantic - West Russia Pattern (EAWR), and the Indian Monsoon Index (IMI) have the greatest effects. They generate negative anomalies (by definition additional ocean heat loss) of 7-12 W/m2 in the northern Red Sea basin mean net heat flux for a unit positive value of the mode index. During the summer (April to September), the signal is smaller and the East Atlantic (EA) and Multivariate ENSO Index (MEI) modes have the strongest impact which is now located in the southern Red Sea (sub-basin anomalies of 4 W/m2 for unit positive mode index, negative for EA and positive for MEI). Results obtained by analysis carried out on the traditional four-season basis reveal that indices impact peaks during the typical boreal winter (DJF) with average anomalies of 12-18 W/m2 to be found in the northern part. It is noteworthy that during the winter, the EAWR generates negative anomalies around 30 W/m2 over the most of the central Red Sea. During the spring (MAM), summer (JJA) and autumn (SON) the anomalies are considerably lower, especially during the spring when the mode impacts are negligible. Atmospheric modes have a stronger effect on air-sea heat flux over the northern

  19. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  20. Occurrence and air/sea-exchange of novel organic pollutants in the marine environment

    NASA Astrophysics Data System (ADS)

    Ebinghaus, R.; Xie, Z.

    2006-12-01

    A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface sea water and atmosphere of the North Sea. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North Sea is an important input pathway. The net fluxes indicate that the air sea exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.

  1. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  2. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  3. Comparison of CO2 Dynamics and Air-Sea Exchange in Contrasting Tropical Reef Environments

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; De Carlo, E. H.; Mackenzie, F. T.; Shamberger, K. E.; Musielewicz, S. B.; Maenner-Jones, S.; Sabine, C. L.; Feely, R. A.

    2011-12-01

    Multiyear high temporal resolution CO2 records in three differing coral reef settings were obtained using buoys deployed in coastal waters of Oahu since June 2008. The buoys are located on the barrier reef of Kaneohe Bay and offshore of Honolulu, on the south shore of Oahu. Annualized CO2 air-sea fluxes at the three buoys ranged from +0.05 mol C/m2/yr offshore Honolulu on a fringing reef well mixed with the open ocean to -1.12 mol C/m2/yr on a barrier reef flat in Kaneohe Bay (positive values represent CO2 sinks from the atmosphere and negative values represent sources). These fluxes compare well to those estimated from previous studies in Kaneohe Bay as well as in other tropical reef environments. pCO2 measurements, made every 3 hours, at each location show strong temporal cycles on multiple time scales ranging from diel to seasonal at each buoy and an anticorrelation with pO2. These records, when combined with those of a prior buoy deployment in southern Kaneohe Bay and several synoptic studies, allow us to examine how the principal biological cycles of productivity/respiration and calcification/carbonate dissolution are influenced by changing water column properties, physical processes (e.g. residence time) and atmospheric conditions and how these processes ultimately impact the exchange of CO2 between the ocean and atmosphere on hourly to interannual cycles. The data clearly demonstrate the need for high frequency pCO2 data to characterize completely and accurately short-term local changes in the CO2-carbonic acid system parameters and how these changes overprint the longer scale process of ocean acidification as a result of invasion of CO2 into the ocean due to emissions of anthropogenic CO2 to the atmosphere. Since many coral reef ecosystems are still sources of CO2 to the atmosphere because of positive net ecosystem calcification, and in some instances net heterotrophy, such data are even more critical in terms of assessing future changes in the direction

  4. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  5. Effect of sea sprays on air-sea momentum exchange at severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.

    2012-04-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from

  6. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  7. Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Davolio, S.

    2016-02-01

    Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.

  8. Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air-sea exchange.

    PubMed

    Zhang, Gan; Li, Jun; Cheng, Hairong; Li, Xiangdong; Xu, Weihai; Jones, Kevin C

    2007-06-01

    The South China Sea (SCS) is surrounded by developing countries in Southeast Asia, where persistent organic pollutants (POPs), such as organochlorine pesticides (OCPs), are still used legally or illegally, and are of concern. Yet little is known about the distribution of OCPs in the water and atmosphere over SCS, as well as their air-sea equilibrium status and time trends. In this study, ship-board air samples and surface seawater collected in the northern SCS between September 6 and 22, 2005 were analyzed for selected OCPs. The measured OCP concentrations in the atmosphere over the northern SCS were influenced by proximity to source regions and air mass origins. The highest atmospheric OCP concentrations were found at sampling sites adjacent to continental South China. OCPs in surface seawater showed significant spatial variations, with the highest concentration observed in a water sample from off Vietnam. The coastal currents were suggested to play a key role in the delivery of waterborne OCPs in the northern SCS. Time trend, land outflow, and air-sea exchange of selected OCPs in the SCS were investigated, by comparison of this dataset with historical data.

  9. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  10. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    PubMed

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-01

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.

  11. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  12. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  13. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  14. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  15. Air-Sea Exchange and Budget of Sulfur and Oxygen-Containing Volatile Organic Compounds in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Omori, Y.; Inomata, S.; Iwata, T.; Kameyama, S.

    2015-12-01

    By combining proton transfer reaction-mass spectrometry (PTR-MS) and gradient flux (GF) technique, in situ measurement of air-sea fluxes of multiple volatile organic compounds (VOCs) was developed and deployed. Starting in 2008, we made in situ observations of air-sea fluxes at 15 locations as well as underway observations of marine air/surface seawater bulk concentrations in the Pacific Ocean, during eight research cruises by R/V Hakuho-Maru. The fluxes of biogenic trace gases, DMS and isoprene, were always positive, with the magnitudes being in accordance with previously reported. In contrast, the fluxes of oxygenated VOCs including acetone and acetaldehyde varied from negative to positive, suggesting that the tropical and subtropical Pacific are a source, while the North Pacific is a sink. A basin-scale budget of VOCs were determined for 4 biogeochemical provinces in the Pacific Ocean, and the role of oceans for VOCs were discussed with respect to physical and biogeochemical processes.

  16. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-05-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC

  17. The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, Anja; Galgani, Luisa

    2016-02-01

    The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW), ˜ 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  18. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.

  19. Alpine lee cyclogenesis influence on air-sea heat exchanges and marine atmospheric boundary layer thermodynamics over the western Mediterranean during a Tramontane/Mistral event

    NASA Astrophysics Data System (ADS)

    Flamant, Cyrille

    2003-02-01

    Data from a recent field campaign are used to analyze the nonstationary aspects of air-sea heat exchanges and marine atmospheric boundary layer (MABL) thermodynamics over the Gulf of Lion (GoL) in connection with synoptic forcing. The data set includes measurements made from a wide range of platforms (sea-borne, airborne, and space-borne) as well as three-dimensional atmospheric modeling. The analysis focuses on the 24 March 1998 Tramontane/Mistral event. It is shown that the nonstationary nature of the wind regime over the GoL was controlled by the multistage evolution of an Alpine lee cyclone over the Tyrrhenian Sea (between Sardinia and continental Italy). In the early stage (low at 1014 hPa) the Tramontane flow prevailed over the GoL. As the low deepened (1010 hPa), the prevailing wind regime shifted to a well-established Mistral that peaked around 1200 UTC. In the afternoon the Mistral was progressively disrupted by a strengthening outflow coming from the Ligurian Sea in response to the deepening low over the Tyrrhenian Sea (1008 hPa) and the channelling induced by the presence of the Apennine range (Italy) and the Alps. In the evening the Mistral was again well established over the GoL as the depression continued to deepen (1002 hPa) but moved to the southeast, reducing the influence of outflow from the Ligurian Sea on the flow over the GoL. The air-sea heat exchanges and the structure of the MABL over the GoL were observed to differ significantly between the established Mistral period and the disrupted Mistral period. In the latter period, surface latent and sensible heat fluxes were reduced by a factor of 2, on average. During that latter period, air-sea moisture exchanges were mainly driven by dynamics, whereas during the former period, both winds and vertical moisture gradients controlled moisture exchanges. The MABL was shallower during the latter period (0.7 km instead of 1.2 km) because of reduced surface turbulent heat fluxes and increased wind shear

  20. Spatial and temporal variability of air-sea CO2 exchange of alongshore waters in summer near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2014-03-01

    Alongshore water off Barrow, Alaska is a useful area for studying the carbon cycle of the Arctic coastal sea, because the different coastal characteristics extant in the area likely represent much larger regions of the coastal water of the western Arctic Ocean. Especially noteworthy is the inflow shelf water transferred northward by the Arctic Coastal Current into the Chukchi Sea from the North Pacific and turbid water in the Elson Lagoon where a significant amount of coastal erosion has been reported along the extensive coastal line and where a part of the water from the lagoon drains into the Beaufort Sea adjacent to the Chukchi Sea. To investigate spatial and temporal variations of air-sea CO2 flux (CO2 flux) of the alongshore water, partial pressure of CO2 of surface seawater (pCO2sw) was measured in summer, 2007 and 2008, and CO2 flux was directly measured by eddy covariance at a fixed point for the Beaufort Sea in summer 2008. Measured pCO2sw in the Chukchi Sea side was the lowest in the beginning of the measurement season and increased later in the season both in 2007 and 2008. The average CO2 flux estimated based on pCO2sw in the Chukchi Sea side was -0.10 μmol m-2 s-1 (±0.1 s.d.) using the sign convention of positive fluxes into the atmosphere from the ocean. pCO2sw in the Beaufort Sea and the Elson Lagoon was relatively higher in early summer and decreased in the middle of the summer. The overall average CO2 flux was -0.07 μmol m-2 s-1 (±0.1 s.d.) for the Beaufort Sea side and -0.03 μmol m-2 s-1 (±0.07 s.d.) for the Elson Lagoon respectively, indicating a sink of CO2 despite high carbon inflows from the terrestrial margin into the Elson Lagoon. A strong sink of CO2 was often observed from the Beaufort Sea by eddy covariance in the middle of the summer. This sink activity in the middle summer in the Beaufort Sea and Elson Lagoon was likely due to biological carbon uptake as inferred by low apparent oxygen utilization and high chlorophyll

  1. Air-sea exchange of dimethylsulfide in the Southern Ocean: Measurements from SO GasEx compared to temperate and tropical regions

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B. W.; Fairall, C. W.; Archer, S. D.; Huebert, B. J.

    2011-04-01

    In the Southern Ocean Gas Exchange Experiment (SO GasEx), we measured an atmospheric dimethylsulfide (DMS) concentration of 118 ± 54 pptv (1σ), a DMS sea-to-air flux of 2.9 ± 2.1 μmol m-2 d-1 by eddy covariance, and a seawater DMS concentration of 1.6 ± 0.7 nM. Dividing flux by the concurrent air-sea concentration difference yields the transfer velocity of DMS (kDMS). The kDMS in the Southern Ocean was significantly lower than previous measurements in the equatorial east Pacific, Sargasso Sea, northeast Atlantic, and southeast Pacific. Normalizing kDMS for the temperature dependence in waterside diffusivity and solubility results in better agreement among various field studies and suggests that the low kDMS in the Southern Ocean is primarily due to colder temperatures. The higher solubility of DMS at a lower temperature results in greater airside control and less transfer of the gas by bubbles formed from breaking waves. The final normalized DMS transfer velocity is similar to k of less soluble gases such as carbon dioxide in low-to-moderate winds; in high winds, DMS transfer velocity is significantly lower because of the reduced bubble-mediated transfer.

  2. Seasonality of diffusive exchange of polychlorinated biphenyls and hexachlorobenzene across the air-sea interface of Kaohsiung Harbor, Taiwan.

    PubMed

    Fang, Meng-Der; Ko, Fung-Chi; Baker, Joel E; Lee, Chon-Lin

    2008-12-15

    Gaseous and dissolved concentrations of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) were measured in the ambient air and water of Kaohsiung Harbor lagoon, Taiwan, from December 2003 to January 2005. During the rainy season (April to September), gaseous PCB and HCB concentrations were low due to both scavenging by precipitation and dilution by prevailing southwesterly winds blown from the atmosphere of the South China Sea. In contrast, trace precipitation and prevailing northeasterly winds during the dry season (October to March) resulted in higher gaseous PCB and HCB concentrations. Instantaneous air-water exchange fluxes of PCB homologues and HCB were calculated from 22 pairs of air and water samples from Kaohsiung Harbor lagoon. All net fluxes of PCB homologues and HCB in this study are from water to air (net volatilization). The highest net volatile flux observed was +172 ng m(-)(2) day(-1) (dichlorobiphenyls) in December, 2003 due to the high wind speed and high dissolved concentration. The PCB homologues and HCB fluxes were significantly governed by dissolved concentrations in Kaohsiung Harbor lagoon. For low molecular weight PCBs (LMW PCBs), their fluxes were also significantly correlated with wind speed. The net PCB and HCB fluxes suggest that the annual sums of 69 PCBs and HCB measured in this study were mainly volatile (57.4 x 10(3) and 28.3 x 10(3) ng m(-2) yr(-1), respectively) and estimated yearly, 1.5 kg and 0.76 kg of PCBs and HCB were emitted from the harbor lagoon surface waters to the ambient atmosphere. The average tPCB flux in this study was about one-tenth of tPCB fluxes seen in New York Harbor and in the Delaware River, which are reported to be greatly impacted by PCBs.

  3. Validation of a Size-resolved Parameterization of Primary Organic Carbon in Fresh Marine Aerosols for Use in Air-Sea Exchange Simulations

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Kieber, D. J.; Frossard, A. A.; Russell, L. M.

    2011-12-01

    Marine aerosol production by bursting bubbles at the ocean surface is the largest source of aerosol mass in the atmosphere. The size-resolved organic and inorganic composition of marine aerosols has significant impacts on atmospheric chemistry, aerosol and cloud microphysics and radiative transfer. Recent estimates suggest that the global production flux of particulate organic matter (POM) associated with nascent marine aerosol may exceed the total production flux of particulate POM from secondary pathways involving gas-phase precursors. Observed size-resolved fluxes of marine-derived POM taken in the N. Atlantic Ocean, while limited, suggest that Langmuir-type sorption processes may be the limiting factor controlling the association of marine organic material with bubble plume surface area, and consequently, the size-resolved POM mass and number fluxes. A similar set of observations - including seawater temperature, salinity, and chlorophyll a (chl-a) concentrations - were made during a spring 2010 cruise of the R/V Atlantis in the eastern North Pacific Ocean. Chlorophyll a concentrations - as a proxy for marine OM - ranged from ~3 to 30 μg L-1 which exceeds that of the N. Atlantic studies by up to an order of magnitude. Significant relationships between chl-a, particle number production and particulate OM enrichments were observed. These data provide an excellent opportunity to validate and refine a previously formulated size-resolved inorganic/organic marine aerosol source function using in situ seawater composition and state constraints. This formulation will serve as the basis for atmospheric chemistry and climate simulations, and further our understanding of aerosol production and air-sea exchange processes.

  4. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange

    NASA Astrophysics Data System (ADS)

    de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.

    2015-11-01

    The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas air-sea exchange in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating

  5. Direct Measurement of Air-Sea Exchange of N2O5 and ClNO2 at a Polluted Coastal Site (Invited)

    NASA Astrophysics Data System (ADS)

    Bertram, T. H.; Kim, M.; Ryder, O. S.; Farmer, D.

    2013-12-01

    The reactive uptake of N2O5 at aqueous interfaces can serve as both an efficient NOx removal mechanism and regionally significant halogen activation process through the production of photo-labile ClNO2 molecules. Both the reaction rate and ClNO2 product yield are a complex function of the chemical composition and chloride molarity of the reactive surface. To date, analysis of the impact of N2O5 chemistry on oxidant loadings in the marine boundary layer has been limited to reactions occurring on aerosol particles, with little attention paid to reactions occurring at the air-sea interface. Here, we report the first direct measurements of the air-sea flux of N2O5 and ClNO2 made via eddy covariance in the polluted marine boundary layer in La Jolla, CA. We observe rapid N2O5 deposition to the ocean surface, while ClNO2 deposition rates were significantly lower and fastest during the first three hours following sunset. The results are interpreted using a time-dependent box-model, suggesting that under conditions characterized by shallow marine boundary layer heights (< 100 m) and representative aerosol reactive uptake coefficients (< 0.01), N2O5 deposition to the ocean surface can account for over 50% of the total N2O5 loss rate.

  6. On the Global Oxygen Anomaly and Air-Sea Flux

    NASA Technical Reports Server (NTRS)

    Garcia, Hernan E.; Keeling, Ralph F.

    2001-01-01

    A new climatology of monthly air-sea oxygen fluxes throughout the ice-free surface global ocean is presented. The climatology is based on weighted linear least squares regressions using heat flux monthly anomalies for spatial and temporal interpolation of historical O2 data. The seasonal oceanic variations show that the tropical belt (20 S - 20 N) is characterized by relatively small air-sea fluxes when compared to the middle to high latitudes (40 deg - 70 deg). The largest and lowest seasonal fluxes occur during summer and winter in both hemispheres. By means of an atmospheric transport model we show that our climatology is in better agreement with the observed amplitude and phasing of the variations in atmospheric O2/N2 ratios because of seasonal air-sea exchanges at baseline stations in the Pacific Ocean than with previous air-sea O2 climatologies. Our study indicates that the component of the air-sea O2 flux that correlates with heat flux dominates the large-scale air-sea O2 exchange on seasonal timescales. The contribution of each major oceanic basin to the atmospheric observations is described. The seasonal net thermal (SNO(sub T)) and biological (SNO(sub B)) outgassing components of the flux are examined in relation to latitudinal bands, basin-wide, and hemispheric contributions. The Southern Hemisphere's SNO(sub B) (approximately 0.26 Pmol) and SNO(sub T) (approximately 0.29 Pmol) values are larger than the Northern Hemisphere's SNO(sub B) (approximately 0.15 Pmol) and SNO(sub T) (approximately 0.16 Pmol) values (1 Pmol = 10(exp 15) mol). We estimate a global extratropical carbon new production during the outgassing season of 3.7 Pg C (1 Pg = 10(exp 15) g), lower than previous estimates with air-sea O2 climatologies.

  7. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  8. Air-sea energy exchanges measured by eddy covariance during a localised coral bleaching event, Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.

    2010-12-01

    Despite the widely claimed association between climate change and coral bleaching, a paucity of data exists relating to exchanges of heat, moisture and momentum between the atmosphere and the reef-water surface. We present in situ measurements of reef-water-air energy exchanges made using the eddy covariance method during a summer coral bleaching event at Heron Reef, Australia. Under settled, cloud-free conditions and light winds, daily net radiation exceeded 800 W m-2, with up to 95% of the net radiation during the morning partitioned into heating the water column, substrate and benthic cover including corals. Heating was exacerbated by a mid-afternoon low tide when shallow reef flat water reached 34°C and near-bottom temperatures 33°C, exceeding the thermal tolerance of corals, causing bleaching. Results suggest that local to synoptic scale meteorology, particularly clear skies, solar heating, light winds and the timing of low tide were the primary controls on coral bleaching.

  9. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  10. Using Sea Level to Probe Linkages Between Heat Transport Convergence, Heat Storage Rate, and Air-Sea Heat Exchange in the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Thompson, L.; Kelly, K. A.; Booth, J. F.

    2014-12-01

    Annual mean surface heat fluxes from the ocean to the atmosphere in midlatitudes are maximum in the Gulf Stream and that surface flux is driven by geostrophic heat transport convergence. Evidence is mounting that on interannual times scales, the surface flux of heat in the Gulf Stream region is controlled by the amount of heat that is stored in the region and that the heat storage rate is in turn controlled by geostrophic heat transport convergence. In addition, variations in meridional heat transport have been linked to the meridional overturning circulation just to the south of the Gulf Stream at the RAPID/MOCHA array at 26.5N, suggesting that changes in the meridional overturning circulation might be linked to surface heat exchange in the Gulf Stream. The twenty-year record of satellite sea level (SSH) along with high quality surface heat fluxes allow a detailed evaluation of the interaction between stored oceanic heat in this region and surface heat fluxes on interannual times scales. Using gridded sea level from AVISO as a proxy for upper ocean heat content along with surface turbulent heat flux from OAFlux, we evaluate the lagged correlations between interannual surface turbulent heat fluxes and SSH variability. Previous work has shown that where advection is small lagged correlations between SST (sea surface temperature) and surface turbulent heat flux are generally antisymmetric about zero lag with negative correlations when SST leads and positive correlations when SST lags. This indicates that surface heat fluxes force SST anomalies that at later times are damped by surface fluxes. In contrast, the lagged correlation between SSH anomalies and the turbulent flux of heat in the Gulf Stream region show a distinctly asymmetric relationship about zero-lag. The correlations are negative when SSH leads but are not significant when SSH lags indicating the dominant role in heat transport convergence in driving heat content changes, and that the heat content

  11. Air-sea interactions and precipitation over the tropical oceans

    NASA Technical Reports Server (NTRS)

    Gautier, C.

    1992-01-01

    In this lecture, the author principally discusses air-sea exchanges that are relevant to climate and global problems. The processes of interest are those acting over time scales of months to decades, which in some instances are influenced by smaller-time-scale processes, down to the diurnal time scale. The repsective influence of these processes varies with regions, seasons and scales over which they occur and, because these processes are mostly nonlinear, scale interactions can be quite complex. Owing to the breadth of the topic addressed, the discussion is mostly focused on the tropical regions where air-sea interactions and precipitation processes eventually affect the entire globe. This allows a look in more detail at some air-sea processes, such as those associated with the El Nino southern oscillation (ENSO). This oscillation, which affects the climate of the entire globe, acts over periods of a year or longer and is caused, primarily, by sea surface temperature (SST) variations in the tropical Pacific. As a result, SST variability is often used as an indicator of coupled ocean-atmosphere low-frequency variability. Global or basin scale processes can uniquely be observed from space-born instruments with the coverage required. Space based techniques have been developed during the last decade which can now be used to illustrate the scientific issues presented and the presentation concludes with an overview of some Earth Observing System (EOS) capabilities for addressing air-sea interactions and hydrology issues.

  12. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  13. Improvement of the GEOS-5 AGCM upon updating the air-sea roughness parameterization

    NASA Astrophysics Data System (ADS)

    Garfinkel, C. I.; Molod, A. M.; Oman, L. D.; Song, I.-S.

    2011-09-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  14. Air-Sea Interactions over Lakes on Titan

    NASA Astrophysics Data System (ADS)

    Soto, Alejandro; Rafkin, Scot C. R.

    2016-10-01

    The exchange of methane between the atmosphere and surface liquid reservoirs dominates the short time-scale methanological cycle. In this study, previous two-dimensional simulations of the exchange of methane vapor, sensible heat and momentum between the atmosphere and lakes are updated with the inclusion of radiative forcing, three dimensions, and realistic coastlines. Titan's air-sea exchange in two dimensions indicated that the exchange process was self-limiting. Evaporation from lakes produced a shallow but extremely stable marine layer that suppressed turbulent exchange. Furthermore, the circulation associated with the higher buoyancy of methane-rich atmosphere over the lake was offset by the oppositely directed thermal sea breeze circulation, which muted the mean wind. Two major weaknesses of this previous work were the lack of radiative forcing and the imposition of two dimensionality, which limited the full range of dynamical solutions. Based on early theoretical studies, it was thought that magnitude of turbulent energy flux exchanges would be much larger than radiative fluxes, thereby justifying the neglect of radiation, but the two-dimensional simulations indicated that this was not a valid assumption. The dynamical limitations of two-dimensional simulations are well known. Vorticity stretching (i.e., circulation intensification through vertical motion) is not possible and it is also not possible to produce dynamically balanced gradient wind-type circulations. As well, the irregular shape of a realistic coastline cannot be expressed in two dimensions, and these realistic structures will generally induce complex convergence and divergence circulations in the atmosphere. The impact of radiative forcing and the addition of the third dimension on the air-sea exchange are presented.

  15. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Jones, Daniel; Ito, Takamitsu; Takano, Yohei; Hsu, Wei-Ching

    2014-05-01

    The exchange of carbon dioxide between the ocean and the atmosphere tends to bring near-surface waters toward equilibrium by reducing the partial pressure gradient across the air-water interface. However, the equilibration process is not instantaneous; in general there is a lag between forcing and response. The timescale of air-sea equilibration depends on several factors involving the depth of the mixed layer, temperature, salinity, wind speed, and carbonate chemistry. In this work, we use a suite of observational datasets to generate climatological and seasonal composite maps of the air-sea equilibration timescale. The relaxation timescale exhibits considerable spatial and seasonal variations, which are largely set by changes in mixed layer depth and wind speed. The net effect is dominated by the mixed layer depth; the gas exchange velocity and carbonate chemistry parameters only provide partial compensation. Broadly speaking, the adjustment timescale tends to increase with latitude. We compare the observationally-derived air-sea gas exchange timescale with a model-derived surface residence time and a data-derived horizontal transport timescale, which allows us to define two non-dimensional metrics of gas exchange efficiency. These parameters highlight the Southern Ocean, equatorial Pacific, and North Atlantic as regions of inefficient air-sea equilibration where carbon anomalies are likely to form and persist. The efficiency parameters presented here can serve as simple tools for understanding regional air-sea disequilibrium in both observations and models. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  16. Second international conference on air-sea interaction and on meteorology and oceanography of the coastal zone

    SciTech Connect

    1994-12-31

    This conference was held September 22--27, 1994 in Lisbon, Portugal. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on air-sea interactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  17. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  18. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  19. Joint Air Sea Interaction (JASIN) experiment, Northwest coast of Scotland

    NASA Technical Reports Server (NTRS)

    Businger, J. A.

    1981-01-01

    The joint air sea interaction (JASIN) experiment took place off the Northwest coast of Scotland. Sea surface and boundary layer parameters were measured. The JASIN data was used as ground truth for various sensors on the SEASAT satellite.

  20. Climatic Impacts of a Stochastic Parameterization of Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The atmosphere and ocean are coupled by the exchange of fluxes across the ocean surface. Air-sea fluxes vary partly on scales that are too small and fast to be resolved explicitly in numerical models of weather and climate, making them a candidate for stochastic parameterization. This presentation proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even though the mean fluctuation is zero. The mechanism relies on a fundamental asymmetry in the physics of the ocean mixed layer: positive surface buoyancy fluctuations cannot undo the vertical mixing caused by negative fluctuations. The mechanism has much in common with Stommel's mixed-layer demon. The presentation demonstrates the mechanism in climate simulations with a comprehensive coupled atmosphere-ocean general circulation model (SINTEX-G). In the SINTEX-G simulations with stochastic air-sea buoyancy fluxes, significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  1. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  2. Advances in Air-Sea Flux Measurement by Eddy Correlation

    NASA Astrophysics Data System (ADS)

    Blomquist, Byron W.; Huebert, Barry J.; Fairall, Christopher W.; Bariteau, Ludovic; Edson, James B.; Hare, Jeffrey E.; McGillis, Wade R.

