Sample records for air-sea heat fluxes

  1. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  2. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction

    NASA Astrophysics Data System (ADS)

    Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong

    2018-01-01

    The Yellow Sea Cold Water Mass (YSCWM), which occurs during summer in the central Yellow Sea, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow Sea, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, air-sea heat flux, wind, evaporation, precipitation and sea level pressure to those in the strong year of 1984, respectively. The results showed that the air-sea heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the air-sea heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the sea surface temperature before the cooling season and the air-sea heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the

  3. Intercomparison of Air-Sea Fluxes in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.

    2016-02-01

    Heat and momentum exchange between the air and sea in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm sea surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to air-sea flux values calculated from shipboard observations from four cruises and an air-sea flux mooring in the Bay of Bengal as part of the Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the air-sea flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in air temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry air can reduce net heat into the ocean for minutes to a few days, significantly effecting air-sea heat transfer, upper ocean stratification, and ocean surface temperature and salinity.

  4. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  5. Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds

    NASA Astrophysics Data System (ADS)

    Mueller, J. A.; Veron, F.

    2009-12-01

    At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.

  6. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  7. A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Cavalieri, Donald J.

    1989-01-01

    This study examines oceanic surface heat fluxes in the Norwegian, Greenland, and Barents seas using the gridded Navy Fleet Numerical Oceanography Central surface analysis and the First GARP Global Experiment (FGGE) IIc cloudiness data bases. Monthly and annual means of net and turbulent heat fluxes are computed for the FGGE year 1979. The FGGE IIb data base consisting of individual observations provides particularly good data coverage in this region for a comparison with the gridded Navy winds and air temperatures. The standard errors of estimate between the Navy and FGGE IIb winds and air temperatures are 3.6 m/s and 2.5 C, respectively. The computations for the latent and sensible heat fluxes are based on bulk formulas with the same constant heat exchange coefficient of 0.0015. The results show extremely strong wintertime heat fluxes in the northern Greenland Sea and especially in the Barents Sea in contrast to previous studies.

  8. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal

  9. Enhanced Ahead-of-Eye TC Coastal Ocean Cooling Processes and their Impact on Air-Sea Heat Fluxes and Storm Intensity

    NASA Astrophysics Data System (ADS)

    Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.

    2016-02-01

    Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.

  10. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  11. Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage

    NASA Astrophysics Data System (ADS)

    Song, Xiangzhou; Yu, Lisan

    2017-05-01

    This study provides an analysis of the Mediterranean Sea surface energy budget using nine surface heat flux climatologies. The ensemble mean estimation shows that the net downward shortwave radiation (192 ± 19 W m-2) is balanced by latent heat flux (-98 ± 10 W m-2), followed by net longwave radiation (-78 ± 13 W m-2) and sensible heat flux (-13 ± 4 W m-2). The resulting net heat budget (Qnet) is 2 ± 12 W m-2 into the ocean, which appears to be warm biased. The annual-mean Qnet should be -5.6 ± 1.6 W m-2 when estimated from the observed net transport through the Strait of Gibraltar. To diagnose the uncertainty in nine Qnet climatologies, we constructed Qnet from the heat budget equation by using historic hydrological observations to determine the heat content changes and advective heat flux. We also used the Qnet from a data-assimilated global ocean state estimation as an additional reference. By comparing with the two reference Qnet estimates, we found that seven products (NCEP 1, NCEP 2, CFSR, ERA-Interim, MERRA, NOCSv2.0, and OAFlux+ISCCP) overestimate Qnet, with magnitude ranging from 6 to 27 W m-2, while two products underestimate Qnet by -6 W m-2 (JRA55) and -14 W m-2 (CORE.2). Together with the previous warm pool work of Song and Yu (2013), we show that CFSR, MERRA, NOCSv2.0, and OAFlux+ISCCP are warm-biased not only in the western Pacific warm pool but also in the Mediterranean Sea, while CORE.2 is cold-biased in both regions. The NCEP 1, 2, and ERA-Interim are cold-biased over the warm pool but warm-biased in the Mediterranean Sea.

  12. On the physical air-sea fluxes for climate modeling

    NASA Astrophysics Data System (ADS)

    Bonekamp, J. G.

    2001-02-01

    At the sea surface, the atmosphere and the ocean exchange momentum, heat and freshwater. Mechanisms for the exchange are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an important role in not only the mean atmospheric and oceanic circulation, but also in the generation and sustainment of coupled climate fluctuations such as the El Niño/La Niña phenomenon. Therefore, a good knowledge of air-sea fluxes is required for the understanding and prediction of climate changes. As part of long-term comprehensive atmospheric reanalyses with `Numerical Weather Prediction/Data assimilation' systems, data sets of global air-sea fluxes are generated. A good example is the 15-year atmospheric reanalysis of the European Centre for Medium--Range Weather Forecasts (ECMWF). Air-sea flux data sets from these reanalyses are very beneficial for climate research, because they combine a good spatial and temporal coverage with a homogeneous and consistent method of calculation. However, atmospheric reanalyses are still imperfect sources of flux information due to shortcomings in model variables, model parameterizations, assimilation methods, sampling of observations, and quality of observations. Therefore, assessments of the errors and the usefulness of air-sea flux data sets from atmospheric (re-)analyses are relevant contributions to the quantitative study of climate variability. Currently, much research is aimed at assessing the quality and usefulness of the reanalysed air-sea fluxes. Work in this thesis intends to contribute to this assessment. In particular, it attempts to answer three relevant questions. The first question is: What is the best parameterization of the momentum flux? A comparison is made of the wind stress parameterization of the ERA15 reanalysis, the currently generated ERA40 reanalysis and the wind stress measurements over the open ocean. The

  13. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  14. Sustained Observations of Air-Sea Fluxes and Air-Sea Interaction at the Stratus Ocean Reference Station

    NASA Astrophysics Data System (ADS)

    Weller, Robert

    2014-05-01

    Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.

  15. Towards Improved Estimates of Ocean Heat Flux

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Hollman, Rainer; Kent, Elisabeth; Haines, Keith

    2014-05-01

    Recommendations and priorities for ocean heat flux research are for instance outlined in recent CLIVAR and WCRP reports, eg. Yu et al (2013). Among these is the need for improving the accuracy, the consistency, and the spatial and temporal resolution of air-sea fluxes over global as well as at region scales. To meet the main air-sea flux requirements, this study is aimed at obtaining and analyzing all the heat flux components (latent, sensible and radiative) at the ocean surface over global oceans using multiple satellite sensor observations in combination with in-situ measurements and numerical model analyses. The fluxes will be generated daily and monthly for the 20-year (1992-2011) period, between 80N and 80S and at 0.25deg resolution. Simultaneous estimates of all surface heat flux terms have not yet been calculated at such large scale and long time period. Such an effort requires a wide range of expertise and data sources that only recently are becoming available. Needed are methods for integrating many data sources to calculate energy fluxes (short-wave, long wave, sensible and latent heat) across the air-sea interface. We have access to all the relevant, recently available satellite data to perform such computations. Yu, L., K. Haines, M. Bourassa, M. Cronin, S. Gulev, S. Josey, S. Kato, A. Kumar, T. Lee, D. Roemmich: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. INTERNATIONAL CLIVAR PROJECT OFFICE, 2013: International CLIVAR Publication Series No 189. http://www.clivar.org/sites/default/files/ICPO189_WHOI_fluxes_workshop.pdf

  16. Variability of the gaseous elemental mercury sea-air flux of the Baltic Sea.

    PubMed

    Kuss, Joachim; Schneider, Bernd

    2007-12-01

    The importance of the sea as a sink for atmospheric mercury has been established quantitatively through models based on wet and dry deposition data, but little is known about the release of mercury from sea areas. The concentration of elemental mercury (Hg0) in sea surface water and in the marine atmosphere of the Baltic Sea was measured at high spatial resolution in February, April, July, and November 2006. Wind-speed records and the gas-exchange transfer velocity were then used to calculate Hg0 sea-air fluxes on the basis of Hg0 sea-air concentration differences. Our results show that the spatial resolution of the surface water Hg0 data can be significantly improved by continuous measurements of Hg0 in air equilibrated with water instead of quantitative extraction of Hg0 from seawater samples. A spatial and highly seasonal variability of the Hg0 sea-air flux was thus determined. In winter, the flux was low and changed in direction. In summer, a strong emission flux of up to 150 ng m(-2) day(-1) in the central Baltic Sea was recorded. The total emission of Hg0 from the studied area (235000 km2) was 4300 +/- 1600 kg in 2006 and exceeded deposition estimates.

  17. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Park, S.; Choi, T.; Kim, S.

    2012-12-01

    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  18. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  19. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Gnanadesikan, A.

    2010-11-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  20. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  1. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  2. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D

  3. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    NASA Astrophysics Data System (ADS)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  4. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  5. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  6. Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2016-02-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.

  7. Wind stress and heat fluxes over a Brazilian Coastal Upwelling

    NASA Astrophysics Data System (ADS)

    Dourado, Marcelo; Candella, Rogério

    2017-04-01

    Coastal upwelling zones have been intensively studied in the last decades especially due to their importance to the biological cycle. The coastal upwelling system of the Cabo Frio region (east coast of the Rio de Janeiro state, Brazil) keeps the surface water cold during most part of the year, what induces a stable atmospheric boundary layer associated to northeast winds. The main goal of this study is to investigate the wind stress and heat fluxes exchanges between the ocean and the atmosphere in that area. For this purpose, a set of hourly data meteorological and oceanographic data collected by a Wavescan metocean buoy anchored at 23o59S; 42oW, were used, as well as solar radiation and relative humidity from a terrestrial meteorological station from the Instituto Nacional de Meteorologia (InMet). COARE 3.0 algorithm was used to calculate the latent and sensible heat fluxes. In this discussion, positive values represent fluxes towards the ocean. The average net heat flux over our study period is 88 W m-2. The reduction of the net heat flux is due to the increase of the ocean latent heat loss, although a reduction in incoming shortwave radiation and an increase in ocean long wave cooling also contributes. The latent heat is 20 times larger than the sensible heat flux, but the mean value of the latent heat flux, 62 W m-2, is half the typical value found in open ocean. The temporal variability of both sensible and latent heat fluxes reflects their dependence on wind speed and air-sea temperature differences. When upwelling events, here periods when diurnal SST is lower than 18oC, are compared with undisturbed (without upwelling) events, it can be noted the sensible heat fluxes are positives and 10 times greater in magnitude. This is related to an increment, during these upwelling events, of the air-sea temperature difference and an increasing of the wind speed. The cold waters of the upwelling increase the air-sea temperature gradient and, also, the horizontal land-sea

  8. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong

    2013-08-01

    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  9. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, J.; Feingold, G.; Wang, Hailong

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found

  10. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  11. Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Natalia, Tilinina

    2014-05-01

    provide locally high winds and air-sea temperature gradients. For this purpose we linked characteristics of cyclone activity over the midlatitudinal oceans with the extreme surface turbulent heat fluxes. Cyclone tracks and parameters of cyclone life cycle (deepening rates, propagation velocities, life time and clustering) were derived from the same reanalyses using state of the art numerical tracking algorithm. The main questions addressed in this study are (i) through which mechanisms extreme surface fluxes are associated with cyclone activity? and (ii) which types of cyclones are responsible for forming extreme turbulent fluxes? Our analysis shows that extreme surface fluxes are typically associated not with cyclones themselves but rather with cyclone-anticyclone interaction zones. This implies that North Atlantic and North Pacific series of intense cyclones do not result in the anomalous surface fluxes. Alternatively, extreme fluxes are most frequently associated with blocking situations, particularly with the intensification of the Siberian and North American Anticyclones providing cold-air outbreaks over WBC regions.

  12. Characterization of extreme air-sea turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Belyaev, Konstantin

    2017-04-01

    Extreme ocean-atmosphere turbulent fluxes play a critical role in the convective processes in the mid and subpolar latitudes and may also affect a variety of atmospheric processes, such as generation and re-intensification of extreme cyclones in the areas of the mid latitude storm tracks. From the ocean dynamics perspective, specifically for quantifying extreme vertical mixing, characterization of the extreme fluxes requires, besides estimation of the extreme events, also consideration of the relative extremeness of surface fluxes and their timing, e.g. the duration of periods of high surface fluxes. In order to comprehensively characterize extreme turbulent fluxes at sea surface we propose a formalism based upon probability density distributions of surface turbulent fluxes and flux-related variables. Individual absolute flux extremes were derived using Modified Fisher-Tippett (MFT) distribution of turbulent fluxes. Then, we extend this distribution to the fractional distribution, characterizing the fraction of time-integrated turbulent heat flux provided by the fluxes exceeding a given percentile. Finally, we consider the time durations during which fluxes of a given intensity provide extreme accumulations of heat loss from the surface. For estimation of these characteristics of surface fluxes we use fluxes recomputed from the state variables available from modern era reanalyses (ERA-Interim, MERRA and CFSR) for the period from 1979 onwards. Applications of the formalism to the VOS (Voluntary Observing Ship) - based surface fluxes are also considered. We discuss application of the new metrics of mesoscale and synoptic variability of surface fluxes to the dynamics of mixed layer depth in the North Atlantic.

  13. Boundary layers at a dynamic interface: air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew

    2017-11-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.

  14. Climate change impacts on sea-air fluxes of CO2 in three Arctic seas: a sensitivity study using Earth observation

    NASA Astrophysics Data System (ADS)

    Land, P. E.; Shutler, J. D.; Cowling, R. D.; Woolf, D. K.; Walker, P.; Findlay, H. S.; Upstill-Goddard, R. C.; Donlon, C. J.

    2013-12-01

    We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea-air fluxes of -36 ± 14 and -11 ± 5 Tg C yr-1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea-air flux of +2.2 ± 1.4 Tg C yr-1. The combined integrated CO2 sea-air flux from all three was -45 ± 18 Tg C yr-1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea-air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most

  15. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux

  16. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  17. Re-examining the roles of surface heat flux and latent heat release in a "hurricane-like" polar low over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kolstad, Erik W.; Bracegirdle, Thomas J.; Zahn, Matthias

    2016-07-01

    Polar lows are intense mesoscale cyclones that occur at high latitudes in both hemispheres during winter. Their sometimes evidently convective nature, fueled by strong surface fluxes and with cloud-free centers, have led to some polar lows being referred to as "arctic hurricanes." Idealized studies have shown that intensification by hurricane development mechanisms is theoretically possible in polar winter atmospheres, but the lack of observations and realistic simulations of actual polar lows have made it difficult to ascertain if this occurs in reality. Here the roles of surface heat fluxes and latent heat release in the development of a Barents Sea polar low, which in its cloud structures showed some similarities to hurricanes, are studied with an ensemble of sensitivity experiments, where latent heating and/or surface fluxes of sensible and latent heat were switched off before the polar low peaked in intensity. To ensure that the polar lows in the sensitivity runs did not track too far away from the actual environmental conditions, a technique known as spectral nudging was applied. This was shown to be crucial for enabling comparisons between the different model runs. The results presented here show that (1) no intensification occurred during the mature, postbaroclinic stage of the simulated polar low; (2) surface heat fluxes, i.e., air-sea interaction, were crucial processes both in order to attain the polar low's peak intensity during the baroclinic stage and to maintain its strength in the mature stage; and (3) latent heat release played a less important role than surface fluxes in both stages.

  18. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    NASA Astrophysics Data System (ADS)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL

  19. Seasonal Oxygen Supersaturation and Air-Sea Fluxes from Profiling Floats in the Pacific

    NASA Astrophysics Data System (ADS)

    Bushinsky, S. M.; Emerson, S. R.

    2016-02-01

    The Pacific Ocean is a heterogeneous basin that includes regions of strong CO2 fluxes to and from the atmosphere. The Kuroshio Extension (KE) is a current associated with the largest CO2 flux into the Pacific Ocean, which extends across the Pacific basin between the subarctic and subtropical regions. The relative importance of the biological and physical processes controlling this sink is uncertain. The stoichiometric relationship between O2 and dissolved inorganic carbon during photosynthesis and respiration may allow in situ O2 measurements to help determine the processes driving this large CO2 flux. In this study, we used Argo profiling floats with modified oxygen sensors to estimate O2 fluxes in several areas of the Pacific. In situ air calibrations of these sensors allowed us to accurately measure air-sea O2 differences, which largely control the flux of O2 to and from the atmosphere. In this way, we determine air-sea O2 fluxes from profiling floats, which previously did not measure O2 accurately enough to make these calculations. To characterize different areas within the KE, we separated O2 measurements from floats into 3 regions based on geographical position and temperature-salinity relationships: North KE, Central KE, and South KE. We then used these regions and floats in the Alaska Gyre and subtropical South Pacific gyre to develop seasonal climatologies of ΔO2 and air-sea flux. Mean annual air-sea oxygen fluxes (positive fluxes represent addition of O2 to the ocean) were calculated for the Alaska Gyre of -0.3 mol m-2 yr-1 (2012-2015), for the northern KE, central KE, and southern KE (2013-2015) of 6.8, 10.5, and 0.5 mol m-2 yr-1, respectively, and for the south subtropical Pacific (2014-2015) of 0.6 mol m-2 yr-1. The air-sea flux due to bubbles was greater than 50% of the total flux for winter months and essential for determining the magnitude and, in some cases, direction of the cumulative mean annual flux. Increases in solubility due to wintertime

  20. Boundary layers at a dynamic interface: Air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.

    2017-04-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.

  1. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  2. Kinetic energy flux budget across air-sea interface

    NASA Astrophysics Data System (ADS)

    Fan, Yalin; Hwang, Paul

    2017-12-01

    The kinetic energy (KE) fluxes into subsurface currents (EFc) is an important boundary condition for ocean circulation models. Traditionally, numerical models assume the KE flux from wind (EFair) is identical to EFc, that is, no net KE is gained (or lost) by surface waves. This assumption, however, is invalid when the surface wave field is not fully developed, and acquires KE when it grows in space or time. In this study, numerical experiments are performed to investigate the KE flux budget across the air-sea interface under both uniform and idealized tropical cyclone (TC) winds. The wave fields are simulated using the WAVEWATCH III model under different wind forcing. The difference between EFair and EFc is estimated using an air-sea KE budget model. To address the uncertainty of these estimates resides in the variation of source functions, two source function packages are used for this study: the ST4 source package (Ardhuin et al, 2010), and the ST6 source package (Babanin, 2011). The modeled EFc is significantly reduced relative to EFair under growing seas for both the uniform and TC experiments. The reduction can be as large as 20%, and the variation of this ratio is highly dependent on the choice of source function for the wave model. Normalized EFc are found to be consistent with analytical expressions by Hwang and Sletten (2008) and Hwang and Walsh (2016) and field observations by Terray et al. (1996) and Drennan et al. (1996), while the scatters are more widely in the TC cases due to the complexity of the associated wave field. The waves may even give up KE to subsurface currents in the left rear quadrant of fast moving storms. Our results also suggest that the normalized KE fluxes may depend on both wave age and friction velocity (u*).

  3. An assessment of TropFlux and NCEP air-sea fluxes on ROMS simulations over the Bay of Bengal region

    NASA Astrophysics Data System (ADS)

    Dey, Dipanjan; Sil, Sourav; Jana, Sudip; Pramanik, Saikat; Pandey, P. C.

    2017-12-01

    This study presents an assessment of the TropFlux and the National Centers for Environmental Prediction (NCEP) reanalysis air-sea fluxes in simulating the surface and subsurface oceanic parameters over the Bay of Bengal (BoB) region during 2002-2014 using the Regional Ocean Modelling System (ROMS). The assessment has been made by comparing the simulated fields with in-situ and satellite observations. The simulated surface and subsurface temperatures in the TropFlux forced experiment (TropFlux-E) show better agreement with the Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) and Argo observations than the NCEP forced experiment (NCEP-E). The BoB domain averaged sea surface temperature (SST) simulated in the NCEP-E is consistently cooler than the satellite SST, with a root mean square error (RMSE) of 0.79 °C. Moreover, NCEP-E shows a limitation in simulating the observed seasonal cycle of the SST due to substantial underestimation of the pre-monsoon SST peak. These limitations are mostly due to the lower values of the NCEP net heat flux. The seasonal and interannual variations of SST in the TropFlux-E are better comparable to the observations with correlations and skills more than 0.80 and 0.90 respectively. However, SST is overestimated during summer monsoon periods mainly due to higher net heat flux. The superiority of TropFlux forcing over the NCEP reanalysis can also be seen when simulating the interannual variabilities of the magnitude and vertical extent of Wyrtki jets at two equatorial RAMA buoy locations. The jet is weaker in the NCEP-E relative to the TropFlux-E and observations. The simulated sea surface height anomalies (SSHA) from both the experiments are able to capture the regions of positive and negative SSHA with respect to satellite-derived altimeter data with better performance in the TropFlux-E. The speed of the westward propagating Rossby wave along 18°N in the TropFlux-E is found to be about 4.7 cm/s, which is close to

  4. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  5. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    PubMed

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Yurova, A. Yu.; Bobylev, L. P.; Vesman, A. V.

    2018-03-01

    Seasonal and interannual variations in adjective heat fluxes in the ocean ( dQ oc) and the convergence of advective heat fluxes in the atmosphere ( dQ atm) in the Barents Sea region have been investigated over the period of 1993-2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQ oc and dQ atm data. It is also found that seasonal variations in dQ oc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQ oc and dQ atm in the Barents Sea region shows that the seasonal variations in dQ oc and dQ atm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean-atmosphere system in the Arctic region.

  7. Field Observations of Coastal Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  8. Episodic Southern Ocean Heat Loss and Its Mixed Layer Impacts Revealed by the Farthest South Multiyear Surface Flux Mooring

    NASA Astrophysics Data System (ADS)

    Ogle, S. E.; Tamsitt, V.; Josey, S. A.; Gille, S. T.; Cerovečki, I.; Talley, L. D.; Weller, R. A.

    2018-05-01

    The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (>300 m), which were nonexistent in winter 2016.

  9. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea

    NASA Astrophysics Data System (ADS)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang

    2017-07-01

    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  10. Deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2014-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  11. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  12. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  13. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  14. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  15. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    NASA Astrophysics Data System (ADS)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2017-10-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  16. A multi-model ensemble view of winter heat flux dynamics and the dipole mode in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William

    2017-02-01

    Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics

  17. Heat flux exchange estimation by using ATSR SST data in TOGA area

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by air-sea transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux exchange by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux exchange.

  18. The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth

    2018-04-01

    The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.

  19. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  20. Accounting for observation uncertainties in an evaluation metric of low latitude turbulent air-sea fluxes: application to the comparison of a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jérôme; Găinuşă-Bogdan, Alina; Braconnot, Pascale

    2017-09-01

    Turbulent momentum and heat (sensible heat and latent heat) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate. The evaluation of these fluxes in the climate models is still difficult because of the large uncertainties associated with the reference products. In this paper we present an objective metric accounting for reference uncertainties to evaluate the annual cycle of the low latitude turbulent fluxes of a suite of IPSL climate models. This metric consists in a Hotelling T 2 test between the simulated and observed field in a reduce space characterized by the dominant modes of variability that are common to both the model and the reference, taking into account the observational uncertainty. The test is thus more severe when uncertainties are small as it is the case for sea surface temperature (SST). The results of the test show that for almost all variables and all model versions the model-reference differences are not zero. It is not possible to distinguish between model versions for sensible heat and meridional wind stress, certainly due to the large observational uncertainties. All model versions share similar biases for the different variables. There is no improvement between the reference versions of the IPSL model used for CMIP3 and CMIP5. The test also reveals that the higher horizontal resolution fails to improve the representation of the turbulent surface fluxes compared to the other versions. The representation of the fluxes is further degraded in a version with improved atmospheric physics with an amplification of some of the biases in the Indian Ocean and in the intertropical convergence zone. The ranking of the model versions for the turbulent fluxes is not correlated with the ranking found for SST. This highlights that despite the fact that SST gradients are important for the large-scale atmospheric circulation patterns, other factors such as wind speed, and air-sea temperature contrast play an

  1. Seasonal cycle of oceanic mixed layer and upper-ocean heat fluxes in the Mediterranean Sea from in-situ observations.

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio

    2013-04-01

    Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account

  2. Residual-Mean Analysis of the Air-Sea Fluxes and Associated Oceanic Meridional Overturning

    DTIC Science & Technology

    2006-12-01

    the adiabatic component of the MOC which is based entirely on the sea surface data . The coordinate system introduced in this study is somewhat...heat capacity of water. The technique utilizes the observational data based on meteorological re- analysis (density flux at the sea surface) and...Figure 8. Annual mean and temporal standard deviation of the zonally-averaged mixed- layer depth. The plotted data are based on Levitus 94 climatology

  3. Air-Sea Heat Flux Transfer for MJO Initiation Processes during DYNAMO/CINDY2011 in Extended-Range Forecasts

    NASA Astrophysics Data System (ADS)

    Hong, X.; Reynolds, C. A.; Doyle, J. D.

    2016-12-01

    In this study, two-sets of monthly forecasts for the period during the Dynamics of Madden-Julian Oscillation (MJO)/Cooperative Indian Ocean Experiment of Intraseasonal Variability (DAYNAMO/CINDY) in November 2011 are examined. Each set includes three forecasts with the first set from Navy Global Environmental Model (NAVGEM) and the second set from Navy's non-hydrostatic Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®1). Three NAVGEM monthly forecasts have used sea surface temperature (SST) from persistent at the initial time, from Navy Coupled Ocean Data Assimilation (NCODA) analysis, and from coupled NAVGEM-Hybrid Coordinate Ocean Model (HYCOM) forecasts. Examination found that NAVGEM can predict the MJO at 20-days lead time using SST from analysis and from coupled NAVGEM-HYCOM but cannot predict the MJO using the persistent SST, in which a clear circumnavigating signal is absent. Three NAVGEM monthly forecasts are then applied as lateral boundary conditions for three COAMPS monthly forecasts. The results show that all COAMPS runs, including using lateral boundary conditions from the NAVGEM that is without the MJO signal, can predict the MJO. Vertically integrated moisture anomaly and 850-hPa wind anomaly in all COAMPS runs have indicated strong anomalous equatorial easterlies associated with Rossby wave prior to the MJO initiation. Strong surface heat fluxes and turbulence kinetic energy have promoted the convective instability and triggered anomalous ascending motion, which deepens moist boundary layer and develops deep convection into the upper troposphere to form the MJO phase. The results have suggested that air-sea interaction process is important for the initiation and development of the MJO. 1COAMPS® is a registered trademark of the Naval Research Laboratory

  4. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  5. Distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea during summer.

    PubMed

    Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng

    2017-07-01

    Spatial distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal seas. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, sea-to-air fluxes of isoprene approximately ranged from 22.17 nmol m -2  d -1 -537.2 nmol m -2  d -1 , with an average of 161.5 ± 133.3 nmol m -2  d -1 . These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

    PubMed Central

    Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.

    2016-01-01

    The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683

  7. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor

    2018-03-01

    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  8. Evaluation of bulk heat fluxes from atmospheric datasets

    NASA Astrophysics Data System (ADS)

    Farmer, Benton

    Heat fluxes at the air-sea interface are an important component of the Earth's heat budget. In addition, they are an integral factor in determining the sea surface temperature (SST) evolution of the oceans. Different representations of these fluxes are used in both the atmospheric and oceanic communities for the purpose of heat budget studies and, in particular, for forcing oceanic models. It is currently difficult to quantify the potential impact varying heat flux representations have on the ocean response. In this study, a diagnostic tool is presented that allows for a straightforward comparison of surface heat flux formulations and atmospheric data sets. Two variables, relaxation time (RT) and the apparent temperature (T*), are derived from the linearization of the bulk formulas. They are then calculated to compare three bulk formulae and five atmospheric datasets. Additionally, the linearization is expanded to the second order to compare the amount of residual flux present. It is found that the use of a bulk formula employing a constant heat transfer coefficient produces longer relaxation times and contains a greater amount of residual flux in the higher order terms of the linearization. Depending on the temperature difference, the residual flux remaining in the second order and above terms can reach as much as 40--50% of the total residual on a monthly time scale. This is certainly a non-negligible residual flux. In contrast, a bulk formula using a stability and wind dependent transfer coefficient retains much of the total flux in the first order term, as only a few percent remain in the residual flux. Most of the difference displayed among the bulk formulas stems from the sensitivity to wind speed and the choice of a constant or spatially varying transfer coefficient. Comparing the representation of RT and T* provides insight into the differences among various atmospheric datasets. In particular, the representations of the western boundary current, upwelling

  9. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    NASA Astrophysics Data System (ADS)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  10. Satellite-based Calibration of Heat Flux at the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  11. Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models

    NASA Astrophysics Data System (ADS)

    Wang, Ziqian; Duan, Anmin; Yang, Song

    2018-05-01

    Based on the conventional weather research and forecasting (WRF) model and the air-sea coupled mode WRF-OMLM, we investigate the potential regulation on the climatic effect of Tibetan Plateau (TP) heating by the air-sea coupling over the tropical Indian Ocean and western Pacific. Results indicate that the TP heating significantly enhances the southwesterly monsoon circulation over the northern Indian Ocean and the South Asia subcontinent. The intensified southwesterly wind cools the sea surface mainly through the wind-evaporation-SST (sea surface temperature) feedback. Cold SST anomaly then weakens monsoon convective activity, especially that over the Bay of Bengal, and less water vapor is thus transported into the TP along its southern slope from the tropical oceans. As a result, summer precipitation decreases over the TP, which further weakens the TP local heat source. Finally, the changed TP heating continues to influence the summer monsoon precipitation and atmospheric circulation. To a certain extent, the air-sea coupling over the adjacent oceans may weaken the effect of TP heating on the mean climate in summer. It is also implied that considerations of air-sea interaction are necessary in future simulation studies of the TP heating effect.

  12. Stability Effects on Heat and Moisture Fluxes at Sea

    NASA Astrophysics Data System (ADS)

    Oost, W. A.; Jacobs, C. M. J.; van Oort, C.

    During the 1996 ASGAMAGE experiment we measured windspeed, air temperature Ta, watertemperature Ts, humidity and the momentum,heat and moisture fluxes at a research platform offthe Dutch coast. For each quantity we used several(sets of) instruments simultaneously. This allowed usto make an extensive assessment of the quality of themeasurements and to find optimal values for thevarious quantities for each run. From these values wecalculated CH and CE, theStanton and Dalton numbers, and reduced them to 10-mheight and neutral conditions. For this reductionwe made a separate analysis for the effect ofinclusion or non-inclusion of the assumption that theroughness length for heat or moisture is the same forthe neutral and non-neutral cases. Differences inthe reduced data due to this assumption turned out tobe well within the measurement error.For CH we distinguished three separategroups of data: stable (A), unstable witha s (B) and unstablewith thetas;a > s (C), with indicating the potential temperature.The stable data separate into two groups, depending onwater temperature and/or the wave field. The data ofgroup B showed a relation with wave age. The data ofgroup C consistently gave negative values forCH, a result that might indicate conversion oflatent heat into sensible heat through condensation ofwater vapour just above the water surface. An attemptto re-analyse the data in terms of density fluxes,combining the effects of heat and moisture, still gavenegative transfer coefficients for group C.

  13. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik

    2016-09-01

    We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.

  14. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.

    2017-01-01

    We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.

  15. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  16. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  17. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei

    2017-10-01

    Strong winds lead to large amounts of sea spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the air-sea heat fluxes due to their evaporation and the momentum due to the change of sea surface, and in turn change the upper ocean thermal structure. In this study, impact of sea spray on upper ocean temperatures in the Yellow and East China Seas (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a sea spray parameterization scheme, in which the sea spray-induced heat fluxes are based on an improved Fairall's sea spray heat fluxes algorithm, and the sea spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the sea spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow sea, the sea spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total air-sea momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the sea spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" processes. When the effect of sea spray is considered, the maximum of the sea surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.

  18. Predicting the Turbulent Air-Sea Surface Fluxes, Including Spray Effects, from Weak to Strong Winds

    DTIC Science & Technology

    2012-09-30

    almost complete decoupling of the wind field from the sea surface . As a result of the weak surface stress, the flow becomes almost free from the...shore flow . In turn, wave growth and the associated surface roughness (z0) are limited. Consequently, the stability increases further in a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Turbulent Air-Sea Surface Fluxes

  19. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  20. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  1. Validation of the Fully-Coupled Air-Sea-Wave COAMPS System

    NASA Astrophysics Data System (ADS)

    Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.

    2017-12-01

    A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.

  2. Air-Sea Interaction in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Friehe, C. A.; Melville, W. K.

    2007-05-01

    Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.