    2014-09-01

    Eddy-correlation measurements of the oceanic flux are useful for the development and validation of air-sea gas exchange models and for analysis of the marine carbon cycle. Results from more than a decade of published work and from two recent field programs illustrate the principal interferences from water vapour and motion, demonstrating experimental approaches for improving measurement precision and accuracy. Water vapour cross-sensitivity is the greatest source of error for flux measurements using infrared gas analyzers, often leading to a ten-fold bias in the measured flux. Much of this error is not related to optical contamination, as previously supposed. While various correction schemes have been demonstrated, the use of an air dryer and closed-path analyzer is the most effective way to eliminate this interference. This approach also obviates density corrections described by Webb et al. (Q J R Meteorol 106:85-100, 1980). Signal lag and frequency response are a concern with closed-path systems, but periodic gas pulses at the inlet tip provide for precise determination of lag time and frequency attenuation. Flux attenuation corrections are shown to be 5 % for a cavity ring-down analyzer (CRDS) and dryer with a 60-m inlet line. The estimated flux detection limit for the CRDS analyzer and dryer is a factor of ten better than for IRGAs sampling moist air. While ship-motion interference is apparent with all analyzers tested in this study, decorrelation or regression methods are effective in removing most of this bias from IRGA measurements and may also be applicable to the CRDS.

  3. New research initiative on air sea interaction in South Africa

    SciTech Connect

    Rouault, M.; Leethorp, A.; Lutjeharms, J.R.E.

    1994-12-31

    Recent statistical results have demonstrated that the oceanic environment of Southern Africa plays a important regulating role in the climate of the subcontinent. Statistical teleconnections between oceanic temperature anomalies and precipitation over South Africa`s summer rainfall region have been demonstrated, even to the extent of being partially implicated in catastrophic floods. A research program to investigate the interaction between ocean and atmosphere in those ocean areas that have been identified as crucial to Southern Africa climate and rainfall has just started. The first step of this program was to set up a state of the art air-sea interaction measurement system aboard the antarctic research vessel S.A. Agulhas. The second step of the program was to install low cost automatic air sea interaction measurement systems on three research vessels which will provide an extensive database for air-sea interaction studies.

  4. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  5. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  6. Towards More Realistic Simulation of Air-Sea Interaction over Lakes on Titan

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot; Soto, Alejandro

    2016-06-01

    The exchange of methane between the atmosphere and surface liquid reservoirs dominates the short time-scale methanological cycle. In this study, previous two-dimensional simulations of the exchange of methane vapor, sensible heat and momentum between the atmosphere and lakes are updated with the inclusion of radiative forcing and extended to three dimensions, including the introduction of realistic coastlines. Previous studies of Titan's air-sea exchange in two dimensions suggested that the exchange process was self-limiting. Evaporation from lakes produced a shallow but extremely stable marine layer that suppressed turbulent exchange. Furthermore, the circulation associated with the higher buoyancy of methane-rich atmosphere over the lake was offset by the oppositely directed thermal sea breeze circulation, which muted the mean wind. Two major weaknesses of this previous work were the lack of radiative forcing and the imposition of two dimensionality that limited the full range of dynamical solutions. Based on early theoretical studies, it was thought that magnitude of turbulent energy flux exchanges would be much larger than radiative fluxes, thereby justifying the neglect of radiation, but the two-dimensional simulations indicated that this was not a valid assumption. The dynamical limitations of two-dimensional simulations are well known. Vorticity stretching (i.e., circulation intensification through vertical motion) is not possible and it is also not possible to produce dynamically balanced gradient wind-type circulations. As well, the irregular shape of a realistic coastline cannot be expressed in two dimensions, and these realistic structures will generally induce complex convergence and divergence circulations in the atmosphere. The impact of radiative forcing and the addition of the third dimension on the air-sea exchange are presented.

  7. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    of the drag coefficient wind speed dependence around 65 m/s. This minimum may contribute to the rapid intensification of storms to major tropical cyclones. The subsequent slow increase of the drag coefficient with wind above 65 m/s serves as an obstacle for further intensification of tropical cyclones. Such dependence may explain the observed bi-modal distribution of tropical cyclone intensity. Implementation of the new parameterization into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field. References: Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Farrell, B.F, and P.J. Ioannou, 2008: The stochastic parametric mechanism for growth of wind-driven surface water waves. Journal of Physical Oceanography 38, 862-879. Kelly, R.E., 1965: The stability of an unsteady Kelvin-Helmholtz flow. J. Fluid Mech. 22, 547-560. Koga, M., 1981: Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique, Tellus 33, 552-563. Miles, J.W., 1959: On the generation of surface waves by shear flows, part 3. J. Fluid. Mech. 6, 583-598. Soloviev, A.V. and R. Lukas, 2010: Effects of bubbles and sea spray on air-sea exchanges in hurricane conditions. Boundary-Layer Meteorology 136, 365-376. Soloviev, A., A. Fujimura, and S. Matt, 2012: Air-sea interface in hurricane conditions. J. Geophys. Res. 117, C00J34.

  8. Air-sea interaction and surface flux in non-equilibrium sea-states

    SciTech Connect

    Levy, G.; Ek, M.; Mahrt, L.

    1994-12-31

    The wind forcing over the ocean determines the air-sea exchanges of heat, moisture and momentum which affect and drive the surface wave dynamics and the mixed layer circulation. In turn, it has been shown that wave dynamics and wave age affect ocean surface roughness and air-sea exchange processes so that the wind flow is not always in equilibrium with the ocean surface waves. This effect of wave spectrum on surface roughness has been discussed by many authors; yet it is rarely, if ever, accounted for in flux parameterization in models of the marine atmospheric boundary layer (MABL). Proper representation of these effects in both remote sensors` signal to geophysical-parameter models and in physical models of the ocean and the atmosphere on all scales is essential given the increased reliance of ocean monitoring systems on remote sea-surface sensors and the fundamental sensitivity of physical models to surface fluxes. In this paper the authors present a methodology for modeling these effects from data along with some results from data analyses of observations taken in two field experiments.

  9. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  10. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes.

  11. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    PubMed Central

    Mayol, Eva; Jiménez, María A.; Herndl, Gerhard J.; Duarte, Carlos M.; Arrieta, Jesús M.

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 104 and 1.6 × 107 microbes per m2 of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m2 every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  12. Dimethylsulfide air/sea gas transfer in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    De Bruyn, W. J.; Bell, T. G.; Marandino, C.; Saltzman, E. S.; Miller, S. D.; Law, C. S.; Smith, M. J.

    2012-12-01

    Air/sea dimethylsulfide (DMS) fluxes were measured by eddy correlation over the Southern Ocean (Feb/March 2012) aboard the R/V Tangaroa during the Surface Ocean Aerosol Production (SOAP) study. Atmospheric and seawater DMS were measured by atmospheric pressure chemical ionization mass spectrometry (API-CIMS). Seawater DMS was measured continuously from the ship underway system using a porous membrane equilibrator. The study included measurements inside and outside a dinoflagellate bloom of large areal extent, with seawater DMS levels ranging up to 20 nM. Horizontal wind speeds of up to 20 m/sec were encountered. Gas transfer coefficients were calculated from eddy covariance DMS flux measurements and the air-sea concentration gradient. This study represents a significant addition to the limited database of direct gas transfer measurements in the Southern Ocean.

  13. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  14. Air-sea interaction at the subtropical convergence south of Africa

    SciTech Connect

    Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van

    1994-12-31

    The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBT and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.

  15. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  16. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  17. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  18. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  19. Air-Sea Interactions in CLIMODE: In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Bigorre, S.; Weller, R.

    2006-12-01

    The subtropical mode water of the North Atlantic or Eighteen Degree Water (EDW) is an important component of the oceanic circulation. Its formation and evolution are linked to fundamental aspects of the oceanic climate. A central formation process involves the subduction of surface water through air-sea interactions. Conditions for this are ideal in the Gulf Stream region when warm water interacts with cold air above, sinks and is trapped in the late winter, thereby ventilating the interior. The study program CLIvar MOde Water Dynamic Experiment (CLIMODE), sponsored by NSF, is designed to quantify and understand which processes lead to the formation and dissipation of EDW. A key component to this goal is the knowledge of buoyancy fluxes in the region of EDW formation. The Upper Ocean Processes (UOP) group deployed a 3-m discus buoy anchored in the Gulf Stream (64W, 38N) in November 2005. Oceanographic instruments collect data along the mooring line while meteorological and surface sensors are placed on the buoy and collect data every minute. Since the deployment, hourly averages of the meteorological data were transmitted through the Argos satellite system. These data were plugged in the TOGA-COARE bulk algorithm to estimate air-sea fluxes. These preliminary results are presented, while the full dataset will be analyzed after recovery of the buoy in November 2006. Heat fluxes estimates indicate high heat loss events. In December 2005, regular losses larger than 1000W/m2 occurred. These heat loss events are associated with cold air outbreaks. When the air-sea temperature gradient increases, winds also tend to increase indicating a destabilization of the boundary layer and production of turbulence, enhancing further the heat transfer. As the air-sea temperature gradient decreases in the late winter, heat loss also decreases. The SST signal is seen to modulate the heat fluxes on lower frequencies than air temperature changes. This kind of signal tends therefore to be

  20. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  1. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  2. Air-sea Interaction Influence on the MJO propagation

    NASA Astrophysics Data System (ADS)

    May, P. W.; Chen, S.; Doyle, J.; Flatau, M. K.; Schmidt, J. M.

    2012-12-01

    The Madden-Julian oscillation (MJO) is a multi-scale low frequency mode that influences the intraseasonal variability of weather across the globe. One of the outstanding forecast challenges is the large model errors in the MJO eastward propagation as it transitions from the Indian Ocean to the Maritime Continent. We will discuss the air-sea coupling impact on the MJO propagation using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) running in an extended forecast mode on the second CINDY/DYNAMO MJO. Preliminary comparison with uncoupled forecast indicates the effect of the full ocean coupling is to damp the westward propagating modes and retrograde the eastward propagating mode. The impacts of these changes are examined through the analysis of the model sensitivity and satellite data.

  3. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  4. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L.

    2012-04-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes from the ocean to the atmosphere, the amount of heat available to the tropical cyclone is predicated by the initial depth of the mixed layer and strength of the stratification level that set the level of entrainment mixing at the base of the oceanic mixed layer. For example in oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean (and sea surface temperatures) quickly which reduces the air-sea fluxes. This is an example of negative feedback from the ocean to the atmosphere. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture is available through the sea surface. When tropical cyclones move into favorable or neutral atmospheric conditions (low vertical shear, anticyclonic circulation aloft), tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina and Rita in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. These effects and possible impact on TC deepening and weakening underscores the necessity of having complete 3-D ocean measurements juxtaposed with atmospheric profiler measurements.

  5. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  6. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  7. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  8. Air-sea gas transfer for two gases of different solubility (CO2 and O2)

    NASA Astrophysics Data System (ADS)

    Rutgersson, A.; Andersson, A.; Sahlée, E.

    2016-05-01

    At the land-based marine measuring site Östergarnsholm in the Baltic Sea, the eddy covariance technique was used to measure air-sea fluxes of carbon dioxide and oxygen. High- frequency measurements of oxygen were taken with a Microx TX3 optode using the luminescence lifetime technique. The system gives reasonable oxygen fluxes after the limited frequency response of the sensor was corrected for. For fluxes of carbon dioxide the LICOR-7500 instrument was used. Using flux data to estimate transfer velocities indicates higher transfer velocity for oxygen compared to carbon dioxide for winds above 5 m/s. There are too few data for any extensive conclusions, but a least-square fit of the data gives a cubic wind speed dependence of oxygen corresponding to k 660 = 0.074U 3 10. The more effective transfer for oxygen compared to carbon dioxide above 5 m/s is most likely due to enhanced efficiency of oxygen exchange across the surface. Oxygen has lower solubility compared with carbon dioxide and might be more influenced by near surface processes such as microscale wave breaking or sea spray.

  9. Influence of precipitation on the CO2 air-sea flux, an eddy covariance field study

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alexander; Steinhoff, Tobias; Marandino, Christa

    2016-04-01

    During the SPACES-OASIS cruise (July-August 2015) from Durban, SA to Male, MV direct fluxes of CO2 and dimethyl sulfide (DMS) were measured using the eddy covariance (EC) technique. The cruise covered areas of sources and sinks for atmospheric CO2, where the bulk concentration gradient measurements resembled the Takahashi (2009) climatology. Most of the time, bulk CO2 fluxes (F=k* [cwater-cair]), calculated with the parametrization (k) by Nightingale et al. 2000, were in general agreement with direct EC measurements. However, during heavy rain events, the directly measured CO2 fluxes were 4 times higher than predicted. It has been previously described that rain influences the k parametrization of air-sea gas exchange, but this alone cannot explain the measured discrepancy. There is evidence that freshwater input and a change in the carbonate chemistry causes the water side concentration of ?c=cwater-cair to decrease. Unfortunately this cannot be detected by most bulk measurement systems. Using the flux measurements of an additional gas like DMS, this rain influence can be evaluated as DMS does not react to changes in the carbonate system and has a different solubility. A pending question is if the enhanced flux of CO2 in the ocean is sequestered into the ocean mixed layer and below. This question will be tackled using the GOTM model to understand the implications for the global carbon cycle.

  10. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  11. The air-sea interface and surface stress under tropical cyclones.

    PubMed

    Soloviev, Alexander V; Lukas, Roger; Donelan, Mark A; Haus, Brian K; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms(-1). Around 60 ms(-1), the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  12. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  13. Dynamics and impacts of eddy-driven air-sea interaction in a regional air-sea coupled model for the US West Coast

    NASA Astrophysics Data System (ADS)

    Seo, H.; Miller, A. J.; Norris, J. R.

    2015-12-01

    The US West Coast coastal oceans feature energetic mesoscale eddies. The associated sea surface temperature (SST) and surface current modify the wind stress, leading to significant dynamic feedback on to the air-sea coupled system. Dynamics of the interaction and impacts on the regional coastal climate are however not well understood; this is an important research question for regional modeling studies for the coastal climate. A high-resolution (7km) SCOAR regional air-sea coupled climate model is used to investigate this question by implementing a novel model coupling technique that separates spatial scale of air-sea interaction. It allows the large-scale coupling effect to be preserved while suppressing the eddy-driven coupling via interactive spatial smoothing of SST and surface current. When the eddy-induced surface current is allowed to modify the wind stress, the eddy kinetic energy (EKE) is reduced by 42%, and this is primarily due to enhanced surface eddy drag. In contrast, the eddy-induced SST-wind coupling has little impact on the EKE. Eddies also modify the Ekman pumping; the resultant Ekman pumping velocity due to surface current attenuates the amplitude of eddies while the SST-induced Ekman pumping affects the propagation of eddies. Rectified change in time-mean SST is determined by the altered offshore temperature advection by the mean and eddy currents, but the magnitude of the mean SST change is greater with the eddy-induced current effect. The subsequent influence on the downstream winter rainfall variability on the US West Coast is stronger with the eddy-induced SST effect because of the proximity of SST anomalies to the coasts. The strong dynamical response in the coastal climate system to the eddy-driven air-sea interaction suggests that the fine-scale air-sea coupling should be better represented in the regional climate modeling studies for the coastal environments and the marine weather.

  14. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    .I. and E.C. Kent (2009), A New Air-Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying air-sea flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar Exchanges. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).

  15. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  16. A controlling role for the air-sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer.

    PubMed

    Kim, Michelle J; Farmer, Delphine K; Bertram, Timothy H

    2014-03-18

    The lifetime of reactive nitrogen and the production rate of reactive halogens in the marine boundary layer are strongly impacted by reactions occurring at aqueous interfaces. Despite the potential importance of the air-sea interface in serving as a reactive surface, few direct field observations are available to assess its impact on reactive nitrogen deposition and halogen activation. Here, we present direct measurements of the vertical fluxes of the reactant-product pair N2O5 and ClNO2 to assess the role of the ocean surface in the exchange of reactive nitrogen and halogens. We measure nocturnal N2O5 exchange velocities (Vex = -1.66 ± 0.60 cm s(-1)) that are limited by atmospheric transport of N2O5 to the air-sea interface. Surprisingly, vertical fluxes of ClNO2, the product of N2O5 reactive uptake to concentrated chloride containing surfaces, display net deposition, suggesting that elevated ClNO2 mixing ratios found in the marine boundary layer are sustained primarily by N2O5 reactions with aerosol particles. Comparison of measured deposition rates and in situ observations of N2O5 reactive uptake to aerosol particles indicates that N2O5 deposition to the ocean surface accounts for between 26% and 42% of the total loss rate. The combination of large Vex, N2O5 and net deposition of ClNO2 acts to limit NOx recycling rates and the production of Cl atoms by shortening the nocturnal lifetime of N2O5. These results indicate that air-sea exchange processes account for as much as 15% of nocturnal NOx removal in polluted coastal regions and can serve to reduce ClNO2 concentrations at sunrise by over 20%. PMID:24591613

  17. A controlling role for the air-sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer.

    PubMed

    Kim, Michelle J; Farmer, Delphine K; Bertram, Timothy H

    2014-03-18

    The lifetime of reactive nitrogen and the production rate of reactive halogens in the marine boundary layer are strongly impacted by reactions occurring at aqueous interfaces. Despite the potential importance of the air-sea interface in serving as a reactive surface, few direct field observations are available to assess its impact on reactive nitrogen deposition and halogen activation. Here, we present direct measurements of the vertical fluxes of the reactant-product pair N2O5 and ClNO2 to assess the role of the ocean surface in the exchange of reactive nitrogen and halogens. We measure nocturnal N2O5 exchange velocities (Vex = -1.66 ± 0.60 cm s(-1)) that are limited by atmospheric transport of N2O5 to the air-sea interface. Surprisingly, vertical fluxes of ClNO2, the product of N2O5 reactive uptake to concentrated chloride containing surfaces, display net deposition, suggesting that elevated ClNO2 mixing ratios found in the marine boundary layer are sustained primarily by N2O5 reactions with aerosol particles. Comparison of measured deposition rates and in situ observations of N2O5 reactive uptake to aerosol particles indicates that N2O5 deposition to the ocean surface accounts for between 26% and 42% of the total loss rate. The combination of large Vex, N2O5 and net deposition of ClNO2 acts to limit NOx recycling rates and the production of Cl atoms by shortening the nocturnal lifetime of N2O5. These results indicate that air-sea exchange processes account for as much as 15% of nocturnal NOx removal in polluted coastal regions and can serve to reduce ClNO2 concentrations at sunrise by over 20%.

  18. Coupled Air-Sea Observations and Modeling for Better Understanding Tropical Cyclone Prediction and Predictability

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2014-12-01

    A systematic observational and modeling study is conducted to better understand the physical processes controlling air-sea interaction and their impact on tropical cyclone (TC) prediction and predictability using a fully coupled atmosphere-wave-ocean modeling system developed at the University of Miami and observations from field campaigns. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling system that is flexible to use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for ensemble forecasts that can be used for coupled atmosphere-ocean data assimilation and assessment of uncertainties in coupled model predictions. The coupled modeling system has been evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, ocean drifters and floats) collected in recent field campaigns in the Gulf of Mexico and TCs in the Atlantic and Pacific basins. This talk will provide 1) an overview of the unified air-sea interface model, 2) fully coupled atmosphere-wave-ocean model predictions of TCs and evaluation with coupled air-sea observations, and 3) results from high-resolution (1.3 km grid resolution) ensemble experiments using a stochastic kinetic energy backscatter (SKEB) perturbation method to assess the predictability and uncertainty in TC predictions.

  19. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  20. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  1. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    NASA Astrophysics Data System (ADS)

    LéVy, M.; Lengaigne, M.; Bopp, L.; Vincent, E. M.; Madec, G.; Ethé, C.; Kumar, D.; Sarma, V. V. S. S.

    2012-06-01

    Previous case studies have illustrated the strong local influence of tropical cyclones (TCs) on CO2 air-sea flux ? suggesting that they can significantly contribute to the global ? In this study, we use a state-of-the art global ocean biochemical model driven by TCs wind forcing derived from a historical TCs database, allowing to sample the ? response under 1663 TCs. Our results evidence a very weak contribution of TCs to global ? one or two order of magnitude smaller than previous estimates extrapolated from case studies. This result arises from several competing effects involved in the ? response to TCs, not accounted for in previous studies. While previous estimates have hypothesized the ocean to be systematically oversaturated in CO2 under TCs, our results reveal that a similar proportion of TCs occur over oversaturated regions (i.e. the North Atlantic, Northeast Pacific and the Arabian Sea) and undersaturated regions (i.e. Westernmost North Pacific, South Indian and Pacific Ocean). Consequently, by increasing the gas exchange coefficient, TCs can generate either instantaneous CO2 flux directed from the ocean to the atmosphere (efflux) or the opposite (influx), depending on the CO2 conditions at the time of the TC passage. A large portion of TCs also occurs over regions where the ocean and the atmosphere are in near equilibrium, resulting in very weak instantaneous fluxes. Previous estimates also did not account for any asynchronous effect of TCs on ? during several weeks after the storm, oceanic pCO2 is reduced in response to vertical mixing, which systematically causes an influx anomaly. This implies that, contrary to previous estimates, TCs weakly affect the CO2 efflux when they blow over supersaturated areas because the instantaneous storm wind effect and post-storm mixing effect oppose with each other. In contrast, TCs increase the CO2 influx in undersaturated conditions because the two effects add up. These compensating effects result in a very weak

  2. Decadal trends in air-sea CO2 exchange in the Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Arrigo, Kevin R.

    2016-05-01

    Highly productive Antarctic shelf systems, like the Ross Sea, play important roles in regional carbon budgets, but the drivers of local variations are poorly quantified. We assess the variability in the Ross Sea carbon cycle using a regional physical-biogeochemical model. Regionally, total partial pressure of CO2 (pCO2) increases are largely controlled by the biological pump and broadly similar to those in the offshore Southern Ocean. However, this masks substantial local variability within the Ross Sea, where interannual fluctuations in total pCO2 are driven by the biological pump and alkalinity, whereas those for anthropogenic pCO2 are related to physical processes. Overall, the high degree of spatial variability in the Ross Sea carbon cycle causes extremes in aragonite saturation that can be as large as long-term trends. Therefore, Antarctic shelf polynya systems like the Ross Sea will be strongly affected by local processes in addition to larger-scale phenomena.

  3. OZONE DEPLETION AND THE AIR-SEA EXCHANGE OF GREENHOUSE AND CHEMICALLY REACTIVE TRACE GASES

    EPA Science Inventory

    One of the most important aspects of global change is that of stratospheric ozone depletion and the resulting increase in UV radiation reaching the surface of the Earth. Some 70% of the Earth surface is covered by water containing an extremely complicated milieu of organic and in...

  4. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  5. The air-sea transformation and diapycnal overturning circulation within the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Isachsen, P. E.; Nøst, O. A.

    2012-04-01

    Air-sea flux climatologies and reanalyzes show that the bulk of the oceanic heat and buoyancy loss over the Nordic Seas takes place over interior regions not easily accessible by the time-mean large-scale currents. Eddy transport of heat and buoyancy, from the boundary currents and into the deep basins, is thought to be a key mechanism. Here we use gridded observations, theory and a modern parametrization of eddy transport to quantify the buoyancy budget of this region. The calculations confirm that mean currents are unable to explain the air-sea transformation that takes place over the interior basins of the Nordic Seas and that eddy transport instead dominates. The parametrization of eddy transport also suggests a significant overturning cell between the eastern and western parts of the Nordic Seas. This cell is, however, unaccounted for in the remaining data sets studied here.

  6. Simulation-based study of air-sea momentum fluxes nearshore

    NASA Astrophysics Data System (ADS)

    Hao, Xuanting; Shen, Lian

    2015-11-01

    Momentum fluxes at sea surface are crucial to air-sea interactions. In nearshore regions, the bathymetry variation has a significant impact on the surface wave field and complicates the momentum fluxes at water surface. In this study, we extend a high order spectral method to address wave-bottom interactions and wave modeling. From the wave simulation data, we use the Hilbert-Huang transform to quantify the properties of the wave spectrum, based on which the wave field is reconstructed for the detailed mechanistic study of wind-wave interactions using large-eddy simulation for the wind field. The roughness of the water surface is quantified using a dynamic model for the effects of subgrid-scale waves. The results show that the waves are sensitive to the water depth variation. Associated with the changes in the wave field, the momentum fluxes at the air-sea interface increase in shallow regions.

  7. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  8. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  9. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  10. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  11. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment

    SciTech Connect

    Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M. ); Marullo, S. ); Boehm, E. )

    1993-02-15

    Measurements of radiative fluxes were carried out in the Tyrrhenian Sea in fall and winter as part of the Tyrrhenian Eddy Multi-Platform Observations Experiment (TEMPO). These measurements have supplied the first experimental radiation data set over this basin. Seasonal variation of the different components of the budget are investigated. Since data collection was carried out in an area in which a quasi-permanent eddy is present, the behavior of the radiation parameters across the frontal zone is analyzed. The most interesting result of the air-sea interaction in proximity of a marine front consists in the covariation of sea surface temperature and downwelling long-wave radiation. Contemporaneous satellite data show a clear correlation between sea surface structure and horizontal distribution of columnar atmospheric water content. Therefore this inhomogeneity clearly is one of the main factors responsible for the variation of the downwelling radiation across the front. A comparison between experimental data and results of some of the most widely used bulk formulae is carried out for both short- and long-wave radiation. The mean differnece between measured and empirical solar radiation values is less than 3%, while in the case of the net long-wave radiation budge, poor agreement is found. Indeed, a 30 W/m[sup 2] bias results from the comparison. This discrepancy is consistent with the imbalance between previous bulk calculations of total heat budget at the surface and corresponding hydrographical observations of heat exchange at Gibraltar. 30 refs., 6 figs., 9 tabs.

  12. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  13. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  14. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  15. Downscaling tropical cyclone activity using regional models: Impact of air-sea coupling on the frequency and intensity of Atlantic hurricanes Authors: Jen-shan Hsieh, Mingkui Li, R. Saravanan, and Ping Chang Texas A & M University, College Station, TX

    NASA Astrophysics Data System (ADS)

    Hsieh, J.; Li, M.; Saravanan, R.; Chang, P.