  3. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  4. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  5. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019596','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019596"><span>Miniature Convection Cooled Plug-type <span class="hlt">Heat</span> <span class="hlt">Flux</span> Gauges</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.</p> <p>1994-01-01</p> <p>Tests and analysis of a new miniature plug-type <span class="hlt">heat</span> <span class="hlt">flux</span> gauge configuration are described. This gauge can simultaneously measure <span class="hlt">heat</span> <span class="hlt">flux</span> on two opposed active surfaces when <span class="hlt">heat</span> <span class="hlt">flux</span> levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady <span class="hlt">heat</span> <span class="hlt">flux</span> and temperature range. The tests were performed by radiatively <span class="hlt">heating</span> the front surface with an argon arc lamp while the back surface was convection cooled with <span class="hlt">air</span>. Accuracy is about +20 percent. The gauge is responsive to fast <span class="hlt">heat</span> <span class="hlt">flux</span> transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure <span class="hlt">heat</span> <span class="hlt">flux</span> on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. <span class="hlt">Heat</span> <span class="hlt">flux</span> measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were <span class="hlt">air</span>-cooled by forced convection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28132774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28132774"><span>Distribution and <span class="hlt">sea-to-air</span> <span class="hlt">fluxes</span> of volatile halocarbons in the Bohai <span class="hlt">Sea</span> and North Yellow <span class="hlt">Sea</span> during spring.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Zhen; Liu, Qiu-Lin; Zhang, Ying-Jie; Yang, Gui-Peng</p> <p>2017-04-15</p> <p>Concentrations of volatile halocarbons (VHCs), such as CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 , in the Bohai <span class="hlt">Sea</span> (BS) and North Yellow <span class="hlt">Sea</span> (NYS) were measured during the spring of 2014. The VHC concentrations varied widely and decreased with distance from the coast in the investigated area, with low values observed in the open <span class="hlt">sea</span>. Depth profiles of the VHCs were characterized by the highest concentration generally found in the upper water column. The distributions of the VHCs in the BS and NYS were clearly influenced by the combined effects of biological production, anthropogenic activities, and riverine input. The <span class="hlt">sea-to-air</span> <span class="hlt">fluxes</span> of CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 in the study area were estimated to be 47.17, 56.63, 162.56, and 104.37nmolm -2 d -1 , respectively, indicating that the investigated area may be a source of atmospheric CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 in spring. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002122"><span>Natural <span class="hlt">Air-Sea</span> <span class="hlt">Flux</span> of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002122'); toggleEditAbsImage('author_20150002122_show'); toggleEditAbsImage('author_20150002122_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_hide"></p> <p>2013-01-01</p> <p>Results from twin control simulations of the preindustrial CO2 gas exchange (natural <span class="hlt">flux</span> of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the <span class="hlt">air-sea</span> <span class="hlt">flux</span> of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the <span class="hlt">air-sea</span> <span class="hlt">flux</span> of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net <span class="hlt">heat</span> and freshwater <span class="hlt">fluxes</span> into the ocean).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000880','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000880"><span><span class="hlt">Air-sea</span> interaction and remote sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Katsaros, Kristina B.; Ataktuerk, Serhad S.</p> <p>1992-01-01</p> <p>The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the <span class="hlt">air-sea</span> exchange processes and the <span class="hlt">sea</span> state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared <span class="hlt">sea</span> surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface <span class="hlt">fluxes</span> (of momentum, sensible <span class="hlt">heat</span>, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21A1356K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21A1356K"><span>Methanethiol Concentrations and <span class="hlt">Sea-Air</span> <span class="hlt">Fluxes</span> in the Subarctic NE Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.</p> <p>2017-12-01</p> <p>Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and <span class="hlt">sea-air</span> <span class="hlt">fluxes</span> is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. <span class="hlt">Sea-air</span> <span class="hlt">fluxes</span> of MeSH averaged 15% of the combined DMS+MeSH <span class="hlt">flux</span>, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.C21A0064F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.C21A0064F"><span>Measurements of Turbulent <span class="hlt">Fluxes</span> over <span class="hlt">Sea</span> Ice Region in the <span class="hlt">Sea</span> of Okhotsk.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujisaki, A.; Yamaguchi, H.; Toyota, T.; Futatsudera, A.; Miyanaga, M.</p> <p>2007-12-01</p> <p>The measurements of turbulent <span class="hlt">fluxes</span> over <span class="hlt">sea</span> ice area were done in the southern part of the <span class="hlt">Sea</span> of Okhotsk, during the cruises of the ice-breaker P/V 'Soya' in 2000-2005. The <span class="hlt">air</span>-ice drag coefficients CDN were 3.57×10-3 over small floes \\left(diameter:φ=20- 100m\\right), 3.38×10-3 over medium floes \\left(φ=100-500m\\right), and 2.12×10-3 over big floes \\left( φ=500m-2km\\right), which showed a decrease with the increase of floe size. This is because the smaller floes contribue to the roughness of <span class="hlt">sea</span>-ice area by their edges more than the larger ones. The average CDN values showed a gradual upslope with ice concentration, which is simply due to the rougher surface of <span class="hlt">sea</span> ice than that of open water, while they showed a slight decline at ice concentration 100%, which is possibly due to the lack of freeboard effect of lateral side of floes. We also compared the relation between the roughness length zM and the friction velocity u* with the model developed in the previous study. The zM-u* relation well corresponded with the model results, while the range of zM we obtained was larger than those obtained at the Ice Station Weddell and during the Surface <span class="hlt">Heat</span> Budget of the Arctic Ocean project. The sensible <span class="hlt">heat</span> transfer coefficients CHN were 1.35×10-3 at 80-90% ice concentration, and 0.95×10-3 at 100% ice concentration, which are comparable with the results of the past reaserches. On the other hand, we obtained a maximum CHN value of 2.39×10-3at 20-50% ice concentration, and 2.35×10-3 over open water, which are more than twice as the typical value of 1.0×10-3 over open water. These large CHN values are due to the significant upward sensible <span class="hlt">heat</span> <span class="hlt">flux</span> during the measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D"><span>Interannual variability of primary production and <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> in the Atlantic and Indian sectors of the Southern Ocean.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David</p> <p>2013-04-01</p> <p>As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological processes that control <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> and how these processes might respond to climate change. It is well established that primary production is one of the major drivers of <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater <span class="hlt">fluxes</span> over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical processes may balance this response to set the seasonal cycle of <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and <span class="hlt">Sea</span>WiFS data. A decomposition of the physical and biological processes driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and <span class="hlt">air-sea</span> <span class="hlt">flux</span> contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological process contribution are quantified and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29440667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29440667"><span>Poleward upgliding Siberian atmospheric rivers over <span class="hlt">sea</span> ice <span class="hlt">heat</span> up Arctic upper <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro</p> <p>2018-02-13</p> <p>We carried out upper <span class="hlt">air</span> measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold <span class="hlt">air</span> domes overlying <span class="hlt">sea</span> ice provide the upper atmosphere with extra <span class="hlt">heat</span> via condensation of water vapour. This <span class="hlt">heating</span> drives increased buoyancy and further strengthens the ascent and <span class="hlt">heating</span> of the mid-troposphere. This process requires the combination of SARs and <span class="hlt">sea</span> ice as a land-ocean-atmosphere system, the implication being that large-scale <span class="hlt">heat</span> and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013403','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013403"><span>Trends and Variations of Ocean Surface Latent <span class="hlt">Heat</span> <span class="hlt">Flux</span>: Results from GSSTF2c Data Set</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gao, Si; Chiu, Long S.; Shie, Chung-Lin</p> <p>2013-01-01</p> <p>Trends and variations of Goddard Satellite-based Surface Turbulent <span class="hlt">Fluxes</span> (GSSTF) version 2c (GSSTF2c) latent <span class="hlt">heat</span> <span class="hlt">flux</span> (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in <span class="hlt">sea</span> surface saturated <span class="hlt">air</span> humidity, and the decrease in near-surface <span class="hlt">air</span> humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of <span class="hlt">air-sea</span> humidity difference trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001asi..book.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001asi..book.....C"><span><span class="hlt">Air-Sea</span> Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Csanady, G. T.</p> <p>2001-03-01</p> <p>In recent years <span class="hlt">air-sea</span> interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both <span class="hlt">air</span> and <span class="hlt">sea</span>. <span class="hlt">Air-Sea</span> Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward <span class="hlt">heat</span> transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000070471','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000070471"><span>Modeling Studies of the Effects of Winds and <span class="hlt">Heat</span> <span class="hlt">Flux</span> on the Tropical Oceans</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seager, R.</p> <p>1999-01-01</p> <p>Over a decade ago, funding from this NASA grant supported the development of the Cane-Zebiak ENSO prediction model which remains in use to this day. It also supported our work developing schemes for modeling the <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> in ocean models used for studying climate variability. We introduced a succession of simple boundary layer models that allow the <span class="hlt">fluxes</span> to be computed internally in the model and avoid the need to specify the atmospheric thermodynamic state. These models have now reached a level of generality that allows modeling of the global, rather than just tropical, ocean, including <span class="hlt">sea</span> ice cover. The most recent versions of these boundary layer models have been widely distributed around the world and are in use by many ocean modeling groups.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JGR....9810211R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JGR....9810211R"><span>Determination of ocean surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> by a variational method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roquet, H.; Planton, S.; Gaspar, P.</p> <p>1993-06-01</p> <p>A new technique of determination of the "nonsolar" <span class="hlt">heat</span> <span class="hlt">flux</span> (sum of the latent, sensible, and net infrared <span class="hlt">fluxes</span>) at the ocean surface is proposed. It applies when oceanic advection remains weak and thus relies on a one-dimensional modeling approach. It is based on a variational data assimilation scheme using the adjoint equation formalism. This allows to take advantage of all observed data with their error estimates. Results from experiments performed with station Papa (Gulf of Alaska) and Long-Term Upper Ocean Study (LOTUS, Sargasso <span class="hlt">Sea</span>) data sets are discussed. The temperature profiles assimilation allows the one-dimensional model to reproduce correctly the temperature evolution at the surface and under the oceanic mixed layer at the two sites. The retrieved <span class="hlt">fluxes</span> are compared to the <span class="hlt">fluxes</span> calculated through classical empirical formulae. The diurnal dependence of the <span class="hlt">fluxes</span> at the LOTUS site is particularly investigated. The results are also compared with those obtained using a simpler technique based on an iterative shooting method and allowing the assimilation of the only <span class="hlt">sea</span> surface temperature. This second comparison reveals that the variability of the retrieved <span class="hlt">fluxes</span> is damped when temperature in the inner ocean are assimilated. This is the case for the diurnal cycle at the LOTUS mooring. When the available current data at this site are assimilated, the diurnal variability of the retrieved <span class="hlt">fluxes</span> is further decreased. This points out a model discrepancy in the representation of mixing processes associated to internal wave activity. The remaining part of the diurnal cycle is significant and could be due to a direct effect of <span class="hlt">air-sea</span> temperature difference.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0586E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0586E"><span>Carbon Dioxide Transfer Through <span class="hlt">Sea</span> Ice: Modelling <span class="hlt">Flux</span> in Brine Channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.</p> <p>2010-12-01</p> <p>For many years <span class="hlt">sea</span> ice was thought to act as a barrier to the <span class="hlt">flux</span> of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while <span class="hlt">sea</span> ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant <span class="hlt">fluxes</span> of CO2. <span class="hlt">Sea</span> ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of <span class="hlt">sea</span> ice and direction of <span class="hlt">flux</span> related to <span class="hlt">sea</span> ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the <span class="hlt">sea</span> ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the <span class="hlt">sea</span> ice is thought to enhance this process. Micro-organisms present within the <span class="hlt">sea</span> ice will also contribute to the CO2 <span class="hlt">flux</span> dynamics. Recent evidence of decreasing <span class="hlt">sea</span> ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 <span class="hlt">flux</span> through regions of thinner, more porous <span class="hlt">sea</span> ice. A full understanding of the processes and feedbacks controlling the <span class="hlt">flux</span> in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> in <span class="hlt">sea</span> ice covered regions is not currently included in global climate models. Incorporating this carbon <span class="hlt">flux</span> system into Earth System models requires the development of a well-parameterised <span class="hlt">sea</span> ice-<span class="hlt">air</span> <span class="hlt">flux</span> model. In our work we use the Los Alamos <span class="hlt">sea</span> ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..874S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..874S"><span>Observational Studies of Parameters Influencing <span class="hlt">Air-sea</span> Gas Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.</p> <p></p> <p>A physically-based modeling of the <span class="hlt">air-sea</span> gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using <span class="hlt">heat</span> as a proxy tracer for gases the exchange process at the <span class="hlt">air</span>/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net <span class="hlt">heat</span> <span class="hlt">flux</span> at the ocean surface, the temperature gradient across the <span class="hlt">air/sea</span> interface and thus the <span class="hlt">heat</span> transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled <span class="hlt">flux</span> technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5566F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5566F"><span>Effects of <span class="hlt">sea</span>-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian</p> <p>2017-07-01</p> <p>We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic <span class="hlt">sea</span> ice from January to June 2015 during the Norwegian young <span class="hlt">sea</span> ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the <span class="hlt">sea</span> ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span>. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span> occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span> were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span> 16%, and temperature and salinity insignificant.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004479','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004479"><span>Fabrication of Thin Film <span class="hlt">Heat</span> <span class="hlt">Flux</span> Sensors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Will, Herbert A.</p> <p>1992-01-01</p> <p>Prototype thin film <span class="hlt">heat</span> <span class="hlt">flux</span> sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient <span class="hlt">heat</span> <span class="hlt">flux</span> information. Fabrication of the sensor does not require any matching of the mounting surface. <span class="hlt">Heat</span> <span class="hlt">flux</span> is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair <span class="hlt">heat</span> <span class="hlt">flux</span> sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot <span class="hlt">air</span> <span class="hlt">heat</span> gun. A 20 element thermocouple pair <span class="hlt">heat</span> <span class="hlt">flux</span> sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of <span class="hlt">heat</span> <span class="hlt">flux</span> sensor on metal surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..418Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..418Z"><span>The Influence of <span class="hlt">Air-Sea</span> <span class="hlt">Fluxes</span> on Atmospheric Aerosols During the Summer Monsoon Over the Tropical Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zavarsky, Alex; Booge, Dennis; Fiehn, Alina; Krüger, Kirstin; Atlas, Elliot; Marandino, Christa</p> <p>2018-01-01</p> <p>During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant <span class="hlt">fluxes</span>, such as isoprene and <span class="hlt">sea</span> spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine <span class="hlt">air</span> masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS <span class="hlt">fluxes</span> confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m-2 d-1). The directly measured <span class="hlt">fluxes</span>, as well as computed isoprene and <span class="hlt">sea</span> spray <span class="hlt">fluxes</span>, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The <span class="hlt">fluxes</span> show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..03J"><span><span class="hlt">Air-Sea</span> Interaction in the Somali Current Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, T. G.; Rydbeck, A.</p> <p>2017-12-01</p> <p>The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the <span class="hlt">air-sea</span> interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface <span class="hlt">flux</span>, effects on surface waves and the role of <span class="hlt">Sea</span> Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in <span class="hlt">heat</span> <span class="hlt">flux</span> to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on <span class="hlt">air-sea</span> <span class="hlt">fluxes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1313285B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1313285B"><span><span class="hlt">Air/sea</span> DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.</p> <p>2013-05-01</p> <p>Shipboard measurements of eddy covariance DMS <span class="hlt">air/sea</span> <span class="hlt">fluxes</span> and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS <span class="hlt">fluxes</span> were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible <span class="hlt">heat</span> did not exhibit this effect. The apparent suppression of <span class="hlt">air/sea</span> gas <span class="hlt">flux</span> at higher wind speeds appears to be related to <span class="hlt">sea</span> state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the <span class="hlt">air/sea</span> exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.2699S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.2699S"><span>Coccolithophore surface distributions in the North Atlantic and their modulation of the <span class="hlt">air-sea</span> <span class="hlt">flux</span> of CO2 from 10 years of satellite Earth observation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shutler, J. D.; Land, P. E.; Brown, C. W.; Findlay, H. S.; Donlon, C. J.; Medland, M.; Snooke, R.; Blackford, J. C.</p> <p>2013-04-01</p> <p>Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50%) and their calcification can affect the atmosphere-to-ocean (<span class="hlt">air-sea</span>) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the <span class="hlt">Sea</span>-viewing Wide Field-of-view Sensor (<span class="hlt">Sea</span>WiFS). We calculate the annual mean <span class="hlt">sea</span> surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO) climate oscillation index (r=0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised <span class="hlt">air-sea</span> <span class="hlt">flux</span> of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> can reach 55%. The maximum reduction of the monthly <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic <span class="hlt">air-to-sea</span> <span class="hlt">flux</span> of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..922L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..922L"><span>Observed Seasonal Variations of the Upper Ocean Structure and <span class="hlt">Air-Sea</span> Interactions in the Andaman <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong</p> <p>2018-02-01</p> <p>The Andaman <span class="hlt">Sea</span> (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the <span class="hlt">air-sea</span> interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the <span class="hlt">sea</span> surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface <span class="hlt">heat</span> loss and subsurface prewarming. The <span class="hlt">heat</span> budget analysis of the mixed layer showed that the net surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak <span class="hlt">heat</span> loss caused by weaker longwave radiation and latent <span class="hlt">heat</span> losses. However, the AS latent <span class="hlt">heat</span> loss was larger than the BOB in summer due to its lower relative humidity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053067&hterms=TIDE+POOLS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTIDE%2BPOOLS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053067&hterms=TIDE+POOLS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTIDE%2BPOOLS"><span>Tidal and atmospheric forcing of the upper ocean in the Gulf of California. 2: Surface <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.</p> <p>1993-01-01</p> <p>Satellite infrared imagery and coastal meteorological data for March 1984 through February 1985 are used to estimate the net annual surface <span class="hlt">heat</span> <span class="hlt">flux</span> for the northern Gulf of California. The average annual surface <span class="hlt">heat</span> <span class="hlt">flux</span> for the area north of Guaymas and Santa Rosalia is estimated to be +74 W/sq m for the 1984-1985 time period. This is comparable to the +20-50 W/sq m previously obtained from <span class="hlt">heat</span> and freshwater transport estimates made with hydrographic surveys from different years and months. The spatial distribution of the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> shows a net gain of <span class="hlt">heat</span> over the whole northern gulf. Except for a local maximum near San Esteban Island, the largest <span class="hlt">heat</span> gain (+110-120 W/sq m) occurs in the Ballenas and Salsipuedes channels, where strong tidal mixing produces anomalously cold <span class="hlt">sea</span> surface temperatures (SSTs) over much of the year. The lowest <span class="hlt">heat</span> gain occurs in the Guayamas Basin (+40-50 W/sq m), where SSTs are consistently warmer. In the relatively shallow northern basin the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> is farily uniform, with a net annual gain of approxmately +70 W/sq m. A local minimum in <span class="hlt">heat</span> gain (approximately +60 W/sq m) is observed over the shelf in the northwest, where spring and summer surface temperatures are particularly high. A similar minimum in <span class="hlt">heat</span> gain over the shelf was observed in a separate study in which historical SSTs and 7 years (1979-1986) of meteorological data from Puerto Penasco were used to estimate the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> for the northern basin. In that study, however, the <span class="hlt">heat</span> <span class="hlt">fluxes</span> were higher, with a gain of +100 W/sq m over the shelf and +114 W/sq m in the northern basin. These larger values are directly attributable to the higher humidities in the 1979-1986 study compared to the 1984-1985 satellite study. High humidities reduce evaporation and the associated latent <span class="hlt">heat</span> loss, promoting a net annual <span class="hlt">heat</span> gain. In the norther Gulf of California, however, tidal mixing appears to play a key role in the observed gain of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1311073B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1311073B"><span><span class="hlt">Air-sea</span> dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.</p> <p>2013-11-01</p> <p>Shipboard measurements of eddy covariance dimethylsulfide (DMS) <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS <span class="hlt">fluxes</span> were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible <span class="hlt">heat</span> did not exhibit this effect. The apparent suppression of <span class="hlt">air-sea</span> gas <span class="hlt">flux</span> at higher wind speeds appears to be related to <span class="hlt">sea</span> state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the <span class="hlt">air-sea</span> exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2671L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2671L"><span>On the role of <span class="hlt">sea</span>-state in bubble-mediated <span class="hlt">air-sea</span> gas <span class="hlt">flux</span> during a winter storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.</p> <p>2017-04-01</p> <p>Oceanic bubbles play an important role in the <span class="hlt">air-sea</span> exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas <span class="hlt">fluxes</span> are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas <span class="hlt">flux</span> difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas <span class="hlt">flux</span>. The wave-age dependence is not included in any existing bubble-mediated gas <span class="hlt">flux</span> parameterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790008611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790008611"><span>A method of exploration of the atmosphere of Titan. [hot <span class="hlt">air</span> balloon <span class="hlt">heated</span> by solar radiation or planetary thermal <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blamont, J.</p> <p>1978-01-01</p> <p>A hot-<span class="hlt">air</span> balloon, with the <span class="hlt">air</span> <span class="hlt">heated</span> by natural sources, is described. Buoyancy is accomplished by either solar <span class="hlt">heating</span> or by utilizing the IR thermal <span class="hlt">flux</span> of the planet to <span class="hlt">heat</span> the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/467654-air-sea-interaction-subtropical-convergence-south-africa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/467654-air-sea-interaction-subtropical-convergence-south-africa"><span><span class="hlt">Air-sea</span> interaction at the subtropical convergence south of Africa</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van</p> <p>1994-12-31</p> <p>The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and <span class="hlt">air-sea</span> interaction measurements. The <span class="hlt">air-sea</span> interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent <span class="hlt">fluxes</span> of momentum, sensible <span class="hlt">heat</span> and latent <span class="hlt">heat</span> were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net <span class="hlt">heat</span> loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020001355&hterms=dataset&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddataset','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020001355&hterms=dataset&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddataset"><span>A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>The surface turbulent <span class="hlt">fluxes</span> of momentum, latent <span class="hlt">heat</span>, and sensible <span class="hlt">heat</span> over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface <span class="hlt">heat</span> budget, while the wind stress is the major forcing for driving the oceanic circulation. The global <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of momentum, latent and sensible <span class="hlt">heat</span>, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent <span class="hlt">fluxes</span> over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent <span class="hlt">fluxes</span> were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) <span class="hlt">sea</span> surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) <span class="hlt">air-sea</span> temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface <span class="hlt">air</span> humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent <span class="hlt">fluxes</span> will be presented. In addition, the global distributions of 1990-93 annual-means turbulent <span class="hlt">fluxes</span> and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713074S"><span><span class="hlt">Air-sea</span> <span class="hlt">fluxes</span> and satellite-based estimation of water masses formation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig</p> <p>2015-04-01</p> <p>Recent work linking satellite-based measurements of <span class="hlt">sea</span> surface salinity (SSS) and <span class="hlt">sea</span> surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by <span class="hlt">fluxes</span> of <span class="hlt">heat</span> and freshwater. The surface density <span class="hlt">flux</span> is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density <span class="hlt">flux</span> by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density <span class="hlt">flux</span> with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, <span class="hlt">heat</span> <span class="hlt">fluxes</span> from the NOCS Surface <span class="hlt">Flux</span> Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150023376&hterms=love&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlove','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150023376&hterms=love&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlove"><span>Tropical Gravity Wave Momentum <span class="hlt">Fluxes</span> and Latent <span class="hlt">Heating</span> Distributions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.</p> <p>2015-01-01</p> <p>Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum <span class="hlt">fluxes</span> in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum <span class="hlt">fluxes</span> associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum <span class="hlt">fluxes</span>, where the source is a function of latent <span class="hlt">heating</span> rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent <span class="hlt">heating</span>, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum <span class="hlt">fluxes</span> and have found that monthly averages of the lower-stratosphere GW momentum <span class="hlt">fluxes</span> more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent <span class="hlt">heating</span>. These regions of highest cloud-top altitudes occur when rates of latent <span class="hlt">heating</span> are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum <span class="hlt">fluxes</span>, being a function of the rate of latent <span class="hlt">heating</span>, will require either a climate model to correctly model this rate of latent <span class="hlt">heating</span> or some ad hoc adjustments to account for shortcomings in a climate model's land-<span class="hlt">sea</span> differences in convective latent <span class="hlt">heating</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DyAtO..76...14S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DyAtO..76...14S"><span><span class="hlt">Air-sea</span> CO2 <span class="hlt">flux</span> pattern along the southern Bay of Bengal waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shanthi, R.; Poornima, D.; Naveen, M.; Thangaradjou, T.; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.</p> <p>2016-12-01</p> <p>Physico-chemical observations made from January 2013 to March 2015 in coastal waters of the southwest Bay of Bengal show pronounced seasonal variation in physico-chemical parameters including total alkalinity (TA: 1927.390-4088.642 μmol kg-1), chlorophyll (0.13-19.41 μg l-1) and also calculated dissolved inorganic carbon (DIC: 1574.219-3790.954 μmol kg-1), partial pressure of carbon dioxide (pCO2: 155.520-1488.607 μatm) and <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> (FCO2: -4.808 to 11.255 mmol Cm-2 d-1). Most of the physical parameters are at their maximum during summer due to the increased solar radiation at cloud free conditions, less or no riverine inputs, and lack of vertical mixing of water column which leads to the lowest nutrients concentration, dissolved oxygen (DO), biological production, pCO2 and negative <span class="hlt">flux</span> of CO2 to the atmosphere. Chlorophyll and DO concentrations enhanced due to increased nutrients during premonsoon and monsoon season due to the vertical mixing of water column driven by the strong winds and external inputs at respective seasons. The constant positive loading of nutrients, TA, DIC, chlorophyll, pCO2 and FCO2 against atmospheric temperature (AT), lux, <span class="hlt">sea</span> surface temperature (SST), pH and salinity observed in principal component analysis (PCA) suggested that physical and biological parameters play vital role in the seasonal distribution of pCO2 along the southwest Bay of Bengal. The annual variability of CO2 <span class="hlt">flux</span> clearly depicted that the southwest Bay of Bengal switch from sink (2013) to source status in the recent years (2014 and 2015) and it act as significant source of CO2 to the atmosphere with a mean <span class="hlt">flux</span> of 0.204 ± 1.449 mmol Cm-2 d-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7216O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7216O"><span><span class="hlt">Sea-to-air</span> <span class="hlt">flux</span> of dimethyl sulfide in the South and North Pacific Ocean as measured by proton transfer reaction-mass spectrometry coupled with the gradient <span class="hlt">flux</span> technique</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken</p> <p>2017-07-01</p> <p>Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient <span class="hlt">flux</span> (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the <span class="hlt">sea</span> surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the <span class="hlt">sea-to-air</span> <span class="hlt">flux</span> of DMS. The DMS <span class="hlt">flux</span> determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface <span class="hlt">air</span> overlying the ocean surface. The difference was mainly due to the <span class="hlt">sea-to-air</span> DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMS...140...26M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMS...140...26M"><span>Spatio-temporal dynamics of biogeochemical processes and <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> in the Western English Channel based on two years of FerryBox deployment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.</p> <p>2014-12-01</p> <p>From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured <span class="hlt">sea</span> surface temperature (SST), <span class="hlt">sea</span> surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. <span class="hlt">Air-sea</span> CO2 <span class="hlt">fluxes</span> were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150023475','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150023475"><span>The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent <span class="hlt">Heat</span> <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Romanski, Joy; Hameed, Sultan</p> <p>2015-01-01</p> <p>Interannual variations of latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> (LHF) and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the <span class="hlt">heat</span> <span class="hlt">fluxes</span> and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the <span class="hlt">heat</span> <span class="hlt">flux</span> changes more successfully than the NAO and the EAWR. Trends in <span class="hlt">sea</span> level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean <span class="hlt">Sea</span> surface winds, temperature and moisture. These, combined with <span class="hlt">sea</span> surface warming trends, produce trends in wintertime Mediterranean <span class="hlt">Sea</span> sensible and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A54A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A54A..05M"><span>Gulf of Mexico <span class="hlt">Air/Sea</span> Interaction: Measurements and Initial Data Characterization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.</p> <p>2011-12-01</p> <p>Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and <span class="hlt">air-sea</span> interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and <span class="hlt">air</span> quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and <span class="hlt">air</span> quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and <span class="hlt">sea</span> surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; <span class="hlt">sea</span> surface temperature; wave height statistics; downwelling solar and infrared radiation; and <span class="hlt">air-sea</span> turbulent momentum and <span class="hlt">heat</span> <span class="hlt">fluxes</span>. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.agu.org/journals/jc/v096/iC04/90JC02642/','USGSPUBS'); return false;" href="http://www.agu.org/journals/jc/v096/iC04/90JC02642/"><span>Atmospheric organochlorine pollutants and <span class="hlt">air-sea</span> exchange of hexachlorocyclohexane in the Bering and Chukchi <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.</p> <p>1991-01-01</p> <p>Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi <span class="hlt">Seas</span> (August 1988), high-volume <span class="hlt">air</span> samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The <span class="hlt">air-sea</span> gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The <span class="hlt">flux</span> for alpha-HCH ranged from -47 ng m-2 day-1 (<span class="hlt">sea</span> to <span class="hlt">air</span>) to 122 ng m-2 d-1 (<span class="hlt">air</span> to <span class="hlt">sea</span>) and averaged 25 ng m-2 d-1 <span class="hlt">air</span> to <span class="hlt">sea</span>. All <span class="hlt">fluxes</span> of gamma-HCH were from <span class="hlt">air</span> to <span class="hlt">sea</span>, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040034110','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040034110"><span>A Comparison of Latent <span class="hlt">Heat</span> <span class="hlt">Fluxes</span> over Global Oceans for Four <span class="hlt">Flux</span> Products</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.</p> <p>2003-01-01</p> <p>To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and <span class="hlt">sea-air</span> humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent <span class="hlt">Fluxes</span>) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and <span class="hlt">Fluxes</span> from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent <span class="hlt">heat</span> <span class="hlt">flux</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C12A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C12A..01A"><span>Turbulent Surface <span class="hlt">Flux</span> Measurements over Snow-Covered <span class="hlt">Sea</span> Ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreas, E. L.; Fairall, C. W.; Grachev, A. A.; Guest, P. S.; Jordan, R. E.; Persson, P. G.</p> <p>2006-12-01</p> <p>Our group has used eddy correlation to make over 10,000 hours of measurements of the turbulent momentum and <span class="hlt">heat</span> <span class="hlt">fluxes</span> over snow-covered <span class="hlt">sea</span> ice in both the Arctic and the Antarctic. Polar <span class="hlt">sea</span> ice is an ideal site for studying fundamental processes for turbulent exchange over snow. Both our Arctic and Antarctic sites---in the Beaufort Gyre and deep into the Weddell <span class="hlt">Sea</span>, respectively---were expansive, flat areas with continuous snow cover; and both were at least 300 km from any topography that might have complicated the atmospheric flow. In this presentation, we will review our measurements of the turbulent <span class="hlt">fluxes</span> of momentum and sensible and latent <span class="hlt">heat</span>. In particular, we will describe our experiences making turbulence instruments work in the fairly harsh polar, marine boundary layer. For instance, several of our Arctic sites were remote from our main camp and ran unattended for a week at a time. Besides simply making <span class="hlt">flux</span> measurements, we have been using the data to develop a bulk <span class="hlt">flux</span> algorithm and to study fundamental turbulence processes in the atmospheric surface layer. The bulk <span class="hlt">flux</span> algorithm predicts the turbulent surface <span class="hlt">fluxes</span> from mean meteorological quantities and, thus, will find use in data analyses and models. For example, components of the algorithm are already embedded in our one- dimensional mass and energy budget model SNTHERM. Our fundamental turbulence studies have included deducing new scaling regimes in the stable boundary layer; examining the Monin-Obukhov similarity functions, especially in stable stratification; and evaluating the von Kármán constant with the largest atmospheric data set ever applied to such a study. During this presentation, we will highlight some of this work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940008108','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940008108"><span>A study of the Merritt Island, Florida <span class="hlt">sea</span> breeze flow regimes and their effect on surface <span class="hlt">heat</span> and moisture <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubes, M. T.; Cooper, H. J.; Smith, E. A.</p> <p>1993-01-01</p> <p>Data collected during the Convective and Precipitation/Electrification Experiment were analyzed as part of an investigation of the <span class="hlt">sea</span> breeze in the vicinity of Merritt Island, Florida. Analysis of near-surface divergence fields shows that the classical 24-hour oscillation in divergence over the island due to the direct <span class="hlt">sea</span> breeze circulation is frequently disrupted and exhibits two distinct modes: the classical <span class="hlt">sea</span> breeze pattern and deviations from that pattern. A comparison of clear day surface energy <span class="hlt">fluxes</span> with <span class="hlt">fluxes</span> on other days indicates that changes in magnitudes were dominated by the presence or absence of clouds. Non-classical <span class="hlt">sea</span> breeze days tended to lose more available energy in the morning than classical <span class="hlt">sea</span> breeze days due to earlier development of small cumulus over the island. A composite storm of surface winds, surface energy <span class="hlt">fluxes</span>, rainfall, and satellite visible data was constructed. A spectral transmittance over the visible wavelengths for the cloud cover resulting from the composite storm was calculated. It is shown that pre-storm transmittances of 0.8 fall to values near 0.1 as the downdraft moves directly over the site. It is also found that under post-composite storm conditions of continuous clear sky days, 3.5 days are required to evaporate back into the atmosphere the latent <span class="hlt">heat</span> energy lost to the surface by rainfall.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611343P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611343P"><span>Surfactant control of <span class="hlt">air-sea</span> gas exchange across contrasting biogeochemical regimes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert</p> <p>2014-05-01</p> <p> months likely from primary production and spatially there is less suppression of <span class="hlt">air-sea</span> gas exchange with increasing distance from the shoreline, which is likely due to riverine inputs. REFERENCES Bock, E. J., Hara, T., Frew, N. M., and McGillis, W. R., 1999. Relationship between <span class="hlt">air-sea</span> gas transfer and short wind waves. Journal of Geophysical Research-Oceans 104, 25821-25831. Brockmann, U. H., Huhnerfuss, H., Kattner, G., Broecker, H. C., and Hentzschel, G., 1982. Artificial surface-films in the <span class="hlt">sea</span> area near sylt. Limnology and Oceanography 27, 1050-1058. Goldman, J. C., Dennett, M. R., and Frew, N. M., 1988. Surfactant effects on <span class="hlt">air</span> <span class="hlt">sea</span> gas-exchange under turbulent conditions. Deep-<span class="hlt">Sea</span> Research Part a-Oceanographic Research Papers 35, 1953-1970. McKenna, S. P. and McGillis, W. R., 2004. The role of free-surface turbulence and surfactants in <span class="hlt">air</span>-water gas transfer. International Journal of <span class="hlt">Heat</span> and Mass Transfer 47, 539-553. Salter, M. E., R. C. Upstill-Goddard, P. D. Nightingale, S. D. Archer, B. Blomquist, D. T. Ho, B. Huebert, P. Schlosser, and M. Yang (2011), Impact of an artificial surfactant release on <span class="hlt">air-sea</span> gas <span class="hlt">fluxes</span> during Deep Ocean Gas Exchange Experiment II, J. Geophys. Res., 116, C11016, doi:10.1029/2011JC00702 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net <span class="hlt">sea-air</span> CO 2 <span class="hlt">flux</span> over the global oceans. Deep-<span class="hlt">Sea</span> Research Part II: Topical Studies in Oceanography 56, 554-577.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDG10003W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDG10003W"><span>Turbulent convection driven by internal radiative <span class="hlt">heating</span> of melt ponds on <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok</p> <p>2016-11-01</p> <p>The melting of Arctic <span class="hlt">sea</span> ice is strongly influenced by <span class="hlt">heat</span> transfer through melt ponds which form on the ice surface. Melt ponds are internally <span class="hlt">heated</span> by the absorption of incoming radiation and cooled by surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal <span class="hlt">heating</span> predicted from a two-stream radiation model. A linearised thermal boundary condition describes <span class="hlt">heat</span> exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming <span class="hlt">heat</span> <span class="hlt">flux</span> between emission at the upper and lower boundaries. We determine how the downward <span class="hlt">heat</span> <span class="hlt">flux</span> into the ice varies with a Rayleigh number based on the internal <span class="hlt">heating</span> rate, the <span class="hlt">flux</span> ratio of background surface cooling compared to internal <span class="hlt">heating</span>, and a Biot number characterising the sensitivity of surface <span class="hlt">fluxes</span> to surface temperature. Thus we elucidate the physical controls on <span class="hlt">heat</span> transfer through Arctic melt ponds which determine the fate of <span class="hlt">sea</span> ice in the summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5673F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5673F"><span><span class="hlt">Air-sea</span> Forcing and Thermohaline Changes In The Ross <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fusco, G.; Budillon, G.</p> <p></p> <p><span class="hlt">Heat</span> exchanges between <span class="hlt">sea</span> and atmosphere from 1986 to 2000 in the Ross <span class="hlt">Sea</span> (Antarctica) were computed from climatological data obtained from the European Centre for Medium Range Weather Forecasts. They have been related with the thermo- haline changes observed during 5 hydrological surveys performed between the austral summer 1994-1995 and 2000-2001 in the western sector of the Ross <span class="hlt">Sea</span>. The esti- mated <span class="hlt">heat</span> <span class="hlt">fluxes</span> show extremely strong spatial and temporal variability over all the Ross <span class="hlt">Sea</span>. As can be expected the largest <span class="hlt">heat</span> losses occur between May and August, while during the period November-February the <span class="hlt">heat</span> budget becomes positive. In the first six years of the investigated period the <span class="hlt">heat</span> loss is very strong with its maximum about 166 Wm-2; while during the period 1992-2000 the yearly <span class="hlt">heat</span> losses are the lowest. Thermohaline changes in the surface layer (upper pycnocline) of the western Ross <span class="hlt">Sea</span> follow the expected seasonal pattern of warming and freshening from the be- ginning to the end of the austral summer. The <span class="hlt">heating</span> changes are substantially lower than the estimated <span class="hlt">heat</span> supplied by the atmosphere during the summer, which under- lines the importance in this season of the advective component carried by the currents in the total <span class="hlt">heat</span> budget of this area. The year to year differences are about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the in- termediate and deep layers, the summer <span class="hlt">heat</span> and salt variability is of the same order as or one order higher than from one summer to the next. Moreover a freshening of the near bottom layer has been observed, it is consistent with the High Salinity Shelf Water salinity decrease recently detected in the Ross <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31A1997S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31A1997S"><span>Comparison of <span class="hlt">Sea-Air</span> CO2 <span class="hlt">Flux</span> Estimates Using Satellite-Based Versus Mooring Wind Speed Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutton, A. J.; Sabine, C. L.; Feely, R. A.; Wanninkhof, R. H.</p> <p>2016-12-01</p> <p>The global ocean is a major sink of anthropogenic CO2, absorbing approximately 27% of CO2 emissions since the beginning of the industrial revolution. Any variation or change in the ocean CO2 sink has implications for future climate. Observations of <span class="hlt">sea-air</span> CO2 <span class="hlt">flux</span> have relied primarily on ship-based underway measurements of partial pressure of CO2 (pCO2) combined with satellite, model, or multi-platform wind products. Direct measurements of ΔpCO2 (seawater - <span class="hlt">air</span> pCO2) and wind speed from moored platforms now allow for high-resolution CO2 <span class="hlt">flux</span> time series. Here we present a comparison of CO2 <span class="hlt">flux</span> calculated from moored ΔpCO2 measured on four moorings in different biomes of the Pacific Ocean in combination with: 1) Cross-Calibrated Multi-Platform (CCMP) winds or 2) wind speed measurements made on ocean reference moorings excluded from the CCMP dataset. Preliminary results show using CCMP winds overestimates CO2 <span class="hlt">flux</span> on average by 5% at the Kuroshio Extension Observatory, Ocean Station Papa, WHOI Hawaii Ocean Timeseries Station, and Stratus. In general, CO2 <span class="hlt">flux</span> seasonality follows patterns of seawater pCO2 and SST with periods of CO2 outgassing during summer and CO2 uptake during winter at these locations. Any offsets or seasonal biases in CCMP winds could impact global ocean sink estimates using this data product. Here we present patterns and trends between the two CO2 <span class="hlt">flux</span> estimates and discuss the potential implications for tracking variability and change in global ocean CO2 uptake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51L..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51L..03D"><span>Diagnosing <span class="hlt">Air-Sea</span> Interactions on Intraseasonal Timescales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeMott, C. A.</p> <p>2014-12-01</p> <p>What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical <span class="hlt">air-sea</span> interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal <span class="hlt">sea</span> surface temperature (SST) variations are communicated through their effects on surface <span class="hlt">fluxes</span> of <span class="hlt">heat</span> and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span>, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A54E..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A54E..08H"><span>A <span class="hlt">heat</span> budget for the Stratus mooring in the southeast Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.</p> <p>2012-12-01</p> <p>The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and <span class="hlt">heat</span> gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean <span class="hlt">heat</span> budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy <span class="hlt">heat</span> <span class="hlt">flux</span> divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a <span class="hlt">heat</span> budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and <span class="hlt">air-sea</span> <span class="hlt">fluxes</span>; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our <span class="hlt">heat</span> budget covers 2004 - 2010. The net <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> over this period is 32 W m(^{-2}), approximately 2/3 of the <span class="hlt">flux</span> over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective <span class="hlt">heat</span> <span class="hlt">flux</span>. We find that the cool advective <span class="hlt">heat</span> <span class="hlt">flux</span> largely compensates the <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy <span class="hlt">heat</span> <span class="hlt">flux</span> divergence from the mean <span class="hlt">heat</span> advection. Vertical mixing and Ekman pumping across the base of the layer are both small.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6008T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6008T"><span>Influences of Ocean Thermohaline Stratification on Arctic <span class="hlt">Sea</span> Ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.</p> <p>2009-04-01</p> <p>The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the <span class="hlt">sea</span> ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal <span class="hlt">sea</span> ice growth and melting. <span class="hlt">Heat</span> <span class="hlt">fluxes</span> into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via <span class="hlt">air-sea</span> exchange at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with <span class="hlt">sea</span> ice observations from Ice Mass Balance Buoys and atmospheric <span class="hlt">heat</span> <span class="hlt">flux</span> estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of <span class="hlt">sea</span> ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the <span class="hlt">flux</span> of deep ocean <span class="hlt">heat</span> to the surface that could influence <span class="hlt">sea</span> ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic <span class="hlt">sea</span> ice is most sensitive to changes in ocean mixed layer <span class="hlt">heat</span> resulting from <span class="hlt">fluxes</span> across its upper (<span class="hlt">air-sea</span> and/or ice-water) interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31D..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31D..07M"><span><span class="hlt">Sea</span> Ice Retreat and its Impact on the Intensity of Open-Ocean Convection in the Greenland and Iceland <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, K.; Våge, K.; Pickart, R. S.; Renfrew, I.</p> <p>2016-12-01</p> <p>The <span class="hlt">air-sea</span> transfer of <span class="hlt">heat</span> and freshwater plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland <span class="hlt">Seas</span>, where these <span class="hlt">fluxes</span> drive ocean convection that contributes to Denmark Strait Overflow Water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). This buoyancy transfer is most pronounced during the winter downstream of the ice edge, where the cold and dry Arctic <span class="hlt">air</span> first comes in contact with the relatively warm ocean surface. Here we show that the wintertime retreat of <span class="hlt">sea</span> ice in the region, combined with different rates of warming for the atmosphere and <span class="hlt">sea</span> surface of the Greenland and Iceland <span class="hlt">Seas</span>, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">fluxes</span> since 1979. Furthermore, it is demonstrated that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional <span class="hlt">air-sea</span> interaction in this region. Mixed-layer model simulations imply that a continued decrease in atmospheric forcing will exceed a threshold for the Greenland <span class="hlt">Sea</span> whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic <span class="hlt">Seas</span>. In the Iceland <span class="hlt">Sea</span>, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210167G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210167G"><span><span class="hlt">Air</span>-ice CO2 <span class="hlt">fluxes</span> and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno</p> <p>2010-05-01</p> <p><span class="hlt">Sea</span> ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades <span class="hlt">sea</span> ice was assumed to be an impermeable and inert barrier for <span class="hlt">air</span> - <span class="hlt">sea</span> exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by <span class="hlt">sea</span> ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related <span class="hlt">air</span>-ice CO2 <span class="hlt">fluxes</span>. In addition, budget of CO2 <span class="hlt">fluxes</span> are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of <span class="hlt">air</span>-ice CO2 <span class="hlt">fluxes</span> above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related <span class="hlt">air</span>-ice CO2 <span class="hlt">fluxes</span> (chamber method) in Antarctic first year pack ice ("<span class="hlt">Sea</span> Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on <span class="hlt">sea</span> ice in early spring while CFL was carried out in from the middle of the winter to the late spring while <span class="hlt">sea</span> ice was melting. Both in Arctic and Antarctic, no <span class="hlt">air</span>-ice CO2 <span class="hlt">fluxes</span> were detected when <span class="hlt">sea</span> ice interface was below -10°C. Slightly above -10°C, <span class="hlt">fluxes</span> toward the atmosphere were observed. In contrast, at -7°C <span class="hlt">fluxes</span> from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of <span class="hlt">sea</span> ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These <span class="hlt">air</span>-ice CO2 <span class="hlt">fluxes</span> are partly controlled by the permeability of the <span class="hlt">air</span>-ice interface, which depends of the temperature of this one. Moreover, <span class="hlt">air</span>-ice CO2 <span class="hlt">fluxes</span> are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2084L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2084L"><span>Computed and observed turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> during an extreme Bora event in the Adriatic using atmosphere-ocean coupling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ličer, Matjaž; Smerkol, Peter; Fettich, Anja; Ravdas, Michalis; Papapostolou, Alexandros; Mantziafou, Anneta; Strajnar, Benedikt; Cedilnik, Jure; Jeromel, Maja; Jerman, Jure; Petan, Sašo; Benetazzo, Alvise; Carniel, Sandro; Malačič, Vlado; Sofianos, Sarantis</p> <p>2016-04-01</p> <p>We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic Bora wind event in February 2012, which led to extreme <span class="hlt">air-sea</span> interactions. The simulations span the period between January and March 2012. The models used were ALADIN (4.4 km resolution) on the atmosphere side and Adriatic setup of POM (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to <span class="hlt">sea</span> surface temperature. We have compared modeled atmosphere-ocean <span class="hlt">fluxes</span> (computed using modified Louis scheme) and <span class="hlt">sea</span> temperatures from both setups to platform and CTD measurements of <span class="hlt">fluxes</span> (computed using COARE scheme) and temperatures from three observational platforms (Vida, Paloma, Acqua Alta) in the Northern Adriatic. We show that turbulent <span class="hlt">fluxes</span> from both setups differ up to 20% during the Bora but not significantly before and after the event. The impact of the coupling on the ocean is significant while the impact on the atmosphere is less pronounced. When compared to observations, two way coupling ocean temperatures exhibit a four times lower RMSE than those from one-way coupled system. Two-way coupling improves sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> at all stations but does not improve latent <span class="hlt">heat</span> loss.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7608M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7608M"><span>The impact of horizontal resolution on the representation of <span class="hlt">air-sea</span> interaction over North Atlantic open ocean convection sites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng</p> <p>2017-04-01</p> <p>Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold <span class="hlt">air</span> outbreaks characterized by large surface turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> and convective roll cloud development. Here we compare the statistics of the <span class="hlt">air-sea</span> interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span>, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold <span class="hlt">air</span> outbreaks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31..961W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31..961W"><span>The impact of changing wind speeds on gas transfer and its effect on global <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wanninkhof, R.; Triñanes, J.</p> <p>2017-06-01</p> <p>An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO2 climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas <span class="hlt">fluxes</span> as determined by the bulk formula is dependent on several factors, including the functionality of the gas exchange-wind speed relationship and the regional and seasonal differences in the <span class="hlt">air</span>-water partial pressure of CO2 gradient (ΔpCO2). The latter also controls the direction of the <span class="hlt">flux</span>. <span class="hlt">Fluxes</span> out of the ocean are influenced more by changes in the low-to-intermediate wind speed range, while ingassing is impacted more by changes in higher winds because of the regional correlations between wind and ΔpCO2. Gas exchange-wind speed parameterizations with a quadratic and third-order polynomial dependency on wind, each of which meets global constraints, are compared. The changes in <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> resulting from wind speed trends are greatest in the equatorial Pacific and cause a 0.03-0.04 Pg C decade-1 increase in outgassing over the 27 year time span. This leads to a small overall decrease of 0.00 to 0.02 Pg C decade-1 in global net CO2 uptake, contrary to expectations that increasing winds increase net CO2 uptake.<abstract type="synopsis"><title type="main">Plain Language SummaryThe effects of changing winds are isolated from the total change in trends in global <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> over the last 27 years. The overall effect of increasing winds over time has a smaller impact than expected as the impact in regions of outgassing is greater than for the regions acting as a CO2 sink.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030025770','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030025770"><span>Version 2 Goddard Satellite-Based Surface Turbulent <span class="hlt">Fluxes</span> (GSSTF2)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)</p> <p>2002-01-01</p> <p>Information on the turbulent <span class="hlt">fluxes</span> of momentum, moisture, and <span class="hlt">heat</span> at the <span class="hlt">air-sea</span> interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent <span class="hlt">fluxes</span> over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent <span class="hlt">Fluxes</span> (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent <span class="hlt">fluxes</span> are derived from the SSM/I surface winds and surface <span class="hlt">air</span> humidity, as well as the 2-m <span class="hlt">air</span> and <span class="hlt">sea</span> surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13c4015W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13c4015W"><span>Effects of anthropogenic <span class="hlt">heat</span> due to <span class="hlt">air</span>-conditioning systems on an extreme high temperature event in Hong Kong</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.</p> <p>2018-03-01</p> <p>Anthropogenic <span class="hlt">heat</span> <span class="hlt">flux</span> is the <span class="hlt">heat</span> generated by human activities in the urban canopy layer, which is considered the main contributor to the urban <span class="hlt">heat</span> island (UHI). The UHI can in turn increase the use and energy consumption of <span class="hlt">air</span>-conditioning systems. In this study, two effective methods for water-cooling <span class="hlt">air</span>-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of <span class="hlt">sea</span>-land breeze circulation and urban <span class="hlt">heat</span> island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled <span class="hlt">air</span>-conditioning systems could reduce the 2 m <span class="hlt">air</span> temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent <span class="hlt">heat</span> <span class="hlt">flux</span> and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative <span class="hlt">air</span>-conditioning systems could modify the <span class="hlt">heat</span> and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of <span class="hlt">sea</span> breeze and UHI circulation, which in turn affected the removal of <span class="hlt">air</span> pollutants. Moreover, the two alternative <span class="hlt">air</span>-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16271812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16271812"><span>Atmospheric concentrations and <span class="hlt">air-sea</span> exchanges of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the North <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhiyong; Lakaschus, Soenke; Ebinghaus, Ralf; Caba, Armando; Ruck, Wolfgang</p> <p>2006-07-01</p> <p>Concentrations of nonylphenol isomers (NP), tertiary octylphenol (t-OP) and nonylphenol monoethoxylate isomers (NP1EO) have been simultaneously determined in the <span class="hlt">sea</span> water and atmosphere of the North <span class="hlt">Sea</span>. A decreasing concentration profile appeared following the distance increasing from the coast to the central part of the North <span class="hlt">Sea</span>. <span class="hlt">Air-sea</span> exchanges of t-OP and NP were estimated using the two-film resistance model based upon relative <span class="hlt">air</span>-water concentrations and experimentally derived Henry's law constant. The average of <span class="hlt">air-sea</span> exchange <span class="hlt">fluxes</span> was -12+/-6 ng m(-2)day(-1) for t-OP and -39+/-19 ng m(-2)day(-1) for NP, which indicates a net deposition is occurring. These results suggest that the <span class="hlt">air-sea</span> vapour exchange is an important process that intervenes in the mass balance of alkylphenols in the North <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=250983','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=250983"><span>Latent <span class="hlt">Heat</span> in Soil <span class="hlt">Heat</span> <span class="hlt">Flux</span> Measurements</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The surface energy balance includes a term for soil <span class="hlt">heat</span> <span class="hlt">flux</span>. Soil <span class="hlt">heat</span> <span class="hlt">flux</span> is difficult to measure because it includes conduction and convection <span class="hlt">heat</span> transfer processes. Accurate representation of soil <span class="hlt">heat</span> <span class="hlt">flux</span> is an important consideration in many modeling and measurement applications. Yet, the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21141036','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21141036"><span>Advances in quantifying <span class="hlt">air-sea</span> gas exchange and environmental forcing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wanninkhof, Rik; Asher, William E; Ho, David T; Sweeney, Colm; McGillis, Wade R</p> <p>2009-01-01</p> <p>The past decade has seen a substantial amount of research on <span class="hlt">air-sea</span> gas exchange and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the <span class="hlt">flux</span> of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of <span class="hlt">air-sea</span> gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the exchange of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional <span class="hlt">air-sea</span> gas <span class="hlt">fluxes</span> based on better fundamental physical, chemical, and biological foundations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029167','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029167"><span>The seasonal cycle of diabatic <span class="hlt">heat</span> storage in the Pacific Ocean</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>White, Warren B.; Cayan, D.R.; Niiler, P.P.; Moisan, J.; Lagerloef, G.; Bonjean, F.; Legler, D.</p> <p>2005-01-01</p> <p>This study quantifies uncertainties in closing the seasonal cycle of diabatic <span class="hlt">heat</span> storage (DHS) over the Pacific Ocean from 20??S to 60??N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">fluxes</span> from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual <span class="hlt">heat</span> budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent <span class="hlt">heat</span> <span class="hlt">flux</span> residuals dominate sensible <span class="hlt">heat</span> <span class="hlt">flux</span> residuals, shortwave <span class="hlt">heat</span> <span class="hlt">flux</span> residuals dominate longwave <span class="hlt">heat</span> <span class="hlt">flux</span> residuals, and residual Ekman <span class="hlt">heat</span> advection dominates residual geostrophic <span class="hlt">heat</span> advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10??latitude-by-20??longitude boxes) is <20 W m-2 in the interior ocean and <100 W m-2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent <span class="hlt">heat</span> <span class="hlt">flux</span>, shortwave <span class="hlt">heat</span> <span class="hlt">flux</span>, and Ekman <span class="hlt">heat</span> advection. Suppressing bias errors in residual <span class="hlt">air-sea</span> turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> and Ekman <span class="hlt">heat</span> advection through minimization of the RMS differences reduces the latter to <10 W m-2 over the interior ocean and <25 W m -2 in the Kuroshio-Oyashio current extension. This reveals <span class="hlt">air-sea</span> temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F"><span>Determination of a Critical <span class="hlt">Sea</span> Ice Thickness Threshold for the Central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.</p> <p>2017-12-01</p> <p>While <span class="hlt">sea</span> ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic <span class="hlt">sea</span> ice pack, determining the spatial variability of <span class="hlt">sea</span> ice thickness remains a challenge. Turbulent and conductive <span class="hlt">heat</span> <span class="hlt">fluxes</span> are extremely sensitive to ice thickness but are dominated by the sensible <span class="hlt">heat</span> <span class="hlt">flux</span>, with energy exchange expected to increase with thinner ice cover. <span class="hlt">Fluxes</span> over open water are strongest and have the greatest influence on the atmosphere, while <span class="hlt">fluxes</span> over thick <span class="hlt">sea</span> ice are minimal as <span class="hlt">heat</span> conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy <span class="hlt">fluxes</span> are strongest over open ocean, but is there a "critical thickness of ice" where <span class="hlt">fluxes</span> are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible <span class="hlt">heat</span> <span class="hlt">flux</span> exchange and surface <span class="hlt">air</span> temperature, responds to <span class="hlt">sea</span> ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where <span class="hlt">sea</span> ice transitions from the thickest multi-year ice to the very thin marginal ice <span class="hlt">seas</span>. This provides an ideal location to simulate how the diminishing Arctic <span class="hlt">sea</span> ice interacts with a warming atmosphere. Scenarios include both fixed <span class="hlt">sea</span> surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> and surface <span class="hlt">air</span> temperature increase as <span class="hlt">sea</span> ice thickness transitions from perennial ice to seasonal ice. While models predict a <span class="hlt">sea</span> ice free Arctic at the end of the warm season in future decades, <span class="hlt">sea</span> ice will continue to transform</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....1015641F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....1015641F"><span>Synoptic evaluation of carbon cycling in Beaufort <span class="hlt">Sea</span> during summer: contrasting river inputs, ecosystem metabolism and <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.</p> <p>2013-10-01</p> <p>The accelerated decline in Arctic <span class="hlt">sea</span> ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort <span class="hlt">Sea</span> (Arctic Ocean), we synthesize information on <span class="hlt">sea</span> ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon <span class="hlt">fluxes</span> and pools, as well as <span class="hlt">air-sea</span> CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43C0283L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43C0283L"><span><span class="hlt">Air-sea</span> Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.</p> <p>2015-12-01</p> <p>The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the <span class="hlt">sea</span> surface may turn to a secondary source by reversal of diffusive <span class="hlt">air-sea</span> mass exchange. No monitoring is in place. We studied the vertical <span class="hlt">fluxes</span> of a wide range of primary and secondary emitted POPs based on measurements in <span class="hlt">air</span> and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in <span class="hlt">air</span> and <span class="hlt">fluxes</span> were quantified based on Eddy covariance. Diffusive <span class="hlt">air-sea</span> exchange <span class="hlt">fluxes</span> of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. <span class="hlt">Fluxes</span> determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open <span class="hlt">seas</span> more pollutants are undergoing reversal of the direction of <span class="hlt">air-sea</span> exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of <span class="hlt">air-sea</span> exchange. The seawater surface as secondary source of pollution should be assessed based on <span class="hlt">flux</span> measurements across seasons and over longer time periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21G1021K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21G1021K"><span>Causes of Potential Urban <span class="hlt">Heat</span> Island Space Using <span class="hlt">Heat</span> <span class="hlt">flux</span> Budget Under Urban Canopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwon, Y. J.; Lee, D. K.