    2009-12-01

    Tropical cyclones are an important component of climate variability in the tropics and the subtropics. Unfortunately, these cyclones are poorly represented in coarse-resolution global general circulation models. Fine-resolution regional atmospheric models can be used to better simulate the properties of tropical cyclones, typically using specified sea surface temperature as the lower boundary condition. Such a boundary condition cannot simulate the cold wake associated with a tropical cyclone, which arises due to the enhanced vertical mixing and entrainment below the oceanic mixed layer. This cold wake has potential implications for the intensity of the tropical cyclone itself, because it can act as a negative air-sea feedback and lead to a weakening of the storm. Therefore, proper representation of this air-sea feedback is important when assessing the sensitivity of tropical cyclone frequency and intensity to climate change. We address this issue using a coupled regional climate model, where a regional atmospheric model is coupled to a regional ocean model. The model domain encompasses the Atlantic Ocean and adjoining continental regions. The atmospheric component is the NCAR WRF model running at 30 km horizontal resolution. The oceanic component is the Regional Ocean Modeling System (ROMS) running at 0.25 degree resolution. The atmospheric and oceanic models exchange fluxes of momentum, heat, and freshwater. The control coupled integration using this model simulates fairly realistic tropical variability, including a number of hurricane-like tropical vortices. To assess the sensitivity of tropical cyclone activity to air-sea coupling, we have also carried out a companion uncoupled integration, where the time-evolving sea surface temperature from the control coupled integration is used as the lower boundary condition for the uncoupled atmospheric model. We analyze the frequency and intensity of the tropical cyclones, as well as the associated precipitation, in both

  16. Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model

    NASA Astrophysics Data System (ADS)

    Duan, Yihong; Wu, Rongsheng; Yu, Runling; Liang, Xudong

    2013-10-01

    A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model. Four numerical simulations of tropical cyclone development have been conducted using different configurations of the coupled model on the f-plane. When coupled processes are excluded, a weak initial vortex spins up into a mature symmetric TC that strongly resembles those observed and simulated in prior research. The coupled model reproduces the reduction in sea temperature induced by the TC reasonably well, as well as changes in the minimum central pressure of the TC that result from negative atmosphere-ocean feedbacks. Asymmetric structures are successfully simulated under conditions of uniform environmental flow. The coupled ocean-atmosphere model is suitable for simulating air-sea interactions under TC conditions. The effects of the ocean on the track of the TC and changes in its intensity under uniform environmental flow are also investigated. TC intensity responds nonlinearly to sea surface temperature (SST). The TC intensification rate becomes smaller once the SST exceeds a certain threshold. Oceanic stratification also influences TC intensity, with stronger stratification responsible for a larger decrease in intensity. The value of oceanic enthalpy is small when the ocean is weakly stratified and large when the ocean is strongly stratified, demonstrating that the oceanic influence on TC intensity results not only from SST distributions but also from stratification. Air-sea interaction has only a slight influence on TC movement in this model.

  17. Estimating monthly averaged air-sea transfers of heat and momentum using the bulk aerodynamic method

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Reynolds, R. W.

    1981-01-01

    Air-sea transfers of sensible heat, latent heat and momentum are computed from 25 years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that monthly averaged wind speeds, temperatures and humidities can be used to estimate the monthly averaged sensible and latent heat fluxes from the bulk aerodynamic equations to within a relative error of approximately 10%. The estimates of monthly averaged wind stress under the assumption of neutral stability are shown to be within approximately 5% of the monthly averaged nonneutral values.

  18. Using eddy covariance to estimate air-sea gas transfer velocity for oxygen

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas; Rutgersson, Anna; Sahlée, Erik

    2016-07-01

    Air-sea gas transfer velocity for O2 is calculated using directly measured fluxes with the eddy covariance technique. It is a direct method and is frequently used to determine fluxes of heat, humidity, and CO2, but has not previously been used to estimate transfer velocities for O2, using atmospheric eddy covariance data. The measured O2 fluxes are upward directed, in agreement with the measured air-sea gradient of the O2 concentration, and opposite to the direction of the simultaneously measured CO2 fluxes. The transfer velocities estimated from measurements are compared with prominent wind speed parameterizations of the transfer velocity for CO2 and O2, previously established from various measurement techniques. Our result indicates stronger wind speed dependence for the transfer velocity of O2 compared to CO2 starting at intermediate wind speeds. This stronger wind speed dependence appears to coincide with the onset of whitecap formation in the flux footprint and the strong curvature of a cubic wind-dependent function for the transfer velocity provides the best fit to the data. Additional data using the measured O2 flux and an indirect method (based on the Photosynthetic Quotient) to estimate oxygen concentration in water, support the stronger wind dependence for the transfer velocity of O2 compared to CO2.

  19. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2004-01-01

    The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.

  20. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  1. Transition from downward to upward air-sea momentum transfer in swell-dominated light wind condition

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Högström, Ulf; Rutgersson, Anna

    2016-04-01

    Atmospheric and surface wave data from two oceanic experiments carried out on FLIP and ASIS platforms are analysed in order to identify swell-related effects on the momentum exchange during low wind speed conditions. The RED experiment was carried out on board an R/P Floating Instrument Platform, FLIP, anchored north east of the Hawaiian island Oahu with sonic anemometers at four levels: 5.1 m, 6.9 m, 9.9 m and 13.8 m respectively. The meteorological conditions were characterized by north- easterly trade wind and with swell present during most of the time. During swell the momentum flux was directed downwards meaning a positive contribution to the stress. The FETCH experiment was carried out in the Gulf of Lion in the north-western Mediterranean Sea. On the ASIS (air-sea interaction spar) buoy a sonic anemometer was mounted at 7 m above the mean surface level. During strong swell conditions the momentum flux was directed upwards meaning a negative contribution to the stress in this case. The downward momentum flux is shown to be a function of the orbital circulation while the upward momentum flux is a function of wave height. The dividing wind speed is found to be 3.5 m/s Conclusion: Wind speed > 3.5 m/s creates waves (ripples) and thus roughness. Combination of orbital motion and asymmetric structure of ripples lead to flow perturbation and downward transport of negative momentum. With low wind speed (no ripples but viscosity) circulations will form above the crest and the trough with opposite direction which will cause a pressure drop in the vertical direction and an upward momentum transport from the water to the air.

  2. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  3. Large Temporal Variations in Air-Sea CO2 Flux off the Coast of Georgia

    NASA Astrophysics Data System (ADS)

    Caves, J. K.; Sabine, C.; Cai, W.; Alin, S.

    2008-12-01

    Though the inner shelf is a small portion of global ocean area, its air-sea CO2 flux is disproportionately high. Due to its tight links with both terrestrial and oceanic systems, the inner shelf is likely to experience significant spatial and temporal variability. We measured the fugacity of CO2 (fCO2) continuously from July 2006 to June 2008 on a moored platform in Gray's Reef National Marine Sanctuary on Georgia's inner shelf. The long-term, high temporal resolution data has allowed us to begin to measure interannual variations in CO2 flux along the inner Georgia shelf. From July 2006-June 2007, the inner Georgia shelf was a CO2 sink (-3.26mmol/m2/day), while during following year, the shelf switched to being a source (2.26mmol/m2/day). Choice of wind data (satellite or buoy-derived) significantly alters these estimates of annual fluxes. QuikSCAT satellite wind data indicate a much larger sink (- 6.13mmol/m2/day) during 2006-2007, and a non-existent source (0.02mmol/m2/day) during 2007- 2008. An earlier, high-resolution spatial study from January 2005-May 2006 found that the inner shelf within the South Atlantic Bight may have been a source of 0.65 to 1.20mmol/m2/day, suggesting that the inner shelf may experience dramatic swings in CO2 flux. Though sea-surface temperature (SST) is the largest influence on surface water fCO2, average monthly SST varied little between both years; instead, possible explanations for the large variation in interannual CO2 flux include decreased biological production and increased river flow (and, hence carbon export) during 2007-2008. This is the first evidence of large-scale, annual switches in air-sea CO2 flux within an inner shelf, and it holds significant implications for global estimates of air-sea CO2 flux.

  4. A numerical coupled model for studying air-sea-wave interaction

    NASA Astrophysics Data System (ADS)

    Ly, Le Ngoc

    1995-10-01

    A numerical coupled model of air-sea-wave interaction is developed to study the influence of ocean wind waves on dynamical, turbulent structures of the air-sea system and their impact on coupled modeling. The model equations for both atmospheric and oceanic boundary layers include equations for: (1) momentum, (2) a k-ɛ turbulence scheme, and (3) stratification in the atmospheric and oceanic boundary layers. The model equations are written in the same form for both the atmosphere and ocean. In this model, wind waves are considered as another source of turbulent energy in the upper layer of the ocean besides turbulent energy from shear production. The dissipation ɛ at the ocean surface is written as a linear combination of terms representing dissipation from mean flow and breaking waves. The ɛ from breaking waves is estimated by using similarity theory and observed data. It is written in terms of wave parameters such as wave phase speed, height, and length, which are then expressed in terms of friction velocity. Numerical experiments are designed for various geostrophic winds, wave heights, and wave ages, to study the influence of waves on the air-sea system. The numerical simulations show that the vertical profiles of ɛ in the atmospheric and oceanic boundary layers (AOBL) are similar. The magnitudes of ɛ in the oceanic surface zone are much larger than those in the atmospheric surface zone and in the interior of the oceanic boundary layer (OBL). The model predicts ɛ distributions with a surface zone of large dissipation which was not expected from similarity scaling based on observed wind stress and surface buoyancy. The simulations also show that waves have a strong influence on eddy viscosity coefficients (EVC) and momentum fluxes, and have a dominated effect on the component of fluxes in the direction of the wind. The depth of large changes in flux magnitudes and EVC in the ocean can reach to 10-20 m. The simulations of surface drift currents confirm that

  5. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  6. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  7. Compact optical system for imaging underwater and through the air/sea interface

    NASA Astrophysics Data System (ADS)

    Alley, Derek; Mullen, Linda; Laux, Alan

    2012-06-01

    Typical line-of-sight (LOS)/monostatic optical imaging systems include a laser source and receiver that are co-located on the same platform. The performance of such systems is deteriorated in turbid ocean water due to the large amount of light that is scattered on the path to and from an object of interest. Imagery collected with the LOS/monostatic system through the air/sea interface is also distorted due to wave focusing/defocusing effects. The approach of this project is to investigate an alternate, non-line-of-sight (NLOS)/bistatic approach that offers some advantages over these traditional LOS/monostatic imaging techniques. In this NLOS system the laser and receiver are located on separate platforms with the laser located closer to the object of interest. As the laser sequentially scans the underwater object, a time-varying intensity signal corresponding to reflectivity changes in the object is detected by the distant receiver. A modulated laser illuminator is used to communicate information about the scan to the distant receiver so it can recreate the image with the collected scattered light. This NLOS/bistatic configuration also enables one to view an underwater target through the air-sea interface (transmitter below the surface and receiver above the surface) without the distortions experienced with the LOS/monostatic sensor. In this paper, we will review the results of recent laboratory water tank experiments where an underwater object was imaged with the receiver both below and above the sea surface.

  8. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  9. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  10. Extreme subseasonal tropical air-sea interactions and their relation to ocean thermal stratification

    NASA Astrophysics Data System (ADS)

    Lloyd, Ian D.

    2011-12-01

    This thesis is concerned with extreme, rapid timescale tropical air-sea interactions and the influence of large-scale oceanic conditions on these interactions. The focus is on two types of extreme events: equatorial Indian Ocean cooling events and tropical cyclones. Cooling events occur on timescales of a few days to several weeks, in which atmospheric forcing causes Sea Surface Temperature (SST) cooling in the range of 1--5K, in both observational and coupled climate models. Cooling events are driven by changes in air-sea enthalpy fluxes and Ekman upwelling. Because the cooling due to Ekman upwelling depends on thermocline depth, large-scale oceanic conditions influence SST cooling. La Nina and negative Indian Ocean Dipole conditions are conducive to a shallower southwest equatorial thermocline, resulting in greater intraseasonal SST cooling during these interannual events; El Nino and positive Indian Ocean Dipole conditions lead to a deeper thermocline and reduced SST cooling. Results indicate that cooling events are related to the eastward propagation of convective patterns that resemble the Madden-Julian Oscillation. For tropical cyclones, the response of intensity to cyclone-induced SST cooling was explored over 10-years of observational data. For slow moving (V/ f < 100km) tropical cyclones, it was found that the SST cooling response increases along with storm intensity from category 0--2 on the Saffir-Simpson scale. However, from category 2--5 the magnitude of SST cooling decreases. This result confirms model predictions indicating a prominent role for oceanic feedback controlling tropical cyclone intensity. Thus, only storms that develop in regions containing deep mixed layer and thermocline can achieve high intensity, and entrainment cooling is weaker for these storms. The SST-intensity response in observations was compared to the GFDL Hurricane Forecast Model (GHM) for the periods 2005 and 2006--2009. The GHM was modified in 2006 to include a

  11. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  12. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  13. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  14. Air-Sea Methane Flux after the Deepwater Horizon Oil Leak

    NASA Astrophysics Data System (ADS)

    McAdoo, J.; Sweeney, C.; Kiene, R. P.; McGillis, W. R.

    2012-12-01

    One of the key questions associated with the Deepwater Horizon's (DWH) oil leak involves understanding how much of its methane is still entrained in deep waters. Analysis of air-sea fluxes reveals a slight decrease in average aqueous CH4 from 3.3 nM in June to 3.1 and 2.8 nM in August and September, respectively. The flux estimate showed higher methane flux to the atmosphere after the blowout was capped (3.8 μmol m-2 d-1 in August) compared to 0.024 μmol m-2 d-1 during the leak. Almost all observations were within the range of historical levels. The exception was one large peak to the southwest of the wellhead, but its contribution to atmospheric methane is found to be insignificant compared to the total amount of methane released by the leak. This result supports findings that DWH methane remained entrained in the deep waters and consequently is available for biological degradation and threatens to deplete oxygen, adding further stress to an area that already suffers from anoxic-induced dead zones.

  15. Distinctive precursory air-sea signals between regular and super El Niños

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Behera, Swadhin K.; Doi, Takeshi

    2016-08-01

    Statistically different precursory air-sea signals between a super and a regular El Niño group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Niño events during 1958-2008 are first separated into two groups: a super El Niño group (S-group) and a regular El Niño group (R-group). Composite analysis shows that a significantly larger SST anomaly (SSTA) tendency appears in S-group than in R-group during the onset phase [April-May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly ( u'). This is attributed to the difference in the thermocline depth anomaly ( D') over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D' is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.

  16. Application of the Hilbert-Huang Transform to the Estimation of Air-Sea Turbulent Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Juanjuan; Song, Jinbao; Huang, Yansong; Fan, Conghui

    2013-06-01

    The Hilbert-Huang transform (HHT) is applied to analyzing the turbulent time series obtained within the atmospheric boundary layer over the ocean. A method based on the HHT is introduced to reduce the influence of non-turbulent motions on the eddy-covariance based flux by removing non-turbulent modes from the time series. The scale dependence of the flux is examined and a gap mode is identified to distinguish between turbulent modes and non-turbulent modes. To examine the effectiveness of this method it is compared with three conventional methods (block average, moving-window average, and multi-resolution decomposition). The data used are from three sonic anemometers installed on a moored buoy at about 6, 4 and 2.7 m height above the sea surface. For each method, along-wind and cross-wind momentum fluxes and sensible heat fluxes at the three heights are calculated. According to the assumption of a constant-flux layer, there should be no significant difference between the fluxes at the three heights. The results show that the fluxes calculated using HHT exhibit a smaller difference and higher correlation than the other methods. These results support the successful application of HHT to the estimation of air-sea turbulent fluxes.

  17. A Unified Air-Sea Visualization System: Survey on Gridding Structures

    NASA Technical Reports Server (NTRS)

    Anand, Harsh; Moorhead, Robert

    1995-01-01

    The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.

  18. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  19. Impacts of air-sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example

    NASA Astrophysics Data System (ADS)

    He, J.; He, R.; Zhang, Y.

    2015-11-01

    Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere-ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results show that different cumulus parameterization schemes can result in an 85 m difference in the domain averaged planetary boundary layer height (PBLH), and 4.8 mm difference in the domain averaged daily precipitation. Comparing to WRF/Chem without air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface temperature of 0.1 and 1.0 °C, respectively. The simulated differences in the surface concentrations of ozone (O3) and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 μg m-3, respectively. The largest changes simulated from WRF/Chem-ROMS in surface concentrations of O3 and particulate matter with diameter less than and equal to 2.5 μm (PM2.5) occur not only along coast and remote ocean, but also over some inland areas. Extensive validations against observations, show that WRF/Chem-ROMS improves the predictions of most cloud and radiative variables, and surface concentrations of some chemical species such as sulfur dioxide, nitric acid, maximum 1 h and 8 h O3, sulfate, ammonium, nitrate, and particulate matter with diameter less than and equal to 10 μm (PM10). This illustrates the benefits and needs of using coupled atmospheric-ocean model with advanced model representations of air-sea interactions for

  20. On the role of extratropical air-sea interaction in the persistence of the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Xiao, Bei; Zhang, Yang; Yang, Xiu-Qun; Nie, Yu

    2016-08-01

    Using the daily atmosphere and ocean reanalysis data, this study highlights the role of extratropical air-sea interaction in the variability of the Southern Annular Mode (SAM). Our analysis shows that the SAM-induced meridional dipolar sea surface temperature (SST) anomalies, through surface heat fluxes, can maintain persistent lower tropospheric temperature anomalies, which further results in anomalous eddy momentum forcing enhancing the persistence of the SAM. With the Finite Amplitude Wave Activity diagnosis, we illustrate that response of the eddy momentum forcing to SST anomalies can be attributed to changes in both baroclinic processes as baroclinic eddy generation and barotropic processes as wave breaking thus resultant diffusive eddy mixing, with the former confined at high latitudes and the latter strongest at midlatitudes. Spectral analysis further suggests that the above air-sea interactions are important for bimonthly and longer time scale SAM variations. The dipolar SST pattern may be an indicator for predicting subseasonal and interseasonal variabilities of the SAM.

  1. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  2. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  3. THE ATMOSPHERIC CYCLING AND AIR-SEA EXCHANGE OF MERCURY SPECIES IN THE SOUTH AND EQUATORIAL ATLANTIC OCEAN. (R829796)

    EPA Science Inventory


    Measurements of gas-, particle- and precipitation-phases of atmospheric mercury
    (Hg) were made in the South and equatorial Atlantic Ocean as part of the 1996
    IOC Trace Metal Baseline Study (Montevideo, Uruguay to Barbados). Total gaseous
    mercury (TGM) ranged from ...

  4. Air-sea carbon dioxide exchange in the North Pacific subtropical Gyre: Implications for the global carbon budget

    SciTech Connect

    Winn, C.D.; Mackenzie, F.T.; Carrillo, C.J.; Karl, D.M. ); Sabine, C.L. )

    1994-06-01

    After 20 years of investigation the scientific community has been unable to resolve the magnitudes and direction of carbon dioxide fluxes involving oceans and terrestrial biomass. Studies of the authors over the last four years measuring inorganic carbon parameters suggest that the North Pacific Subtropical Cyre (NPSG) is a sink for atmospheric carbon dioxide. This paper presents a mechanism by which the NPSG can be a net sink for atmospheric carbon dioxide and the magnitude of this sink is calculated as approximately 0.2 Gt C yr. The authors note that this sink is still approximately an order of magnitude smaller than that needed to balance the global carbon budget. 41 refs., 3 figs., 1 tab.

  5. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  6. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  7. Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air-sea flux

    NASA Astrophysics Data System (ADS)

    Walker, Carolyn F.; Harvey, Mike J.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Marriner, Andrew S.; McGregor, John A.; Law, Cliff S.

    2016-09-01

    The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air-sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF > 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air-sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air-sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.

  8. Estimating monthly-averaged air-sea transfers of heat and momentum using the bulk aerodynamic method

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Reynolds, R. W.

    1980-01-01

    Air-sea transfers of sensible heat, latent heat, and momentum are computed from twenty-five years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that monthly-averaged wind speeds, temperatures, and humidities can be used to estimate the monthly-averaged sensible and latent heat fluxes computed from the bulk aerodynamic equations to within a relative error of approximately 10%. The estimate of monthly-averaged wind stress under the assumption of neutral stability are shown to be within approximately 5% of the monthly-averaged non-neutral values.

  9. Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Natalia, Tilinina

    2014-05-01

    provide locally high winds and air-sea temperature gradients. For this purpose we linked characteristics of cyclone activity over the midlatitudinal oceans with the extreme surface turbulent heat fluxes. Cyclone tracks and parameters of cyclone life cycle (deepening rates, propagation velocities, life time and clustering) were derived from the same reanalyses using state of the art numerical tracking algorithm. The main questions addressed in this study are (i) through which mechanisms extreme surface fluxes are associated with cyclone activity? and (ii) which types of cyclones are responsible for forming extreme turbulent fluxes? Our analysis shows that extreme surface fluxes are typically associated not with cyclones themselves but rather with cyclone-anticyclone interaction zones. This implies that North Atlantic and North Pacific series of intense cyclones do not result in the anomalous surface fluxes. Alternatively, extreme fluxes are most frequently associated with blocking situations, particularly with the intensification of the Siberian and North American Anticyclones providing cold-air outbreaks over WBC regions.

  10. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from

  11. In situ evaluation of air-sea CO2 gas transfer velocity in an inner estuary using eddy covariance - with a special focus on the importance of using reliable CO2-fluxes

    NASA Astrophysics Data System (ADS)

    Jørgensen, E. T.; Sørensen, L. L.; Jensen, B.; Sejr, M. K.

    2012-04-01

    The air-sea exchange of CO2 or CO2 flux is driven by the difference in the partial pressure of CO2 in the water and the atmosphere (ΔpCO2), the solubility of CO2 (K0) and the gas transfer velocity (k) (Wanninkhof et al., 2009;Weiss, 1974) . ΔpCO2 and K0 are determined with relatively high precision and it is estimated that the biggest uncertainty when modelling the air-sea flux is the parameterization of k. As an example; the estimated global air-sea flux increases by 70 % when using the parameterization by Wanninkhof and McGillis (1999) instead of Wanninkhof (1992) (Rutgersson et al., 2008). In coastal areas the uncertainty is even higher and only few studies have focused on determining transfer velocity for the coastal waters and even fewer on estuaries (Borges et al., 2004;Rutgersson et al., 2008). The transfer velocity (k600) of CO2 in the inner estuary of Roskilde Fjord, Denmark was investigated using eddy covariance CO2 fluxes (ECM) and directly measured ΔpCO2 during May and June 2010. The data was strictly sorted to heighten the certainty of the results and the outcome was; DS1; using only ECM, and DS2; including the inertial dissipation method (IDM). The inner part of Roskilde Fjord showed to be a very biological active CO2 sink and preliminary results showed that the average k600 was more than 10 times higher than transfer velocities from similar studies of other coastal areas. The much higher transfer velocities were estimated to be caused by the greater fetch and shallower water in Roskilde Fjord, which indicated that turbulence in both air and water influence k600. The wind speed parameterization of k600 using DS1 showed some scatter but when including IDM the r2 of DS2 reached 0.93 with an exponential parameterization, where U10 was based on the Businger-Dyer relationships using friction velocity and atmospheric stability. This indicates that some of the uncertainties coupled with CO2 fluxes calculated by the ECM are removed when including the IDM.

  12. Guidelines for the air-sea interaction special study: An element of the NASA climate research program, JPL/SIO workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.

  13. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  14. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  15. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N

    NASA Astrophysics Data System (ADS)

    Kelley, Cheryl A.; Jeffrey, Wade H.

    2002-07-01

    Water column samples from a transect cruise from southern Chile through the Panama Canal to the Gulf of Mexico were used to determine dissolved methane depth profiles and air-sea methane fluxes. In the Gulf of Mexico, surface concentrations were approximately 40% supersaturated with respect to the atmosphere, whereas near the equator and in the Peru upwelling region, 10-20% supersaturation generally occurred. These saturation ratios translate into an average flux of methane from the sea surface to the atmosphere of 0.38 μmol m-2 d-1. In addition, water column profiles of dissolved methane indicate that subsurface maxima in dissolved methane concentrations are a consistent feature of the open ocean, except near the equator. At the equator, the subsurface peak at the base of the mixed layer may be bowed down by the Equatorial Undercurrent. The highest methane concentration (12 nM) was observed in the Peru upwelling region.

  16. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  17. Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California, México

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, L.; Ocampo-Torres, F. J.

    2016-05-01

    The influence of wave-associated parameters controlling turbulent CO2 fluxes through the air-sea water interface is evaluated in a coastal region. The study area, located within the Todos Santos Bay, Baja California, México, was found to be a weak sink of CO2 with a mean flux of -1.32 µmol m-2s-1. The low correlation found between flux and wind speed (r = 0.09), suggests that the influence of other forcing mechanisms, besides wind, is important for gas transfer modulation through the sea surface, at least for the conditions found in this study. In addition, the results suggest that for short periods where an intensification of the wave conditions occurs, a CO2 flux response increases the transport of gas to the ocean.

  18. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  19. Reconstruction Of Air-Sea Fluxes And Meridional Transport Rates Of Anthropogenic Carbon With An Ensemble Kalman Filter Data Assimilation

    NASA Astrophysics Data System (ADS)

    Gerber, M.; Joos, F.; Vazquez Rodriguez, M.

    2007-12-01

    Regional air-sea fluxes and meridional transport of anthropogenic carbon are inferred by assimilating anthropogenic carbon concentrations within the ocean from different data-based reconstructions. An inverse, Ensemble Kalman Filter method with the Bern3D ocean model is applied. The Bern3D model (Müller et al., 2006) is a computationally-efficient, 3-dimensional coarse resolution ocean model. The Ensemble Kalman Filter (Evenson, 2003) is suited for the assimilation of spatially and temporally varying data into a range of models, for model tuning or for model initialization. Regional fluxes through the air-sea interface and meridional transport rates in the ocean are determined by minimizing deviations between the distributions of anthropogenic carbon from the GLODAP database (Key et al., 2004) and from the Bern3D ocean model in the Ensemble Kalman Filtering optimzation. The resulting anthropogenic carbon fluxes are in agreement with those from another ocean inversion study using the same GLODAP data (Mikaloff Fletcher et al., 2006). Transport uncertainties are addressed by utilizing different configuration of the Bern3D model. The inferred transport uncertainties are comparable in magnitude to the uncertainties obtained by Mikaloff Fletcher et al. The fields of anthropogenic carbon reconstructed with six different reconstruction methods: CFC-shortcut (Thomas et al., 2001), C-star (Gruber et al. 1996), IPSL (Lo Monaco et al., 2005), PHI-CT (Vazquez Rodriguez et al, submitted), TrOCA (Touratier et al., 2004), and TTD (Waugh et al., 2006) from four sections in the Atlantic are assimilated individually to investigate the influence of data uncertainties on the inferred fluxes. Deviations in the inferred fluxes from the different reconstruction methods are comparable or even larger than uncertainties arising from model transport uncertainties. For example, anthropogenic carbon uptake is more than twice as large for the IPSL reconstruction than for the PHI

  20. An analysis of observed large air-sea temperature differences in tropical cyclones

    SciTech Connect

    Kepert, J.D.

    1994-12-31

    At high wind speeds over the sea, the lower part of the atmospheric boundary layer becomes filled with spray. In recent years, much attention has been devoted to the question of whether the evaporation from these droplets contributes significantly to the total sea-air evaporative flux under such conditions. Direct observations of turbulent fluxes of heat, moisture and momentum over the sea at moderately high wind speeds were taken during HEXOS Main Experiment (HEXMAX). (HEXOS is the Humidity Exchange Over the Sea program.) An analysis of these results shows that the neutral transfer coefficient is nearly constant with wind speed, up to about 18 m/s, albeit with considerable scatter about the mean. Here the author describes a preliminary investigation of the possible effects evaporation of sea spray could have on the vertical structure of the atmospheric boundary layer at high wind speeds. The remainder of the paper consists of a brief discussion of a radiosonde ascent launched from a ship during a tropical cyclone, a description of the turbulent closure model used to investigate the role of the various physical processes, followed by a discussion of the model results and their relationship to the observation.

  1. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2016-06-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  2. SST, Winds, and Air-Sea Fluxes in the Gulf Stream Region in the First Winter of CLIMODE

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Dickinson, S.; Jones, H. R.

    2006-12-01

    The NSF sponsored CLIvar MOde Water Dynamic Experiment (CLIMODE) focuses on the wintertime processes responsible for the formation and dispersal of Eighteen Degree Water (EDW), the subtropical mode water of the North Atlantic. This region has the largest wintertime loss of heat from the ocean to the atmosphere, made possible by the influx of heat from the Gulf Stream (GS). These fluxes fuel the formation and intensification of storms, as cool, dry continental air encounters the warm boundary current waters. The actual impact of the large transfers of heat on the ocean and on the atmosphere are likely underestimated in weather and climate models, owing to poor observational input and inaccurate boundary layer physics. Several new sources of data are available with which to examine the relationship between the Gulf Stream, air-sea heat fluxes, winds, and storms: wind vector and SST measurements from satellites, as well as in situ measurements, including data from CLIMODE. Improved satellite data includes the ocean vector winds from QuikSCAT, re-processed at a spatial resolution of 12.5km, and microwave SST from AMSR-E. Although the microwave resolution is coarser than for infrared SST, the ability of microwave sensors to see through clouds gives better effective resolution of SST, particularly during storms. Two CLIMODE cruises were conducted in the winter of 2005-2006. During the first cruise in November 2005, SST dropped by about 1.5-2C, leaving SST in the recirculation region at about 22C. By the start of the second cruise in January 2006, SST had fallen to 20C near the GS core, and 19C in the mode water region. By the end of the second cruise 2 weeks later, the region of 20C water had dropped to 19C, suggesting that EDW formation was imminent. SST in the mode water region reached 18C the following week. Maximum wind speeds were distinctly centered on the GS warm core for much of January 2006. Recent studies suggest that the Gulf Stream could affect the storm

  3. Laboratory modeling of air-sea interaction under severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  4. High wind speed measurements of dimethylsulfide air/sea gas transfer by eddy correlation in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W. J.; Miller, S. D.; Saltzman, E. S.; Slawksy, L.; Stacy, B.; Callaghan, A. H.

    2012-12-01

    Air/sea dimethylsulphide (DMS) fluxes and gas transfer coefficients (kDMS) were measured by eddy correlation over the western North Atlantic Ocean during June/July 2011 aboard the R/V Knorr. Atmospheric and seawater DMS were measured using atmospheric pressure chemical ionization mass spectrometry (API-CIMS). Seawater DMS was measured continuously from the ship's underway system using a porous membrane equilibrator and API-CIMS. The cruise included regions of high biological productivity, wind speeds from 0-18 m/sec and whitecap areas of 0-5%. Four stations were occupied during the cruise for periods of 24-36 hours. In general, the stations exhibited a linear relationship between kDMS and wind speed, although there were significant variations in the slope of this relationship. One of the stations showed kDMS increasing with wind speed to 10 m/sec and then levelling off at higher wind speeds. The data from this cruise suggest that gas transfer can vary substantially due to parameters other than wind speed, most likely sea state and surfactants.

  5. Variability in surface meteorology and air-sea fluxes due to cumulus convective systems observed during CINDY/DYNAMO

    NASA Astrophysics Data System (ADS)

    Yokoi, Satoru; Katsumata, Masaki; Yoneyama, Kunio

    2014-03-01

    This study examines the variability in surface meteorological parameters and air-sea heat fluxes due to cold pools emanating from cumulus convective systems observed over the tropical Indian Ocean in November 2011. In particular, this study focuses on convective systems that are spatially smaller than mesoscale convective systems in a southeasterly trade wind environment. Composite analyses of convectively active periods show an increase in the sensible heat flux by 15-20 W m-2 that is primarily attributed to an increase in the difference between the surface air temperature and sea surface temperature and an increase in the latent heat flux by 30-70 W m-2 due to enhanced surface wind speeds. A succession of convectively active periods leads to a greater influence than those occurring independently. The direction of the surface wind velocity anomaly due to cold pools tends to be close to that of the environmental wind velocity, resulting in an efficient enhancement of wind speed. This study also demonstrates the close relation between cold pool intensities and convective activity. In particular, two measures of cold pool intensity, a minimum surface air temperature and a maximum amount of surface wind speed enhancement, are correlated with each other and with the convective activity around the observation point measured by radar-estimated rainfall and radar echo coverage.

  6. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  7. Model estimating the effect of marginal ice zone processes on the phytoplankton primary production and air-sea flux of CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Martjyanov, Stanislav

    2016-04-01

    This study is aimed to assess the impact of sea ice on the primary production of phytoplankton (PPP) and air-sea CO2 flux in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes: 1) a module of sea ice with 7 categories, and 2) the 11-component module of marine pelagic ecosystem developed in the St. Petersburg Branch, Institute of Oceanology. The model is driven by atmospheric forcing, prescribed from the reanalysis NCEP / NCAR, and conditions on the open sea boundary, prescribed from the regional model of the atmosphere-ocean-sea ice-ocean biogeochemistry, developed at Max Planck Institute for Meteorology, Hamburg. Comparison of the model results for the period 1998-2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll "a" concentration and PPP in the Barents Sea. Model estimates of the annual PPP for whole sea, APPmod, appeared in 1.5-2.3 times more than similar estimates, APPdata, from satellite data. The main reasons for this discrepancy are: 1) APPdata refers to the open water, while APPmod, to the whole sea area (under the pack ice and marginal ice zone (MIZ) was produced 16 - 38% of PPP); and 2) values of APPdata are underestimated because of the subsurface chlorophyll maximum. During the period 1998-2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15%. This reduction was accompanied by an increase in annual PPP of the sea at 54 and 63%, based, respectively, on satellite data and the model for the open water. According to model calculations for the whole sea area, the increase is only 19%. Using a simple 7-component model of oceanic carbon cycle incorporated into the above hydrodynamic model, the CO2 exchange between the atmosphere and sea has been estimated in different conditions. In the absence of biological

  8. Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Wu, Guoxiong; Guan, Yue; Liu, Yimin; Yan, Jinghui; Mao, Jiangyu

    2012-01-01

    In spring over the southern Bay of Bengal (BOB), a vortex commonly develops, followed by the Asian summer monsoon onset. An analysis of relevant data and a case study reveals that the BOB monsoon onset vortex is formed as a consequence of air-sea interaction over BOB, which is modulated by Tibetan Plateau forcing and the land-sea thermal contrast over the South Asian area during the spring season. Tibetan Plateau forcing in spring generates a prevailing cold northwesterly over India in the lower troposphere. Strong surface sensible heating is then released, forming a prominent surface cyclone with a strong southwesterly along the coastal ocean in northwestern BOB. This southwesterly induces a local offshore current and upwelling, resulting in cold sea surface temperatures (SSTs). The southwesterly, together with the near-equatorial westerly, also results in a surface anticyclone with descending air over most of BOB and a cyclone with ascending air over the southern part of BOB. In the eastern part of central BOB, where sky is clear, surface wind is weak, and ocean mixed layer is shallow, intense solar radiation and low energy loss due to weak surface latent and sensible heat fluxes act onto a thin ocean layer, resulting in the development of a unique BOB warm pool in spring. Near the surface, water vapor is transferred from northern BOB and other regions to southeastern BOB, where surface sensible heating is relatively high. The atmospheric available potential energy is generated and converted to kinetic energy, thereby resulting in vortex formation. The vortex then intensifies and moves northward, where SST is higher and surface sensible heating is stronger. Meanwhile, the zonal-mean kinetic energy is converted to eddy kinetic energy in the area east of the vortex, and the vortex turns eastward. Eventually, southwesterly sweeps over eastern BOB and merges with the subtropical westerly, leading to the onset of the Asian summer monsoon.

  9. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  10. Parameterization of Sea-Spray Impact on Air-Sea Momentum and Heat Fluxes in Hurricane Prediction Models

    NASA Astrophysics Data System (ADS)

    Bao, Jian-Wen; Fairall, Chris; Michelson, Sara; Bianco, Laura

    2010-05-01

    Although it is widely recognized that sea spray under hurricane-strength winds is omnipresent in the marine surface boundary layer (MSBL), how to parameterize the effects of sea spray on the air-sea momentum and heat fluxes at hurricane-strength winds in numerical weather prediction (NWP) models still remains a subject of research. This paper focuses on how the effects of sea spray on the momentum and heat fluxes are parameterized in NWP models using the Monin-Obukhov similarity theory. In this scheme, the effects of sea spray can be considered as an additional modification to the stratification of the near surface profiles of wind, temperature and moisture in the MSBL. The overall impact of sea-spray droplets on the mean profiles of wind, temperature and moisture depends on the wind speed at the level of sea-spray generation (or wave state if available). As the wind speed increases, the droplet size increases, rendering an increase in the spray-mediated total enthalpy flux from the sea to the air and leveling off of the surface drag. When the wind is below 35 ms-1, the droplets are small in size and tend to evaporate substantially and thus cool the spray-filled layer. When the wind is above 50 ms-1, the size of droplets is so big that they do not have enough time to evaporate that much before falling back into the sea. Furthermore, the scheme includes the physics of the suspended sea-spray droplets reducing the buoyancy of the MSBL air, therefore making the surface layer more stable. Results from testing the scheme in a numerical weather prediction model are presented along with a dynamical interpretation of the impact of sea spray on the intensification of tropical cyclones.

  11. Air-sea Energy Transfer at Mesoscale in a Coupled High-resolution Model: Impact of Resolution and Current Feedback

    NASA Astrophysics Data System (ADS)

    Jullien, S.; Colas, F.; Masson, S. G.; Oerder, V.; Echevin, V.; Samson, G.; Crétat, J.; Berthet, S.; Hourdin, C.

    2015-12-01

    Winds are usually considered to force the ocean but recent studies suggested that oceanic mesoscale activity, characterized by eddies, filaments and fronts, could also affect the wind field. These structures feature abrupt changes in sea surface temperature (SST), surface pressure and surface currents that could impact the atmosphere by enhancing/reducing air-sea fluxes, accelerating/decelerating winds, modifying the wind-pressure balance… At this time, the detailed processes associated to such coupling, its intensity and significance remain a matter of research. Here, a state-of-the-art WRF-OASIS-NEMO coupled model is set up over a wide tropical channel (45°S-45°N) at various resolutions: 3/4°, 1/4° and 1/12° in both the ocean and the atmosphere. Several experiments are conducted in forced, partially or fully coupled modes, to highlight the effect of resolution and the role of SST vs. current feedback to energy injection into the ocean and the atmosphere. In strong mesoscale activity regions, a negative wind power input from the atmosphere to the ocean is seen at scales ranging from 100km to more than 1000km. Nonexistent at 3/4°, this negative forcing, acting against oceanic mesoscale activity, is almost twice more important at 1/12° than at 1/4°. In addition, partially coupled simulations, i.e. without current feedback, show that the impact of thermal coupling on this process is very limited. Energy injection to the marine atmospheric boundary layer also features imprints from oceanic mesoscale. Energy injection by scales shorter than 300km represents up to 20% of the total. Finally we show that increasing oceanic resolution, and therefore mesoscale activity, is necessary to resolve the full wind stress spectrum and has an upscaling effect by enhancing atmospheric mesoscale, which is larger scale than in the ocean. Using 1/4°oceanic resolution instead of 1/12° leads to a 50% loss of energy in the atmospheric mesoscale.

  12. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  13. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  14. Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions

    NASA Astrophysics Data System (ADS)

    Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale

    2014-05-01

    Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between

  15. Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-03-01

    Using observation-based analyses, this study identifies the leading interannual pattern of the Indian summer monsoon rainfall (ISMR) independent of ENSO and examines the potential mechanisms of its formation. For this purpose, an objective procedure is used to isolate the variability of the summer precipitation associated with the contemporary ENSO state and in previous winter-spring, which influence the Indian summer monsoon (ISM) region in opposite ways. It is shown that the leading pattern of these ENSO-related monsoon rainfall anomalies reproduces some major ISMR features and well represents its connections to the global-scale ENSO features in both lower and upper troposphere. On the other hand, the leading pattern derived from the precipitation anomalies with the ENSO component removed in the ISM and surrounding region also accounts for a substantial amount of the monsoon precipitation centered at the eastern coast of the subtropical Arabian Sea, extending into both the western Indian Ocean and the Indian subcontinent. The associated atmospheric circulation change is regional in nature, mostly confined in the lower to mid troposphere centered in the Arabian Sea, with a mild connection to an opposite tendency centered at the South China Sea. Further analyses show that this regional pattern is associated with a thermodynamic air-sea feedback during early to mid summer season. Specifically, before the monsoon onset, an anomalous atmospheric high pressure over the Arabian Sea causes excessive shortwave radiation to the sea surface and increases SST in May. The warm SST anomalies peak in June and reduce the sea level pressure. The anomalous cyclonic circulation generates regional convection and precipitation, which also induces subsidence and anticyclonic circulation over the South China Sea. The combined cyclonic-anticyclonic circulation further transport moisture from the western Pacific into the Indian Ocean and causes its convergence into the Arabian Sea. As a

  16. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  17. Reconstruction of super-resolution fields of ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the Southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.

    2015-01-01

    The knowledge of Green House Gases GHGs fluxes at the air-sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2, pCO2, and air-sea CO2 fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution of pCO2, and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO2 with respect to in-situ measurements are smaller than for CarbonTracker.

  18. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    NASA Astrophysics Data System (ADS)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile (~ 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  19. N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters

    NASA Astrophysics Data System (ADS)

    Barnes, J.; Upstill-Goddard, R. C.

    2011-03-01

    We report measurements of dissolved nitrous oxide (N2O), dissolved inorganic nitrogen, and turbidity in surveys of six UK inner estuaries between February 2000 and October 2002: the Humber, Forth, Tamar, Tyne, Tees, and Tay. We also present dissolved N2O data for the Wash outer estuary from May 1995 and dissolved O2 data for the Forth estuary from June 2001. N2O was always supersaturated relative to air and was highest in the Humber (range 140-6500%) and generally higher at all sites during summer. In estuaries with well defined turbidity maximum zones (TMZs) at low salinity, N2O was maximal in the TMZ, coincident with high NH4+ and/or NO3-. Inspection of the broad relationships between N2O, NH4+, NO3-, NO2-, and O2 revealed a predominantly nitrification source for the N2O in the estuaries studied; denitrification-derived N2O was apparently unimportant and denitrification did not constitute a significant NO3- sink. In the anthropogenically impacted Tees estuary N2O (saturation 140-2000%) was attributed to high NH4+ in sewage and industrial effluent. N2O emissions were thus primarily a function of NH4+ derived from internal resuspension and/or ammonification, or external inputs and were independent of river-borne NO3-. We reevaluated total UK and European estuarine N2O emissions using these and published data, based on an aerially weighted approach that separately identified inner and outer estuaries, and a downward revision of the total European estuarine area used in a recent synthesis. Our revised estimates, ˜1.9 ± 1.2 × 109 g N2O yr-1 for the UK and 6.8 ± 13.2 × 109 g N2O yr-1 for Europe (including UK) are dominated by large (area ˜200-500 km2) anthropogenically impacted macrotidal inner estuaries. By contrast large pristine macrotidal systems, small inner estuaries, and large outer estuaries appear to be comparatively minor N2O sources. The UK estuarine N2O source is <2% of the UK N2O budget. Our revised European estuarine N2O emission is around 2 orders of magnitude smaller than a recent previous estimate that set this equivalent to ˜26% of the global estuarine total. We contend that this is an overestimate due to biases in the flux calculations resulting from likely overestimates of the mean N2O saturation and mean wind speed for European estuaries, and the European estuarine area. Taking this into account reduces this estimate to be more in line with our revised synthesis.

  20. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  1. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-09-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.6 ± 0.3, -0.9 ± 0.3 and -0.5 ± 0.3 mol C m-2 yr-1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m-2 yr-1 in the sWEC and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of -1.11 ± 0.32 Tg C yr-1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to

  2. Dynamics of air-sea CO2 fluxes in the North-West European Shelf based on Voluntary Observing Ship (VOS) and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-04-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 dataset based on voluntary observing ship (VOS) measurements in the Western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in north-west European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), the gas transfer velocity coefficient (K), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with relative uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 dataset (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish Seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT database and obtained relatively robust results with an average precision of 4 ± 22 μatm in the seasonally stratified nWEC and the southern and northern CS (sCS and nCS), but less promising results in the permanently well-mixed sWEC, IS and Cap Lizard (CL) waters. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.4, -0.9 and -0.4 mol C m-2 year-1 in the nCS, sCS and nWEC, respectively, whereas, permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2, 0.4 and 0.4 mol C m-2 year-1 in the sWEC, CL and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over six provinces for the last decade and obtained the first annual average uptake of -0.95 Tg C year-1 for this

  3. Blast94: Bromine latitudinal air/sea transect 1994. Report on oceanic measurements of methyl bromide and other compounds. Technical memo

    SciTech Connect

    Lobert, J.M.; Butler, J.H.; Geller, L.S.; Yvon, S.A.; Montzka, S.A.

    1996-02-01

    Methyl bromide (CH3Br) is of particular interest because it is both produced and consumed in the ocean, thus allowing the ocean to act as a buffer for CH3Br in the atmosphere. The main objective of the two NOAA/CMDL Bromine Latitudinal Air/Sea Transect Expeditions has been to resolve the discrepancy in previously reported data for oceanic CH3Br, and to extend the understanding of the distribution and cycling of CH3Br between the atmosphere and ocean. This was pursued by making frequent, shipboard measurements of CH3Br in the surface water and the marine atmosphere along the cruise tracks and by obtaining depth profiles of CH3Br at selected stations. Secondary objectives included obtaining atmospheric and surface water data for other methyl halides, most notably CH3Cl, CH3I, CH2Br2, and CHBr3.

  4. Dependence of the microwave radar cross section on ocean surface variables - Comparison of measurements and theory using data from the Frontal Air-Sea Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Weissman, David E.

    1990-01-01

    The purpose of this investigation was to study the ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions. The dependence of the RCS on wind stress (as opposed to wind speed) was also studied. An extensive amount of experimental data was acquired during the Frontal Air-Sea Interaction Experiment. Measurements across an ocean front demonstrated that the vertical polarization and horizontal polarization radar cross section were more strongly dependent on wind stress than on wind magnitude. Current theoretical models for the RCS, based on stress, were tested with this data. In situations where the Bragg scattering theory does not agree with the measured radar cross section (magnitude and angle dependence), revisions are hypothesized and evaluated.

  5. An Approach to Minimizing Artifacts Caused by Cross-Sensitivity in the Determination of Air-Sea CO2 Flux Using the Eddy-Covariance Technique

    NASA Astrophysics Data System (ADS)

    Duan, Ziqiang; Gao, Huiwang; Gao, Zengxiang; Wang, Renlei; Xue, Yuhuan; Yao, Xiaohong

    2013-07-01

    The air-sea CO2 flux was measured from a research vessel in the North Yellow Sea in October 2007 using an open-path eddy-covariance technique. In 11 out of 64 samples, the normalized spectra of scalars (C}2, water vapour, and temperature) showed similarities. However, in the remaining samples, the normalized CO2 spectra were observed to be greater than those of water vapour and temperature at low frequencies. In this paper, the noise due to cross-sensitivity was identified through a combination of intercomparisons among the normalized spectra of three scalars and additional analyses. Upon examination, the cross-sensitivity noise appeared to be mainly present at frequencies {<}0.8 Hz. Our analysis also suggested that the high-frequency fluctuations of CO2 concentration (frequency {>}0.8 Hz) was probably less affected by the cross-sensitivity. To circumvent the cross-sensitivity issue, the cospectrum in the high-frequency range 0.8-1.5 Hz, instead of the whole range, was used to estimate the CO2 flux by taking the contribution of the high frequency to the CO2 flux to be the same as the contribution to the water vapour flux. The estimated air-sea CO2 flux in the North Yellow Sea was -0.039 ± 0.048 mg m^{-2} s^{-1}, a value comparable to the estimates using the inertial dissipation method and Edson's method (Edson et al., J Geophys Res 116:C00F10, 2011).

  6. High resolution measurements of methane and carbon dioxide in surface waters over a natural seep reveal dynamics of dissolved phase air-sea flux.

    PubMed

    Du, Mengran; Yvon-Lewis, Shari; Garcia-Tigreros, Fenix; Valentine, David L; Mendes, Stephanie D; Kessler, John D

    2014-09-01

    Marine hydrocarbon seeps are sources of methane and carbon dioxide to the ocean, and potentially to the atmosphere, though the magnitude of the fluxes and dynamics of these systems are poorly defined. To better constrain these variables in natural environments, we conducted the first high-resolution measurements of sea surface methane and carbon dioxide concentrations in the massive natural seep field near Coal Oil Point (COP), California. The corresponding high resolution fluxes were calculated, and the total dissolved phase air-sea fluxes over the surveyed plume area (∼363 km(2)) were 6.66 × 10(4) to 6.71 × 10(4) mol day(-1) with respect to CH4 and -6.01 × 10(5) to -5.99 × 10(5) mol day(-1) with respect to CO2. The mean and standard deviation of the dissolved phase air-sea fluxes of methane and carbon dioxide from the contour gridding analysis were estimated to be 0.18 ± 0.19 and -1.65 ± 1.23 mmol m(-2) day(-1), respectively. This methane flux is consistent with previous, lower-resolution estimates and was used, in part, to conservatively estimate the total area of the dissolved methane plume at 8400 km(2). The influx of carbon dioxide to the surface water refutes the hypothesis that COP seep methane appreciably influences carbon dioxide dynamics. Seeing that the COP seep field is one of the biggest natural seeps, a logical conclusion could be drawn that microbial oxidation of methane from natural seeps is of insufficient magnitude to change the resulting plume area from a sink of atmospheric carbon dioxide to a source.

  7. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  8. Inference of super-resolution ocean pCO2 and air-sea CO2 fluxes from non-linear and multiscale processing methods

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, Ismael; Sudre, Joel; Garçon, Veronique; Yahia, Hussein; Dewitte, Boris; Garbe, Christoph; Illig, Séréna; Montes, Ivonne; Dadou, Isabelle; Paulmier, Aurélien; Butz, André

    2014-05-01

    In recent years the role of submesoscale activity is emerging as being more and more important to understand global ocean properties, for instance, for accurately estimating the sources and sinks of Greenhouse Gases (GHGs) at the air-sea interface. The scarcity of oceanographic cruises and the lack of available satellite products for GHG concentrations at high resolution prevent from obtaining a global assessment of their spatial variability at small scales. In this work we develop a novel method to reconstruct maps of CO2 fluxes at super resolution (4km) using SST and ocean colour data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). The responsible process for propagating the information between scales is related to cascading properties and multiscale organization, typical of fully developed turbulence. The methodology, based on the Microcanonical Multifractal Formalism, makes use, from the knowledge of singularity exponents, of the optimal wavelet for the determination of the energy injection mechanism between scales. We perform a validation analysis of the results of our algorithm using pCO2 ocean data from in-situ measurements in the upwelling region off Namibia.

  9. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  10. Experimental observations of air-sea parameters and fluxes associated with anomalous event in the Indian Ocean during 1997-1998 El Niño period

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Krishnan, Praveena; Muraleedharan Nair, S.; Kunhikrishnan, P. K.

    2004-04-01

    This paper describes the variation of air-sea parameters and fluxes during winter months of 1997 (pre-INDOEX) and 1998 (INDOEX-FFP) using ship-based in situ measurements in the latitude range 15°N to 20°S over the Indian Ocean and Arabian Sea. The 1998 cruise period coincided with one of the strongest El Niño events in the decade over the Pacific Ocean. The tropical Indian Ocean underwent a highly anomalous series of events during 1998 with warm sea surface temperature (SST) anomaly over 2 °C during February 1998 and easterly winds associated with the reversed Walker circulation. In situ observations during 1998 cruise period show that the winds in the Indian Ocean region had basically resumed their climatological state as of March 15, 1998 with lesser wind speeds as El Niño waned. However, the sea surface temperatures in Indian Ocean were found to be high even though climatological state had resumed. The present results are the observational evidence to show that the reduced latent heat flux due to low wind speeds could have contributed to the surface warming in the Indian Ocean. The sensible heat and latent heat fluxes are found to be high during anomalous period due to higher sea surface temperature and wind speeds in comparison to the normal period.

  11. Air-sea flux of methane from selected marine hydrate/seep sites in the northern Gulf of Mexico during HYFLUX

    NASA Astrophysics Data System (ADS)

    Hu, L.; Yvon-Lewis, S. A.; Kessler, J. D.; MacDonald, I.

    2009-12-01

    Methane is one of the most important greenhouse gases, playing a significant role in global climate change and atmospheric chemistry. In spite of tremendous efforts made to constrain the strength of its sources and sinks, large uncertainties remain for some individual sources. Based on the previous observations and modeling studies, the flux of CH4 from marine hydrates and seeps to the atmosphere comprises a significant fraction of the entire methane flux from the global ocean. However, most of the estimates are based on the seafloor methane flux or discrete water column concentrations of methane and the averaged atmospheric methane ratios. In this study, we investigated three marine hydrate/seep sites in northern Gulf of Mexico in July of 2009 during the HYFLUX cruise. Continuous saturation-anomaly (deviation from equilibrium) measurements of methane, ethane and propane were made by alternately sampling the air or the headspace of Weiss-type equilibrator and analyzing it in a GC-FID system. Some 13CH4 measurements were also made continuously using a cavity ring-down spectrometer (CRDS). During this cruise, the maximum concentrations observed at the 3 marine hydrate/seep sites MC118, GC600, and GC185 were 14.5, 5.1, and 2.2 nmol/L, respectively. The air-sea fluxes, calculated from saturation anomalies, are used to create extremely high resolution flux maps for the three marine hydrate/seeps sites.

  12. The European Fixed point Open Ocean Observatory network (FixO3): Multidisciplinary observations from the air-sea interface to the deep seafloor

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard; Cristini, Luisa; Alexiou, Sofia

    2015-04-01

    The Fixed point Open Ocean Observatory network (FixO3, http://www.fixo3.eu/ ) integrates 23 European open ocean fixed point observatories and improves access to these infrastructures for the broader community. These provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Started in September 2013 with a budget of 7 Million Euros over 4 years, the project has 29 partners drawn from academia, research institutions and SME's coordinated by the National Oceanography Centre, UK. Here we present the programme's achievements in the 18 months and the activities of the 12 Work Packages which have the objectives to: • integrate and harmonise the current procedures and processes • offer free access to observatory infrastructures to those who do not have such access, and free and open data services and products • innovate and enhance the current capability for multidisciplinary in situ ocean observation Open ocean observation is a high priority for European marine and maritime activities. FixO3 provides important data and services to address the Marine Strategy Framework Directive and in support of the European Integrated Maritime Policy. FixO3 provides a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.

  13. A parameter model of gas exchange for the seasonal sea ice zone

    NASA Astrophysics Data System (ADS)

    Loose, B.; McGillis, W. R.; Perovich, D.; Zappa, C. J.; Schlosser, P.