</p> <p>2017-12-01</p> <p>, or latent <span class="hlt">heat</span>, though they are exposed to <span class="hlt">heat</span> due to a lot sensible <span class="hlt">heat</span> in the <span class="hlt">air</span>. Third, in the severe areas at night time, the latent <span class="hlt">heat</span> was not effective but storage <span class="hlt">heat</span> <span class="hlt">flux</span> from the day time was emitted in the <span class="hlt">air</span> which made the space still warm after sunset. Lastly, the comfort areas at night time have a low SVF rate, and had the large shadow effect during day time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1001866','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1001866"><span>Thermal Infrared Signatures and <span class="hlt">Heat</span> <span class="hlt">Fluxes</span> of <span class="hlt">Sea</span> Foam</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-01-13</p> <p>4 <span class="hlt">air</span> flow 0.5 m 0.5 m MWIR LWIR FTIR Pitot tube and Temperature <span class="hlt">air</span> diffuser 1 m EO foam IR H20 vapor analyzer <span class="hlt">Heat</span>...verify this, we measured velocity profiles with a pitot tube over 5 water and foam surfaces spanning our range of tested wind speeds. The profiles (not</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1643Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1643Y"><span>Arctic Ocean CO2 uptake: an improved multiyear estimate of the <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> incorporating chlorophyll a concentrations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.</p> <p>2018-03-01</p> <p>We estimated monthly <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> in the Arctic Ocean and its adjacent <span class="hlt">seas</span> north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), <span class="hlt">sea</span> surface temperature, <span class="hlt">sea</span> surface salinity, <span class="hlt">sea</span> ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 <span class="hlt">flux</span> estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.nap.edu/catalog/5142/natural-climate-variability-on-decade-to-century-time-scales','USGSPUBS'); return false;" href="http://www.nap.edu/catalog/5142/natural-climate-variability-on-decade-to-century-time-scales"><span>Seasonal-to-interannual fluctuations in surface temperature over the Pacific: effects of monthly winds and <span class="hlt">heat</span> <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cayan, Daniel R.; Miller, Arthur J.; Barnett, Tim P.; Graham, Nicholas E.; Ritchie, Jack N.; Oberhuber, Josef M.</p> <p>1995-01-01</p> <p>The 19-year simulation of the Pacific basin by the monthly marine data-forced OPYC model displays good skill in reproducing SST variability. These results represent the first hindcast of which we are aware that uses both observed total <span class="hlt">heat-flux</span> and wind-stress anomalies as forcing for such a long time interval. There is close agreement between the model SSTs and those observed in many regions of the Pacific, including the tropics and the northern extratropics. Besides performing credibly on the monthly time scale, the model captures the essence of low-frequency variability over the North Pacific, including aspects of a marked basin-wide change that occurred in 1976-1977. In the model's detailed <span class="hlt">heat</span> budget, the anomalous <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">fluxes</span>, entrainment, and to a lesser extent horizontal advection, force thermal-anomaly changes in the mixed layer. Each of these components was apparently involved in the 1976-1977 decadal SST shift.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990005103','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990005103"><span>Surface <span class="hlt">Heat</span> Budgets and <span class="hlt">Sea</span> Surface Temperature in the Pacific Warm Pool During TOGA COARE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah</p> <p>1998-01-01</p> <p>The daily mean <span class="hlt">heat</span> and momentum <span class="hlt">fluxes</span> at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the <span class="hlt">sea</span> surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface <span class="hlt">fluxes</span> compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface <span class="hlt">heat</span> and momentum <span class="hlt">fluxes</span> are very different between the southern and northern warm pool. In the southern warm pool, the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the <span class="hlt">sea</span> surface temperature during the IOP does not follow the net surface <span class="hlt">heat</span> <span class="hlt">flux</span>. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface <span class="hlt">heat</span> <span class="hlt">flux</span>. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the <span class="hlt">sea</span> surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net <span class="hlt">heat</span> <span class="hlt">flux</span> at the surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DSRII..56..554T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DSRII..56..554T"><span>Climatological mean and decadal change in surface ocean pCO 2, and net <span class="hlt">sea-air</span> CO 2 <span class="hlt">flux</span> over the global oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Taro; Sutherland, Stewart C.; Wanninkhof, Rik; Sweeney, Colm; Feely, Richard A.; Chipman, David W.; Hales, Burke; Friederich, Gernot; Chavez, Francisco; Sabine, Christopher; Watson, Andrew; Bakker, Dorothee C. E.; Schuster, Ute; Metzl, Nicolas; Yoshikawa-Inoue, Hisayuki; Ishii, Masao; Midorikawa, Takashi; Nojiri, Yukihiro; Körtzinger, Arne; Steinhoff, Tobias; Hoppema, Mario; Olafsson, Jon; Arnarson, Thorarinn S.; Tilbrook, Bronte; Johannessen, Truls; Olsen, Are; Bellerby, Richard; Wong, C. S.; Delille, Bruno; Bates, N. R.; de Baar, Hein J. W.</p> <p>2009-04-01</p> <p>A climatological mean distribution for the surface water pCO 2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO 2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global <span class="hlt">sea-air</span> CO 2 <span class="hlt">flux</span> based on climatological surface ocean pCO 2, and seasonal biological and temperature effects. Deep-<span class="hlt">Sea</span> Res. II, 49, 1601-1622]. A time-trend analysis using deseasonalized surface water pCO 2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO 2 over these oceanic areas has increased on average at a mean rate of 1.5 μatm y -1 with basin-specific rates varying between 1.2±0.5 and 2.1±0.4 μatm y -1. A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Niño periods in the equatorial Pacific and those made in coastal zones are excluded from the database. Seasonal changes in the surface water pCO 2 and the <span class="hlt">sea-air</span> pCO 2 difference over four climatic zones in the Atlantic, Pacific, Indian and Southern Oceans are presented. Over the Southern Ocean seasonal ice zone, the seasonality is complex. Although it cannot be thoroughly documented due to the limited extent of observations, seasonal changes in pCO 2 are approximated by using the data for under-ice waters during austral winter and those for the marginal ice and ice-free zones. The net <span class="hlt">air-sea</span> CO 2 <span class="hlt">flux</span> is estimated using the <span class="hlt">sea-air</span> pCO 2 difference and the <span class="hlt">air-sea</span> gas transfer rate that is parameterized as a function of (wind speed) 2 with a scaling factor of 0.26. This is estimated by inverting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.166..475L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.166..475L"><span>Sensitivity of Offshore Surface <span class="hlt">Fluxes</span> and <span class="hlt">Sea</span> Breezes to the Spatial Distribution of <span class="hlt">Sea</span>-Surface Temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan</p> <p>2018-03-01</p> <p>A series of numerical sensitivity experiments is performed to quantify the impact of <span class="hlt">sea</span>-surface temperature (SST) distribution on offshore surface <span class="hlt">fluxes</span> and simulated <span class="hlt">sea</span>-breeze dynamics. The SST simulations of two mid-latitude <span class="hlt">sea</span>-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface <span class="hlt">heat</span> and buoyancy <span class="hlt">fluxes</span> vary in response to the SST distribution. Local <span class="hlt">sea</span>-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the <span class="hlt">sea</span>-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and <span class="hlt">sea</span>-breeze depth translates to small changes in <span class="hlt">sea</span>-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate <span class="hlt">sea</span>-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890000294&hterms=Facility+Head+Facility+Head&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DFacility%2BHead%2B%257C%2BCenter%2BCancer%2BResearch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890000294&hterms=Facility+Head+Facility+Head&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DFacility%2BHead%2B%257C%2BCenter%2BCancer%2BResearch"><span>Automated <span class="hlt">Heat-Flux</span>-Calibration Facility</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.; Weikle, Donald H.</p> <p>1989-01-01</p> <p>Computer control speeds operation of equipment and processing of measurements. New <span class="hlt">heat-flux</span>-calibration facility developed at Lewis Research Center. Used for fast-transient <span class="hlt">heat</span>-transfer testing, durability testing, and calibration of <span class="hlt">heat-flux</span> gauges. Calibrations performed at constant or transient <span class="hlt">heat</span> <span class="hlt">fluxes</span> ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small <span class="hlt">heat-flux</span> gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, <span class="hlt">heat</span> exchanger, and high-speed positioning system. This type of automated <span class="hlt">heat-flux</span> calibration facility installed in industrial plants for onsite calibration of <span class="hlt">heat-flux</span> gauges measuring <span class="hlt">fluxes</span> of <span class="hlt">heat</span> in advanced gas-turbine and rocket engines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5436B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5436B"><span>A new <span class="hlt">heat</span> <span class="hlt">flux</span> model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic <span class="hlt">heat</span> production</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burton-Johnson, A.; Halpin, J. A.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.</p> <p>2017-06-01</p> <p>A new method for modeling <span class="hlt">heat</span> <span class="hlt">flux</span> shows that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial <span class="hlt">heat</span> <span class="hlt">flux</span> and that <span class="hlt">heat</span> <span class="hlt">flux</span> values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher <span class="hlt">heat</span> <span class="hlt">flux</span> on the east and south of the Peninsula (mean 81 mW m-2) where silicic rocks predominate, than on the west and north (mean 67 mW m-2) where volcanic arc and quartzose sediments are dominant. While the data supports the contribution of <span class="hlt">heat</span>-producing element-enriched granitic rocks to high <span class="hlt">heat</span> <span class="hlt">flux</span> values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial <span class="hlt">heat</span> <span class="hlt">flux</span> must utilize a heterogeneous upper crust with variable radioactive <span class="hlt">heat</span> production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and data set facilitate improved numerical model simulations of ice sheet dynamics.<abstract type="synopsis"><title type="main">Plain Language SummaryAs the climate changes, the Antarctic ice sheet represents the single largest potential source of <span class="hlt">sea</span> level rise. However, one key parameter controlling how the ice sheet flows remains poorly constrained: the effect of <span class="hlt">heat</span> derived from the Earth's geology on the base of the ice sheet (known as subglacial <span class="hlt">heat</span> <span class="hlt">flux</span>). Although this may not seem like a lot of <span class="hlt">heat</span>, under slow-flowing ice, this "<span class="hlt">heat</span> <span class="hlt">flux</span>" can control how well the ice sheet can flow over the rocks and even lead to melting of the ice at its base. Current models for Antarctica's <span class="hlt">heat</span> <span class="hlt">flux</span> use geophysics to determine how thin the crust is and consequently how easily <span class="hlt">heat</span> from the Earth's mantle can warm the surface. We show here that <span class="hlt">heat</span> produced by radioactive decay within the Earth's crust can have an even greater and much more variable contribution to the subglacial <span class="hlt">heat</span> <span class="hlt">flux</span> than estimated by these previous models. We present a new methodology allowing this crustal <span class="hlt">heat</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160003590&hterms=strengthening&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dstrengthening','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160003590&hterms=strengthening&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dstrengthening"><span>The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent <span class="hlt">Heat</span> <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Romanski, Joy; Hameed, Sultan</p> <p>2015-01-01</p> <p>Interannual variations of latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> (LHF) and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the <span class="hlt">heat</span> <span class="hlt">fluxes</span> are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the <span class="hlt">heat</span> <span class="hlt">fluxes</span> and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the <span class="hlt">heat</span> <span class="hlt">flux</span> changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean <span class="hlt">Sea</span> surface winds, temperature, and moisture. These, combined with <span class="hlt">sea</span> surface warming trends, produce trends in wintertime sensible and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10325125D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10325125D"><span>Comparison of <span class="hlt">sea</span> surface <span class="hlt">flux</span> measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain</p> <p>1998-10-01</p> <p>Two major campaigns (Surface of the Oceans, <span class="hlt">Fluxes</span> and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent <span class="hlt">flux</span> of sensible <span class="hlt">heat</span>, latent <span class="hlt">heat</span>, and momentum. From coordinated missions we can evaluate the <span class="hlt">sea</span> surface <span class="hlt">fluxes</span> from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the <span class="hlt">flux</span> profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the <span class="hlt">sea</span> surface level. Continuous ship <span class="hlt">fluxes</span> were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft <span class="hlt">fluxes</span> were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum <span class="hlt">flux</span> agrees quite well, aircraft estimations of sensible and latent <span class="hlt">heat</span> <span class="hlt">flux</span> are lower than those of the ship. This result is surprising, since aircraft momentum <span class="hlt">flux</span> estimates are often considered as much less accurate than scalar <span class="hlt">flux</span> estimates. The various sources of errors on the aircraft and ship <span class="hlt">flux</span> estimates are discussed. For sensible and latent <span class="hlt">heat</span> <span class="hlt">flux</span>, random errors on aircraft estimates, as well as variability of ship <span class="hlt">flux</span> estimates, are lower than the discrepancy between the two platforms, whereas the momentum <span class="hlt">flux</span> estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the <span class="hlt">flux</span> values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34711','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34711"><span>Fine fuel <span class="hlt">heating</span> by radiant <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David Frankman; Brent W. Webb; Bret W. Butler; Don J. Latham</p> <p>2010-01-01</p> <p>Experiments were conducted wherein wood shavings and Ponderosa pine needles in quiescent <span class="hlt">air</span> were subjected to a steady radiation <span class="hlt">heat</span> <span class="hlt">flux</span> from a planar ceramic burner. The internal temperature of these particles was measured using fine diameter (0.076mm diameter) type K thermocouples. A narrow angle radiometer was used to determine the emissive power generated by the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910015008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910015008"><span>Calibrator tests of <span class="hlt">heat</span> <span class="hlt">flux</span> gauges mounted in SSME blades</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.</p> <p>1989-01-01</p> <p>Measurements of <span class="hlt">heat</span> <span class="hlt">flux</span> to space shuttle main engine (SSME) turbine blade surfaces are being made in the Lewis <span class="hlt">heat</span> <span class="hlt">flux</span> calibration facility. Surface <span class="hlt">heat</span> <span class="hlt">flux</span> information is obtained from transient temperature measurements taken at points within the gauge. A 100-kW Vortek arc lamp is used as a source of thermal radiant energy. Thermoplugs, with diameters of about 0.190 cm and lengths varying from about 0.190 to 0.320 cm, are being investigated. The thermoplug is surrounded on all surfaces except the active surface by a pocket of <span class="hlt">air</span> located in the circular annulus and under the back cover. Since the thermoplug is insulated, it is assumed that <span class="hlt">heat</span> is conducted in a one-dimensional manner from the hot active surface to the cooler back side of the thermoplug. It is concluded that the miniature plug-type gauge concept is feasible for measurement of blade surface <span class="hlt">heat</span> <span class="hlt">flux</span>. It is suggested that it is important to measure <span class="hlt">heat</span> <span class="hlt">flux</span> near the hub on the suction surface and at the throat on SSME blades rotating in engines because stress and <span class="hlt">heat</span> transfer coefficients are high in this region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GBioC..30..983L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GBioC..30..983L"><span>Quantifying the drivers of ocean-atmosphere CO2 <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.</p> <p>2016-07-01</p> <p>A mechanistic framework for quantitatively mapping the regional drivers of <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> at a global scale is developed. The framework evaluates the interplay between (1) surface <span class="hlt">heat</span> and freshwater <span class="hlt">fluxes</span> that influence the potential saturated carbon concentration, which depends on changes in <span class="hlt">sea</span> surface temperature, salinity and alkalinity, (2) a residual, disequilibrium <span class="hlt">flux</span> influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total <span class="hlt">flux</span> of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 <span class="hlt">fluxes</span> driven by surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated <span class="hlt">fluxes</span> when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world <span class="hlt">air-sea</span> <span class="hlt">flux</span> of CO2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080113"><span><span class="hlt">Heat</span> <span class="hlt">Flux</span> Sensor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>A <span class="hlt">heat</span> <span class="hlt">flux</span> microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop <span class="hlt">heat</span> <span class="hlt">flux</span> sensors to measure the rate of <span class="hlt">heat</span> energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to <span class="hlt">heat</span> <span class="hlt">flux</span> in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8178B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8178B"><span>Measured and parameterized energy <span class="hlt">fluxes</span> estimated for Atlantic transects of RV Polarstern</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bumke, Karl; Macke, Andreas; Kalisch, John; Kleta, Henry</p> <p>2013-04-01</p> <p>Even to date energy <span class="hlt">fluxes</span> over the oceans are difficult to assess. As an example the relative paucity of evaporation observations and the uncertainties of currently employed empirical approaches lead to large uncertainties of evaporation products over the ocean (e.g. Large and Yeager, 2009). Within the frame of OCEANET (Macke et al., 2010) we performed such measurements on Atlantic transects between Bremerhaven (Germany) and Cape Town (South Africa) or Punta Arenas (Chile) onboard RV Polarstern during the recent years. The basic measurements of sensible and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> are inertial-dissipation (e.g. Dupuis et al., 1997) <span class="hlt">flux</span> estimates and measurements of the bulk variables. Turbulence measurements included a sonic anemometer and an infrared hygrometer, both mounted on the crow's nest. Mean meteorological sensors were those of the ship's operational measurement system. The global radiation and the down terrestrial radiation were measured on the OCEANET container placed on the monkey island. At least about 1000 time series of 1 h length were analyzed to derive bulk transfer coefficients for the <span class="hlt">fluxes</span> of sensible and latent <span class="hlt">heat</span>. The bulk transfer coefficients were applied to the ship's meteorological data to derive the <span class="hlt">heat</span> <span class="hlt">fluxes</span> at the <span class="hlt">sea</span> surface. The reflected solar radiation was estimated from measured global radiation. The up terrestrial radiation was derived from the skin temperature according to the Stefan-Boltzmann law. Parameterized <span class="hlt">heat</span> <span class="hlt">fluxes</span> were compared to the widely used COARE-parameterization (Fairall et al., 2003), the agreement is excellent. Measured and parameterized <span class="hlt">heat</span> and radiation <span class="hlt">fluxes</span> gave the total energy budget at the <span class="hlt">air</span> <span class="hlt">sea</span> interface. As expected the mean total <span class="hlt">flux</span> is positive, but there are also areas, where it is negative, indicating an energy loss of the ocean. It could be shown that the variations in the energy budget are mainly due to insolation and evaporation. A comparison between the mean values of measured and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16318867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16318867"><span>Interannual variability of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> in the Adriatic <span class="hlt">Sea</span> in the period 1998-2001 and comparison with observations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiggiato, Jacopo; Zavatarelli, Marco; Castellari, Sergio; Deserti, Marco</p> <p>2005-12-15</p> <p>Surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> of the Adriatic <span class="hlt">Sea</span> are estimated for the period 1998-2001 through bulk formulae with the goal to assess the uncertainties related to their estimations and to describe their interannual variability. In addition a comparison to observations is conducted. We computed the components of the <span class="hlt">sea</span> surface <span class="hlt">heat</span> budget by using two different operational meteorological data sets as inputs: the ECMWF operational analysis and the regional limited area model LAMBO operational forecast. Both results are consistent with previous long-term climatology and short-term analyses present in the literature. In both cases we obtained that the Adriatic <span class="hlt">Sea</span> loses 26 W/m2 on average, that is consistent with the assessments found in the literature. Then we conducted a comparison with observations of the radiative components of the <span class="hlt">heat</span> budget collected on offshore platforms and one coastal station. In the case of shortwave radiation, results show a little overestimation on the annual basis. Values obtained in this case are 172 W/m2 when using ECMWF data and 169 W/m2 when using LAMBO data. The use of either Schiano's or Gilman's and Garrett's corrections help to get even closer values. More difficult is to assess the comparison in the case of longwave radiation, with relative errors of an order of 10-20%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28645049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28645049"><span>Gaseous elemental mercury in the marine boundary layer and <span class="hlt">air-sea</span> <span class="hlt">flux</span> in the Southern Ocean in austral summer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui</p> <p>2017-12-15</p> <p>Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted <span class="hlt">air</span> from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross <span class="hlt">Sea</span> implying the influence of the <span class="hlt">sea</span> ice environment. Diminishing <span class="hlt">sea</span> ice could cause more mercury evasion from the ocean to the <span class="hlt">air</span>. Using the thin film gas exchange model, the <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=257927','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=257927"><span>Latent <span class="hlt">heat</span> sink in soil <span class="hlt">heat</span> <span class="hlt">flux</span> measurements</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The surface energy balance includes a term for soil <span class="hlt">heat</span> <span class="hlt">flux</span>. Soil <span class="hlt">heat</span> <span class="hlt">flux</span> is difficult to measure because it includes conduction and convection <span class="hlt">heat</span> transfer processes. Accurate representation of soil <span class="hlt">heat</span> <span class="hlt">flux</span> is an important consideration in many modeling and measurement applications. Yet, the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGeo...11.2827F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGeo...11.2827F"><span>Synoptic evaluation of carbon cycling in the Beaufort <span class="hlt">Sea</span> during summer: contrasting river inputs, ecosystem metabolism and <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.</p> <p>2014-05-01</p> <p>The accelerated decline in Arctic <span class="hlt">sea</span> ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort <span class="hlt">Sea</span> (Arctic Ocean), we synthesize information on <span class="hlt">sea</span> ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon <span class="hlt">fluxes</span> and pools, as well as <span class="hlt">air-sea</span> CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MeScT..22j5402O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MeScT..22j5402O"><span>High-resolution hot-film measurement of surface <span class="hlt">heat</span> <span class="hlt">flux</span> to an impinging jet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Donovan, T. S.; Persoons, T.; Murray, D. B.</p> <p>2011-10-01</p> <p>To investigate the complex coupling between surface <span class="hlt">heat</span> transfer and local fluid velocity in convective <span class="hlt">heat</span> transfer, advanced techniques are required to measure the surface <span class="hlt">heat</span> <span class="hlt">flux</span> at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface <span class="hlt">heat</span> transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface <span class="hlt">heat</span> <span class="hlt">flux</span> with a hot film that is flush mounted on a <span class="hlt">heated</span> flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface <span class="hlt">heat</span> <span class="hlt">flux</span> measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging <span class="hlt">air</span> jet is directed at the <span class="hlt">heated</span> surface, and the power required to maintain the hot-film temperature is related to the local <span class="hlt">heat</span> <span class="hlt">flux</span> to the fluid <span class="hlt">air</span> flow. The technique is validated experimentally using a more established surface <span class="hlt">heat</span> <span class="hlt">flux</span> measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface <span class="hlt">heat</span> transfer to an impinging <span class="hlt">air</span> jet with improved spatial resolution for a wide range of experimental parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.5442L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.5442L"><span>Observed platelet ice distributions in Antarctic <span class="hlt">sea</span> ice: An index for ocean-ice shelf <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.</p> <p>2015-07-01</p> <p>Antarctic <span class="hlt">sea</span> ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic <span class="hlt">heat</span> <span class="hlt">flux</span> of -30 Wm-2 that persists for several months during winter, significantly affecting <span class="hlt">sea</span> ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020089463&hterms=lindstrom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dlindstrom','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020089463&hterms=lindstrom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dlindstrom"><span>Anomalous <span class="hlt">Heat</span> Budgets in the Interior Pacific Ocean on Seasonal- to -Timescales and Gyre Spacescales</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>White, Warren; Cayan, Daniel R.; Lindstrom, Eric (Technical Monitor)</p> <p>2002-01-01</p> <p>This study quantifies uncertainties in closing the seasonal cycle of diabatic <span class="hlt">heat</span> storage over the Pacific Ocean from 20 degrees S to 60 degrees N through the synthesis of World Ocean Circulation Experiment (WOCE) products over 7 years from 1993-1999. We utilize WOCE reanalysis products from the following sources: diabatic <span class="hlt">heat</span> storage (DHS) from the Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from the Earth and Space Research (ESR); and <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">fluxes</span> from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). We interpolate these products onto a common grid, allowing the seasonal cycle of DHS to be modeled for comparison with that observed. Everywhere latent <span class="hlt">heat</span> <span class="hlt">flux</span> residuals dominate sensible <span class="hlt">heat</span> <span class="hlt">flux</span> residuals and shortwave <span class="hlt">heat</span> <span class="hlt">flux</span> residuals dominate longwave <span class="hlt">heat</span> <span class="hlt">flux</span> residuals, both comparable in magnitude to the residual horizontal <span class="hlt">heat</span> advection. We find the root-mean-square (RMS) of the differences between observed and model residual DHS tendencies to be less than 15 W per square meters everywhere except in the Kuroshio extension. Comparable COADS and NCEP products perform better than ECMWF products in the extra-tropics, while the NCEP product performs best in the tropics. Radiative and turbulent <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> residuals computed from ship-born measurements perform better than those computed from satellite cloud and wind measurements. Since the RMS differences derive largely from biases in measured wind speed and cloud fraction, least-squares minimization is used to correct the residual Ekman <span class="hlt">heat</span> advection and <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span>. Minimization reduces RMS differences less than 5 W per square meters except in the Kuroshio extension, suggesting how winds, clouds, and exchange coefficients in the NCEP, ECMWF, and ESR products can be improved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........17O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........17O"><span>Observations and Modeling of Turbulent <span class="hlt">Air-Sea</span> Coupling in Coastal and Strongly Forced Condition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz-Suslow, David G.</p> <p></p> <p>The turbulent <span class="hlt">fluxes</span> of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and <span class="hlt">air-sea</span> gas transfer. In order to better understand these <span class="hlt">fluxes</span>, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into <span class="hlt">air-sea</span> coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, <span class="hlt">air</span>, and <span class="hlt">sea</span> in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, <span class="hlt">sea</span> spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> in terms of empirical relationships developed from a relatively narrow set of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4722B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4722B"><span>Regulation of CO2 <span class="hlt">Air</span> <span class="hlt">Sea</span> <span class="hlt">Fluxes</span> by Sediments in the North <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley</p> <p>2016-04-01</p> <p>A multi-tracer approach is applied to assess the impact of boundary <span class="hlt">fluxes</span> (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North <span class="hlt">Sea</span>. Analyses of both basin-wide observations in the North <span class="hlt">Sea</span> and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North <span class="hlt">Sea</span> indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North <span class="hlt">Sea</span> total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9500M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9500M"><span>Spume Drops: Their Potential Role in <span class="hlt">Air-Sea</span> Gas Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monahan, Edward C.; Staniec, Allison; Vlahos, Penny</p> <p>2017-12-01</p> <p>After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the <span class="hlt">sea</span> surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, <span class="hlt">sea</span> surface mechanism in <span class="hlt">air-sea</span> gas exchange. While remaining uncertainties in the wind dependence of the spume drop production <span class="hlt">flux</span>, and in the immediate <span class="hlt">sea</span> surface gas <span class="hlt">flux</span>, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to <span class="hlt">air-sea</span> gas exchange.<abstract type="synopsis"><title type="main">Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in <span class="hlt">air</span> <span class="hlt">sea</span> exchange models. Based on these the contribution of spume drops to overall <span class="hlt">air</span> <span class="hlt">sea</span> gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/121720-estimates-surface-humidity-latent-heat-fluxes-over-oceans-from-ssm-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/121720-estimates-surface-humidity-latent-heat-fluxes-over-oceans-from-ssm-data"><span>Estimates of surface humidity and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> over oceans from SSM/I data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cho, S.H.; Atlas, R.M.; Shie, C.L.</p> <p>1995-08-01</p> <p>Monthly averages of daily latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> over the oceans for February and August 1988 are estimated using a stability-dependent bulk scheme. Daily <span class="hlt">fluxes</span> are computed from daily SSM/I (Special Sensor Microwave/Imager) wind speeds and EOF-retrieved SSM/I surface humidity, National Meteorological Center <span class="hlt">sea</span> surface temperatures, and the European Centre for Medium-Range Weather Forecasts analyzed 2-m temperatures. Daily surface specific humidity (Q) is estimated from SSM/I precipitable water of total (W) and a 500-m bottom layer (W{sub B}) using an EOF (empirical orthogonal function) method. This method has six W-based categories of EOFs (independent of geographical locations) and is developed usingmore » 23 177 FGGE IIb humidity soundings over the global oceans. For 1200 FGGE IIb humidity soundings, the accuracy of EOF-retrieved Q is 0.75 g kg{sup -1} for the case without errors in W and W{sub B} and increases to 1.16 g kg{sup -1} for the case with errors in W and W{sub B}. Compared to 342 collocated radiosonde observations, the EOF-retrieved SSM/I Q has an accuracy of 1.7 g kg{sup -1}. The method improves upon the humidity retrieval of Liu and is competitive with that of Schulz et al. The SSM/I surface humidity and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> of these two months agree reasonably well with those of COADS (Comprehensive Ocean-Atmosphere Data Set). Compared to the COADS, the <span class="hlt">sea-air</span> humidity difference of SSM/I has a positive bias of approximately 1-3 g kg{sup -1} (an overestimation of <span class="hlt">flux</span>) over the wintertime eastern equatorial Pacific Ocean, it has a negative bias of about 1-2 g kg{sup -1} (an underestimation of <span class="hlt">flux</span>). The results further suggest that the two monthly <span class="hlt">flux</span> estimates, computed from daily and monthly mean data, do not differ significantly over the oceans. 35 refs., 12 figs., 4 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10632139N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10632139N"><span>Turbulent aerosol <span class="hlt">fluxes</span> over the Arctic Ocean: 2. Wind-driven sources from the <span class="hlt">sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.</p> <p>2001-12-01</p> <p>An eddy-covariance <span class="hlt">flux</span> system was successfully applied over open <span class="hlt">sea</span>, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number <span class="hlt">fluxes</span> were observed over open <span class="hlt">sea</span> and leads in the pack ice. These particles must originate from droplets ejected into the <span class="hlt">air</span> at the bursting of small <span class="hlt">air</span> bubbles at the water surface. The source <span class="hlt">flux</span> F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open <span class="hlt">sea</span> and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open <span class="hlt">sea</span> the wind-driven aerosol source <span class="hlt">flux</span> consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of <span class="hlt">sea</span>-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the <span class="hlt">flux</span>, but their chemical composition is unknown. Whitecaps were probably the bubble source at open <span class="hlt">sea</span> and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The <span class="hlt">flux</span> over the open <span class="hlt">sea</span> was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the <span class="hlt">flux</span> from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7377945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7377945"><span>Wheelchair cushion effect on skin temperature, <span class="hlt">heat</span> <span class="hlt">flux</span>, and relative humidity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stewart, S F; Palmieri, V; Cochran, G V</p> <p>1980-05-01</p> <p>For patients subject to decubitus ulcers, wheelchair cushions should be prescribed with knowledge of the cushion's effect on the thermal as well as mechanical environment of the skin. To define thermal effects that may be encountered during routine use, tests werr made on 24 commercially available cushions. Skin temperature, <span class="hlt">heat</span> <span class="hlt">flux</span> and relative humidity were measured under the ischial tuberosities of a normal 24-year-old man during a 1-hour period of sitting on each cushion. After 1 hour, skin temperatures increased by means of 3.4 C and 2.8 C on foams and viscoelastic foams and there were slight decreases in <span class="hlt">heat</span> <span class="hlt">flux</span> as compared with control values in <span class="hlt">air</span>. On gels, skin temperatures remained constant and <span class="hlt">heat</span> <span class="hlt">flux</span> increased, while water "floatation" pads caused a mean skin temperature decreased of 2.7 C along with a marked increase in <span class="hlt">heat</span> <span class="hlt">flux</span>. Relative humidity at the skin cushion interface increased by 10.4%, 22.8% and 19.8% on foams, gels and water floatation pads, as compared with room <span class="hlt">air</span> values. Representative cushions from each of the general types (foam, viscoelastic foam, gel and water floatation) also were subjected to 2-hour tests which indicated the measured parameters continued to change asymptotically.