    2013-07-01

    Carbon budgets for the polar oceans require better constraint on air-sea gas exchange in the sea ice zone (SIZ). Here, we utilize recent advances in the theory of turbulence, mixing and air-sea flux in the ice-ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k) is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air-sea interface. We use the model to estimate k along the drift track of Ice-Tethered Profilers (ITPs) in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d-1, and the fraction of open water (f) ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff), the minimum value of keff was 10-5 m d-1 near f = 0 with values exceeding keff = 5 m d-1 at f = 0.4. The largest values of k occurred during the periods when ice cover around the ITP was changing rapidly; either in advance or retreat. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a windspeed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist.

  14. A parameter model of gas exchange for the seasonal sea ice zone

    NASA Astrophysics Data System (ADS)

    Loose, B.; McGillis, W. R.; Perovich, D.; Zappa, C. J.; Schlosser, P.

    2014-01-01

    Carbon budgets for the polar oceans require better constraint on air-sea gas exchange in the sea ice zone (SIZ). Here, we utilize advances in the theory of turbulence, mixing and air-sea flux in the ice-ocean boundary layer (IOBL) to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k) is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air-sea interface. We use the model to estimate k along the drift track of ice-tethered profilers (ITPs) in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d-1, and the fraction of open water (f) ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff), the minimum value of keff was 10-55 m d-1 near f = 0 with values exceeding keff = 5 m d-1 at f = 0.4. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a wind speed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist.

  15. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  16. Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Mohan, Greeshma M.; Naidu, C. V.; Baskaran, R.; Venkatraman, B.

    2016-08-01

    In this work, the impact of air-sea coupling on tropical cyclone (TC) predictions is studied using a three-dimensional Price-Weller-Pinkel (3DPWP) ocean model coupled to the Advanced Research Weather Research and Forecasting in six tropical storms in the North Indian Ocean, representing different intensities, seasonality, and varied oceanic conditions. A set of numerical experiments are conducted for each cyclone using sea surface temperature (SST) boundary conditions derived from Global Forecast System (GFS) SST, NOAA/National Centers for Environmental Prediction SST, and ocean coupling (3DPWP). Significant differences and improvements are found in the predicted intensity and track in the simulations, in which the cyclones' impact on SST is included. It has been found that while the uncoupled model using GFS SST considerably overestimated the intensity as well as produced large track errors, the ocean coupling substantially improved the track and intensity predictions. The improvements with 3DPWP are because of simulating the ocean-atmosphere feedback in terms of deepening of ocean mixed layer, reduction in enthalpy fluxes, and storm-induced SST cooling as seen in observations. The coupled model could simulate the cold wake in SST, asymmetries in the surface winds, enthalpy fluxes, size, and structure of the storm in better agreement with observations than the uncoupled model. The coupled model reduced the track errors by roughly 0.3-39% and intensity errors by 29-47% at 24-96 h predictions by controlling the northward deviation of storms tracks by SST cooling and associated changes in the dynamics. The vorticity changes associated with horizontal advection and stretching terms affect the tracks of the storms in the three simulations.

  17. Air-Sea CO2 fluxes and NEP changes in a Baja California Coastal Lagoon during the anomalous North Pacific warm condition in 2014

    NASA Astrophysics Data System (ADS)

    Ávila López, M. D. C.; Martin Hernandez-Ayon, J. M.; Camacho-Ibar, V.; Sandoval Gil, J.; Mejía-Trejo, A.; Félix-Bermudez, A.; Pacheco-Ruiz, I.

    2015-12-01

    The present study examines the temporal variability of seawater carbonate chemistry and air-sea CO2 fluxes (FCO2) in a Baja California Mediterranean-climate coastal lagoon. This study was carried out from Nov-2013 to Nov-2014, a period in which anomalous warm conditions were present in the North Pacific Ocean influenced the local oceanography in the adjacent coastal waters off Baja California. These ocean conditions resulted on a negative anomaly of upwelling index, which led to summer-like season (weak upwelling condition) that could be observed in the response of carbon dynamics and metabolic status in San Quintín Bay. Minor changes in dissolved inorganic carbon (DIC) concentration during spring months (~100 µmol kg-1) where observed and were associated to biological processes within the lagoon. High DIC (~2200 µmol kg-1), pCO2 (~800 μatm), and minimum pH (~7.8) values were observed in summer, reflecting the predominance of respiration processes apparently mostly linked to the remineralization of sedimentary organic matter supplied from macroalgal blooms. San Quintín Bay acted as a weak source of CO2 to the atmosphere during the study period, with maximum value observed in July (~10 mmol C m-2 d-1). Temporal biomass production of macroalgae contributed to about 50% of total FCO2 estimated in spring-summer seasons, that was a potencial internal source of organic matter to fuel respiration processes in San Quintín Bay. Eelgrass metabolism contributes in a lower degree in total FCO2. During the anomalous ocean conditions in 2014, the lagoon switched seasonally between net heterotrophy and net autotrophy during the study period, where photosynthesis and respiration processes in the lagoon were closer to a balance. Whole-system metabolism and FCO2 clearly indicated the strong dependence of San Quintín Bay on upwelling conditions and benthic metabolism activity, which was mainly controlled by dominant primary producer communities.

  18. Global representation of tropical cyclone-induced ocean thermal changes using Argo data - Part 2: Estimating air-sea heat fluxes and ocean heat content changes

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Zhu, J.; Sriver, R. L.

    2014-12-01

    We use Argo temperature data to examine changes in ocean heat content (OHC) and air-sea heat fluxes induced by tropical cyclones (TC)s on a global scale. A footprint technique that analyzes the vertical structure of cross-track thermal responses along all storm tracks during the period 2004-2012 is utilized (see part I). We find that TCs are responsible for 1.87 PW (11.05 W m-2 when averaging over the global ocean basin) of heat transfer annually from the global ocean to the atmosphere during storm passage (0-3 days) on a global scale. Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m-2) is caused by Tropical storms/Tropical depressions (TS/TD) and 0.82 ± 0.21 PW (6.25 ± 1.5 W m-2) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Net changes in OHC after storm passage is estimated by analyzing the temperature anomalies during wake recovery following storm events (4-20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1W m-2) net heat gain annually for hurricanes. In contrast, under TS/TD conditions, ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m-2) net ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The net ocean heat uptake caused by all storms is 0.34 PW.

  19. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS)

    NASA Technical Reports Server (NTRS)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; Tanelli, S.; Vane, D.; Vu, Q.; Goodman, H. M.; Blakeslee, R.; Conover, H.; Hall, J.; He, Y.; Regner, K.; Knapp, Ken

    2010-01-01

    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  20. Air sea rescue, telemedicine style.

    PubMed

    Ferguson, J; Aujla, K; Pedley, D; Palombo, A

    2002-01-01

    Historically, requests from shipping in UK coastal waters for emergency medical advice have been handled on an ad hoc basis by various accident and emergency departments on behalf of the Coastguard. A formal contract to provide this service has recently been established with the Aberdeen Royal Infirmary in Scotland and the Royal Alexandra Hospital in Portsmouth, England. A pre-contract audit showed that the involvement of medical professionals in the evacuation decision improved the quality of triage and intervention. The medical staff at both hospitals received training in giving medical advice and the level of medical knowledge that could reasonably be expected of ships crews. Providing advice to commercial airlines developed from the maritime service. In association with a private company, staff at the Aberdeen Royal Infirmary have developed procedures to support cabin crew and medical professionals on board (initial figures suggest that a medical professional is present on about 45% of flights). At present, although there are insufficient data to draw any firm conclusions, it appears that up to two-thirds of diversions could be avoided using this service. PMID:12217123

  1. The Development of Instrumentation and Methods for Measurement of Air-Sea Interaction and Coastal Processes from Manned and Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Reineman, Benjamin D.

    I present the development of instrumentation and methods for the measurement of coastal processes, ocean surface phenomena, and air-sea interaction in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at Mc

  2. Effect of gas-transfer velocity parameterization choice on air-sea CO2 fluxes in the North Atlantic Ocean and the European Arctic

    NASA Astrophysics Data System (ADS)

    Wrobel, Iwona; Piskozub, Jacek

    2016-09-01

    The oceanic sink of carbon dioxide (CO2) is an important part of the global carbon budget. Understanding uncertainties in the calculation of this net flux into the ocean is crucial for climate research. One of the sources of the uncertainty within this calculation is the parameterization chosen for the CO2 gas-transfer velocity. We used a recently developed software toolbox, called the FluxEngine (Shutler et al., 2016), to estimate the monthly air-sea CO2 fluxes for the extratropical North Atlantic Ocean, including the European Arctic, and for the global ocean using several published quadratic and cubic wind speed parameterizations of the gas-transfer velocity. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic Ocean. This region is a large oceanic sink of CO2, and it is also a region characterized by strong winds, especially in winter but with good in situ data coverage. We show that the uncertainty in the parameterization is smaller in the North Atlantic Ocean and the Arctic than in the global ocean. It is as little as 5 % in the North Atlantic and 4 % in the European Arctic, in comparison to 9 % for the global ocean when restricted to parameterizations with quadratic wind dependence. This uncertainty becomes 46, 44, and 65 %, respectively, when all parameterizations are considered. We suggest that this smaller uncertainty (5 and 4 %) is caused by a combination of higher than global average wind speeds in the North Atlantic (> 7 ms-1) and lack of any seasonal changes in the direction of the flux direction within most of the region. We also compare the impact of using two different in situ pCO2 data sets (Takahashi et al. (2009) and Surface Ocean CO2 Atlas (SOCAT) v1.5 and v2.0, for the flux calculation. The annual fluxes using the two data sets differ by 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal fluxes in the Arctic computed from the two data sets disagree with each

  3. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  4. Sensitivity analysis of an Ocean Carbon Cycle Model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2010-12-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. The NPZD model is the Hadley Centre Ocean Carbon Cycle model (HadOCC) from the UK Met Office, used in the Hadley Centre Coupled Model 3 (HadCM3) and FAst Met Office and Universities Simulator (FAMOUS) GCMs. Here, HadOCC is coupled to the 1-D General Ocean Turbulence Model (GOTM) and forced with European Centre for Medium-Range Weather Forecasting meteorology to undertake a sensitivity analysis of its twenty biological parameters. Analyses are performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W) to assess variability in parameter sensitivities at different locations in the North Atlantic Ocean. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. We perform the analysis using one-at-a-time perturbations and using a statistical emulator, and compare results. The most sensitive parameters are generic to many NPZD ocean ecosystem models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosythesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  5. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Gruber, N.; Key, R.; Khatiwala, S.; Giraud, X.

    2012-10-01

    The injection of radiocarbon (14C) into the atmosphere by nuclear weapons testing in the 1950s and 1960s has provided a powerful tracer to investigate ocean physical and chemical processes. While the oceanic uptake of bomb-derived 14C was primarily controlled by air-sea exchange in the early decades after the bomb spike, we demonstrate that changes in oceanic 14C are now primarily controlled by shallow-to-deep ocean exchange, i.e., the same mechanism that governs anthropogenic CO2 uptake. This is a result of accumulated bomb 14C uptake that has rapidly decreased the air-sea gradient of 14C/C (Δ14C) and shifted the main reservoir of bomb 14C from the atmosphere to the upper ocean. The air-sea Δ14C gradient, reduced further by fossil fuel dilution, is now weaker than before weapons testing in most regions. Oceanic 14C, and particularly its temporal change, can now be used to study the oceanic uptake of anthropogenic CO2. We examine observed changes in oceanic Δ14C between the WOCE/SAVE (1988-1995) and the CLIVAR (2001-2007) eras and simulations with two ocean general circulation models, the Community Climate System Model (CCSM) and the Estimating the Circulation and Climate of the Ocean Model (ECCO). Observed oceanic Δ14C and its changes between the 1980s-90s and 2000s indicate that shallow-to-deep exchange is too efficient in ECCO and too sluggish in CCSM. These findings suggest that mean global oceanic uptake of anthropogenic CO2 between 1990 and 2007 is bounded by the ECCO-based estimate of 2.3 Pg C yr-1 and the CCSM-based estimate of 1.7 Pg C yr-1.

  6. Horizontal transport modelling and exchange of atmospheric nitrogen gases with the coastal ocean

    SciTech Connect

    Soerensen, L.L.; Hertel, O.; Pedersen, B.; Wagner, M.; Larsen, S.E.; Hoejstrup, J.; Schultz, M.; Leeuw, G. de; Geernaert, G.L.

    1994-12-31

    According to both estimates based on measurements as well as computations, about 1/3 of the nitrogen supply to the coastal waters of Denmark is directly from the atmosphere. Nitrogen fluxes to marine waters are, however, an area which is still not fully understood, and lack from the need of high quality field experiments. This is the background for this research project on air-sea exchange. Due to the solubility of HNO{sub 3} and NJ{sub 3}, the determining factor for air-sea exchange of these components is the atmospheric transport. The concentration of HNO{sub 3} in seawater is negligible, and therefore HNO{sub 3} is always deposited at the sea surface if it is not chemically transformed through reactions. Heterogeneous and homogeneous atmospheric reactions lead to the production of nitric acid vapor, hydrochloric acid vapor, and sulfuric acid vapor as a product of SO{sub 2} pollution drifting offshore. These strong acids rapidly react with NH{sub 3}.

  7. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  8. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  9. Manitoba Exchange.

    ERIC Educational Resources Information Center

    Coss, Maurice

    Planning ideas and follow-up activities are described for a reciprocal exchange program between groups of 5th and 6th grade students in Manitoba who are "twinned" with another school in the province. Emphasis is on providing learning experiences which help students become familiar with the economic activity in the area, with the local government…

  10. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  11. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  12. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice

    NASA Astrophysics Data System (ADS)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-12-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea-ice-covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea-ice as "melt ponds" and below sea-ice as "interface waters") and mixed-layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At 19 stations, the salinity (∼0.5 to <6.5), dissolved inorganic carbon (DIC; ∼20 to <550 μmol kg-1) and total alkalinity (TA; ∼30 to <500 μmol kg-1) of above-ice melt pond water was low compared to the co-located underlying mixed layer. The partial pressure of CO2 (pCO2) in these melt ponds was highly variable (∼<10 to >1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (>8.2 to 10.8). All of the observed melt ponds had very low (<0.1) saturation states (Ω) for calcium carbonate (CaCO3) minerals such as aragonite (Ωaragonite). Our data suggest that sea-ice generated alkaline or acidic type melt pond water. This melt water chemistry dictates whether the ponds are sources of CO2 to the atmosphere or CO2 sinks. Below-ice interface water CO2-carbonate chemistry data also indicated substantial generation of alkalinity, presumably owing to dissolution of CaCO3 in sea-ice. The interface waters generally had lower pCO2 and higher pH/Ωaragonite than the co-located mixed layer beneath. Sea-ice melt thus contributed to the suppression of mixed-layer pCO2, thereby enhancing the surface ocean's capacity to uptake CO2 from the atmosphere. Our observations contribute to growing evidence that sea-ice CO2-carbonate chemistry is highly variable and its contribution to the complex factors that influence the balance of CO2 sinks and sources (and thereby ocean acidification) is difficult to predict in an era of rapid warming and sea-ice loss in the Arctic Ocean.

  13. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    USGS Publications Warehouse

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  14. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  15. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  16. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  17. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  18. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  19. Air-sea feedback during coastal upwelling

    SciTech Connect

    Gallacher, P.C.

    1994-12-31

    The basic dynamics of coastal upwelling are well known. Consider a steady, curl-free, alongshore wind blowing down a coastline. This results in an Ekman divergence. If the resulting Ekman transport is offshore, coastal upwelling ensues. When this occurs, a front develops between the cold, upwelled water and the less dense offshore surface water. This front propagates offshore at a rate determined by the Ekman transport. The question is what effect does this front have on the atmosphere, and is there a feedback between the atmosphere and the ocean. The results of the FASINEX study have shown that the atmospheric boundary layer can respond dramatically to changes in the ocean surface temperature, and this may happen on small scales and quite rapidly. The author hypothesizes that an interaction can occur in which the atmospheric surface layer becomes more stable on the upwelling side of the front due the colder sea surface temperature.

  20. Atlantic Air-Sea Interaction Revisited

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J.

    INTRODUCTION DATA AND MODELS THE ANALYSIS METHOD ATMOSPHERIC FORCING OF NORTH ATLANTIC SEA SURFACE TEMPERATURES NORTH ATLANTIC SEA SURFACE TEMPERATURE FORCING OF THE ATMOSPHERE Observational Evidence Model Results POTENTIAL SEASONAL PREDICTABILITY BASED ON THE ATMOSPHERE GENERAL - CIRCULATION MODEL CONCLUSIONS AND DISCUSSION REFERENCES

  1. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  2. Spatial Variability of Land-Sea Carbon Exchange at a Coastal Area in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, H.; Oechel, W.; Hastings, S.

    2007-12-01

    Relatively cold and low salinity sea water of the Arctic Ocean was considered to be a sink for atmospheric CO2 (Takahashi et al., 1997) because the solubility of CO2 in seawater increases as temperature decreases, and the arctic sea water transports CO2 to greater depths. However, carbon exchange in the Arctic sea is not well evaluated yet, because available data is very limited (Semiletov et al., 2007). Also, terrestrial inflows, such as thawing permafrost and coastal erosion, also affect oceanic air-sea CO2 exchange especially in the Arctic (ACIA., 2004) creating a variety of regional carbon cycles (Semiletov et al., 2007). Our aim is to quantify an air-sea CO2 exchange of a spatially wide coastal sea area, in Barrow, Alaska and to extrapolate the future carbon cycle in response to climate change. Boat cruises for pCO2 measurements operated from July 29 to August 5, 2007. The surveyed area was mainly divided into three parts: Chukchi Sea, Beaufort Sea, and Elson Lagoon. Conductivity of sea surface (CS) and sea surface temperature (SST) were also measured together with pCO2. The result showed distinct differences in pCO2 among three areas. Average delta pCO2 (dpCO2) (a difference between an atmospheric CO2 and pCO2), CS, and SST were -114.9 ppm, 47.0 mScm-1, and 8.0 C at Chukchi Sea, -53.1 ppm, 43.5 mScm-1, and 8.9 C at Beaufort Sea, and 43.7 ppm, 41.1 mScm-1, and 9.5 C at Elson Lagoon. Relatively high dpCO2 value in the Beaufort Sea implies a large terrestrial input from Elson Lagoon where dpCO2 value is positive. This is supported by lower CS in the Beaufort Sea and Elson Laggon than in the Chukchi Sea. Sea currents from Pacific Ocean, which continuously flow through the Chukchi Sea, are thought to carry warmer water. However, SST was lower in the Chukchi Sea than in the Beaufort Sea. This may be because a prevailing wind from north east creates Ekman transport causing an upwelling along the Chukchi Sea coast and this upwelling carries deep cold water to the

  3. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  4. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  5. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  6. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  7. The exchange of water between the Faroe Shelf and the surrounding waters and its effect on the primary production

    NASA Astrophysics Data System (ADS)

    Eliasen, Sólvá Karadóttir; Hansen, Bogi; Larsen, Karin Margretha Húsgarð; Hátún, Hjálmar

    2016-01-01

    The interannual variation of the spring bloom and its effect on the marine ecosystem on the Faroe Shelf has been observed for a couple of decades. However, the mechanism controlling the spring bloom has so far not been known and attempts to explain the mechanism have mostly ruled out possibilities. The Faroe Shelf is to a variable degree isolated from the surrounding waters by a tidal front. It has previously been suggested that variations in the density difference across the front and how water masses are transferred across it affect the spring primary production, which is thought to be a driver of the shelf ecosystem. Using air-sea heat flux data and sea temperature observations on the shelf and off the shelf, we estimate the cross-frontal volume exchange in January-April and find that it increases with the tidal current speed and decreases with the cross-frontal temperature difference. Using the observed exchange rates, we show that the phytoplankton growth rate may be reduced by more than 0.05 day- 1 when the exchange is intense and off-shelf production is still low. Based on frontal dynamics theory, we suggest that the cross-frontal exchange rate in the above mentioned period is determined by the rate of vertical turbulent diffusion through the front. A simple theoretical model is found to support this hypothesis qualitatively as well as quantitatively. This supports that variations in horizontal exchange are an important controlling factor of the initial spring bloom and that the horizontal exchange during the winter can be determined by vertical turbulent diffusion. Our results will be relevant for the primary production in other similar systems of small geographical extent and also for other problems involving cross-shelf exchange, such as oil spill dispersal.

  8. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  9. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  10. A novel technique for highly accurate gas exchange measurements

    NASA Astrophysics Data System (ADS)

    Kalkenings, R. K.; Jähne, B. J.

    2003-04-01

    The Heidelberg Aeolotron is a circular wind-wave facility for investigating air-sea gas exchange. In this contribution a novel technique for measuring highly accurate transfer velocities k of mass transfer will be presented. Traditionally, in mass balance techniques the constant of decay for gas concentrations over time is measured. The major drawback of this concept is the long time constant. At low wind speeds and a water height greater than 1 m the period of observation has to be several days. In a gas-tight facility such as the Aeolotron, the transfer velocity k can be computed from the concentration in the water body and the change of concentration in the gas space. Owing to this fact, transfer velocities are gained while greatly reducing the measuring times to less than one hour. The transfer velocity k of a tracer can be parameterized as k=1/β \\cdot u_* \\cdot Sc^n, with the Schmidt Number Sc, shear velocity u_* and the dimensionless transfer resistance β. The Schmidt Number exponent n can be derived from simultaneous measurements of different tracers. Since these tracers are of different Schmidt number, the shear velocity is not needed. To allow for Schmidt numbers spanning a hole decade, in our experiments He, H_2, N_2O and F12 are used. The relative accuracy of measuring the transfer velocity was improved to less than 2%. In 9 consecutive experiments conducted at a wind speed of 6.2 m/s, the deviation of the Schmidt number exponent was found to be just under 0.02. This high accuracy will allow precisely determining the transition of the Schmidt number exponent from n=2/3 to n=0.5 from a flat to wavy water surface. In order to quantify gas exchange not only the wind speed is important. Surfactants have a pronounced effect on the wave field and lead to a drastic reduction in the transfer velocity. In the Aeolotron measurements were conducted with a variety of measuring devices, ranging from an imaging slope gauge (ISG) to thermal techniques with IR

  11. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  12. Teachers' Centers Exchange Directory.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Kreitzman, Ruth

    This directory has three major sections. The foreword is a brief essay describing the purpose of the Teachers' Centers Exchange, the "network" of teachers' centers, and the reasons for compiling and publishing this directory. The second section gives descriptions of 78 teachers' centers in the Exchange's network. These descriptions highlight each…

  13. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  14. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  15. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  16. Building Relationships through Exchange

    ERIC Educational Resources Information Center

    Primavera, Angi; Hall, Ellen

    2011-01-01

    From the moment of birth, children form and develop relationships with others in their world based on exchange. Children recognize that engaging in such encounters offers them the opportunity to enter into a relationship with another individual and to nurture that relationship through the exchange of messages and gifts, items and ideas. At Boulder…

  17. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  18. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  19. Higher Education Exchange, 2005

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2005-01-01

    The "Higher Education Exchange" is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  20. Environmental Exchange Box

    ERIC Educational Resources Information Center

    Moseley, Christine

    2003-01-01

    In this activity, teachers in one state create and share an "exchange box" of environmental and cultural items with students of another state. The Environmental Exchange Box activity enables teachers to improve students' skills in scientific inquiry and develop attitudes and values conducive to science learning such as wonder, curiosity, and…

  1. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  2. Aberration corrected emittance exchange

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.

    2015-08-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (rf) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dogleg emittance exchange setup with a five cell rf deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, i.e., an initial transverse emittance of 1 pm-rad is exchanged with a longitudinal emittance of 10 nm-rad.

  3. Surfactant control of gas transfer velocity along an offshore coastal transect: results from a laboratory gas exchange tank

    NASA Astrophysics Data System (ADS)

    Pereira, R.; Schneider-Zapp, K.; Upstill-Goddard, R. C.

    2016-07-01

    Understanding the physical and biogeochemical controls of air-sea gas exchange is necessary for establishing biogeochemical models for predicting regional- and global-scale trace gas fluxes and feedbacks. To this end we report the results of experiments designed to constrain the effect of surfactants in the sea surface microlayer (SML) on the gas transfer velocity (kw; cm h-1), seasonally (2012-2013) along a 20 km coastal transect (North East UK). We measured total surfactant activity (SA), chromophoric dissolved organic matter (CDOM) and chlorophyll a (Chl a) in the SML and in sub-surface water (SSW) and we evaluated corresponding kw values using a custom-designed air-sea gas exchange tank. Temporal SA variability exceeded its spatial variability. Overall, SA varied 5-fold between all samples (0.08 to 0.38 mg L-1 T-X-100), being highest in the SML during summer. SML SA enrichment factors (EFs) relative to SSW were ˜ 1.0 to 1.9, except for two values (0.75; 0.89: February 2013). The range in corresponding k660 (kw for CO2 in seawater at 20 °C) was 6.8 to 22.0 cm h-1. The film factor R660 (the ratio of k660 for seawater to k660 for "clean", i.e. surfactant-free, laboratory water) was strongly correlated with SML SA (r ≥ 0.70, p ≤ 0.002, each n = 16). High SML SA typically corresponded to k660 suppressions ˜ 14 to 51 % relative to clean laboratory water, highlighting strong spatiotemporal gradients in gas exchange due to varying surfactant in these coastal waters. Such variability should be taken account of when evaluating marine trace gas sources and sinks. Total CDOM absorbance (250 to 450 nm), the CDOM spectral slope ratio (SR = S275 - 295/S350 - 400), the 250 : 365 nm CDOM absorption ratio (E2 : E3), and Chl a all indicated spatial and temporal signals in the quantity and composition of organic matter in the SML and SSW. This prompts us to hypothesise that spatiotemporal variation in R660 and its relationship with SA is a consequence of compositional

  4. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  5. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  6. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  7. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  8. Simulation and Observation of Global Variations in Surface Exchange and Atmospheric Mixing Ratios of CO2

    NASA Astrophysics Data System (ADS)

    Denning, A.; Conner-Gausepohl, S.; Kawa, S.; Baker, I. T.; Zhu, Z.; Brown, M.; Vay, S.; Wofsy, S. C.; Philpott, A.; Collatz, G.; Schaefer, K.; Kleist, J.

    2005-12-01

    We have performed a simulation of hourly variations of terrestrial surface fluxes and the atmospheric mixing ratio of carbon dioxide from January 1, 2000 through December 31, 2004, and have evaluated the simulation by comparison to a number of observations. Terrestrial photosynthesis and ecosystem respiration were computed using the Simple Biosphere Model (SiB), driven by diurnally-varying weather analyzed by the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS), with vegetation parameters specified using imagery from the NOAA Advanced High Resolution Radiometer (AVHRR). CO2 emissions due to the combustion of fossil fuel and to air-sea gas exchange were also prescribed as boundary forcing to the atmospheric transport Parameterized Chemical Transport model (PCTM). Preliminary results showed reasonable agreement with spatial and synoptic variations, but suffered from a systematic offset with respect to the observed seasonal cycle of CO2 at many flask observing stations. Subsequent analysis showed that these problems were traceable to temporal interpolation of the satellite vegetation imagery and the treatment of leaf-to-canopy scaling in SiB, which have both been substantially revised as a result of these analyses. Comparisons to eddy covariance data at several sites, to tower-based continuous observations of CO2 mixing ratio, and to data collected by airborne sampling show that the coupled simulation successfully captures many features of the observed temporal and spatial variations of terrestrial surface exchange and atmospheric transport of CO2. The simulations demonstrate the sensitivity of both surface exchange and atmospheric transport of CO2 to synoptic weather events in middle latitudes, and suggest that high-frequency variations in continental [CO2] data can be interpreted in terms of surface flux anomalies.

  9. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  10. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  11. Greywater heat exchanger

    SciTech Connect

    Holmberg, D.

    1983-11-21

    A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

  12. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  13. Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment

    SciTech Connect

    Cember, R.

    1989-02-15

    The history of bomb-produced radiocarbon in the surface waters of the Red Sea and the western Gulf of Aden was reconstructed from annual growth bands of corals. Gulf of Aden surface water entering the Red Sea and flowing to the north at the surface of the Red Sea becomes progressively enriched in bomb /sup 14/C by air-sea exchange of carbon dioxide. With physical oceanographic observations and analysis as the basis of a simple model, this progressive northward enrichment can be used to calculate a mean invasionn flux for CO/sub 2/ across the Red Sea surface. The CO/sub 2/ invasion flux so calculated is 8 mol/m/sup 2//yr with an uncertainty of approximately 2 mol/m/sup 2//yr. When combined with the extensive historical observations of wind speeds in the Red Sea, the calculated CO/sub 2/ invasion flux supports the empirical relationship between CO/sub 2/ invasion and wind speed proposed by other workers. Sea surface pCO/sub 2/ was measured at seven stations along the length of the Red Sea in January 1985. These pCO/sub 2/ data show that in midwinter the net flux of CO/sub 2/ across the Red Sea surface (i.e. the difference between the invasion and evasion fluxes) is approximately zero for the Red Sea as a whole. copyright American Geophysical Union 1989

  14. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  15. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  16. Heat exchange device

    SciTech Connect

    Callison, G.

    1984-01-17

    A heat exchange device is adapted to recover heat from the fire box of a wood burning stove or the like for heating ambient air in a room or other enclosed space. The heat exchange device is adapted to mount in a recess in a stove top in place of a lid which is normally supplied with the stove. The device according to the invention includes heat exchange means which extend into the fire box of the stove below the top surface thereof. The heat from the heat exchange device is transmitted into a main cavity of the device where the heat is transferred to air forced through the main cavity by a blower mounted to an outside surface of the device. Air exit means are provided on a surface opposite to the surface on which the blower is mounted to provide a passage for heated air into the room or other enclosed space to be heated. The device may also include a top mounted isolated handle for ease in handling the device such as for moving from one area to another. In a second embodiment of the device, a high temperature heat exchange glass plate is mounted on the surface of the device which is in contact with the fire box. Heat is transmitted by heat exchange plate to the main cavity of the device where the air is heated and blown into the room as above.

  17. Microscale continuous ion exchanger.

    PubMed

    Kuban, Petr; Dasgupta, Purnendu K; Morris, Kavin A

    2002-11-01

    A microscale continuous ion exchanger based on two liquid streams flowing in parallel is presented. The ion exchange reaction occurs through diffusional transfer of molecules between the ion exchanger phase and the eluent phase and is applied for conductivity suppression. Two approaches are demonstrated. In the first approach, a liquid ion exchanger (i.e. a strongly basic compound, e.g., tetraoctylammonium hydroxide, or a secondary amine, e.g., Amberlite IA-2) is dissolved in an organic solvent immiscible with the aqueous eluent. The system allows for sensitive suppressed conductivity detection of various inorganic cations. When the weakly basic secondary amine is used, conductometric detection of heavy metals is possible. In the second approach, a suspension of finely ground ion-exchange resin is used as the ion exchanger phase. In this case, the suspension need not involve an organic solvent. Theoretical models and computations are presented along with experimental results. The potential of such a system as a chip-scale post-separation suppressor/reactor is evident.

  18. Cryptographic Combinatorial Securities Exchanges

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  19. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  20. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  1. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  2. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  3. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  4. Downhole heat exchangers

    SciTech Connect

    Culver, G.; Lund, J.W.

    1999-09-01

    The downhole heat exchanger (DHE) eliminates the problem of disposal of geothermal fluid, since only heat is taken from the well. The exchanger consists of a system of pipes or tubes suspended in the well through which clean secondary water is pumped or allowed to circulate by natural convection. These systems offer substantial economic savings over surface heat exchangers where a single-well system is adequate (typically less than 0.8 MWt, with well depths up to about 500 ft) and may be economical under certain conditions at well depths to 1500 ft. Several designs have proven successful; but, the most popular are a simple hairpin loop or multiple loops of iron pipe (similar to the tubes in a U-tube and shell exchanger) extending to near the well bottom. An experimental design consisting of multiple small tubes with headers at each end suspended just below the water surface appears to offer economic and heating capacity advantages. The paper describes design and construction details and New Zealand`s experience with downhole heat exchangers.

  5. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  6. Modular heat exchanger

    DOEpatents

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  7. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  8. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  9. Alert Exchange Process Protocol

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  10. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  11. Visiting Scholar Exchange Reports.

    ERIC Educational Resources Information Center

    Rubin, Kyna, Ed.

    1986-01-01

    Provides reports of four United States scholars who visited China as part of the Visiting Scholar Exchange Program. The titles of the reports are (1) "China Journey: A Political Scientist's Look at Yan'an," (2) "The Social Consequences of Land Reclamation in Chinese Coastal Ecosystems," (3) "Anthropology Lectures in South China," and (4) "The Use…

  12. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual consumers…

  13. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  14. Higher Education Exchange, 2014

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2014-01-01

    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working…

  15. Higher Education Exchange

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological conundrum of "knowledge produced…

  16. Higher Education Exchange, 2009

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Kettering's president David Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological…

  17. Higher Education Exchange 2006

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2006-01-01

    Contributors to this issue of the Higher Education Exchange debate the issues around knowledge production, discuss the acquisition of deliberative skills for democracy, and examine how higher education prepares, or does not prepare, students for citizenship roles. Articles include: (1) "Foreword" (Deborah Witte); (2) "Knowledge, Judgment and…

  18. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  19. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  20. Estimate exchanger vibration

    SciTech Connect

    Nieh, C.D.; Zengyan, H.

    1986-04-01

    Based on the classical beam theory, a simple method for calculating the natural frequency of unequally spanned tubes is presented. The method is suitable for various boundary conditions. Accuracy of the calculations is sufficient for practical applications. This method will help designers and operators estimate the vibration of tubular exchangers. In general, there are three reasons why a tube vibrates in cross flow: vortex shedding, fluid elasticity and turbulent buffeting. No matter which is the cause, the basic reason is that the frequency of exciting force is approximately the same as or equal to the natural frequency of the tube. To prevent the heat exchanger from vibrating, it is necessary to select correctly the shell-side fluid velocity so that the frequency of exciting force is different from the natural frequency of the tube, or to vary the natural frequency of the heat exchanger tube. So precisely determining the natural frequency of the heat exchanger, especially its foundational frequency under various supporting conditions, is of significance.

  1. Idea Exchange: Volunteerism.

    ERIC Educational Resources Information Center

    Ryan, Jamice, Ed.

    1974-01-01

    This issue of "Idea Exchange" which focuses on the volunteer in education programs includes a variety of materials related to volunteer experiences and viewpoints: (1) a handbook for volunteer coordinators which discusses the coordinator's role, the recruiting and interviewing of volunteers, and the essentials of volunteer placement and…

  2. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of

  3. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  4. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  5. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  6. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  7. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  8. Vancouver's needle exchange program.

    PubMed

    Bardsley, J; Turvey, J; Blatherwick, J

    1990-01-01

    To stem the spread of HIV among intravenous drug users, and between them and their sexual partners and offspring, Vancouver initiated a multifaceted "ways and means" needle exchange program in March of 1989. As of the end of October, over 2,600 users have registered. The needle exchange rate has increased steadily, reaching a peak of 98% in November. Increases have also been noted in the number of regular users, and requests for referral to addition, medical, social and HIV-related services. Outreach services, especially using a van, have expanded program availability. Success in terms of clientele response is accredited primarily to the nonjudgemental, nonintrusive approach. The main problems have been the lack of addiction treatment services, financial and personnel constraints created by the large enrollment, and difficulties with Federal/Provincial funding. Funding for evaluation has been requested.

  9. Serial replica exchange.

    PubMed

    Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A; Berne, B J

    2007-02-15

    Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method's greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home. For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM.

  10. Serial Replica Exchange

    PubMed Central

    Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A.; Berne, B. J.

    2009-01-01

    Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method’s greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home.1 For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM. PMID:17249714

  11. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  12. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  13. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  14. Hydrogen Exchange Mass Spectrometry.

    PubMed

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  15. The exchangeability of shape

    PubMed Central

    2010-01-01

    Background Landmark based geometric morphometrics (GM) allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes. PMID:20964872

  16. Social Skills as Exchange Resources.

    ERIC Educational Resources Information Center

    Sletta, Olav

    1992-01-01

    A conceptualization of social skills as resources in social exchange is offered, and a social exchange theoretical framework is applied to educational research. In a social exchange framework, the contribution of the peer group to the social exclusion of an individual would not be ignored. (SLD)

  17. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  18. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  19. Atlantic Telehealth Knowledge Exchange.

    PubMed

    Dwyer, Patricia; Hagerman, Valerie; Ingram, Chris-Anne; MacFarlane, Ron; McCourt, Sherry

    2004-01-01

    Atlantic Canada has some of the earliest, most comprehensive, well-established networks, and innovative applications for telehealth in the country. The region offers a range of models for telehealth, in terms of management structure, coordination, funding, equipment, utilization, and telehealth applications. Collectively, this diversity, experience, and wealth of knowledge can significantly contribute to the development of a knowledge base for excellence in telehealth services. There is no formal process in place for the sharing of information amongst the provinces. Information sharing primarily occurs informally through professional contacts and participation in telehealth organizations. A core group of organizations partnered to develop a process for knowledge exchange to occur. This type of collaborative approach is favored in Atlantic Canada, given the region's economy and available resources. The Atlantic Telehealth Knowledge Exchange (ATKE) project centred on the development of a collaborative structure, information sharing and dissemination, development of a knowledge repository and sustainability. The project is viewed as a first step in assisting telehealth stakeholders with sharing knowledge about telehealth in Atlantic Canada. Significant progress has been made throughout the project in increasing the profile of telehealth in Atlantic Canada. The research process has captured and synthesized baseline information on telehealth, and fostered collaboration amongst telehealth providers who might otherwise have never come together. It has also brought critical awareness to the discussion tables of governments and key committees regarding the value of telehealth in sustaining our health system, and has motivated decision makers to take action to integrate telehealth into e-health discussions.

  20. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  1. International Cell Exchange: 1992.

    PubMed

    Lau, M; Terasaki, P I; Park, M S

    1992-01-01

    1. This is a review of 1992 typing of 40 cells for Class I antigens and 18 cultured cell lines for Class II antigens through the International Cell Exchange. Serological typings were compared with DNA typing reports for Class II specificities. Presently, 290 laboratories participate in the monthly Class I exchange. Class II results were received monthly from 166 serology laboratories and from 36 DNA laboratories. 2. In 1992, 11 of the 16 A-locus antigens attained 95% or greater average detection. Nine of the 27 B-locus antigens showed 95% or better mean agreement levels. Antigens such as B46 and B70 continued to show improvement in detection in a 5-year period. 3. We compared discrepancy rates of 7 A-locus and 8 B-locus antigens typed 3 times or more. The rates for the B-locus specificities, especially for percentages of false negatives (ie, how often the antigen assignment was missed), continued to be greater than those for the A-locus antigens. Nevertheless, the discrepancy rates of B35 and B70 decreased dramatically during the last 5 years. 4. We showed the number of laboratories with the total of false negatives and false positives. Nine laboratories achieved perfect records (0 false negatives and false positives) for all analyzed antigens in 1992. 5. Results of retyping of 3 donors over several years were shown to indicate improved antigen detection. 6. Recently recognized HLA-specificities, such as A2403 and B5102, were shown as cell variants studied in previous cell exchanges. Variants of B15, B16, and B40 families were presented, as well as several new A-locus antigens. 7. The low and high rates, in addition to the average detection levels, were indicated for a total of 27 (18 DR and 9 DQ) Class II specificities by serology and by DNA typings. Eight of the 15 DR/DRB1 specificities attained 90% or better average agreement by both serology and DNA. Three of the 9 DQ antigens achieved 90% or better average detection by both methods. 8. Confirmation by DNA

  2. Ammonia Surface-Atmosphere Exchange in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Wentworth, G.; Tremblay, J. E.; Gagnon, J.; Côté, J. S.; Courchesne, I.

    2014-12-01

    The net flux of ammonia between the ocean and the atmosphere is poorly known on global and regional scales. Data from high-latitude research cruises suggest that deposition from the atmosphere to the surface dominates, but the magnitude and drivers of this flux are not well understood. In the polar marine boundary layer, the surface may be composed of not only open ocean, but also first-year or multi-year sea ice which may be covered with meltponds. To characterize the air-sea exchange of ammonia in the polar marine boundary layer, data were collected aboard the Canadian Coast Guard Ship Amundsen between July 10 and Aug 14, 2014 in the Eastern Canadian Arctic. The Ambient Ion Monitor Ion Chromatograph was used to make hourly measurements of the mixing ratio of gas phase ammonia, and the water-soluble constituents of fine particle matter (PM2.5). Fluorometry was used to measure dissolved ammonium concentrations in the ocean between 0 and 20 m, and in low-salinity melt ponds encountered in regions of extensive sea ice. Observations indicate that the atmosphere contains higher levels of ammonia than are calculated to be in equilibrium with surface reservoirs, implying net deposition of ammonia from the atmosphere. While ammonium levels tended to be higher in melt ponds, the lower water temperatures still mean that these are unlikely to be sources of NH3 to the atmosphere. The disequilibrium between atmospheric and surface reservoirs of ammonia imply relatively large sources to the atmosphere (possibly nearby bird colonies) or high consumption rates in surface waters.

  3. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

  4. South Atlantic interbasin exchange

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen Rich

    1991-01-01

    The exchange of mass and heat between the South Atlantic and the neighboring ocean basins was estimated using hydrographic data and inverse methods, in order to gain information on the links between the deep-water formation processes occurring within the Atlantic and the global thermohaline circulation. Results demonstrate that the global thermohaline cell associated with the formation and export of North Atlantic deep water (NADW) is closed primarily by a 'cold water path' in which deep water leaving the Atlantic ultimately returns as intermediate water entering the basin through Drake Passage. This conclusion conflicts with the suggestion by Gordon (1986) that the global thermohaline circulation associated with the formation of NADW is closed primarily by a 'warm water path', in which the export of NADW is compensated by an inflow of warm Indian Ocean thermocline water south of Africa.

  5. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  6. International Cell Exchange, 1994.

    PubMed

    Lau, M; Terasaki, P I; Park, M S

    1994-01-01

    1. We summarize typings of 40 cells for Class I antigens and 20 cultured cell lines for Class II antigens through the International Cell Exchange in 1994. Serologic Class II typings were compared with DNA typings for the same 20 cells. Two hundred eighty-one laboratories participated in the monthly Class I Serum Exchange. One hundred nineteen serology laboratories and 74 DNA laboratories reported Class II specificities on a monthly basis. 2. The average detection levels, as well as the high detection levels, were determined for 16 A-locus and 27 B-locus antigens. Mean detection rates of 95% or greater average detection were obtained for 12 A-locus and 10 B-locus antigens. Lower than 80% agreement was calculated for one A-locus antigen (A74) and 7 B-locus (B46, B48, B61, B67, B73, B75, B77) antigens. 3. We compared discrepancy rates of 10 A-locus and 7 B-locus antigens typed 3 times or more. The false-negative discrepancy rates, i.e. how often the antigen was missed, were greater for more of the B-locus specificities than for the A-locus antigens. B62, having the highest false-positive rate, tended to be overassigned. The discrepancy rates, especially the false-negative rate, for B70 were shown to decrease over a 7-year period. 4. In 1994, 8 laboratories attained records of total no misses for all analyzed antigens. Twelve laboratories had final records of only one discrepancy, and 5 laboratories had impressive perfect records (zero false negatives and false positives) for their yearly antigen reports. 5. Retyping of 12 Class I and 8 Class II reference cells showed improved detection of antigens. Results of a donor typed 4 times over 11 years demonstrated marked improvement, nearly doubling for A33, B38, and B75. Two cells first typed in 1991, then retyped in 1994, showed improved detection for Class II splits by serology and DNA typing. 6. We updated the list of sequenced Class I Exchange cells. Seven new cells were added as well as confirmatory sequence data for A

  7. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress. PMID:26747520

  8. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  9. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  10. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  11. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  12. Heat exchanger bypass test report

    SciTech Connect

    De Vries, M.L.

    1995-01-26

    This test report documents the results that were obtained while conducting the test procedure which bypassed the heat exchangers in the HC-21C sludge stabilization process. The test was performed on November 15, 1994 using WHC-SD-CP-TC-031, ``Heat Exchanger Bypass Test Procedure.`` The primary objective of the test procedure was to determine if the heat exchangers were contributing to condensation of moisture in the off-gas line. This condensation was observed in the rotameters. Also, a secondary objective was to determine if temperatures at the rotameters would be too high and damage them or make them inaccurate without the heat exchangers in place.

  13. Technology Performance Exchange (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  14. The Transatlantic Orientation Exchange Project

    ERIC Educational Resources Information Center

    Gisevius, Annette; Weber, Robin A.

    2009-01-01

    The Transatlantic Orientation Exchange/Multiplikatorenschulung im transatlan-tischen Austausch is a collaboration between volunteers and staff in both the US and German AFS organizations. The goal of the project is to increase the level of intercultural learning of German and US secondary education exchange participants and their host families.…

  15. Liquid/liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  16. StarBright Learning Exchange

    ERIC Educational Resources Information Center

    Kalinowski, Michael

    2007-01-01

    This article features StarBright Learning Exchange, a program that provides a cross-cultural exchange between Australian and South African early childhood educators. The program was originated when its president, Carol Allen, and her colleague, Karen Williams, decided that they could no longer sit by and watch the unfolding social catastrophe that…

  17. Educators Exchange: A Program Evaluation.

    ERIC Educational Resources Information Center

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  18. EXCHANGE. Volume 9-92

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  19. Heat exchanger leakage problem location

    NASA Astrophysics Data System (ADS)

    Hejčík, Jiří; Jícha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  20. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  1. Digoxin elimination by exchange transfusion.

    PubMed

    Rosegger, H; Zach, M; Gleispach, H; Beitzke, A

    1977-02-21

    The report covers four cases presenting simultaneous indications for digitalisation and exchange transfusions. Intravenous administration of digoxin was followed: 1. by monitoring of the behaviour of the plasma digoxin level; 2. by determination of the total amount of glycoside eliminated by the blood exchange. Particular attention was paid to the effect of the delay between injection and exchange transfusion on the amount of digoxin eliminated. All four cases showed moderate falls in plasma levels. The amounts of digoxin eliminated by exchange transfusion were in reverse relationship to the delay between administration of digoxin and the blood exchange. At no time did the eliminated fraction exceed 5% of the total amount present in the body. PMID:837948

  2. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  3. Energy-Exchange Project

    SciTech Connect

    Not Available

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  4. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  5. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  6. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  7. Satellite observations of air-sea interaction over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Xie, S.; Nonaka, M.; Hafner, J.; Liu, W. T.

    2002-12-01

    Satellite microwave measurements are analyzed, revealing robust co-variability in sea surface temperature (SST) and wind speed over the Kuroshio and its Extension (KE). Ocean hydrodynamic instabilities cause the KE to meander and result into large SST variations. Increased (reduced) wind speeds are found to be associated with warm (cold) SST anomalies. This positive SST-wind correlation in KE is confirmed by in-situ buoy measurements and is consistent with a vertical shear adjustment mechanism. Namely, an increase in SST reduces the static stability of the near-surface atmosphere, intensifying the vertical turbulence mixing and bringing fast-moving air from aloft to the sea surface. South of Japan, the Kuroshio is known to vary between nearshore and offshore paths. Both paths seem semi-permanent and can persist months to years. As the Kuroshio shifts its path, coherent wind changes are detected. In particular, winds are high south of Tokyo when the Kuroshio takes the nearshore path while they are greatly reduced when this warm current leaves the coast in the offshore path. Further upstream in the East China Sea, on the warmer flank of the Kuroshio Front, there are a zone of high wind speed and a band of raining cloud due to the region's unstable atmospheric stratification near the surface. Surface wind convergence is roughly collocated with the Kuroshio Current. By increasing the baroclinicity and condensational heating, the Kuroshio Front aids the growth of the so-called Taiwan cyclone, an important winter weather phenomenon for Japan. The positive SST-wind correlation over the strong Kuroshio Current and its extension is opposite to the negative one often observed in regions of weak currents such as south of the Aleutian low that is considered to be indicative of atmosphere-to-ocean forcing.

  8. Air-sea interaction in the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  9. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  10. The heat pipe exchanger with controllable heat exchanging area

    NASA Astrophysics Data System (ADS)

    Oshiro, M.; Takasu, S.; Kurihara, M.; Taneda, K.; Nakamoto, T.; Nakayama, H.

    1984-03-01

    The heat transfer rate through the heat exchanger in an industrial boiler that burns heavy oils must be controlled so as not to decrease the exhaust gas temperature below the dew point of sulfuric acid. Two systems of heat pipe exchangers are examined: one controls the heat exchange area of the condenser section of the heat pipes and the other uses the variable conductance heat pipes. The characteristics of these two systems are described. The temperatures at various points and the gas quantity are plotted against the boiler loads. The maintainability and operational reliability of both systems are demonstrated.

  11. 76 FR 28358 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 55409 (Sept. 10, 2010... Act. Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 3281 (Jan. 20, 2010) (Proposed CFTC Retail Forex Rule). \\13\\ See Retail Foreign Exchange Transactions, 76...

  12. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  13. Hear Exchange Assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  14. Effect of polyamine reagents on exchange capacity in ion exchangers

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  15. Custom, contract, and kidney exchange.

    PubMed

    Healy, Kieran; Krawiec, Kimberly D

    2012-01-01

    In this Essay, we examine a case in which the organizational and logistical demands of a novel form of organ exchange (the nonsimultaneous, extended, altruistic donor (NEAD) chain) do not map cleanly onto standard cultural schemas for either market or gift exchange, resulting in sociological ambiguity and legal uncertainty. In some ways, a NEAD chain resembles a form of generalized exchange, an ancient and widespread instance of the norm of reciprocity that can be thought of simply as the obligation to “pay it forward” rather than the obligation to reciprocate directly with the original giver. At the same time, a NEAD chain resembles a string of promises and commitments to deliver something in exchange for some valuable consideration--that is, a series of contracts. Neither of these salient "social imaginaries" of exchange--gift giving or formal contract--perfectly meets the practical demands of the NEAD system. As a result, neither contract nor generalized exchange drives the practice of NEAD chains. Rather, the majority of actual exchanges still resemble a simpler form of exchange: direct, simultaneous exchange between parties with no time delay or opportunity to back out. If NEAD chains are to reach their full promise for large-scale, nonsimultaneous organ transfer, legal uncertainties and sociological ambiguities must be finessed, both in the practices of the coordinating agencies and in the minds of NEAD-chain participants. This might happen either through the further elaboration of gift-like language and practices, or through a creative use of the cultural form and motivational vocabulary, but not necessarily the legal and institutional machinery, of contract.

  16. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  17. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  18. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  19. Nonlocal exchange correlation in screened-exchange densityfunctional methods

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang; Spataru, Catalin D.; Louie,Steven G.

    2007-04-22

    We present a systematic study on the exchange-correlationeffects in screened-exchange local density functional method. Toinvestigate the effects of the screened-exchange potential in the bandgap correction, we have compared the exchange-correlation potential termin the sX-LDA formalism with the self-energy term in the GWapproximation. It is found that the band gap correction of the sX-LDAmethod primarily comes from the downshift of valence band states,resulting from the enhancement of bonding and the increase of ionizationenergy. The band gap correction in the GW method, on the contrary, comesin large part from the increase of theconduction band energies. We alsostudied the effects of the screened-exchange potential in the totalenergy by investigating the exchange-correlation hole in comparison withquantum Monte Carlo calculations. When the Thomas-Fermi screening isused, the sX-LDA method overestimates (underestimates) theexchange-correlation hole in short (long) range. From theexchange-correlation energy analysis we found that the LDA method yieldsbetter absolute total energy than sX-LDA method.

  20. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity

    PubMed Central

    Delêtre, Marc; McKey, Doyle B.; Hodkinson, Trevor R.

    2011-01-01

    The conservation of crop genetic resources requires understanding the different variables—cultural, social, and economic—that impinge on crop diversity. In small-scale farming systems, seed exchanges represent a key mechanism in the dynamics of crop genetic diversity, and analyzing the rules that structure social networks of seed exchange between farmer communities can help decipher patterns of crop genetic diversity. Using a combination of ethnobotanical and molecular genetic approaches, we investigated the relationships between regional patterns of manioc genetic diversity in Gabon and local networks of seed exchange. Spatially explicit Bayesian clustering methods showed that geographical discontinuities of manioc genetic diversity mirror major ethnolinguistic boundaries, with a southern matrilineal domain characterized by high levels of varietal diversity and a northern patrilineal domain characterized by low varietal diversity. Borrowing concepts from anthropology—kinship, bridewealth, and filiation—we analyzed the relationships between marriage exchanges and seed exchange networks in patrilineal and matrilineal societies. We demonstrate that, by defining marriage prohibitions, kinship systems structure social networks of exchange between farmer communities and influence the movement of seeds in metapopulations, shaping crop diversity at local and regional levels. PMID:22042843

  1. 75 FR 51138 - Self-Regulatory Organizations; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Exchange Act Release Nos. 62251 (June 10, 2010), 75 FR 34183 (June 16, 2010); 62252 (June 10, 2010), 75 FR...; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated; Chicago Stock Exchange, Inc.; EDGA... Securities Exchange LLC; NASDAQ OMX BX, Inc.; The NASDAQ Stock Market LLC; National Stock Exchange, Inc.;...

  2. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  3. Phase Change Material Heat Exchangers

    NASA Video Gallery

    NASA’s Game Changing Development is taking on a technologydevelopment and demonstration effort to design, build, and test the next generation of Phase Change Material Heat Exchangers (PCM HXs) on ...

  4. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  5. Numerical simulation of heat exchanger

    SciTech Connect

    Sha, W.T.

    1985-01-01

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers.