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23K..14F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23K..14F"><span>Carbon <span class="hlt">fluxes</span> in North American coastal and shelf <span class="hlt">seas</span>: Current status and trends</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fennel, K.; Alin, S. R.; Barbero, L.; Evans, W.; Martin Hernandez-Ayon, J. M.; Hu, X.; Lohrenz, S. E.; Muller-Karger, F. E.; Najjar, R.; Robbins, L. L.; Shadwick, E. H.; Siedlecki, S. A.; Steiner, N.; Turk, D.; Vlahos, P.; Wang, A. Z.</p> <p>2016-12-01</p> <p>Coastal and shelf <span class="hlt">seas</span> represent an interface between all major components of the global carbon cycle: land, atmosphere, marine sediments and the ocean. <span class="hlt">Fluxes</span> and transformations of carbon in coastal systems are complex and highly variable in space and time. The First State of the Carbon Cycle Report (http://cdiac.ornl.gov/SOCCR/final.html, Chapter 15, Chavez et al. 2007) concluded that carbon budgets of North American ocean margins were not well quantified because of insufficient observations and the complexity and highly localized spatial variability of coastal carbon dynamics. Since then significant progress has been made through the expansion of carbon observing networks, the implementation of modeling capabilities, and national and international coordination and synthesis activities. We will review the current understanding of coastal carbon <span class="hlt">fluxes</span> around the North American continent including along the Atlantic and Pacific coasts, the northern Gulf of Mexico, and the North American Arctic region and provide a compilation of regional estimates of <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of CO2. We will discuss generalizable patterns in coastal <span class="hlt">air-sea</span> CO2 exchange and other carbon <span class="hlt">fluxes</span> as well as reasons underlying spatial heterogeneity. After providing an overview of the principal modes of carbon export from coastal systems, we will apply these mechanisms to the North American continent, and discuss observed and projected trends of key properties and <span class="hlt">fluxes</span>. The presentation will illustrate that despite significant advances in capabilities and understanding, large uncertainties remain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24A2561T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24A2561T"><span>Impact of Ocean Surface Waves on <span class="hlt">Air-Sea</span> Momentum <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.</p> <p>2016-02-01</p> <p>In this study, we investigated the structure of turbulent <span class="hlt">air</span> flow over ocean waves. Observations of wind and waves were retrieved by <span class="hlt">air-sea</span> interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind <span class="hlt">sea</span> conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612556L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612556L"><span>Observations of elevated Atlantic water <span class="hlt">heat</span> <span class="hlt">fluxes</span> at the boundary of the Arctic Basin.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lincoln, Benjamin; Rippeth, Tom; Lenn, Yueng; Bacon, Sheldon</p> <p>2014-05-01</p> <p>The well documented decline in Arctic <span class="hlt">Sea</span> Ice cover over the past 30 years has outpaced global models as warming in Polar Regions occurs faster than the global mean. The thermohaline circulation brings warm water from the Atlantic Ocean into the Arctic basin. This Atlantic water circulates at depth and contains sufficient <span class="hlt">heat</span> to melt the <span class="hlt">sea</span> ice cover several times over. Recent studies have shown that this Atlantic water has warmed and shoaled over recent decades (Polyakov et al, 2010). The stability of the upper Arctic Ocean has also changed, with stratification reduced in the Eurasian basin but increased in the Canada basin. Along with an increased availability of <span class="hlt">heat</span> the reduction in <span class="hlt">sea</span> ice cover allows greater potential for wind to input energy to the ocean to vertically mix <span class="hlt">heat</span> to the surface and further melt <span class="hlt">sea</span> ice. Direct measurements of vertical mixing rates across the Arctic are essential to understanding the changes in this supply of <span class="hlt">heat</span> from below, but are scarce due to the challenges of making such measurements in the harsh Arctic environment. We present measurements of turbulent kinetic energy dissipation (ɛ) within the top 500 m of the water column using microstructure measurements made both in open water and under ice during 4 different years. Mean rates of dissipation in the Atlantic water thermocline are calculated and compared for data collected in the European, Siberian and Canadian Arctic, including measurements from 2007 and 2012 when record minimum <span class="hlt">sea</span> ice extents were recorded. Diapycnal <span class="hlt">heat</span> <span class="hlt">fluxes</span> from the mean Atlantic water dissipation rates were calculated from these mean dissipation rates and show significant variation across the Arctic Basin. Profiles in the deep basin generally revealed very low rates of dissipation were low ɛ<10-9Wkg-1 and as such <span class="hlt">heat</span> <span class="hlt">fluxes</span> of AW were correspondingly low Fh=0.1-0.5Wm-2. However double diffusive staircases were present in all such casts and so vertical transfer of <span class="hlt">heat</span> may be increased by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool"><span>Tropical Intraseasonal <span class="hlt">Air-Sea</span> Exchanges during the 1997 Pacific Warming</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou</p> <p>1999-01-01</p> <p>The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and <span class="hlt">sea</span> level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced <span class="hlt">air-sea</span> interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> and upper ocean responses during the period of September 1996 to June 1997. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.4569M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.4569M"><span>Mixing rates and vertical <span class="hlt">heat</span> <span class="hlt">fluxes</span> north of Svalbard from Arctic winter to spring</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.</p> <p>2017-06-01</p> <p>Mixing and <span class="hlt">heat</span> <span class="hlt">flux</span> rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter <span class="hlt">heat</span> <span class="hlt">flux</span> values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large <span class="hlt">heat</span> <span class="hlt">fluxes</span> exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and <span class="hlt">heat</span> <span class="hlt">flux</span> rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles <span class="hlt">heat</span> <span class="hlt">fluxes</span> at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced <span class="hlt">heat</span> <span class="hlt">flux</span> rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases <span class="hlt">heat</span> <span class="hlt">flux</span> at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest <span class="hlt">heat</span> <span class="hlt">flux</span> rates observed: ice-ocean interface <span class="hlt">heat</span> <span class="hlt">fluxes</span> average 100 W m-2 during peak events and are associated with rapid basal <span class="hlt">sea</span> ice melt, reaching 25 cm/d.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PrOce.144...15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PrOce.144...15W"><span>Biofilm-like properties of the <span class="hlt">sea</span> surface and predicted effects on <span class="hlt">air-sea</span> CO2 exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier</p> <p>2016-05-01</p> <p>Because the <span class="hlt">sea</span> surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The <span class="hlt">sea</span> surface is the gateway for the exchange of climate-relevant gases, <span class="hlt">heat</span> and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the <span class="hlt">sea</span> surface are essential. The uppermost part of the water column is defined as the <span class="hlt">sea</span>-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the <span class="hlt">sea</span> surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China <span class="hlt">Sea</span>, and Baltic <span class="hlt">Sea</span>. We found a significant lower enrichment of TEP (up to 6) in non-slick <span class="hlt">sea</span> surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on <span class="hlt">air-sea</span> CO2 exchange based on literature data. We estimate that slicks can reduce CO2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5765F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5765F"><span>Quantification of dimethyl sulfide (DMS) production in the <span class="hlt">sea</span> anemone Aiptasia sp. to simulate the <span class="hlt">sea-to-air</span> <span class="hlt">flux</span> from coral reefs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Franchini, Filippo; Steinke, Michael</p> <p>2017-12-01</p> <p>The production of dimethyl sulfide (DMS) is poorly quantified in tropical reef environments but forms an essential process that couples marine and terrestrial sulfur cycles and affects climate. Here we quantified net aqueous DMS production and the concentration of its cellular precursor dimethylsulfoniopropionate (DMSP) in the <span class="hlt">sea</span> anemone Aiptasia sp., a model organism to study coral-related processes. Bleached anemones did not show net DMS production whereas symbiotic anemones produced DMS concentrations (mean ± standard error) of 160.7 ± 44.22 nmol g-1 dry weight (DW) after 48 h incubation. Symbiotic and bleached individuals showed DMSP concentrations of 32.7 ± 6.00 and 0.6 ± 0.19 µmol g-1 DW, respectively. We applied these findings to a Monte Carlo simulation to demonstrate that net aqueous DMS production accounts for only 20 % of gross aqueous DMS production. Monte Carlo-based estimations of <span class="hlt">sea-to-air</span> <span class="hlt">fluxes</span> of gaseous DMS showed that reefs may release 0.1 to 26.3 µmol DMS m-2 coral surface area (CSA) d-1 into the atmosphere with 40 % probability for rates between 0.5 and 1.5 µmol m-2 CSA d-1. These predictions were in agreement with directly quantified <span class="hlt">fluxes</span> in previous studies. Conversion to a <span class="hlt">flux</span> normalised to <span class="hlt">sea</span> surface area (SSA) (range 0.1 to 17.4, with the highest probability for 0.3 to 1.0 µmol DMS m-2 SSA d-1) suggests that coral reefs emit gaseous DMS at lower rates than the average global oceanic DMS <span class="hlt">flux</span> of 4.6 µmol m-2 SSA d-1 (19.6 Tg sulfur per year). The large difference between simulated gross and quantified net aqueous DMS production in corals suggests that the current and future potential for its production in tropical reefs is critically governed by DMS consumption processes. Hence, more research is required to assess the sensitivity of DMS-consumption pathways to ongoing environmental change in order to address the impact of predicted degradation of coral reefs on DMS production in tropical coastal ecosystems and its impact on</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26975003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26975003"><span><span class="hlt">Air-sea</span> exchange of gaseous mercury in the East China <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan</p> <p>2016-05-01</p> <p>Two oceanographic cruises were carried out in the East China <span class="hlt">Sea</span> (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in <span class="hlt">air</span> and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) <span class="hlt">flux</span>. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the <span class="hlt">air</span> masses with high GEM levels during fall largely originated from the land, while the <span class="hlt">air</span> masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open <span class="hlt">sea</span>. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open <span class="hlt">sea</span> than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) <span class="hlt">flux</span> (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) <span class="hlt">flux</span>: 3.6 ± 2.8 ng m(-2) h(-1)). The emission <span class="hlt">flux</span> of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020018160','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020018160"><span>Relationships Between the Bulk-Skin <span class="hlt">Sea</span> Surface Temperature Difference, Wind, and Net <span class="hlt">Air-Sea</span> <span class="hlt">Heat</span> <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)</p> <p>2002-01-01</p> <p>The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society <span class="hlt">Air-Sea</span> Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=246298','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=246298"><span>Atmospheric deposition <span class="hlt">flux</span> estimates for chlorpyrifos and trifluralin in the chukchi <span class="hlt">sea</span></span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>During the 1993 U.S.-Russian BERPAC expedition, residues of agricultural pesticides were detected in seawater, ice, surface microlayer, fog, and <span class="hlt">air</span> of the Bering and Chukchi <span class="hlt">Seas</span>. Gas exchange, wet deposition, and dry particle deposition <span class="hlt">fluxes</span> of trifluralin and chlorpyrifos were estimated using m...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1341P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1341P"><span>Linking atmospheric synoptic transport, cloud phase, surface energy <span class="hlt">fluxes</span>, and <span class="hlt">sea</span>-ice growth: observations of midwinter SHEBA conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy</p> <p>2017-08-01</p> <p>Observations from the Surface <span class="hlt">Heat</span> Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric <span class="hlt">heat</span> and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy <span class="hlt">fluxes</span> through increased downwelling longwave radiation, and reduction in near-surface conductive <span class="hlt">heat</span> <span class="hlt">flux</span> loss due to a warming of the surface, thereby leading to a reduction in <span class="hlt">sea</span>-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive <span class="hlt">heat</span> <span class="hlt">fluxes</span>, and produces a thermal wave penetrating into the <span class="hlt">sea</span> ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive <span class="hlt">heat</span> <span class="hlt">flux</span>, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive <span class="hlt">heat</span> <span class="hlt">flux</span>. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual <span class="hlt">sea</span>-ice evolution, especially for the current conditions of extensive thinner ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......456K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......456K"><span>A quantitative determination of <span class="hlt">air</span>-water <span class="hlt">heat</span> <span class="hlt">fluxes</span> in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kyper, Nicholas D.</p> <p></p> <p>An extensive <span class="hlt">heat</span> <span class="hlt">flux</span> study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual <span class="hlt">heat</span> <span class="hlt">fluxes</span> on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) <span class="hlt">heat</span> <span class="hlt">fluxes</span> are calculated. The incident <span class="hlt">heat</span> <span class="hlt">flux</span> is the dominate term in the net <span class="hlt">flux</span>, accounting for 93% of the variance found in Qn and producing a <span class="hlt">heat</span> gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of <span class="hlt">heat</span> in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of <span class="hlt">heat</span> within the lake. The latent and blackbody <span class="hlt">heat</span> <span class="hlt">fluxes</span> produce the largest losses of <span class="hlt">heat</span> in the net <span class="hlt">heat</span> <span class="hlt">flux</span> with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible <span class="hlt">heat</span> <span class="hlt">flux</span> is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net <span class="hlt">heat</span> produces a net gain of <span class="hlt">heat</span> of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to <span class="hlt">air</span> temperature, surface water temperature, and wind speed data, as well as data from the five <span class="hlt">heat</span> <span class="hlt">fluxes</span>. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800002216','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800002216"><span>Fundamentals of <span class="hlt">heat</span> measurement. [<span class="hlt">heat</span> <span class="hlt">flux</span> transducers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerashchenko, O. A.</p> <p>1979-01-01</p> <p>Various methods and devices for obtaining experimental data on <span class="hlt">heat</span> <span class="hlt">flux</span> density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of <span class="hlt">heat</span>-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured <span class="hlt">heat</span> <span class="hlt">flux</span> is established for individual (isolated) <span class="hlt">heat</span> <span class="hlt">flux</span> transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct <span class="hlt">heat</span> loss measurements, <span class="hlt">heat</span> conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A31F0102H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A31F0102H"><span>Analysis of Surface Albedo to Improve Upper-Ocean <span class="hlt">Heat</span> Budget Calculations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogikyan, A.; Zhang, D.; Cronin, M. F.</p> <p>2016-12-01</p> <p>Over 90% of the Earth's energy imbalance is stored in the oceans, so it is important to understand the ocean-atmosphere <span class="hlt">heat</span> transfer. The Ocean Climate Stations group (OCS) at the Pacific Marine Environmental Laboratory maintains two moored surface buoys in the North Pacific (PAPA and KEO) as <span class="hlt">air-sea</span> <span class="hlt">flux</span> reference sites. The goal of the reference sites is to validate global <span class="hlt">air-sea</span> <span class="hlt">flux</span> products from atmospheric reanalyses and satellite products, that are critical to understand and model the variability and trend of the earth climate. As other <span class="hlt">air-sea</span> <span class="hlt">flux</span> reference buoys in the world ocean, PAPA and KEO only measure downward shortwave radiation (SWdown), but utilize the albedo and the directly measured SWdown to calculate the SWup. Since the open ocean albedo is small, the errors associated with this practice are thought to be comparable or smaller than the instrumentation errors in the <span class="hlt">air-sea</span> <span class="hlt">flux</span> measurements. In addition, it is generally accepted that ocean surface albedos can be derived with reasonable confidence from surface radiative <span class="hlt">fluxes</span> in satellite products such as the Clouds and the Earth's Radiant Energy System (CERES) and the International Satellite Cloud Climatology Project (ISCCP). This project developed a CERES-based albedo product for derivation of SWnet at PAPA and KEO, and assessed the impact of CERES-based albedo on the net surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> relative to the currently used ISCCP-based albedo in the OCS <span class="hlt">air-sea</span> <span class="hlt">flux</span> data (http://www.pmel.noaa.gov/ocs/data/fluxdisdel/). The high-resolution surface <span class="hlt">fluxes</span> from CERES are more frequently updated, and consider more physical factors in the approximation, than those from ISCCP. There was a greater change between ISCCP and CERES albedo during wintertime than during summer. There was a greater change at Station PAPA in the northeastern sub-Arctic Pacific, than at Station KEO in the northwestern subtropical Pacific. The rate of temperature change of the mixed-layer is shown to increase based on the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997AIPC..387..561N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997AIPC..387..561N"><span>High <span class="hlt">heat</span> <span class="hlt">flux</span> loop <span class="hlt">heat</span> pipes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey</p> <p>1997-01-01</p> <p>Loop <span class="hlt">Heat</span> Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak <span class="hlt">heat</span> <span class="hlt">flux</span> through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the <span class="hlt">heat</span> load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high <span class="hlt">heat</span> <span class="hlt">flux</span> conditions. The geometry improved the <span class="hlt">heat</span> flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest <span class="hlt">heat</span> <span class="hlt">flux</span>, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a <span class="hlt">heat</span> <span class="hlt">flux</span> of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional <span class="hlt">heat</span> pipes and for loop <span class="hlt">heat</span> pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling <span class="hlt">heat</span> transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740003624','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740003624"><span>Effect of gage size on the measurement of local <span class="hlt">heat</span> <span class="hlt">flux</span>. [formulas for determining gage averaging errors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumeister, K. J.; Papell, S. S.</p> <p>1973-01-01</p> <p>General formulas are derived for determining gage averaging errors of strip-type <span class="hlt">heat</span> <span class="hlt">flux</span> meters used in the measurement of one-dimensional <span class="hlt">heat</span> <span class="hlt">flux</span> distributions. In addition, a correction procedure is presented which allows a better estimate for the true value of the local <span class="hlt">heat</span> <span class="hlt">flux</span>. As an example of the technique, the formulas are applied to the cases of <span class="hlt">heat</span> transfer to <span class="hlt">air</span> slot jets impinging on flat and concave surfaces. It is shown that for many practical problems, the use of very small <span class="hlt">heat</span> <span class="hlt">flux</span> gages is often unnecessary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23F2429Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23F2429Z"><span>Role of North Indian Ocean <span class="hlt">Air-Sea</span> Interaction in Summer Monsoon Intraseasonal Oscillation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, L.; Han, W.; Li, Y.</p> <p>2017-12-01</p> <p><span class="hlt">Air-sea</span> coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying <span class="hlt">sea</span> surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent <span class="hlt">heat</span> <span class="hlt">flux</span> (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. <span class="hlt">Air-sea</span> interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local <span class="hlt">air-sea</span> coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local <span class="hlt">air-sea</span> coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16936288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16936288"><span><span class="hlt">Heat</span> of transport of <span class="hlt">air</span> in clay.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minkin, Leonid; Shapovalov, Alexander S</p> <p>2007-01-01</p> <p>By measuring the thermomolecular pressure difference and using principles of irreversible thermodynamics, <span class="hlt">heat</span> of transport of <span class="hlt">air</span> in clay and its coefficient of diffusion are found. A comparison of thermotranspiration and pressure driven gas <span class="hlt">fluxes</span> through concrete slab in homes is examined. It is shown that thermotranspiration <span class="hlt">air</span>/radon flow may greatly exceed diffusion (pressure driven) flow in homes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.178...31J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.178...31J"><span>Seasonal atmospheric deposition and <span class="hlt">air-sea</span> gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China <span class="hlt">Sea</span>: Implications for source-sink processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong</p> <p>2018-04-01</p> <p>In this work, <span class="hlt">air</span> samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal <span class="hlt">fluxes</span> of <span class="hlt">air-sea</span> gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the <span class="hlt">air-sea</span> interface. The average dry and wet deposition <span class="hlt">fluxes</span> of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The <span class="hlt">air-sea</span> gas exchange of PAHs was the dominant process at the <span class="hlt">air-sea</span> interface in the YRE as the magnitude of volatilization <span class="hlt">flux</span> of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange <span class="hlt">flux</span> was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the <span class="hlt">air-sea</span> interface in the YRE play a crucial role in regional cycling of PAHs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.998a2008D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.998a2008D"><span>Sensors for Metering <span class="hlt">Heat</span> <span class="hlt">Flux</span> Area Density and Metrological Equipment for the <span class="hlt">Heat</span> <span class="hlt">Flux</span> Density Measurement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doronin, D. O.</p> <p>2018-04-01</p> <p>The demand in measuring and studies of <span class="hlt">heat</span> conduction of various media is very urgent now. This article considers the problem of <span class="hlt">heat</span> conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the <span class="hlt">heat</span> <span class="hlt">flux</span> measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the <span class="hlt">heat</span> <span class="hlt">flux</span> density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the <span class="hlt">heat</span> <span class="hlt">flux</span> in the unit. To manufacture heterogeneous <span class="hlt">heat</span> <span class="hlt">flux</span> gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the <span class="hlt">heat</span> <span class="hlt">flux</span> density measurement equipment are planned. A high-sensitivity <span class="hlt">heat</span> <span class="hlt">flux</span> sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film <span class="hlt">heat</span> <span class="hlt">flux</span> sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27617333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27617333"><span>Persistent organochlorine pesticides and polychlorinated biphenyls in <span class="hlt">air</span> of the North <span class="hlt">Sea</span> region and <span class="hlt">air-sea</span> exchange.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard</p> <p>2016-12-01</p> <p>Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North <span class="hlt">Sea</span> in spring and summer 2009-2010. In general, the concentrations found in <span class="hlt">air</span> are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North <span class="hlt">Sea</span>. Here atmospheric deposition dominates the <span class="hlt">air-sea</span> exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the <span class="hlt">air</span> masses of central England. A net depositional <span class="hlt">flux</span> of p,p'-DDE into the North <span class="hlt">Sea</span> was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open <span class="hlt">sea</span>. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North <span class="hlt">Sea</span>. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.U33A0028H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.U33A0028H"><span>Intraseasonal Cold <span class="hlt">Air</span> Outbreak over East Asia and the preceding atmospheric condition over the Barents-Kara <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hori, M. E.; Inoue, J.</p> <p>2011-12-01</p> <p>Frequent occurrence of cold <span class="hlt">air</span> outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold <span class="hlt">air</span> outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold <span class="hlt">air</span> outflow. Reduced <span class="hlt">sea</span> ice and increase in turbulence <span class="hlt">heat</span> <span class="hlt">flux</span> is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara <span class="hlt">sea</span> and the following cold <span class="hlt">air</span> buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara <span class="hlt">sea</span> which creates a cold <span class="hlt">air</span> advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold <span class="hlt">air</span> buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold <span class="hlt">air</span> outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara <span class="hlt">sea</span> correlated well with the seasonal dominance of cold <span class="hlt">air</span> over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold <span class="hlt">air</span> outbreak over East Asia from an atmosphere - <span class="hlt">sea</span> ice - land surafce interaction point of view for paritular cold winter years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS54A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS54A..06S"><span>Evolution of Summer Ocean Mixed Layer <span class="hlt">Heat</span> Content and Ocean/Ice <span class="hlt">Fluxes</span> in the Arctic Ocean During the Last Decade</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanton, T. P.; Shaw, W. J.</p> <p>2014-12-01</p> <p>Since 2002, a series of 28 Autonomous Ocean <span class="hlt">Flux</span> Buoys have been deployed in the Beaufort <span class="hlt">Sea</span> and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent <span class="hlt">fluxes</span> of <span class="hlt">heat</span>, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation <span class="hlt">flux</span> sensor up into the ice to resolve summer near-surface <span class="hlt">heating</span>. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>, <span class="hlt">heat</span> content and vertical structure over the last decade will be made for buoys in the Beaufort <span class="hlt">Sea</span> and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort <span class="hlt">Sea</span>, while there are less pronounced effects of enhanced summer surface <span class="hlt">heating</span> in the higher ice concentrations still found in the transpolar drift.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49..391C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49..391C"><span>ENSO related SST anomalies and relation with surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> over south Pacific and Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, S.; Nuncio, M.; Satheesan, K.</p> <p>2017-07-01</p> <p>The role of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) <span class="hlt">sea</span> level pressure anomaly induces a suppressed (enhanced) latent <span class="hlt">heat</span> <span class="hlt">flux</span> from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> anomaly is also found to be maximum during late austral spring-early summer period, with latent <span class="hlt">heat</span> <span class="hlt">flux</span> having a major contribution to it. The anomalous latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. <span class="hlt">Sea</span>-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23932146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23932146"><span>The <span class="hlt">sea-air</span> exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion <span class="hlt">flux</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bagnato, E; Sproveri, M; Barra, M; Bitetto, M; Bonsignore, M; Calabrese, S; Di Stefano, V; Oliveri, E; Parello, F; Mazzola, S</p> <p>2013-11-01</p> <p>The first attempt to systematically investigate the atmospheric mercury (Hg) in the MBL of the Augusta basin (SE Sicily, Italy) has been undertaken. In the past the basin was the receptor for Hg from an intense industrial activity which contaminated the bottom sediments of the Bay, making this area a potential source of pollution for the surrounding Mediterranean. Three oceanographic cruises have been thus performed in the basin during the winter and summer 2011/2012, where we estimated averaged Hgatm concentrations of about 1.5±0.4 (range 0.9-3.1) and 2.1±0.98 (range 1.1-3.1) ng m(-3) for the two seasons, respectively. These data are somewhat higher than the background Hg atm value measured over the land (range 1.1±0.3 ng m(-3)) at downtown Augusta, while are similar to those detected in other polluted regions elsewhere. Hg evasion <span class="hlt">fluxes</span> estimated at the <span class="hlt">sea/air</span> interface over the Bay range from 3.6±0.3 (unpolluted site) to 72±0.1 (polluted site of the basin) ng m(-2) h(-1). By extending these measurements to the entire area of the Augusta basin (~23.5 km(2)), we calculated a total <span class="hlt">sea-air</span> Hg evasion <span class="hlt">flux</span> of about 9.7±0.1 g d(-1) (~0.004 tyr(-1)), accounting for ~0.0002% of the global Hg oceanic evasion (2000 tyr(-1)). The new proposed data set offers a unique and original study on the potential outflow of Hg from the <span class="hlt">sea-air</span> interface at the basin, and it represents an important step for a better comprehension of the processes occurring in the marine biogeochemical cycle of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..287R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..287R"><span>Large Eddy Simulation of <span class="hlt">Heat</span> Entrainment Under Arctic <span class="hlt">Sea</span> Ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand</p> <p>2018-01-01</p> <p>Arctic <span class="hlt">sea</span> ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of <span class="hlt">heat</span> from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping <span class="hlt">heat</span> from solar radiation. We use large eddy simulation (LES) to investigate <span class="hlt">heat</span> entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent <span class="hlt">fluxes</span> are greater than the subgrid-scale <span class="hlt">fluxes</span> for most of our parameter space. The results show that the presence of the NSTM enhances <span class="hlt">heat</span> entrainment from the mixed layer. Additionally there is no PSW <span class="hlt">heat</span> entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice <span class="hlt">heat</span> <span class="hlt">flux</span> which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent <span class="hlt">heat</span> <span class="hlt">flux</span> from the mixed layer that is approximately 70% of the total ocean-to-ice <span class="hlt">heat</span> <span class="hlt">flux</span> estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13B0507D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13B0507D"><span>Implications for Crustal Structures and <span class="hlt">Heat</span> <span class="hlt">Fluxes</span> from Depth-to-the-Bottom of the Magnetic Source Estimates in West Antarctica, Amundsen <span class="hlt">Sea</span> Sector</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dziadek, R.; Ferraccioli, F.; Gohl, K.; Spiegel, C.; Kaul, N. E.</p> <p>2017-12-01</p> <p>The West Antarctic Rift System is one of the least understood rift systems on earth, but displays a unique coupled relationship between tectonic processes and ice sheet dynamics. Geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> for (paleo) ice sheet stability. Young, continental rift systems are regions with significantly elevated geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 Ma to reach long-term thermal equilibrium. We discuss airborne, high-resolution magnetic anomaly data from the Amundsen <span class="hlt">Sea</span> Sector, to provide additional insight into deeper crustal structures related to the West Antarctic Rift System in the Amundsen/Bellingshausen sector. With the depth-to-the-bottom of the magnetic source (DBMS) estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM thermal models in 2D and 3D.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..176....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..176....1M"><span>Temporal variability of <span class="hlt">air-sea</span> CO2 exchange in a low-emission estuary</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte</p> <p>2016-07-01</p> <p>There is the need for further study of whether global estimates of <span class="hlt">air-sea</span> CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 <span class="hlt">fluxes</span> was investigated in the Danish estuary, Roskilde Fjord. The <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 <span class="hlt">flux</span> samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized <span class="hlt">air-sea</span> CO2 exchanges and changed the net <span class="hlt">air-sea</span> CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 <span class="hlt">fluxes</span> and ΔpCO2 and agreed to previous observations and parameterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840008425','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840008425"><span>Advanced high temperature <span class="hlt">heat</span> <span class="hlt">flux</span> sensors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkinson, W.; Hobart, H. F.; Strange, R. R.</p> <p>1983-01-01</p> <p>To fully characterize advanced high temperature <span class="hlt">heat</span> <span class="hlt">flux</span> sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature <span class="hlt">heat</span> <span class="hlt">flux</span> test facilities. These facilities were developed, are in place, and are being used for advanced <span class="hlt">heat</span> <span class="hlt">flux</span> sensor development.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...119...68I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...119...68I"><span>Net <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span> and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria</p> <p>2016-05-01</p> <p><span class="hlt">Sea-air</span> CO2 <span class="hlt">fluxes</span> over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span>, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling <span class="hlt">sea-air</span> CO2 <span class="hlt">fluxes</span> by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both <span class="hlt">sea</span> surface temperature and surface chlorophyll-a was developed that enabled the spatial</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3373A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3373A"><span>Estimating sensible <span class="hlt">heat</span> <span class="hlt">flux</span> in agricultural screenhouses by the <span class="hlt">flux</span>-variance and half-order time derivative methods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran; Tanny, Josef</p> <p>2016-04-01</p> <p>Previous studies have established that the eddy covariance (EC) technique is reliable for whole canopy <span class="hlt">flux</span> measurements in agricultural crops covered by porous screens, i.e., screenhouses. Nevertheless, the eddy covariance technique remains difficult to apply in the farm due to costs, operational complexity, and post-processing of data - thereby inviting alternative techniques to be developed. The subject of this research was estimating the sensible <span class="hlt">heat</span> <span class="hlt">flux</span> by two turbulent transport techniques, namely, <span class="hlt">Flux</span>-Variance (FV) and Half-order Time Derivative (HTD) whose instrumentation needs and operational demands are not as elaborate as the EC. The FV is based on the standard deviation of high frequency temperature measurements and a similarity constant CT. The HTD method requires mean <span class="hlt">air</span> temperature and <span class="hlt">air</span> velocity data. Measurements were carried out in two types of screenhouses: (i) a banana plantation in a light shading (8%) screenhouse; (ii) a pepper crop in a dense insect-proof (50-mesh) screenhouse. In each screenhouse an EC system was deployed for reference and high frequency <span class="hlt">air</span> temperature measurements were conducted using miniature thermocouples installed at several levels to identify the optimal measurement height. Quality control analysis showed that turbulence development and flow stationarity conditions in the two structures were suitable for <span class="hlt">flux</span> measurements by the EC technique. Energy balance closure slopes in the two screenhouses were larger than 0.71, in agreement with results for open fields. Regressions between sensible <span class="hlt">heat</span> <span class="hlt">flux</span> measured by EC and estimated by FV resulted with CT values that were usually larger than 1, the typical value for open field. In both shading and insect-proof screenhouses the CT value generally increased with height. The optimal measurement height, defined as the height with maximum R2 of the regression between EC and FV sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span>, was just above the screen. CT value at optimal height was 2.64 and 1.52 for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820017700&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dworlds%2Boceans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820017700&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dworlds%2Boceans"><span>Analysis of the surface <span class="hlt">heat</span> balance over the world ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esbenson, S. K.</p> <p>1981-01-01</p> <p>The net surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface <span class="hlt">heat</span> <span class="hlt">flux</span>, Ts is the <span class="hlt">sea</span> surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original <span class="hlt">heat</span> <span class="hlt">flux</span> formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, <span class="hlt">air</span> temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP11C1564F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP11C1564F"><span>Reconstructing <span class="hlt">Heat</span> <span class="hlt">Fluxes</span> Over Lake Erie During the Lake Effect Snow Event of November 2014</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.</p> <p>2017-12-01</p> <p>The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing <span class="hlt">heat</span> <span class="hlt">fluxes</span> and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different <span class="hlt">flux</span> algorithms: the Met <span class="hlt">Flux</span> Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos <span class="hlt">Sea</span> Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and <span class="hlt">air</span> temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in <span class="hlt">heat</span> <span class="hlt">fluxes</span> over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak <span class="hlt">heat</span> <span class="hlt">fluxes</span>. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H32B..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H32B..07W"><span>Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.</p> <p>2016-12-01</p> <p>The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the <span class="hlt">AIRS</span> temperature, moisture and surface data, we found that the Arctic surface moisture <span class="hlt">flux</span> (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent <span class="hlt">heat</span>), mostly in spring and fall near the Arctic coastal <span class="hlt">seas</span> where large <span class="hlt">sea</span> ice reduction and <span class="hlt">sea</span> surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible <span class="hlt">heat</span> <span class="hlt">flux</span> (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1705F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1705F"><span><span class="hlt">Heat</span> <span class="hlt">fluxes</span> across the Antarctic Circumpolar Current</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrari, Ramiro; Provost, Christine; Hyang Park, Young; Sennéchael, Nathalie; Garric, Gilles; Bourdallé-Badie, Romain</p> <p>2014-05-01</p> <p>Determining the processes responsible for the Southern Ocean <span class="hlt">heat</span> balance is fundamental to our understanding of the weather and climate systems. Therefore, in the last decades, various studies aimed at analyzing the major mechanisms of the oceanic poleward <span class="hlt">heat</span> <span class="hlt">flux</span> in this region. Previous works stipulated that the cross-stream <span class="hlt">heat</span> <span class="hlt">flux</span> due to the mesoscale transient eddies was responsible for the total meridional <span class="hlt">heat</span> transport across the Antarctic Circumpolar Current (ACC). Several numerical modelling and current meters data studies have recently challenged this idea. These showed that the <span class="hlt">heat</span> <span class="hlt">flux</span> due to the mean flow in the southern part of the Antarctic Circumpolar Current could be larger than the eddy <span class="hlt">heat</span> <span class="hlt">flux</span> contribution by two orders of magnitude. Eddy <span class="hlt">heat</span> <span class="hlt">flux</span> and <span class="hlt">heat</span> <span class="hlt">flux</span> by the mean flow distributions of were examined in Drake Passage using in situ measurements collected during the DRAKE 2006-9 project (from January 2006 to March 2009), available observations from the historical DRAKE 79 experiment and high resolution model outputs (ORCA 12, MERCATOR). The Drake Passage estimations provided a limited view of <span class="hlt">heat</span> transport in the Southern Ocean. The small spatial scales shown by the model derived <span class="hlt">heat</span> <span class="hlt">flux</span> by the mean flow indicate that circumpolar extrapolations from a single point observation are perilous. The importance of the <span class="hlt">heat</span> <span class="hlt">flux</span> due by the mean flow should be further investigated using other in situ observations and numerical model outputs. Similar situation has been observed, with important implication for <span class="hlt">heat</span> <span class="hlt">flux</span> due to the mean flow, in other topographically constricted regions with strong flow across prominent submarine ridges (choke points). We have estimated the <span class="hlt">heat</span> <span class="hlt">flux</span> due to the mean flow revisiting other ACC mooring sites where in situ time series are available, e.g. south of Australia (Tasmania) (Phillips and Rintoul, 2000), southeast of New Zealand (Campbell Plateau) (Bryden and Heath, 1985). <span class="hlt">Heat</span> <span class="hlt">fluxes</span> due to the mean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1201H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1201H"><span>The Impact of Moisture Intrusions from Lower Latitudes on Arctic Net Surface Radiative <span class="hlt">Fluxes</span> and <span class="hlt">Sea</span> Ice Growth in Fall and Winter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hegyi, B. M.; Taylor, P. C.</p> <p>2017-12-01</p> <p>The fall and winter seasons mark an important period in the evolution of Arctic <span class="hlt">sea</span> ice, where energy is transferred away from the surface to facilitate the cooling of the surface and the growth of Arctic <span class="hlt">sea</span> ice extent and thickness. Climatologically, these seasons are characterized by distinct periods of increased and reduced surface cooling and <span class="hlt">sea</span> ice growth. Periods of reduced <span class="hlt">sea</span> ice growth and surface cooling are associated with cloudy conditions and the transport of warm and moist <span class="hlt">air</span> from lower latitudes, termed moisture intrusions. In the research presented, we explore the regional and Arctic-wide impact of moisture intrusions on the surface net radiative <span class="hlt">fluxes</span> and <span class="hlt">sea</span> ice growth for each fall and winter season from 2000/01-2015/16, utilizing MERRA2 reanalysis data, PIOMAS <span class="hlt">sea</span> ice thickness data, and daily CERES radiative <span class="hlt">flux</span> data. Consistent with previous studies, we find that positive anomalies in downwelling longwave surface <span class="hlt">flux</span> are associated with increased temperature and water vapor content in the atmospheric column contained within the moisture intrusions. Interestingly, there are periods of increased downwelling LW <span class="hlt">flux</span> anomalies that persist for one week or longer (i.e. longer than synoptic timescales) that are associated with persistent poleward <span class="hlt">flux</span> of warm, moist <span class="hlt">air</span> from lower latitudes. These persistent anomalies significantly reduce the regional growth of Arctic <span class="hlt">sea</span> ice, and may in part explain the interannual variability of fall and winter Arctic <span class="hlt">sea</span> ice growth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC24A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC24A..04P"><span>Spatial and Temporal Variability of Surface Energy <span class="hlt">Fluxes</span> During Autumn Ice Advance: Observations and Model Validation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.</p> <p>2016-12-01</p> <p>From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored <span class="hlt">Sea</span> State cruise in the Beaufort <span class="hlt">Sea</span> with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing <span class="hlt">sea</span> ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, <span class="hlt">sea</span> ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy <span class="hlt">fluxes</span> quantitatively represent the <span class="hlt">air</span>-ice, <span class="hlt">air</span>-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of <span class="hlt">sea</span> ice. These <span class="hlt">fluxes</span> also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy <span class="hlt">fluxes</span> during <span class="hlt">Sea</span> State will be used to explore the spatial and temporal variability of these <span class="hlt">fluxes</span> and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these <span class="hlt">fluxes</span> are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these <span class="hlt">fluxes</span> impact upper-ocean <span class="hlt">heat</span> loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence <span class="hlt">heat</span> transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy <span class="hlt">fluxes</span> and the associated lower-tropospheric and upper-ocean structures in the simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989JGR....9418195J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989JGR....9418195J"><span><span class="hlt">Sea</span> ice and oceanic processes on the Ross <span class="hlt">Sea</span> continental shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobs, S. S.; Comiso, J. C.</p> <p>1989-12-01</p> <p>We have investigated the spatial and temporal variability of Antarctic <span class="hlt">sea</span> ice concentrations on the Ross <span class="hlt">Sea</span> continental shelf, in relation to oceanic and atmospheric forcing. <span class="hlt">Sea</span> ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross <span class="hlt">Sea</span> polynya on the western shelf results in a longer period of summer insolation, greater surface layer <span class="hlt">heat</span> storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance <span class="hlt">heat</span> <span class="hlt">flux</span> to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical <span class="hlt">heat</span> <span class="hlt">flux</span> above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the <span class="hlt">air</span> temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave <span class="hlt">sea</span> ice data near continental boundaries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4951643','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4951643"><span>Biopolymers form a gelatinous microlayer at the <span class="hlt">air-sea</span> interface when Arctic <span class="hlt">sea</span> ice melts</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Galgani, Luisa; Piontek, Judith; Engel, Anja</p> <p>2016-01-01</p> <p>The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the <span class="hlt">air-sea</span> exchange of gas and <span class="hlt">heat</span> and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. <span class="hlt">Sea</span> ice harbors high amounts of polymeric substances that are produced by cells growing within the <span class="hlt">sea</span>-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the <span class="hlt">air-sea</span> interface when the <span class="hlt">sea</span> ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between <span class="hlt">sea</span> ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005396','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005396"><span>Surface Ocean pCO2 Seasonality and <span class="hlt">Sea-Air</span> CO2 <span class="hlt">Flux</span> Estimates for the North American East Coast</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Signorini, Sergio; Mannino, Antonio; Najjar, Raymond G., Jr.; Friedrichs, Marjorie A. M.; Cai, Wei-Jun; Salisbury, Joe; Wang, Zhaohui Aleck; Thomas, Helmuth; Shadwick, Elizabeth</p> <p>2013-01-01</p> <p>Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and <span class="hlt">sea-air</span> CO2 <span class="hlt">flux</span> for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the <span class="hlt">sea-air</span> CO2 <span class="hlt">flux</span> were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43D1469Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43D1469Y"><span>Impact of submarine groundwater discharge <span class="hlt">heat-flux</span> on the coastal area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamada, M.; Sugimoto, R.; Honda, H.</p> <p>2016-12-01</p> <p>Various studies regarding submarine groundwater discharge (SGD) have been performed. Although SGD has been recognized as an important pathway for nutrients transport from land to coastal ocean, SGD also supplies other chemical compositions as well as <span class="hlt">heat</span> in the form of thermal energy. Especially, there is a difference in water temperatures of SGD and seawater, since groundwater temperature is almost constant throughout the year and seawater temperature varies. However, it is not clear that how much <span class="hlt">heat</span> energy is supplied by SGD and its associated impacts on coastal ecosystems. Several studies assessing the impact of drainage water from the power plants have indicated that the water temperature has a significant impact on the coastal ecosystems. It highlights the need for assessing the impact of SGD on coastal ecosystems not only by considering the nutrient influx but also by giving equal importance to inflow water temperatures. To investigate this hypothesis, we undertook a study in a coastal area of Obama Bay, Fukui Prefecture, Japan.In Obama Bay, SGD rate has been estimated using 222Rn and salinity mass balance model (Sugimoto et al., 2016). We calculated the <span class="hlt">heat</span> quantity from SGD by using the formula [E = Q * Cp * ΔT], where, E is the <span class="hlt">heat</span> quantity from SGD; Q is the SGD rate from Sugimoto et al. (2016); Cp is the specific <span class="hlt">heat</span> at constant pressure; and ΔT is the difference between seawater and groundwater temperatures. Additionally, we investigated the temperature distribution of <span class="hlt">sea</span>-bed near the coastal area. Based the finding of this study, we provide detailed insights into the <span class="hlt">heat</span> impacts of SGD in the coastal areas. The following results are obtained from this study: The SGD resulted in hot and cold <span class="hlt">heat</span> influx to the coastal areas during winter and summer seasons, respectively. Although SGD rate is observed much less than the river discharge, cold <span class="hlt">heat</span> <span class="hlt">flux</span> from SGD was greater than the river during summer. SGD resulted in lowering the <span class="hlt">sea</span> water</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A12F..05I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A12F..05I"><span>Measurements and Modeling of Turbulent <span class="hlt">Fluxes</span> during Persistent Cold <span class="hlt">Air</span> Pool Events in Salt Lake Valley, Utah</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivey, C. E.; Sun, X.; Holmes, H.</p> <p>2017-12-01</p> <p>Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface <span class="hlt">fluxes</span>, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface <span class="hlt">heat</span> and momentum <span class="hlt">fluxes</span> at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold <span class="hlt">air</span> pool (CAP) forms when a topographic depression (i.e., valley) fills with cold <span class="hlt">air</span>, where the <span class="hlt">air</span> in the stagnant layer is colder than the <span class="hlt">air</span> aloft. Insufficient surface <span class="hlt">heating</span>, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased <span class="hlt">air</span> pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of <span class="hlt">air</span> pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold <span class="hlt">Air</span> Pool Study (PCAPS). Turbulent <span class="hlt">fluxes</span> and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent <span class="hlt">heat</span>, sensible <span class="hlt">heat</span>, ground <span class="hlt">heat</span> <span class="hlt">fluxes</span> during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A41B3033D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A41B3033D"><span>Estimating Turbulent Surface <span class="hlt">Fluxes</span> from Small Unmanned Aircraft: Evaluation of Current Abilities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.</p> <p>2014-12-01</p> <p><span class="hlt">Heat</span> transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic <span class="hlt">air-sea</span> interface and Polar <span class="hlt">sea-ice-air</span> interface are amongst the most challenging in which to measure these <span class="hlt">fluxes</span>. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) <span class="hlt">fluxes</span> are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate <span class="hlt">heat</span> transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate <span class="hlt">fluxes</span> at the <span class="hlt">air</span>-land or <span class="hlt">air-sea</span> interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface <span class="hlt">fluxes</span>. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these <span class="hlt">fluxes</span>. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent <span class="hlt">fluxes</span>. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740056819&hterms=papell&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpapell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740056819&hterms=papell&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpapell"><span>Geometrical correction factors for <span class="hlt">heat</span> <span class="hlt">flux</span> meters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumeister, K. J.; Papell, S. S.</p> <p>1974-01-01</p> <p>General formulas are derived for determining gage averaging errors of strip-type <span class="hlt">heat</span> <span class="hlt">flux</span> meters used in the measurement of one-dimensional <span class="hlt">heat</span> <span class="hlt">flux</span> distributions. The local averaging error e(x) is defined as the difference between the measured value of the <span class="hlt">heat</span> <span class="hlt">flux</span> and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local <span class="hlt">heat</span> <span class="hlt">flux</span>. For many practical problems, it is possible to use relatively large gages to obtain acceptable <span class="hlt">heat</span> <span class="hlt">flux</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....47.5545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....47.5545M"><span>Estimation of evaporation and sensible <span class="hlt">heat</span> <span class="hlt">flux</span> from open water using a large-aperture scintillometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McJannet, D. L.; Cook, F. J.; McGloin, R. P.; McGowan, H. A.; Burn, S.</p> <p>2011-05-01</p> <p>The use of scintillometers to determine sensible and latent <span class="hlt">heat</span> <span class="hlt">flux</span> is becoming increasingly common because of their ability to quantify convective <span class="hlt">fluxes</span> over distances of hundreds of meters to several kilometers. The majority of investigations using scintillometry have focused on processes above land surfaces, but here we propose a new methodology for obtaining sensible and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> from a scintillometer deployed over open water. This methodology has been tested by comparison with eddy covariance measurements and through comparison with alternative scintillometer calculation approaches that are commonly used in the literature. The methodology is based on linearization of the Bowen ratio, which is a common assumption in models such as Penman's model and its derivatives. Comparison of latent <span class="hlt">heat</span> <span class="hlt">flux</span> estimates from the eddy covariance system and the scintillometer showed excellent agreement across a range of weather conditions and <span class="hlt">flux</span> rates, giving a high level of confidence in scintillometry-derived latent <span class="hlt">heat</span> <span class="hlt">fluxes</span>. The proposed approach produced better estimates than other scintillometry calculation methods because of the reliance of alternative methods on measurements of water temperature or water body <span class="hlt">heat</span> storage, which are both notoriously hard to quantify. The proposed methodology requires less instrumentation than alternative scintillometer calculation approaches, and the spatial scales of required measurements are arguably more compatible. In addition to scintillometer measurements of the structure parameter of the refractive index of <span class="hlt">air</span>, the only measurements required are atmospheric pressure, <span class="hlt">air</span> temperature, humidity, and wind speed at one height over the water body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QuRes..85...87C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QuRes..85...87C"><span>Variability of 14C reservoir age and <span class="hlt">air-sea</span> <span class="hlt">flux</span> of CO2 in the Peru-Chile upwelling region during the past 12,000 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.</p> <p>2016-01-01</p> <p>The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile ( 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene <span class="hlt">air-sea</span> <span class="hlt">flux</span> of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the <span class="hlt">air-sea</span> carbon <span class="hlt">flux</span> in this region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...710525Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...710525Y"><span>Recent increases in Arctic freshwater <span class="hlt">flux</span> affects Labrador <span class="hlt">Sea</span> convection and Atlantic overturning circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.</p> <p>2016-01-01</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater <span class="hlt">flux</span> is disrupting the AMOC is unclear. Dense Labrador <span class="hlt">Sea</span> Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater <span class="hlt">flux</span> unclear. Here we derive a new estimate of the recent freshwater <span class="hlt">flux</span> from Greenland using updated GRACE satellite data, present new <span class="hlt">flux</span> estimates for <span class="hlt">heat</span> and salt from the North Atlantic into the Labrador <span class="hlt">Sea</span> and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4736158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4736158"><span>Recent increases in Arctic freshwater <span class="hlt">flux</span> affects Labrador <span class="hlt">Sea</span> convection and Atlantic overturning circulation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.; Ribergaard, Mads H.; Mortensen, John</p> <p>2016-01-01</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater <span class="hlt">flux</span> is disrupting the AMOC is unclear. Dense Labrador <span class="hlt">Sea</span> Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater <span class="hlt">flux</span> unclear. Here we derive a new estimate of the recent freshwater <span class="hlt">flux</span> from Greenland using updated GRACE satellite data, present new <span class="hlt">flux</span> estimates for <span class="hlt">heat</span> and salt from the North Atlantic into the Labrador <span class="hlt">Sea</span> and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening. PMID:26796579</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26796579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26796579"><span>Recent increases in Arctic freshwater <span class="hlt">flux</span> affects Labrador <span class="hlt">Sea</span> convection and Atlantic overturning circulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Qian; Dixon, Timothy H; Myers, Paul G; Bonin, Jennifer; Chambers, Don; van den Broeke, M R</p> <p>2016-01-22</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater <span class="hlt">flux</span> is disrupting the AMOC is unclear. Dense Labrador <span class="hlt">Sea</span> Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater <span class="hlt">flux</span> unclear. Here we derive a new estimate of the recent freshwater <span class="hlt">flux</span> from Greenland using updated GRACE satellite data, present new <span class="hlt">flux</span> estimates for <span class="hlt">heat</span> and salt from the North Atlantic into the Labrador <span class="hlt">Sea</span> and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080020459','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080020459"><span>Analysis of the Effects of Vitiates on Surface <span class="hlt">Heat</span> <span class="hlt">Flux</span> in Ground Tests of Hypersonic Vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cuda, Vincent; Gaffney, Richard L</p> <p>2008-01-01</p> <p>To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the <span class="hlt">air</span> upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the <span class="hlt">heat</span> <span class="hlt">fluxes</span> associated with aerodynamic <span class="hlt">heating</span>. The difference in the <span class="hlt">heating</span> rates between clean <span class="hlt">air</span> and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by <span class="hlt">air</span>-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean <span class="hlt">air</span> to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted <span class="hlt">heat</span> <span class="hlt">flux</span>. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean <span class="hlt">air</span> values to determine which combination of parameters affected the computed <span class="hlt">heat</span> transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in <span class="hlt">heating</span>. Other combinations showed departures of up to 10% in the <span class="hlt">heat</span> <span class="hlt">flux</span> estimate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ResPh...6..139M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ResPh...6..139M"><span>Effect of radiator position and mass <span class="hlt">flux</span> on the dryer room <span class="hlt">heat</span> transfer rate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.</p> <p></p> <p>A room radiator as usually used in cold countries, is actually able to be used as a <span class="hlt">heat</span> source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass <span class="hlt">flux</span> on <span class="hlt">heat</span> transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass <span class="hlt">flux</span>. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was <span class="hlt">heated</span> water flowing inside the radiator and <span class="hlt">air</span> circulating naturally inside the prototype room. The nominal mass <span class="hlt">fluxes</span> employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial <span class="hlt">air</span> temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass <span class="hlt">flux</span> on the forced and free convection <span class="hlt">heat</span> transfer rate is insignificant but the radiator position strongly affects the <span class="hlt">heat</span> transfer rate for both forced and free convection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22410343-heat-flux-viscosity-collisional-magnetized-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22410343-heat-flux-viscosity-collisional-magnetized-plasmas"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> viscosity in collisional magnetized plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, C., E-mail: cliu@pppl.gov; Fox, W.; Bhattacharjee, A.</p> <p>2015-05-15</p> <p>Momentum transport in collisional magnetized plasmas due to gradients in the <span class="hlt">heat</span> <span class="hlt">flux</span>, a “<span class="hlt">heat</span> <span class="hlt">flux</span> viscosity,” is demonstrated. Even though no net particle <span class="hlt">flux</span> is associated with a <span class="hlt">heat</span> <span class="hlt">flux</span>, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This <span class="hlt">heat-flux</span> viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong <span class="hlt">heat</span> <span class="hlt">flux</span> can dominate over ordinary plasma flows. The <span class="hlt">heat</span> <span class="hlt">flux</span> viscosity can influence the dynamics of the magnetic field in plasmas through themore » generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The <span class="hlt">heat</span> <span class="hlt">flux</span> viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160013874&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DChange%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160013874&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DChange%2Bclimate"><span>The <span class="hlt">Flux</span>-Anomaly-Forced Model Intercomparison Project (FAFMIP) Contribution to CMIP6: Investigation of <span class="hlt">Sea</span>-Level and Ocean Climate Change in Response to CO2 Forcing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160013874'); toggleEditAbsImage('author_20160013874_show'); toggleEditAbsImage('author_20160013874_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160013874_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160013874_hide"></p> <p>2016-01-01</p> <p>The <span class="hlt">Flux</span>-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of <span class="hlt">sea</span>-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean <span class="hlt">heat</span> uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of <span class="hlt">sea</span>-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface <span class="hlt">flux</span> perturbations of momentum, <span class="hlt">heat</span> and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these <span class="hlt">fluxes</span> projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. <span class="hlt">Heat</span> and water <span class="hlt">flux</span> perturbation cause the dipole in <span class="hlt">sea</span>-level change in the North Atlantic, while momentum and <span class="hlt">heat</span> <span class="hlt">flux</span> perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the <span class="hlt">heat</span> <span class="hlt">flux</span> perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of <span class="hlt">sea</span>-surface temperature in the North Atlantic, which enhances the local <span class="hlt">heat</span> input to the ocean. The momentum and water <span class="hlt">flux</span> perturbations do not substantially affect the AMOC. <span class="hlt">Heat</span> is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest <span class="hlt">heat</span> input, while the weakening of the AMOC causes redistribution of <span class="hlt">heat</span> towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.2115B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.2115B"><span>The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and <span class="hlt">flux</span> estimates by airborne measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine</p> <p>2017-02-01</p> <p>During winter, cold <span class="hlt">air</span> outbreaks take place in the northwestern Mediterranean <span class="hlt">sea</span>. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental <span class="hlt">air</span> across a warmer <span class="hlt">sea</span>. In such conditions, high values of surface sensible and latent <span class="hlt">heat</span> <span class="hlt">flux</span> are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the <span class="hlt">flux</span> profile throughout the entire MABL is essential for the estimation of <span class="hlt">air-sea</span> exchanges, a correction of eddy covariance turbulent <span class="hlt">fluxes</span> was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface <span class="hlt">fluxes</span> estimates, computed from the extrapolation of the stacked levels. A comparison between those surface <span class="hlt">fluxes</span> and bulk <span class="hlt">fluxes</span> computed at a moored buoy revealed considerable differences, mainly regarding the latent <span class="hlt">heat</span> <span class="hlt">flux</span> under strong wind conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18...26B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18...26B"><span>Calibration of Ocean Forcing with satellite <span class="hlt">Flux</span> Estimates (COFFEE)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia</p> <p>2016-04-01</p> <p>Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite <span class="hlt">Flux</span> Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected <span class="hlt">fluxes</span> are used to prepare a corrected ocean hindcast and to estimate <span class="hlt">flux</span> error covariances to project the <span class="hlt">heat</span> <span class="hlt">flux</span> corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface <span class="hlt">heat</span> <span class="hlt">flux</span> and model representations affecting the distribution of <span class="hlt">heat</span> in the upper ocean. While traditional assimilation of <span class="hlt">sea</span> surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface <span class="hlt">heat</span> <span class="hlt">flux</span> and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of <span class="hlt">flux</span> calibration with assimilation alternatives. The cases use the original <span class="hlt">fluxes</span>, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface <span class="hlt">flux</span> errors. Covariance of <span class="hlt">flux</span> errors is estimated from the recent time series of forecast and calibrated <span class="hlt">flux</span> terms. While the California Current examples are shown, the approach is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21D0969Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21D0969Z"><span>Uncertainty analysis of scintillometers methods in measuring sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> of forest ecosystem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, N.