  6. Definition of Magnetic Exchange Length

    SciTech Connect

    Abo, GS; Hong, YK; Park, J; Lee, J; Lee, W; Choi, BC

    2013-08-01

    The magnetostatic exchange length is an important parameter in magnetics as it measures the relative strength of exchange and self-magnetostatic energies. Its use can be found in areas of magnetics including micromagnetics, soft and hard magnetic materials, and information storage. The exchange length is of primary importance because it governs the width of the transition between magnetic domains. Unfortunately, there is some confusion in the literature between the magnetostatic exchange length and a similar distance concerning magnetization reversal mechanisms in particles known as the characteristic length. This confusion is aggravated by the common usage of two different systems of units, SI and cgs. This paper attempts to clarify the situation and recommends equations in both systems of units.

  7. Consider nonfouling fluidized bed exchangers

    SciTech Connect

    Klaren, D.G.; Baiiie, R.E. )

    1989-07-01

    Applications for fluidized bed heat exchangers in various industries, their operating principles and a detailed analysis of their suitability for replacing double-pipe scraped-surface heat exchangers in lube oil plants are discussed. Development of the fluidized bed heat exchanger started in the early 70s and was totally dedicated to improvement of the multistage flash evaporator for sea water desalination. This resulted in a demonstration plant with a fluidized bed heat exchanger with a total heat transfer surface of over 1,000 m/sup 2/. Over an operating period of more than 15,000 hours untreated sea water was heated to more than 120{sup 0}C without any fouling in the tubes due to scale deposits.

  8. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  9. Liquid droplet heat exchanger studies

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Hedges, D. E.; Yungster, S.

    1987-01-01

    Recent analytical and experimental investigations of the liquid droplet heat exchanger (LDHX) concept for space power applications are described. The performance of the LDHX is compared to that of a conventional heat exchanger for heat rejection applications in a Brayton cycle, using the mass-specific heat exchanger effectiveness as a figure of merit. It is shown that the LDHX has an order of magnitude advantage over the conventional heat exchanger. Furthermore, significant improvement in cycle efficiency and power to mass ratio is possible. Two-phase flow experiments in a laboratory scale LDHX, using air and water as the two media, show very good agreement with the quasi-one-dimensional model used in the parametric studies.

  10. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  11. Two phase heat exchanger symposium

    SciTech Connect

    Pearson, J.T.; Kitto, J.B.

    1985-01-01

    This book compiles the papers presented at the conference on the subject of heat transfer mechanics and instrumentation. Theoretical and experimental data are provided in each paper. The topics covered are: temperature effects of steel; optimization of design of two-phase heat exchanges; thermosyphon system and low grade waste heat recovery; condensation heat transfer in plate heat exchangers; forced convective boiling; and performance analysis of full bundle submerged boilers.

  12. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.

  13. Plate heat exchanger design theory

    NASA Astrophysics Data System (ADS)

    Shah, R. K.; Wanniarachchi, A. S.

    Plate heat exchangers are commonly used in hygienic applications as well as in chemical processing and other industrial applications. Pertinent information on plate exchangers from a designer's point of view is summarized to provide a basic insight into performance behavior of chevron plates. Basic design methods are presented and a method of coupling between heat transfer and pressure drop is introduced. A step by step design procedure for rating and sizing problems is outlined.

  14. Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-11-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3--CO32- acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas exchange with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life

  15. Hartree potential dependent exchange functional

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2016-08-01

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, and recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob's ladder classification of non-empirical density functionals.

  16. Hartree potential dependent exchange functional.

    PubMed

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2016-08-28

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, and recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob's ladder classification of non-empirical density functionals. PMID:27586907

  17. Hydrogen exchange equilibria in thiols.

    PubMed

    Hofstetter, Dustin; Thalmann, Basil; Nauser, Thomas; Koppenol, Willem H

    2012-09-17

    Cysteine, cysteinyl-glycine, glutathione, phenylalanyl-cysteinyl-glycine, and histidyl-cysteinyl-glycine were dissolved in acidic and neutral D(2)O in the presence of the radical generator 2,2'-azobis(2-methylpropionamidine) dihydrochloride and radical mediator compounds (benzyl alcohol and 2-propanol). An exchange of H-atoms by D-atoms took place in these peptides due to intramolecular H-abstraction equilibria. NMR measurements allow one to follow the extent of H-D exchanges and to identify the sites where these exchanges take place. Significant exchanges occur in acidic media in GSH at positions Glu-β and Glu-γ, in Phe-Cys-Gly at positions Phe ortho, Phe-β, Cys-α, Cys-β, and Gly-α, and in His-Cys-Gly at positions His H1, His H2, His β, Cys β, and Gly α. In neutral media, exchanges occur in Cys-Gly at position Cys β and in GSH at position Cys α. Phe-Cys-Gly and His-Cys-Gly were not examined in neutral media. Sites participating in the radical exchange equilibria are highly dependent on structure and pH; the availability of electron density in the form of lone pairs appears to increase the extent of exchange. Interestingly, and unexpectedly, 2D NMR experiments show that GSH rearranges itself in acidic solution: the signals shift, but their patterns do not change. The formation of a thiolactone from Gly and Cys residues matches the changes observed.

  18. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  19. Building Cohesion in Positively Connected Exchange Networks

    ERIC Educational Resources Information Center

    Schaefer, David R.; Kornienko, Olga

    2009-01-01

    This research investigates the process through which individuals build cohesive relationships in positively connected exchange relations. Positive connections exist any time exchange in one relation must precede exchange in another. Such situations arise through gatekeeping, in generalized exchange contexts, and when resources diffuse across a…

  20. 76 FR 22633 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 55409 (Sept. 10, 2010... Act. Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 3281...\\ Proposed CFTC Retail Forex Rule, 75 FR at 3287 n.54. Section 48.6--Disclosure This section requires...

  1. 76 FR 56094 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    .... Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 3281 (Jan. 20, 2010). \\13\\ Retail Foreign Exchange Transactions, 76 FR 22633 (Apr. 22, 2011). \\14\\ Id. \\15\\ Retail Foreign... proposed and final rules. \\16\\ Retail Foreign Exchange Transactions, 76 FR 22633 (Apr. 22, 2011)....

  2. Heat exchange apparatus utilizing thermal siphon pipes

    SciTech Connect

    Daman, E.L.; Kunsagi, L.

    1980-10-07

    A heat exchange apparatus is descirbed in which each of a plurality of thermal siphon pipes has an upper portion extending in an upper heat exchange section and a lower portion extending in a lower heat exchange section. Each pipe is closed at its ends and contains a heat transfer fluid so that when a hot fluid is passed through the lower heat exchange section, the heat is transferred from the hot fluid to the heat exchange fluid. A cool fluid is passed through the upper heat exchange section to remove the heat from the heat exchange fluid.

  3. Pion exchange at high energies

    SciTech Connect

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.

  4. Satellite exchange in the Baltimore Needle Exchange Program.

    PubMed Central

    Valente, T W; Foreman, R K; Junge, B; Vlahov, D

    1998-01-01

    OBJECTIVE: Our first objective was to develop an index of satellite exchange and then determine whether satellite exchangers (SEs) differed demographically or behaviorally from other injecting drug users (IDUs). Our second objective was to determine the degree that SEs contributed to needle exchange program (NEP) effectiveness. METHODS: We collected data from approximately 5000 Baltimore Needle Exchange Program (BNEP) participants on the number of syringes acquired and returned over the two-year period February 1995 to February 1997. We then conducted one-way ANOVAs and logistic regressions to determine if SEs were different from other IDUs. RESULTS: We classified 9.35% of the IDUs and SEs and showed that SEs reported levels of drug use and risk behavior similar to other BNEP participants. Although SEs represented less than 10% of all BNEP clients, they accounted for more than 64% of all needles distributed by the BNEP. We showed that SEs accessed more wide-ranging drug use networks than non-SE IDUs and thus can act as potential bridges for human immunodeficiency virus (HIV) prevention materials and messages to larger numbers of drug injectors. CONCLUSIONS: SEs can be expressly targeted with specific prevention messages and encouraged to be "ambassadors" for HIV prevention messages. Efforts to curtail the activities of SEs may detract from the effectiveness of NEPs. PMID:9722814

  5. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  6. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  7. Grafted methylenediphosphonate ion exchange resins

    SciTech Connect

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  8. 78 FR 46622 - Application of Topaz Exchange, LLC for Registration as a National Securities Exchange; Findings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    .... See Securities Exchange Act Release No. 69011, 78 FR 14844 (March 7, 2013). Because Topaz Exchange's... Exchange. \\5\\ See Securities Exchange Act Release No. 69012 (March 1, 2013), 78 FR 14847 (``Notice''). \\6... Exchange Act Release No. 56955 (December 13, 2007), 72 FR 71979 (December 19, 2007) (File No....

  9. 75 FR 52558 - Self-Regulatory Organizations; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... contained a typographical error in the signature block. In the Federal Register of August 18, 2010, in FR...; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated; Chicago Stock Exchange, Inc.; EDGA... Securities Exchange LLC; NASDAQ OMX BX, Inc.; The NASDAQ Stock Market LLC; National Stock Exchange, Inc.;...

  10. Teachers' Centers Exchange Directory, 1980.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Piper, Barbara

    This directory lists those American teacher centers that are in touch with the Teachers' Centers Exchange. All 116 entries in the directory are written in a common format. This is intended to help readers make comparisons and select individual ideas rather than to adopt whole models. Each listing is headed by the name, address, and phone number of…

  11. Teachers' Centers Exchange Directory. 1982.

    ERIC Educational Resources Information Center

    Piper, Barbara

    The 198 teacher centers listed in this directory comprise a network of teacher center practitioners who communicate with the Teachers' Centers Exchange (Far West Laboratory for Educational Research and Development, San Francisco, California). Centers in the United States and Canada are listed alphabetically by state. Information on each center…

  12. Export bill and scientific exchanges

    NASA Astrophysics Data System (ADS)

    President Ronald Reagan has signed into law the reauthorization of the Export Administration Act (EAA), first passed in 1979. The amended version of the law, signed July 12, includes a policy statement in support of “vigorous scientific enterprise. . .in accordance with applicable provisions of law. . .by means of publication, teaching, conferences, and other forms of scholarly exchange.”

  13. Knowledge Exchange with Sistema Scotland

    ERIC Educational Resources Information Center

    Allan, Julie; Moran, Nikki; Duffy, Celia; Loening, Gica

    2010-01-01

    This paper reports on a knowledge exchange project, funded by the Scottish Funding Council and undertaken by a group of researchers from three higher education institutions in Scotland and the project partner, Sistema Scotland. This newly established charity is attempting to implement a major programme of social change, developed in Venezuela,…

  14. Homans on Exchange: Hedonism Revived

    ERIC Educational Resources Information Center

    Abrahamsson, Bengt

    1970-01-01

    George C. Homan's theory on social exchange is critically examined and found to have serious shortcomings with regard to its deductive and inductive aspects. An expecially prominent shortcoming concerns the tautological character of his concept of reward," which makes his theory deductively unclear and empirically untestable. Homan's critique…

  15. Lightweight long life heat exchanger

    NASA Technical Reports Server (NTRS)

    Moore, E. K.

    1975-01-01

    The design, fabrication, and evaluation of a full scale shuttle-type condensing heat exchanger constructed of aluminum and utilizing aluminum clad titanium parting sheets is described. A long term salt spray test of candidate parting sheet specimens is described. The results of an investigation into an alternate method of making composite sheet material are discussed.

  16. Primer on nuclear exchange models

    SciTech Connect

    Hafemeister, David

    2014-05-09

    Basic physics is applied to nuclear force exchange models between two nations. Ultimately, this scenario approach can be used to try and answer the age old question of 'how much is enough?' This work is based on Chapter 2 of Physics of Societal Issues: Calculations on National Security, Environment and Energy (Springer, 2007 and 2014)

  17. Direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bricard, A.

    The working principle of direct contact heat exchanger, where heat transfer takes place between two immiscible fluids coming into direct contact, is described. Typical direct contact devices are outlined. A better understanding of the principles involved and the development of computational models for multiphase subsytems are concluded as stimulus for direct contact heat and mass transfer applications.

  18. Television News Exchanges in Asia.

    ERIC Educational Resources Information Center

    Flournoy, Don M.

    In 1984, a project was initiated in Asia under the sponsorship of the Asia Pacific Broadcasting Union that represents a major break-through in achieving a better balance in the collection, editing, and distribution of the world's news. This break-through was the Asiavision Satellite News Exchange, which has made it possible for many Asian…

  19. Identifiability, exchangeability and confounding revisited

    PubMed Central

    Greenland, Sander; Robins, James M

    2009-01-01

    In 1986 the International Journal of Epidemiology published "Identifiability, Exchangeability and Epidemiological Confounding". We review the article from the perspective of a quarter century after it was first drafted and relate it to subsequent developments on confounding, ignorability, and collapsibility. PMID:19732410

  20. Earth-air heat exchanger

    SciTech Connect

    Kammel, D.W.

    1985-01-01

    Optimizing the thermal environment of a livestock building is beneficial to the growth and production of the animal. Minimizing temperature extremes of inlet ventilation air to the livestock building by passing the air through underground ducts would accomplish this goal. Providing this optimum environment by reducing heating and cooling loads would reduce energy costs and increase profits for the producer. The heat transfer in an earth-air heat exchanger was studied in two phases to develop design criteria for these systems. The experimental phase consisted of an earth-air exchanger installation from which data were collected during hot weather (cooling effect), cold weather (heating effect), and mild weather performances. The analytical phase developed a finite element program for simulating the earth-air heat exchanger and studying the effects of important parameters on the heat transfer rate and the air temperature. Results of the first phase were used to verify the computer model. Design criteria for the earth-air heat exchanger were determined based on the information obtained in the two phases of this study.

  1. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  2. Disposal of bead ion exchange resin wastes

    SciTech Connect

    Gay, R.L.; Granthan, L.F.

    1985-12-17

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.

  3. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  4. Aging as exchange: a preface to theory.

    PubMed

    Dowd, J J

    1975-09-01

    After a brief review of the major concepts and propositions of the social-psychological theory of exchange, a view of aging as exchange is developed. Drawing upon the previous work of Blau and Emerson, problems of aging are seen as problems of decreasing power resources. Because power resources decline with increased age, older persons become increasingly unable to enter into balanced exchange relations with other groups with whom they are in interactions. From this view, the process of disengagement is the result of a series of exchange relations in which the relative power of the aged vis-a-vis their exchange partner increasingly deteriorates. An imbalanced exchange ratio consequently results in which the aged are forced to exchange compliance--the most costly of all generalized reinforcers--for their continued sustenance. The retirement phenomenon is specified as illustrative of the aging as exchange process.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  8. Spin Exchange in Rydberg EIT

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Thompson, Jeff; Liang, Qiyu; Cantu, Sergio; Venkatramani, Aditya; Pohl, Thomas; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan

    2016-05-01

    The realization of strong optical nonlinearities between two photons has been a longstanding goal in quantum science. We achieve large single-photon-level nonlinearities with Rydberg EIT, which combines slow light techniques with strongly interacting Rydberg states. For two Rydberg atoms in the same state, a Van der Waals interaction is the dominant coupling mechanism. Inherently stronger dipole-dipole interactions are also possible between atoms in different Rydberg states. Using light storage and microwave resonances, we study the effect of dipole-dipole interactions in Rydberg EIT. We observe a coherent spin exchange effect for pairs of states dominated by dipole-dipole interactions. Spin exchange manifests as an increase in optical transmission through a cold Rubidium gas that is highly dissipative in the presence of Van der Waals interactions. We also observe a controlled π / 2 phase shift due to this effect, which paves the way for robust, universal all-optical quantum gates.

  9. Heat exchanger and related methods

    SciTech Connect

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  10. Cryptosteady modes of energy exchange

    NASA Astrophysics Data System (ADS)

    Foa, J. V.; Garris, C. A.

    1984-11-01

    Cryptosteady modes of direct fluid-fluid energy exchange, as occurs in thrust augmenting ejectors and jet pumps, make use of the fact that a flow which is not uniform throughout can be steady in no more than one frame of reference. They thereby transform a steady flow interaction into a nonsteady one by the simple artifice of using it in a frame of reference other than the unique one in which it is steady. The reference frame is then given the benefit of pressure exchange, while retaining the control advantages of steady flow in the other one. Attention is given to rotary jet devices based on cryptosteady effects, as well as thrust augmentors based on the rotary jet.

  11. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1993-03-01

    This report discusses the following topics on computer environments: Releasing computer software outside EG G Idaho; Ilford digital photo imager; mandatory upgrade of PC ORPS software; ORPS host computer upgrade; EROB computer users see network change; password expiration notice; big iron still has place in HPC market; handy scripts to copy and move files; more on workstation password expiration; training center course schedule for April 1993; Microsoft Word Version 5.1a- button bar; file attributes can provide you greater flexibility; constructing a personal WordPerfect dictionary; and Windows shortcuts.

  12. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1993-01-01

    This report contains the following news headlines: ADPE acquisition process made easy with SRP; scientific reference material available; ORPS WordPerfect macro setup procedure; system managed storage is here; LIBSPOOL for MVS mainframe end-users; training center course schedule for February 1993; enjoy NJOY; scientific user services staff decreased; new release of Forwarn, a static source code analysis tool for FORTRAN programs; out of the cold with HEAT; coping cells from one table to another in word perfect; used PC equipment pool; and video training.

  13. Electrically controlled cesium ion exchange

    SciTech Connect

    Lilga, M.

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  14. Heat exchanger expert system logic

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1988-01-01

    The reduction is described of the operation and fault diagnostics of a Deep Space Network heat exchanger to a rule base by the application of propositional calculus to a set of logic statements. The value of this approach lies in the ease of converting the logic and subsequently implementing it on a computer as an expert system. The rule base was written in Process Intelligent Control software.

  15. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  16. Kinetic models of immediate exchange

    NASA Astrophysics Data System (ADS)

    Heinsalu, Els; Patriarca, Marco

    2014-08-01

    We propose a novel kinetic exchange model differing from previous ones in two main aspects. First, the basic dynamics is modified in order to represent economies where immediate wealth exchanges are carried out, instead of reshufflings or uni-directional movements of wealth. Such dynamics produces wealth distributions that describe more faithfully real data at small values of wealth. Secondly, a general probabilistic trading criterion is introduced, so that two economic units can decide independently whether to trade or not depending on their profit. It is found that the type of the equilibrium wealth distribution is the same for a large class of trading criteria formulated in a symmetrical way with respect to the two interacting units. This establishes unexpected links between and provides a microscopic foundations of various kinetic exchange models in which the existence of a saving propensity is postulated. We also study the generalized heterogeneous version of the model in which units use different trading criteria and show that suitable sets of diversified parameter values with a moderate level of heterogeneity can reproduce realistic wealth distributions with a Pareto power law.

  17. Oxidizer heat exchanger component test

    NASA Technical Reports Server (NTRS)

    Kanic, P. G.

    1988-01-01

    The RL10-IIB engine, is capable of multimode thrust operation. The engine operates at two low-thrust levels: tank head idle (THI), approximately 1 to 2 percent of full thrust; and pumped idle, 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient thermal conditioning; PI operation provides vehicle tank prepressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-IIB engine during the low-thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidized heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. This report summarizes the test activity and post-test data analysis for two possible heat exchangers, each of which employs a completely different design philosophy. One design makes use of a low-heat transfer (PHT) approach in combination with a volume to attenuate pressure and flow oscillations. The test data showed that the LHT unit satisfied the oxygen exit quality of 0.95 or greater in both the THI and PI modes while maintaining stability. The HHT unit fulfilled all PI requirements; data for THI satisfactory operation is implied from experimental data that straddle the exact THI operating point.

  18. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  19. Pressurized bellows flat contact heat exchanger interface

    NASA Technical Reports Server (NTRS)

    Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)

    1990-01-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  20. Trust and Transitions in Modes of Exchange

    ERIC Educational Resources Information Center

    Cheshire, Coye; Gerbasi, Alexandra; Cook, Karen S.

    2010-01-01

    In this study, we investigate the relationship between uncertainty and trust in exogenous shifts in modes of social exchange (i.e., those that are not initiated by the individuals in a given exchange system). We explore how transitions from a high uncertainty environment (reciprocal exchange) to lower-uncertainty environments (nonbinding or…

  1. 76 FR 40779 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... individuals. \\11\\ Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR... Intermediaries, 75 FR 3281 (Jan. 20, 2010) (Proposed CFTC Retail Forex Rule). \\12\\ Retail Foreign Exchange Transactions, 76 FR 22633 (Apr. 22, 2011). The FDIC is now adopting the proposed rule text as a final rule...

  2. Neighbourhood Book Exchanges: Localising Information Practices

    ERIC Educational Resources Information Center

    Webster, Tenny; Gollner, Kathleen; Nathan, Lisa

    2015-01-01

    Introduction: Through this paper we report on an exploratory study into the design and use of neighbourhood book exchanges in North America. We identify dominant media framings of these book exchanges in North America, along with claims made concerning the influence of the exchanges. We compare the media claims with insights from interviews with…

  3. Cryogenic Heat Exchanger with Turbulent Flows

    ERIC Educational Resources Information Center

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  4. 25 CFR 151.6 - Exchanges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Exchanges. 151.6 Section 151.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LAND ACQUISITIONS § 151.6 Exchanges. An individual Indian or tribe may acquire land in trust status by exchange if the acquisition comes within the terms...

  5. Power and Dependence in Intimate Exchange

    ERIC Educational Resources Information Center

    van de Rijt, Arnout; Macy, Michael W.

    2006-01-01

    A division of labor is mediated by exchange of valued goods and services. We use social exchange theory to extend this principal to "labors of love." Sexual activity in a close personal relationship seems outside the domain of bargaining and exchange. Nevertheless, we explore the possibility that this most intimate of human relations is influenced…

  6. Wright State University International Student Exchange Program.

    ERIC Educational Resources Information Center

    Nixon, Harold L.

    The Wright State University International Student Exchange Program is described. This school's approach to student exchange programs immerses students in the daily life of countries in Asia and South America at minimal cost to the participating institutions. Through exchange agreements with universities in Japan, Brazil, and China, students get 4…

  7. Heat exchangers: Selection, rating, and thermal design

    SciTech Connect

    Kakac, S.; Liu, H.

    1998-01-01

    This book takes a systematic approach to the subject, focusing on the selection, design, rating, and operational challenges of various types of heat exchangers. Written by well-known authors in the field of heat transfer, this book covers all the most commonly used types of heat exchangers, including condensers and evaporators. The text begins with the classification of the different types of heat exchangers and discusses methods for their sizing and rating. Single phase forced convection correlations in ducts and pressure drop and pumping power analysis are also covered. A chapter is devoted to the special problem of fouling. Thermal design methods and processes, including designs for condensers and evaporators, complete this thorough introduction to the subject. The appendix provides information on the thermophysical properties of fluids, including the new refrigerants. Every topic features worked examples to illustrate the methods and procedures presented, and additional problems are included at the end of each chapter, with examples to be used as a student design project. An instructor's manual is available, including complete solutions to selected problems in the text. The contents include: classification of heat exchangers; basic design methods of heat exchangers; forced convection correlations for single-phase side of heat exchangers; heat exchanger pressure drop and pumping power; fouling of heat exchangers; double-pipe heat exchangers; design correlations for condensers and evaporators; shell-and-tube heat exchangers; compact heat exchangers; gasketed-plate heat exchangers; and condensers and evaporators.

  8. International Educational Exchange: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Cotner, Thomas E.

    Books, pamphlets, articles, and public laws and regulations are listed in this selected bibliography. Major attention is given to international fellowships, scholarships, and exchange of persons programs, and to counseling and program planning for exchange visitors from other countries. There is a shorter section for reports on exchange programs.…

  9. Selective Incentives and Generalized Information Exchange

    ERIC Educational Resources Information Center

    Cheshire, Coye

    2007-01-01

    The goal of this research is to understand how generalized exchange systems emerge when information, as the object of exchange, produces a collective good. When individuals contribute information for a collective benefit, it can create a group-generalized exchange system that involves a social dilemma. I argue that two properties of information,…

  10. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  11. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  12. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  13. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  14. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  15. 45 CFR 155.140 - Establishment of a regional Exchange or subsidiary Exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT General Standards Related to the Establishment of an Exchange § 155.140 Establishment of... the PHS Act. (c) Exchange standards. Each regional or subsidiary Exchange must: (1) Otherwise meet...

  16. 45 CFR 155.140 - Establishment of a regional Exchange or subsidiary Exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT General Standards Related to the Establishment of an Exchange § 155.140 Establishment of... the PHS Act. (c) Exchange standards. Each regional or subsidiary Exchange must: (1) Otherwise meet...

  17. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  18. Tear exchange and contact lenses: a review.

    PubMed

    Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses.

  19. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  20. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  1. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  2. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  3. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1992-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  4. Exchange of astronomy teaching experiences

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    The Working Group of the European Association for Astronomy Education responsible for Teacher Training organises an annual Summer School for teachers under expert guidance. For a week the teachers participating can exchange experiences, increase their knowledge and discuss different ideas and perspectives. In general, the instructors are professional astronomers, professors and teachers from different countries. The papers presented offer very practical activities, paying special attention to didactic aspects, and take the form of general lectures to all 40 participants and workshops to reduced groups of 20 participants. There are also day and night observations, without expensive equipment or complicated procedures, that are easy to set up and based on topics that it is possible to use in the classroom. The Summer Schools promote a scientific astronomical education at all levels of astronomy teaching, reinforce the link between professional astronomers and teachers with experience of teaching astronomy, allow debates among the participants on their pedagogical activities already carried out in their own classroom and help them to organise activities outside it. Astronomy teachers need special training, access to specific research, to new educational materials and methods and the opportunity to exchange experiences. All these things are provided by the Summer School.

  5. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  6. Improved ceramic heat exchange material

    NASA Technical Reports Server (NTRS)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  7. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  8. Testing and analysis of immersed heat exchangers

    SciTech Connect

    Farrington, R.B.; Bingham, C.E.

    1986-08-01

    The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

  9. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  10. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    SciTech Connect

    Culver, G.

    1990-11-01

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

  11. Depth-resolved water column spectral absorption of sunlight by phytoplankon during the Southern Ocean Gas Exchange (SOGasEx) Lagrangian tracer experiments

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2008-12-01

    Optical measurements made during gas exchange tracer experiments in the Southern Ocean, Atlantic sector near 51°S, 38°W from March-April 2008 (SOGasEx) were used to develop daily integrated depth- resolved PAR absorbed by phytoplankton. Particulate and phytoplankton pigment spectral absorption coefficients (ap and aph), and methanol-extracted chlorophyll-a concentrations (chl-a) from discrete samples within and below the upper mixed layer (40 stations) were combined with data from optical casts where chlorophyll-a and cdom fluorescence and PAR scalar irradiance were measured (11 stations), PAR Kd was measured from a buoy free of ship shadow for 0-5m (11 stations), and Wetlabs AC-9 whole water absorption coefficients to 150m were measured (14 stations, with 3 in common with fluorescence data) to estimate depth-resolved values for both total spectral absorption and spectral PAR irradiance. By combining depth-adjusted spectral absorption of phytoplankton pigments (aph) with depth-adjusted PAR spectral irradiance we estimated depth-resolved daily PAR irradiance absorbed by photosynthetic pigments. These data can be compared with time-integrated primary production measurements conducted on deck where solar exposure or lamp exposure was modified to simulate a range of depths. Such a synthesis should improve our estimates of depth-integrated daily primary production, and ultimately contribute to refining estimates of carbon export rates to be incorporated into a carbon budget and CO2 air-sea flux models for the SOGasEx experiments.

  12. Design of single passage heat exchangers

    SciTech Connect

    Fehr, R.L.; Walton, L.R.; Parker, B.F.

    1981-01-01

    The available literature has been reviewed, and information useful for heat exchanger design has been presented and compared. The available design information is presented in the form of simplified equations that are suitable for the design of heat exchangers for livestock buildings. The equations presented have been used to develop a computer program as an example of how they can be arranged to aid in designing heat exchangers. 14 refs.

  13. Educational Exchanges Across the Equator

    NASA Astrophysics Data System (ADS)

    Norman, D. J.; Walker, C. E.; Smith, M.; Pompea, S. M.; Orellana, D.

    2003-12-01

    What is color? What is light? How can we use a spectrometer to help students understand the answers to these questions? Even half a world apart and between people of different languages and cultures, how to teach these ideas to students can be a lively subject for discussion. And it is! Aided by Internet 2-based videoconferencing, NOAO North and South have sponsored three teacher professional development videoconference workshops, dubbed ASTRO-Chile, linking teachers in Tucson, AZ, and La Serena, Chile. The teachers exchange methods and ideas about how to explain and demonstrate physical concepts, important to the study of astronomy, to students of various ages. The workshops are conducted in Spanish with four bilingual science teachers from the Tucson area discussing pedagogical approaches with their teaching counterparts in Chile. Demonstrations and project presentations, from both sites, are included as part of each workshop. This work is supported, in part, through funding from the NSF Astronomy and Astrophysics Postdoctoral Fellowship.

  14. Energy recovery heat exchanger installation

    SciTech Connect

    Bradshaw, N.F.

    1983-08-16

    An installation is disclosed for energy recovery heat exchangers arranged to transfer heat into or out of air exhausted from an air handling system for paint spray booths. The system includes a collection chamber about which the intakes of a series of exhaust fans are arranged to draw exhaust air into an exhaust stack. Pairs of inclined wetted surface coil sets are mounted in the walls of the enclosures, each in communication with the intake of an exhaust fan so as to receive airflow of each exhaust fan. Each of the enclosures is provided with an access door to enable cleaning and other maintenance chores to be carried out on the coil sets and pivotally mounted blocking panels may be positioned to close off air flow across the coils and bypassing of the exhaust flow through the access doors in the event excessive overspray solids are present in the exhaust flow.

  15. The Hatch-Smolensk exchange

    SciTech Connect

    Sproles, A.

    1993-03-01

    During summer 1992, the World Association of Nuclear Operators (WANO) sponsored an exchange visit between Georgia Power Company's Edwin I. Hatch nuclear plant, a two-unit boiling water reactor site, and the Smolensk atomic energy station, a three-unit RBMK (graphite-moderated and light-water-cooled) plant located 350 km west of Moscow, in Desnogorsk, Russia. The Plant Hatch team included Glenn Goode, manager of engineering support; Curtis Coggin, manager of training and emergency preparedness; Wayne Kirkley, manager of health physics and chemistry; John Lewis, manager of operations; Ray Baker, coordinator of nuclear fuels and contracts; and Bruce McLeod, manager of nuclear maintenance support. Also traveling with the team was Jerald Towgood, of WANO's Atlanta Centre. The Hatch team visited the Smolensk plant during the week of July 27, 1992.

  16. Designing health insurance exchanges: key decisions.

    PubMed

    Starc, Amanda; Kolstad, Jonathan T

    2012-02-01

    A cornerstone of health care reform is the establishment of state-level insurance exchanges where individuals and small businesses can purchase health insurance in an online marketplace. States are required to develop an exchange by 2014, or participate in a federal one. The exchanges will help people without employer-sponsored insurance find and choose a health plan to meet their needs. This Issue Brief reviews the experience of Massachusetts in developing a health insurance exchange and offers policymakers guidance on key features and likely consumer responses. PMID:22451998

  17. Materials exchanges promote waste, recycling markets

    SciTech Connect

    Melody, M.

    1994-05-01

    Material exchanges are industry's version of garage sales. Materials exchanges provide information clearinghouses for recycled products. One-stop shopping catalogs and databases list a host of industrial materials -- virgin and raw products; surplus, overstock, obsolete and off-specification goods; byproducts; and used, expired and damaged materials. Materials exchanges are cost-effective tools for managing commercial industrial wastes for which no source reduction methods exist. North American exchanges annually divert millions of tons of waste from landfills and incinerators, saving US and Canadian businesses more than $27 million in disposal fees.

  18. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  19. Adaptive Strategies in the Iterated Exchange Problem

    NASA Astrophysics Data System (ADS)

    Baraov, Arthur

    2011-03-01

    We argue for clear separation of the exchange problem from the exchange paradox to avoid confusion about the subject matter of these two distinct problems. The exchange problem in its current format belongs to the domain of optimal decision making—it doesn't make any sense as a game of competition. But it takes just a tiny modification in the statement of the problem to breathe new life into it and make it a practicable and meaningful game of competition. In this paper, we offer an explanation for paradoxical priors and discuss adaptive strategies for both the house and the player in the restated exchange problem.

  20. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  1. Developing International Links through Work Exchange. An Exchange between Australia and Canada.

    ERIC Educational Resources Information Center

    Williams, Rosie

    2001-01-01

    Describes a work exchange experience between volunteer managers in Australia and Canada. Offers guidelines for initiating the program including developing a rationale and an exchange agreement. Discusses first impressions, initial problems, and differences and similarities between the two contexts. (JOW)

  2. Australian Universities' Strategic Goals of Student Exchange and Participation Rates in Outbound Exchange Programmes

    ERIC Educational Resources Information Center

    Daly, Amanda; Barker, Michelle

    2010-01-01

    International student exchange programmes are acknowledged as one aspect of a broader suite of internationalisation strategies aimed at enhancing students' intercultural understanding and competence. The decision to participate in an exchange programme is dependent on both individual and contextual factors such as student exchange policies and…

  3. 75 FR 53366 - Self-Regulatory Organizations; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Nos. 62251 (June 10, 2010), 75 FR 34183 (June 16, 2010); 62252 (June 10, 2010), 75 FR 34186 (June 16... FR 51138 (August 18, 2010). The Commission finds it appropriate to designate a longer period within...; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated; Chicago Stock Exchange, Inc.;...

  4. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  5. 47 CFR 27.70 - Information exchange.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Information exchange. 27.70 Section 27.70 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.70 Information exchange. (a) Prior notification. Public...

  6. 47 CFR 27.70 - Information exchange.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Information exchange. 27.70 Section 27.70 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.70 Information exchange. (a) Prior notification. Public...

  7. 47 CFR 27.70 - Information exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Information exchange. 27.70 Section 27.70 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.70 Information exchange. (a) Prior notification. Public...

  8. 47 CFR 27.70 - Information exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Information exchange. 27.70 Section 27.70 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.70 Information exchange. (a) Prior notification. Public...

  9. 47 CFR 27.70 - Information exchange.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Information exchange. 27.70 Section 27.70 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.70 Information exchange. (a) Prior notification. Public...

  10. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  11. 47 CFR 22.973 - Information exchange.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Information exchange. 22.973 Section 22.973... Cellular Radiotelephone Service § 22.973 Information exchange. (a) Prior notification. Public safety/CII... information to the public safety/CII licensee at least 10 business days before a new cell site is activated...

  12. 47 CFR 22.973 - Information exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Information exchange. 22.973 Section 22.973... Cellular Radiotelephone Service § 22.973 Information exchange. (a) Prior notification. Public safety/CII... information to the public safety/CII licensee at least 10 business days before a new cell site is activated...

  13. 47 CFR 22.880 - Information exchange.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Information exchange. 22.880 Section 22.880...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.880 Information exchange. (a...-ground system licensee must provide the following information to the public safety/CII licensee at...

  14. 47 CFR 22.880 - Information exchange.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Information exchange. 22.880 Section 22.880...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.880 Information exchange. (a...-ground system licensee must provide the following information to the public safety/CII licensee at...

  15. 47 CFR 22.880 - Information exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Information exchange. 22.880 Section 22.880...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.880 Information exchange. (a...-ground system licensee must provide the following information to the public safety/CII licensee at...

  16. 47 CFR 22.973 - Information exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Information exchange. 22.973 Section 22.973... Cellular Radiotelephone Service § 22.973 Information exchange. (a) Prior notification. Public safety/CII... information to the public safety/CII licensee at least 10 business days before a new cell site is activated...

  17. 47 CFR 22.880 - Information exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Information exchange. 22.880 Section 22.880...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.880 Information exchange. (a...-ground system licensee must provide the following information to the public safety/CII licensee at...

  18. 47 CFR 22.973 - Information exchange.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Information exchange. 22.973 Section 22.973... Cellular Radiotelephone Service § 22.973 Information exchange. (a) Prior notification. Public safety/CII... information to the public safety/CII licensee at least 10 business days before a new cell site is activated...

  19. 77 FR 62177 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... security reasons, the OCC requires that visitors make an appointment to inspect comments. You may do so by...\\ Retail Foreign Exchange Transactions, 76 FR 41375 (July 14, 2011). \\10\\ Retail Foreign Exchange Transactions, 76 FR 56094 (Sept. 12, 2011). B. Definition of Eligible Contract Participant The...

  20. 76 FR 41676 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE.... See Exchange Act Release No. 63452 (Dec. 7, 2010), 75 FR 80174 (Dec. 21, 2010). Because transactions... Transactions and Intermediaries, 75 FR 55410 (Sept. 10, 2010) (``Final CFTC Retail Forex Rule''). The CFTC...

  1. Pan-American Teletandem Language Exchange Project

    ERIC Educational Resources Information Center

    Castillo-Scott, Aurora

    2015-01-01

    This paper describes a TeleTandem language exchange project between English speaking Spanish students at Georgia College, USA, and Spanish speaking English students at Universidad de Concepción, Chile. The aim of the project was to promote linguistic skills and intercultural competence through a TeleTandem exchange. Students used Skype and Google…

  2. Heat Exchanger Lab for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  3. The Hawaii-Navajo Exchange Program.

    ERIC Educational Resources Information Center

    Brewer, Kenneth, Comp.; And Others

    The 1969-70 Leeward Cultural Exchange program described in this report involved a 2-week exchange between 20 grade-5 students of Leeward Oahu, Hawaii, and 24 grade-5 students from the Toyei Boarding School on the Navajo Indian Reservation in northern Arizona. In the report, the program objectives are listed along with a statement of organizational…

  4. Labor Exchange Skills Project. Final Report.

    ERIC Educational Resources Information Center

    Dietrich, Eleanor; Hendrickson-Larson, Joanna; Hoppe, Ruth; Paige, Bruce; Rosenow, Steve

    The Labor Exchange Skills Project, which was conducted under the sponsorship and direction of the U.S. Department of Labor, Employment and Training Administration, was designed to develop a labor exchange skills database (ETA) that would improve the usability of many Department of Labor applications and products developed by other public and…

  5. Heat exchanger with a removable tube section

    DOEpatents

    Wolowodiuk, W.; Anelli, J.

    1975-07-29

    A heat exchanger is described in which the tube sheet is secured against primary liquid pressure, but which allows for easy removal of the tube section. The tube section is supported by a flange which is secured by a number of shear blocks, each of which extends into a slot which is immovable with respect to the outer shell of the heat exchanger. (auth)

  6. Information Exchange Procedures: Overview and General Approach.

    ERIC Educational Resources Information Center

    Romney, Leonard C.

    The Information Exchange Procedures (IEP) project creates the capability for exchange and reporting of that information, both financial and otherwise, necessary to calculate and evaluate costs (1) by discipline and course level, (2) by student major and student level, and (3) per unit of output. Most uses of comparable information and analysis can…

  7. 47 CFR 22.973 - Information exchange.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Information exchange. 22.973 Section 22.973... Cellular Radiotelephone Service § 22.973 Information exchange. (a) Prior notification. Public safety/CII... information to the public safety/CII licensee at least 10 business days before a new cell site is activated...

  8. 47 CFR 22.880 - Information exchange.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Information exchange. 22.880 Section 22.880...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.880 Information exchange. (a...-ground system licensee must provide the following information to the public safety/CII licensee at...

  9. FACTORS AFFECTING AIR EXCHANGE IN TWO HOUSES

    EPA Science Inventory

    Air exchange rate is critical to determining the relationship between indoor and outdoor concentrations of hazardous pollutants. Approximately 150 air exchange experiments were completed in two residences: a two-story detached house located in Redwood City, CA and a three-story...

  10. Direct contact heat exchangers for space

    NASA Astrophysics Data System (ADS)

    Taussig, R. T.; Thayer, W. J.; Lo, V. C. H.; Sakins, K. M.; Bruckner, A. P.

    1985-06-01

    Direct contact heat exchanger concepts have been investigated for use in space, including droplet vortex heat exchangers, coflowing droplet heat exchangers, electrostatically driven heat exchangers, and belt and disk heat exchangers. These concepts are characterized by a low heat exchanger mass per unit of heat transferred, low pressure losses, high reliability, and compactness in design. Operation in zero-G poses unique problems for those direct contact heat exchangers which require separation of two fluid media after heat transfer is completed. Other problems include maintenance of good heat transfer coefficients in the absence of buoyant forces, exposure of heat transfer media to vacuum conditions for certain applications, and materials compatibility. A preliminary systems analysis indicates the potential for substantial weight reductions in turbine Brayton cycle space power systems for output powers above several MW(e). Based on the status of current technology and the results of this analysis, recommendations are made for the most attractive applications and the R&D required to ready a direct contact heat exchanger for use in space.

  11. 76 FR 41375 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... income for the bank. The OCC understands that the economic model of a retail forex business may be to... CFTC's retail forex rule.\\13\\ The OCC decided to model its retail forex rule on the CFTC's rule to... documentation. \\12\\ Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75...

  12. Educators Exchange Program, 1996. Evaluation Report.

    ERIC Educational Resources Information Center

    Armstrong, William B.; Turingan, Maria R.; Bersentes, Gina H.

    Following an initial effort in 1994, the Educators Exchange Program 1996 (EEP-96) was the second project completed under a training and educational exchange agreement reached between California's San Diego Community College District (SDCCD) and the republic of Mexico. In EEP-96, the district provided a five-week technological training program to…

  13. PLT and PDX perpendicular charge exchange analyzers

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Hammett, G. W.; McCune, D. C.

    1986-08-01

    The perpendicular charge-exchange systems used on the poloidal divertor experiment and the Princeton large torus are comprised of ten-channel, mass-resolved, charge-exchange analyzers. Results from these systems indicate that instrumental effects can lead to erroneous temperature measurements during deuterium neutral beam injection or at low hydrogen concentrations.

  14. Secondary School Student Exchanges. Discussion Paper

    ERIC Educational Resources Information Center

    US Department of State, 2007

    2007-01-01

    Educational and cultural exchanges are the cornerstone of U.S. public diplomacy and an integral component of foreign policy. To further this policy objective, the Department of State designates U.S. government, academic, and private sector entities to conduct educational and cultural exchange programs pursuant to a broad grant of authority from…

  15. Charge exchange in H^+ + He^+ collision

    NASA Astrophysics Data System (ADS)

    Guevara Leon, Nicolais; Sabin, John R.; Deumens, Erik; Ohrn, Yngve

    2008-05-01

    Charge exchange in H^+ + He^+ collision are investigated theoretically at projectile energies below the ionization threshold at about 100 keV/amu. The electron nuclear dynamics (END) method is used to analyze the collision processes. Total charge exchange cross sections were calculated and compared with other theoretical and experimental data.

  16. The Story of Foreign Trade and Exchange.

    ERIC Educational Resources Information Center

    Fan, Cedric

    This comic-style booklet is one of a series of educational booklets published by the Federal Reserve Bank of New York. The booklet uses everyday language and lively illustrations to explain the benefits of international trade; the effects of tariffs and quotas; the significance of foreign exchange rates; how the foreign exchange market facilities…

  17. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  18. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  19. An approach for message exchange using archetypes.

    PubMed

    Moraes, João L C; Souza, Wanderley L; Cavalini, Luciana T; Pires, Luís F; Prado, Antonio F

    2013-01-01

    The application of ICT on the whole range of health sector activities, known as e-health, can simplify the access to health care services and will only be acceptable for realistic scenarios if it supports efficient information exchange amongst the caregivers and their patients. The aim of this paper is present an approach for message exchange to realistic scenarios. PMID:23920910

  20. Northeast Regional Exchange, Annual Report, January 1982.

    ERIC Educational Resources Information Center

    1982

    The activities of Northeast Regional Exchange, Inc. (NEREX) during its first year of operation are delineated in this report. The newest member of the national network of Research and Development Exchanges (RDx), this service agency was established to promote educational improvement in the seven northeastern states: Connecticut, Maine,…

  1. PROGRAMED EXCHANGES AND THE CONTROL OF AGGRESSION.

    ERIC Educational Resources Information Center

    ELLIS, DESMOND P.; HAMBLIN, ROBERT L.

    SYSTEMS OF EXCHANGE - USING THE EXTINCTION, DISTRACTION, AND SUBSTITUTION EFFECTS SYSTEMS - WERE IMPLEMENTED TO DECREASE AGGRESSION AND PROMOTE COOPERATION AND SCHOLARLY BEHAVIOR, THREE SYSTEMS WERE TESTED USING EXCHANGE THEORY AS A GUIDE. THE SUBJECTS WERE FIVE 4- AND 5-YEAR-OLD BOYS DIAGNOSED AS HYPERAGGRESSIVE. EXPERIMENTAL CONDITIONS INCLUDED…

  2. Exchange fluctuation theorem for correlated quantum systems.

    PubMed

    Jevtic, Sania; Rudolph, Terry; Jennings, David; Hirono, Yuji; Nakayama, Shojun; Murao, Mio

    2015-10-01

    We extend the exchange fluctuation theorem for energy exchange between thermal quantum systems beyond the assumption of molecular chaos, and describe the nonequilibrium exchange dynamics of correlated quantum states. The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments. In addition, a more abstract approach leads us to a "correlation fluctuation theorem". Our results elucidate the role of measurement disturbance for such scenarios. We show a simple application by finding a semiclassical maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow are reflected in our exchange fluctuation theorem. PMID:26565174

  3. Condensing heat exchangers for maximum boiler efficiency

    SciTech Connect

    Johnson, D.W.; DiVitto, J.G.; Rakocy, M.E.

    1994-12-31

    Until now, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected for every 40 F (4.5 C) reduction in flue gas stack temperature. In the CHX{reg_sign} condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon{reg_sign}. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces.

  4. Giant exchange interaction in mixed lanthanides

    PubMed Central

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  5. Membrane plasma exchange in Goodpasture's syndrome.

    PubMed

    Keller, F; Offermann, G; Schultze, G; Wagner, K; Aulbert, E; Scholle, J; Faber, U; Maiga, M; Pommer, W

    1984-01-01

    We report two cases with Goodpasture's syndrome successfully treated by membrane plasma exchange. In both patients, pulmonary infiltrations and hemoptysis had already resolved after the first pulse methylprednisolone dose (1000 mg IV). Following plasma exchange, renal function did not further deteriorate in one patient and returned to normal in the other patient. From the clinical course of our patients and a review of the literature, we conclude that membrane plasma exchange is effective in preventing deterioration of renal function in Goodpasture's syndrome. Analysis of the literature shows that patients who respond to plasma exchange have significantly fewer crescents and lower plasma creatinine, while non-responders are more often oliguric or anuric and require dialysis at the time of plasma exchange.

  6. Giant exchange interaction in mixed lanthanides

    NASA Astrophysics Data System (ADS)

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-04-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction.

  7. The hydrogen exchange core and protein folding.

    PubMed Central

    Li, R.; Woodward, C.

    1999-01-01

    A database of hydrogen-deuterium exchange results has been compiled for proteins for which there are published rates of out-exchange in the native state, protection against exchange during folding, and out-exchange in partially folded forms. The question of whether the slow exchange core is the folding core (Woodward C, 1993, Trends Biochem Sci 18:359-360) is reexamined in a detailed comparison of the specific amide protons (NHs) and the elements of secondary structure on which they are located. For each pulsed exchange or competition experiment, probe NHs are shown explicitly; the large number and broad distribution of probe NHs support the validity of comparing out-exchange with pulsed-exchange/competition experiments. There is a strong tendency for the same elements of secondary structure to carry NHs most protected in the native state, NHs first protected during folding, and NHs most protected in partially folded species. There is not a one-to-one correspondence of individual NHs. Proteins for which there are published data for native state out-exchange and theta values are also reviewed. The elements of secondary structure containing the slowest exchanging NHs in native proteins tend to contain side chains with high theta values or be connected to a turn/loop with high theta values. A definition for a protein core is proposed, and the implications for protein folding are discussed. Apparently, during folding and in the native state, nonlocal interactions between core sequences are favored more than other possible nonlocal interactions. Other studies of partially folded bovine pancreatic trypsin inhibitor (Barbar E, Barany G, Woodward C, 1995, Biochemistry 34:11423-11434; Barber E, Hare M, Daragan V, Barany G, Woodward C, 1998, Biochemistry 37:7822-7833), suggest that developing cores have site-specific energy barriers between microstates, one disordered, and the other(s) more ordered. PMID:10452602

  8. The Interplanetary Exchange of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  9. Improved ceramic heat exchanger materials

    NASA Technical Reports Server (NTRS)

    Rauch, H. W.

    1980-01-01

    The development and evaluation of materials for potential application as heat exchanger structures in automotive gas turbine engines is discussed. Test specimens in the form of small monolithic bars were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by short and long term cycling at temperatures up to 1200 C. The material finally selected, GE-7808, consists of the oxides, ZrO2-MgO-Al2O3-S1O2, and is described generically as ZrMAS. The original version was based on a commercially available cordierite (MAS) frit. However, a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm diameter were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm. The test data show that GE-7808 is significantly more stable at 1100 C in the presence of sodium than the aluminosilicate reference materials. In addition, thermal exposure up to 1100 C, with and without sodium present, results in essentially no change in thermal expansion of GE-7808.

  10. Time and foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Berardi, Luca; Serva, Maurizio

    2005-08-01

    The definition of time is still an open question when one deals with high-frequency time series. If time is simply the calendar time, prices can be modeled as continuous random processes and values resulting from transactions or given quotes are discrete samples of this underlying dynamics. On the contrary, if one takes the business time point of view, price dynamics is a discrete random process, and time is simply the ordering according to which prices are quoted in the market. In this paper, we suggest that the business time approach is perhaps a better way of modeling price dynamics than calendar time. This conclusion comes from testing probability densities and conditional variances predicted by the two models against the experimental ones. The data set we use contains the DEM/USD exchange quotes provided to us by Olsen & Associates during a period of one year from January to December 1998. In this period, 1,620,843 quotes entries in the EFX system were recorded.

  11. The interplanetary exchange of photosynthesis.

    PubMed

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  12. New Trends in Magnetic Exchange Bias

    NASA Astrophysics Data System (ADS)

    Mougin, Alexandra; Mangin, Stéphane; Bobo, Jean-Francois; Loidl, Alois

    2005-05-01

    The study of layered magnetic structures is one of the hottest topics in magnetism due to the growing attraction of applications in magnetic sensors and magnetic storage media, such as random access memory. For almost half a century, new discoveries have driven researchers to re-investigate magnetism in thin film structures. Phenomena such as giant magnetoresistance, tunneling magnetoresistance, exchange bias and interlayer exchange coupling led to new ideas to construct devices, based not only on semiconductors but on a variety of magnetic materials Upon cooling fine cobalt particles in a magnetic field through the Néel temperature of their outer antiferromagnetic oxide layer, Meiklejohn and Bean discovered exchange bias in 1956. The exchange bias effect through which an antiferromagnetic AF layer can cause an adjacent ferromagnetic F layer to develop a preferred direction of magnetization, is widely used in magnetoelectronics technology to pin the magnetization of a device reference layer in a desired direction. However, the origin and effects due to exchange interaction across the interface between antiferromagneic and ferromagnetic layers are still debated after about fifty years of research, due to the extreme difficulty associated with the determination of the magnetic interfacial structure in F/AF bilayers. Indeed, in an AF/F bilayer system, the AF layer acts as “the invisible man” during conventional magnetic measurements and the presence of the exchange coupling is evidenced indirectly through the unusual behavior of the adjacent F layer. Basically, the coercive field of the F layer increases in contact with the AF and, in some cases, its hysteresis loop is shifted by an amount called exchange bias field. Thus, AF/F exchange coupling generates a new source of anisotropy in the F layer. This induced anisotropy strongly depends on basic features such as the magnetocrystalline anisotropy, crystallographic and spin structures, defects, domain patterns etc

  13. 17 CFR 229.802 - Exchange Act industry guides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Exchange Act industry guides. 229.802 Section 229.802 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION STANDARD... AND CONSERVATION ACT OF 1975-REGULATION S-K List of Industry Guides § 229.802 Exchange Act...

  14. 17 CFR 229.802 - Exchange Act industry guides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Exchange Act industry guides. 229.802 Section 229.802 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION STANDARD... AND CONSERVATION ACT OF 1975-REGULATION S-K List of Industry Guides § 229.802 Exchange Act...

  15. 17 CFR 229.802 - Exchange Act industry guides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Exchange Act industry guides. 229.802 Section 229.802 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION STANDARD... AND CONSERVATION ACT OF 1975-REGULATION S-K List of Industry Guides § 229.802 Exchange Act...

  16. 17 CFR 229.802 - Exchange Act industry guides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Exchange Act industry guides. 229.802 Section 229.802 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION STANDARD... AND CONSERVATION ACT OF 1975-REGULATION S-K List of Industry Guides § 229.802 Exchange Act...

  17. 17 CFR 229.802 - Exchange Act industry guides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Exchange Act industry guides. 229.802 Section 229.802 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION STANDARD... AND CONSERVATION ACT OF 1975-REGULATION S-K List of Industry Guides § 229.802 Exchange Act...

  18. The next step in health data exchanges: trust and privacy in exchange networks.

    PubMed

    Gravely, Steve D; Whaley, Erin S

    2009-01-01

    The rapid development of health information exchanges (HIE), regional health information organizations (RHIO), the Nationwide Health Information Network (NHIN) and other data exchange platforms for health records creates complex and multifaceted challenges for protecting the privacy and security of health information. Often these issues are addressed in a contractual agreement between two parties seeking to exchange data. Until recently, this point-to-point approach has been acceptable because there were few operational HIEs or RHIOs that were ready, willing and able to actually exchange data. With the proliferation of HIEs and RHIOs that are either operational or on the cusp of being operational, the utility of point-to-point is diminishing. It is no longer efficient for a RHIO to negotiate a separate data exchange agreement with every one of its exchange partners. The evolving model for data exchange agreements is a multi-party trust agreement. This article will examine the crucial components of a multi-party trust agreement.

  19. Heat exchanger, head and shell acceptance criteria

    SciTech Connect

    Lam, P.S.; Sindelar, R.L.

    1992-09-01

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report.

  20. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.