</p> <p>2017-12-01</p> <p>Sensible <span class="hlt">heat</span> <span class="hlt">flux</span> (H) is one of the driving factors of surface turbulent motion and energy exchange. Therefore, it is particularly important to measure sensible <span class="hlt">heat</span> <span class="hlt">flux</span> accurately at the regional scale. However, due to the heterogeneity of the underlying surface, hydrothermal regime, and different weather conditions, it is difficult to estimate the represented <span class="hlt">flux</span> at the kilometer scale. The scintillometer have been developed into an effective and universal equipment for deriving <span class="hlt">heat</span> <span class="hlt">flux</span> at the regional-scale which based on the turbulence effect of light in the atmosphere since the 1980s. The parameter directly obtained by the scintillometer is the structure parameter of the refractive index of <span class="hlt">air</span> based on the changes of light intensity fluctuation. Combine with parameters such as temperature structure parameter, zero-plane displacement, surface roughness, wind velocity, <span class="hlt">air</span> temperature and the other meteorological data <span class="hlt">heat</span> <span class="hlt">fluxes</span> can be derived. These additional parameters increase the uncertainties of <span class="hlt">flux</span> because the difference between the actual feature of turbulent motion and the applicable conditions of turbulence theory. Most previous studies often focused on the constant <span class="hlt">flux</span> layers that are above the rough sub-layers and homogeneous flat surfaces underlying surfaces with suitable weather conditions. Therefore, the criteria and modified forms of key parameters are invariable. In this study, we conduct investment over the hilly area of northern China with different plants, such as cork oak, cedar-black and locust. On the basis of key research on the threshold and modified forms of saturation with different turbulence intensity, modified forms of Bowen ratio with different drying-and-wetting conditions, universal function for the temperature structure parameter under different atmospheric stability, the dominant sources of uncertainty will be determined. The above study is significant to reveal influence mechanism of uncertainty and explore influence</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JESS..115..461N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JESS..115..461N"><span>Monsoon control on trace metal <span class="hlt">fluxes</span> in the deep Arabian <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nair, T. M. Balakrishnan</p> <p>2006-08-01</p> <p>Particulate <span class="hlt">fluxes</span> of aluminium, iron, magnesium and titanium were measured using six time-series sediment traps deployed in the eastern, central and western Arabian <span class="hlt">Sea</span>. Annual Al <span class="hlt">fluxes</span> at shallow and deep trap depths were 0.47 and 0.46 g m-2 in the western Arabian <span class="hlt">Sea</span>, and 0.33 and 0.47 g m-2 in the eastern Arabian <span class="hlt">Sea</span>. There is a difference of about 0.9-1.8 g m-2y-1 in the lithogenic <span class="hlt">fluxes</span> determined analytically (residue remaining after leaching out all biogenic particles) and estimated from the Al <span class="hlt">fluxes</span> in the western Arabian <span class="hlt">Sea</span>. This arises due to higher <span class="hlt">fluxes</span> of Mg (as dolomite) in the western Arabian <span class="hlt">Sea</span> (6-11 times higher than the eastern Arabian <span class="hlt">Sea</span>). The estimated dolomite <span class="hlt">fluxes</span> at the western Arabian <span class="hlt">Sea</span> site range from 0.9 to 1.35gm-2y-1. Fe <span class="hlt">fluxes</span> in the Arabian <span class="hlt">Sea</span> were less than that of the reported atmospheric <span class="hlt">fluxes</span> without any evidence for the presence of labile fraction/excess of Fe in the settling particles. More than 75% of Al, Fe, Ti and Mg <span class="hlt">fluxes</span> occurred during the southwest (SW) monsoon in the western Arabian <span class="hlt">Sea</span>. In the eastern Arabian <span class="hlt">Sea</span>, peak Al, Fe, Mg and Ti <span class="hlt">fluxes</span> were recorded during both the northeast (NE) and SW monsoons. During the SW monsoon, there exists a time lag of around one month between the increases in lithogenic and dolomite <span class="hlt">fluxes</span>. Total lithogenic <span class="hlt">fluxes</span> increase when the southern branch of dust bearing northwesterlies is dragged by the SW monsoon winds to the trap locations. However, the dolomite <span class="hlt">fluxes</span> increase only when the northern branch of the northwesterlies (which carries a huge amount of dolomite accounting 60% of the total dust load) is dragged, from further north, by SW monsoon winds. The potential for the use of Mg/Fe ratio as a paleo-monsoonal proxy is examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993STIN...9413730F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993STIN...9413730F"><span>High <span class="hlt">flux</span> <span class="hlt">heat</span> exchanger</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flynn, Edward M.; Mackowski, Michael J.</p> <p>1993-01-01</p> <p>This interim report documents the results of the first two phases of a four-phase program to develop a high <span class="hlt">flux</span> <span class="hlt">heat</span> exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high <span class="hlt">flux</span> <span class="hlt">heat</span> removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state <span class="hlt">flux</span> levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip <span class="hlt">heat</span> <span class="hlt">flux</span> of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on <span class="hlt">heat</span> exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890029617&hterms=mixed+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmixed%2Bmethods','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890029617&hterms=mixed+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmixed%2Bmethods"><span>A new method for estimating the turbulent <span class="hlt">heat</span> <span class="hlt">flux</span> at the bottom of the daily mixed layer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Imawaki, Shiro; Niiler, Pearn P.; Gautier, Catherine H.; Knox, Robert A.; Halpern, David</p> <p>1988-01-01</p> <p>Temperature data in the mixed layer and net solar irradiance data at the <span class="hlt">sea</span> surface are used to estimate the vertical turbulent <span class="hlt">heat</span> <span class="hlt">flux</span> at the bottom of the daily mixed layer. The method is applied to data obtained in the eastern tropical Pacific, where the daily cycle in the temperature field is confined to the upper 10-25 m. Equatorial turbulence measurements indicate that the turbulent <span class="hlt">heat</span> <span class="hlt">flux</span> is much greater during nighttime than daytime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6947F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6947F"><span>Eddy <span class="hlt">heat</span> <span class="hlt">flux</span> across the Antarctic Circumpolar Current estimated from <span class="hlt">sea</span> surface height standard deviation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foppert, Annie; Donohue, Kathleen A.; Watts, D. Randolph; Tracey, Karen L.</p> <p>2017-08-01</p> <p>Eddy <span class="hlt">heat</span> <span class="hlt">flux</span> (EHF) is a predominant mechanism for <span class="hlt">heat</span> transport across the zonally unbounded mean flow of the Antarctic Circumpolar Current (ACC). Observations of dynamically relevant, divergent, 4 year mean EHF in Drake Passage from the cDrake project, as well as previous studies of atmospheric and oceanic storm tracks, motivates the use of <span class="hlt">sea</span> surface height (SSH) standard deviation, H*, as a proxy for depth-integrated, downgradient, time-mean EHF (>[EHF>¯>]) in the ACC. Statistics from the Southern Ocean State Estimate corroborate this choice and validate throughout the ACC the spatial agreement between H* and >[EHF>¯>] seen locally in Drake Passage. Eight regions of elevated >[EHF>¯>] are identified from nearly 23.5 years of satellite altimetry data. Elevated cross-front exchange usually does not span the full latitudinal width of the ACC in each region, implying a hand-off of <span class="hlt">heat</span> between ACC fronts and frontal zones as they encounter the different >[EHF>¯>] hot spots along their circumpolar path. Integrated along circumpolar streamlines, defined by mean SSH contours, there is a convergence of <mstyle displaystyle="false">∮<mrow></mrow></mstyle>>[EHF>¯>] in the ACC: 1.06 PW enters from the north and 0.02 PW exits to the south. Temporal trends in low-frequency [EHF] are calculated in a running-mean sense using H* from overlapping 4 year subsets of SSH. Significant increases in downgradient [EHF] magnitude have occurred since 1993 at Kerguelen Plateau, Southeast Indian Ridge, and the Brazil-Malvinas Confluence, whereas the other five >[EHF>¯>] hot spots have insignificant trends of varying sign.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910004469','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910004469"><span><span class="hlt">Sea</span> ice-atmosphere interaction: Application of multispectral satellite data in polar surface energy <span class="hlt">flux</span> estimates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffen, K.; Schweiger, A.; Maslanik, J.; Key, J.; Weaver, R.; Barry, R.</p> <p>1990-01-01</p> <p>The application of multi-spectral satellite data to estimate polar surface energy <span class="hlt">fluxes</span> is addressed. To what accuracy and over which geographic areas large scale energy budgets can be estimated are investigated based upon a combination of available remote sensing and climatological data sets. The general approach was to: (1) formulate parameterization schemes for the appropriate <span class="hlt">sea</span> ice energy budget terms based upon the remotely sensed and/or in-situ data sets; (2) conduct sensitivity analyses using as input both natural variability (observed data in regional case studies) and theoretical variability based upon energy <span class="hlt">flux</span> model concepts; (3) assess the applicability of these parameterization schemes to both regional and basin wide energy balance estimates using remote sensing data sets; and (4) assemble multi-spectral, multi-sensor data sets for at least two regions of the Arctic Basin and possibly one region of the Antarctic. The type of data needed for a basin-wide assessment is described and the temporal coverage of these data sets are determined by data availability and need as defined by parameterization scheme. The titles of the subjects are as follows: (1) <span class="hlt">Heat</span> <span class="hlt">flux</span> calculations from SSM/I and LANDSAT data in the Bering <span class="hlt">Sea</span>; (2) Energy <span class="hlt">flux</span> estimation using passive microwave data; (3) Fetch and stability sensitivity estimates of turbulent <span class="hlt">heat</span> <span class="hlt">flux</span>; and (4) Surface temperature algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..12011957A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..12011957A"><span>Recent trends (2003-2013) of land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> on the southern side of the central Himalayas, Nepal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad</p> <p>2015-12-01</p> <p>Novice efforts have been made in order to study the regional distribution of land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation <span class="hlt">flux</span> is increasing as a result of decreasing precipitation (drier environment). The sensible <span class="hlt">heat</span> <span class="hlt">flux</span> did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible <span class="hlt">heat</span> <span class="hlt">flux</span> is decreasing because of decrease in wind speed, ground-<span class="hlt">air</span> temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-<span class="hlt">air</span> temperature difference and high rate of deforestation. The latent <span class="hlt">heat</span> <span class="hlt">flux</span> has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent <span class="hlt">heat</span> <span class="hlt">flux</span> can be attributed to increase in net radiation <span class="hlt">flux</span> under persistent forest cover and irrigation land used for agriculture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43G2559J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43G2559J"><span>Seasonal atmospheric deposition and <span class="hlt">air-sea</span> gaseous exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China <span class="hlt">Sea</span>: Implication for the source-sink processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Y.; Guo, Z.</p> <p>2017-12-01</p> <p>As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China <span class="hlt">Sea</span> (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of <span class="hlt">air</span> samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal <span class="hlt">fluxes</span> of <span class="hlt">air-sea</span> gaseous exchange and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the <span class="hlt">air-sea</span> interface. The average dry and wet deposition <span class="hlt">fluxes</span> of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous exchange of PAHs was referred as the dominant process at the <span class="hlt">air-sea</span> interface in the YRE as the magnitude of volatilization <span class="hlt">flux</span> of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH exchange <span class="hlt">flux</span> was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and <span class="hlt">air-sea</span> concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at <span class="hlt">air-sea</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3887K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3887K"><span><span class="hlt">Air-Sea</span> exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Michelle J.; Novak, Gordon A.; Zoerb, Matthew C.; Yang, Mingxi; Blomquist, Byron W.; Huebert, Barry J.; Cappa, Christopher D.; Bertram, Timothy H.</p> <p>2017-04-01</p> <p>We report simultaneous, underway eddy covariance measurements of the vertical <span class="hlt">flux</span> of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene <span class="hlt">sea-to-air</span> vertical <span class="hlt">fluxes</span> were significantly lower than mean DMS <span class="hlt">fluxes</span>. While rare, intense monoterpene <span class="hlt">sea-to-air</span> <span class="hlt">fluxes</span> were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical <span class="hlt">flux</span> and short wave radiation was not observed, suggesting that photochemical processes in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is on average <0.1 μg m-3 d-1. Despite modest PSOA, low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940006838','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940006838"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> measurements on ceramics with thin film thermocouples</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.</p> <p>1993-01-01</p> <p>Two methods were devised to measure <span class="hlt">heat</span> <span class="hlt">flux</span> through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The <span class="hlt">heat</span> <span class="hlt">flux</span> was applied to the front surface of the ceramic using an arc lamp <span class="hlt">Heat</span> <span class="hlt">Flux</span> Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. <span class="hlt">Heat</span> <span class="hlt">flux</span> ranged from 0.05-2.5 MW/m2(sup 2). One method for <span class="hlt">heat</span> <span class="hlt">flux</span> determination used an approximation technique to calculate instantaneous values of <span class="hlt">heat</span> <span class="hlt">flux</span> vs time; the other method used an extrapolation technique to determine the steady state <span class="hlt">heat</span> <span class="hlt">flux</span> from a record of transient data. Neither method measures <span class="hlt">heat</span> <span class="hlt">flux</span> in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient <span class="hlt">heat</span> <span class="hlt">flux</span> data is available, the calculated transient <span class="hlt">heat</span> <span class="hlt">flux</span> is seen to approach the extrapolated steady state <span class="hlt">heat</span> <span class="hlt">flux</span> value as expected.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010099433','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010099433"><span>A Numerical Study of Tropical <span class="hlt">Sea-Air</span> Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on <span class="hlt">sea</span> surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface <span class="hlt">fluxes</span> (sensible and latent <span class="hlt">heat</span>, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean <span class="hlt">heat</span> and salt budgets are investigated. Secondly, a two-way <span class="hlt">air-sea</span> interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17706251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17706251"><span><span class="hlt">Air--sea</span> gaseous exchange of PCB at the Venice lagoon (Italy).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P</p> <p>2007-10-01</p> <p>Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open <span class="hlt">sea</span>. The <span class="hlt">air</span>-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous exchange. In this work the parallel collection of <span class="hlt">air</span>, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous <span class="hlt">flux</span> of PCBs. The total concentration of PCBs (sum of 118 congeners) in <span class="hlt">air</span> varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the <span class="hlt">flux</span> at the <span class="hlt">air-sea</span> interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net <span class="hlt">flux</span> varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This <span class="hlt">flux</span> is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=heat+AND+exchange&pg=3&id=EJ582662','ERIC'); return false;" href="https://eric.ed.gov/?q=heat+AND+exchange&pg=3&id=EJ582662"><span>Balloons and Bottles: Activities on <span class="hlt">Air-Sea</span> <span class="hlt">Heat</span> Exchange.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Murphree, Tom</p> <p>1998-01-01</p> <p>Presents an activity designed to demonstrate how <span class="hlt">heating</span> and cooling an <span class="hlt">air</span> mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860034311&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860034311&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcurrent%2Bfeedback"><span><span class="hlt">Sea</span> surface temperature anomalies, planetary waves, and <span class="hlt">air-sea</span> feedback in the middle latitudes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frankignoul, C.</p> <p>1985-01-01</p> <p>Current analytical models for large-scale <span class="hlt">air-sea</span> interactions in the middle latitudes are reviewed in terms of known <span class="hlt">sea</span>-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic <span class="hlt">heating</span> anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the <span class="hlt">air-sea</span> feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011892','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011892"><span>Observations of Recent Arctic <span class="hlt">Sea</span> Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.</p> <p>2011-01-01</p> <p>Using recently developed techniques we estimate snow and <span class="hlt">sea</span> ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic <span class="hlt">sea</span> ice model to calculate ocean-atmosphere <span class="hlt">heat</span> exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated <span class="hlt">heat</span> <span class="hlt">fluxes</span> and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate <span class="hlt">heat</span> <span class="hlt">fluxes</span> and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the <span class="hlt">sea</span> ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere <span class="hlt">heat</span> <span class="hlt">fluxes</span> compared to those observed in 2003. Although there was also a decline in <span class="hlt">sea</span> ice thickness for the winter periods, the winter time <span class="hlt">heat</span> <span class="hlt">flux</span> was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere <span class="hlt">heat</span> output is also observed in the fall periods due to changes in the areal coverage of <span class="hlt">sea</span> ice. The anomalously low <span class="hlt">sea</span> ice coverage in 2007 led to a net ocean-atmosphere <span class="hlt">heat</span> output approximately 3 times greater than was observed in previous years and suggests that <span class="hlt">sea</span> ice losses are now playing a role in increasing surface <span class="hlt">air</span> temperatures in the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880020715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880020715"><span>Measurement of local high-level, transient surface <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.</p> <p>1988-01-01</p> <p>This study is part of a continuing investigation to develop methods for measuring local transient surface <span class="hlt">heat</span> <span class="hlt">flux</span>. A method is presented for simultaneous measurements of dual <span class="hlt">heat</span> <span class="hlt">fluxes</span> at a surface location by considering the <span class="hlt">heat</span> <span class="hlt">flux</span> as a separate function of <span class="hlt">heat</span> stored and <span class="hlt">heat</span> conducted within a <span class="hlt">heat</span> <span class="hlt">flux</span> gage. Surface <span class="hlt">heat</span> <span class="hlt">flux</span> information is obtained from transient temperature measurements taken at points within the gage. <span class="hlt">Heat</span> <span class="hlt">flux</span> was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for <span class="hlt">heat</span> <span class="hlt">flux</span> measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in <span class="hlt">heat</span> <span class="hlt">flux</span> gage calibrators.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT...tmp..114M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT...tmp..114M"><span>A combined ANN-GA and experimental based technique for the estimation of the unknown <span class="hlt">heat</span> <span class="hlt">flux</span> for a conjugate <span class="hlt">heat</span> transfer problem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>M K, Harsha Kumar; P S, Vishweshwara; N, Gnanasekaran; C, Balaji</p> <p>2018-05-01</p> <p>The major objectives in the design of thermal systems are obtaining the information about thermophysical, transport and boundary properties. The main purpose of this paper is to estimate the unknown <span class="hlt">heat</span> <span class="hlt">flux</span> at the surface of a solid body. A constant area mild steel fin is considered and the base is subjected to constant <span class="hlt">heat</span> <span class="hlt">flux</span>. During <span class="hlt">heating</span>, natural convection <span class="hlt">heat</span> transfer occurs from the fin to ambient. The direct solution, which is the forward problem, is developed as a conjugate <span class="hlt">heat</span> transfer problem from the fin and the steady state temperature distribution is recorded for any assumed <span class="hlt">heat</span> <span class="hlt">flux</span>. In order to model the natural convection <span class="hlt">heat</span> transfer from the fin, an extended domain is created near the fin geometry and <span class="hlt">air</span> is specified as a fluid medium and Navier Stokes equation is solved by incorporating the Boussinesq approximation. The computational time involved in executing the forward model is then reduced by developing a neural network (NN) between <span class="hlt">heat</span> <span class="hlt">flux</span> values and temperatures based on back propagation algorithm. The conjugate <span class="hlt">heat</span> transfer NN model is now coupled with Genetic algorithm (GA) for the solution of the inverse problem. Initially, GA is applied to the pure surrogate data, the results are then used as input to the Levenberg- Marquardt method and such hybridization is proven to result in accurate estimation of the unknown <span class="hlt">heat</span> <span class="hlt">flux</span>. The hybrid method is then applied for the experimental temperature to estimate the unknown <span class="hlt">heat</span> <span class="hlt">flux</span>. A satisfactory agreement between the estimated and actual <span class="hlt">heat</span> <span class="hlt">flux</span> is achieved by incorporating the hybrid method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004937','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004937"><span>Pyrolytic graphite gauge for measuring <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)</p> <p>2002-01-01</p> <p>A gauge for measuring <span class="hlt">heat</span> <span class="hlt">flux</span>, especially <span class="hlt">heat</span> <span class="hlt">flux</span> encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. <span class="hlt">Heat</span> <span class="hlt">flux</span> is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative <span class="hlt">fluxes</span> are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of <span class="hlt">heat</span> <span class="hlt">flux</span> on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the <span class="hlt">heat</span> <span class="hlt">flux</span> incident to the body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016851','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016851"><span>Impacts of Soil-aquifer <span class="hlt">Heat</span> and Water <span class="hlt">Fluxes</span> on Simulated Global Climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.</p> <p>2013-01-01</p> <p>Climate models have traditionally only represented <span class="hlt">heat</span> and water <span class="hlt">fluxes</span> within relatively shallow soil layers, but there is increasing interest in the possible role of <span class="hlt">heat</span> and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and <span class="hlt">heat</span> exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil <span class="hlt">heat</span> and water <span class="hlt">fluxes</span> separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer <span class="hlt">heat</span> <span class="hlt">flux</span>. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface <span class="hlt">air</span> temperature of >1K in the Arctic. The soil-aquifer water and <span class="hlt">heat</span> <span class="hlt">fluxes</span> both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-<span class="hlt">flux</span> bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.2657D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.2657D"><span>Geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> in the Amundsen <span class="hlt">Sea</span> sector of West Antarctica: New insights from temperature measurements, depth to the bottom of the magnetic source estimation, and thermal modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dziadek, R.; Gohl, K.; Diehl, A.; Kaul, N.</p> <p>2017-07-01</p> <p>Focused research on the Pine Island and Thwaites glaciers, which drain the West Antarctic Ice Shelf (WAIS) into the Amundsen <span class="hlt">Sea</span> Embayment (ASE), revealed strong signs of instability in recent decades that result from variety of reasons, such as inflow of warmer ocean currents and reverse bedrock topography, and has been established as the Marine Ice Sheet Instability hypothesis. Geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> for (paleo) ice sheet stability. Due to a complex tectonic and magmatic history of West Antarctica, the region is suspected to exhibit strong heterogeneous geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> variations. We present an approach to investigate ranges of realistic <span class="hlt">heat</span> <span class="hlt">fluxes</span> in the ASE by different methods, discuss direct observations, and 3-D numerical models that incorporate boundary conditions derived from various geophysical studies, including our new Depth to the Bottom of the Magnetic Source (DBMS) estimates. Our in situ temperature measurements at 26 sites in the ASE more than triples the number of direct GHF observations in West Antarctica. We demonstrate by our numerical 3-D models that GHF spatially varies from 68 up to 110 mW m-2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...93L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...93L"><span>Influence of <span class="hlt">air-sea</span> coupling on Indian Ocean tropical cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lengaigne, Matthieu; Neetu, S.; Samson, Guillaume; Vialard, Jérôme; Krishnamohan, K. S.; Masson, Sébastien; Jullien, Swen; Suresh, I.; Menkes, Christophe E.</p> <p>2018-02-01</p> <p>This paper assesses the impact of <span class="hlt">air-sea</span> coupling on Indian Ocean tropical cyclones (TCs) by comparing a 20-year long simulation of a ¼° regional coupled ocean-atmosphere model with a twin experiment, where the atmospheric component is forced by <span class="hlt">sea</span> surface temperature from the coupled simulation. The coupled simulation reproduces the observed spatio-temporal TCs distribution and TC-induced surface cooling reasonably well, but overestimates the number of TCs. <span class="hlt">Air-sea</span> coupling does not affect the cyclogenesis spatial distribution but reduces the number of TCs by 20% and yields a better-resolved bimodal seasonal distribution in the northern hemisphere. Coupling also affects intensity distribution, inducing a four-fold decrease in the proportion of intense TCs (Cat-2 and stronger). <span class="hlt">Air-sea</span> coupling damps TCs growth through a reduction of inner-core upward enthalpy <span class="hlt">fluxes</span> due to the TC-induced cooling. This reduction is particularly large for the most intense TCs of the northern Indian Ocean (up to 250 W m-2), due to higher ambient surface temperatures and larger TC-induced cooling there. The negative feedback of <span class="hlt">air-sea</span> coupling on strongest TCs is mainly associated with slow-moving storms, which spend more time over the cold wake they induce. Sensitivity experiments using a different convective parameterization yield qualitatively similar results, with a larger ( 65%) reduction in the number of TCs. Because of their relatively coarse resolution (¼°), both set of experiments however fail to reproduce the most intense observed TCs. Further studies with finer resolution models in the Bay of Bengal will be needed to assess the expectedly large impact of <span class="hlt">air-sea</span> coupling on those intense and deadly TCs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032028','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032028"><span>Bora event variability and the role of <span class="hlt">air-sea</span> feedback</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.</p> <p>2007-01-01</p> <p>A two-way interacting high resolution numerical simulation of the Adriatic <span class="hlt">Sea</span> using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and <span class="hlt">heat</span> <span class="hlt">flux</span> fields, and to evaluate surface <span class="hlt">flux</span> field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger <span class="hlt">heat</span> <span class="hlt">flux</span> and 51% larger momentum <span class="hlt">flux</span> than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean <span class="hlt">heat</span> <span class="hlt">flux</span> bias was reduced by 72%, and <span class="hlt">heat</span> <span class="hlt">flux</span> RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in <span class="hlt">heat</span> <span class="hlt">flux</span> were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED259926.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED259926.pdf"><span><span class="hlt">Heat</span> Recovery Ventilation for Housing: <span class="hlt">Air-to-Air</span> <span class="hlt">Heat</span> Exchangers.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Corbett, Robert J.; Miller, Barbara</p> <p></p> <p>The <span class="hlt">air-to-air</span> <span class="hlt">heat</span> exchanger (a fan powered ventilation device that recovers <span class="hlt">heat</span> from stale outgoing <span class="hlt">air</span>) is explained in this six-part publication. Topic areas addressed are: (1) the nature of <span class="hlt">air-to-air</span> <span class="hlt">heat</span> exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990hmsp.conf...14L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990hmsp.conf...14L"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> measurement in SSME turbine blade tester</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liebert, Curt H.</p> <p>1990-11-01</p> <p>Surface <span class="hlt">heat</span> <span class="hlt">flux</span> values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time <span class="hlt">heat</span> <span class="hlt">flux</span> has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state <span class="hlt">heat</span> <span class="hlt">flux</span> data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature <span class="hlt">heat</span> <span class="hlt">flux</span> gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface <span class="hlt">heat</span> <span class="hlt">flux</span> measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. <span class="hlt">Heat</span> <span class="hlt">flux</span> effects that might be observed on degraded vanes are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990spps.conf..439L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990spps.conf..439L"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> measurement in SSME turbine blade tester</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liebert, Curt H.</p> <p></p> <p>Surface <span class="hlt">heat</span> <span class="hlt">flux</span> values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time <span class="hlt">heat</span> <span class="hlt">flux</span> has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state <span class="hlt">heat</span> <span class="hlt">flux</span> data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature <span class="hlt">heat</span> <span class="hlt">flux</span> gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface <span class="hlt">heat</span> <span class="hlt">flux</span> measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. <span class="hlt">Heat</span> <span class="hlt">flux</span> effects that might be observed on degraded vanes are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004477"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> microsensor measurements and calibrations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.</p> <p>1992-01-01</p> <p>A new thin-film <span class="hlt">heat</span> <span class="hlt">flux</span> gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available <span class="hlt">heat</span> <span class="hlt">flux</span> range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with <span class="hlt">heat</span> <span class="hlt">flux</span> with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time <span class="hlt">heat</span> <span class="hlt">flux</span> and temperature output is available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.2422L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.2422L"><span>Seasonal and Interannual Variations of <span class="hlt">Sea</span> Ice Mass Balance From the Central Arctic to the Greenland <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Ruibo; Cheng, Bin; Heil, Petra; Vihma, Timo; Wang, Jia; Ji, Qing; Zhang, Zhanhai</p> <p>2018-04-01</p> <p>The seasonal evolution of <span class="hlt">sea</span> ice mass balance between the Central Arctic and Fram Strait, as well as the underlying driving forces, remain largely unknown because of a lack of observations. In this study, two and three buoys were deployed in the Central Arctic during the summers of 2010 and 2012, respectively. It was established that basal ice growth commenced between mid-October and early December. Annual basal ice growth, ranging from 0.21 to 1.14 m, was determined mainly by initial ice thickness, <span class="hlt">air</span> temperature, and oceanic <span class="hlt">heat</span> <span class="hlt">flux</span> during winter. An analytic thermodynamic model indicated that climate warming reduces the winter growth rate of thin ice more than for thick ice because of the weak thermal inertia of the former. Oceanic <span class="hlt">heat</span> <span class="hlt">flux</span> during the freezing season was 2-4 W m-2, which accounted for 18-31% of the basal ice energy balance. We identified two mechanisms that modified the oceanic <span class="hlt">heat</span> <span class="hlt">flux</span>, i.e., solar energy absorbed by the upper ocean during summer, and interaction with warm waters south of Fram Strait; the latter resulted in basal ice melt, even in winter. In summer 2010, ice loss in the Central Arctic was considerable, which led to increased oceanic <span class="hlt">heat</span> <span class="hlt">flux</span> into winter and delayed ice growth. The Transpolar Drift Stream was relatively weak in summer 2013. This reduced <span class="hlt">sea</span> ice advection out of the Arctic Ocean, and it restrained ice melt because of the cool atmospheric conditions, weakened albedo feedback, and relatively small oceanic <span class="hlt">heat</span> <span class="hlt">flux</span> in the north.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235747-role-surface-heat-fluxes-underneath-cold-pools','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235747-role-surface-heat-fluxes-underneath-cold-pools"><span>Role of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> underneath cold pools</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gentine, Pierre; Garelli, Alix; Park, Seung -Bu; ...</p> <p>2016-01-05</p> <p>In this paper, the role of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> underneath cold pools is investigated using cloud–resolving simulations with either interactive or horizontally homogenous surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive <span class="hlt">heat</span> <span class="hlt">fluxes</span> induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass <span class="hlt">flux</span> and lateral entrainment are modified. Over the land surface, the <span class="hlt">heat</span> <span class="hlt">fluxes</span> underneath cold pools drastically impact the cold pool characteristics with more numerousmore » and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive <span class="hlt">fluxes</span> also modify the updraft mass <span class="hlt">flux</span> and reduce convective organization. These results emphasize the importance of interactive surface <span class="hlt">fluxes</span> instead of prescribed <span class="hlt">flux</span> boundary conditions, as well as the formulation of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>, when studying convection.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4819715','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4819715"><span>Role of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> underneath cold pools</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming</p> <p>2016-01-01</p> <p>Abstract The role of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive <span class="hlt">heat</span> <span class="hlt">fluxes</span> induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass <span class="hlt">flux</span> and lateral entrainment are modified. Over the land surface, the <span class="hlt">heat</span> <span class="hlt">fluxes</span> underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive <span class="hlt">fluxes</span> also modify the updraft mass <span class="hlt">flux</span> and reduce convective organization. These results emphasize the importance of interactive surface <span class="hlt">fluxes</span> instead of prescribed <span class="hlt">flux</span> boundary conditions, as well as the formulation of surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>, when studying convection. PMID:27134320</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1443Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1443Y"><span>Diagnosing CO2 <span class="hlt">fluxes</span> and seasonality in the Arabian <span class="hlt">Sea</span> as an Ocean-Dominated Margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, W.; Dai, M.</p> <p>2017-12-01</p> <p>The Arabian <span class="hlt">Sea</span> is a large marginal <span class="hlt">sea</span> of the Indian Ocean characterized by highly predictable annual circulation cycle driven by Asian monsoon. The Arabian <span class="hlt">Sea</span> is generally sources to atmospheric CO2. In this study, we applied the physical-biogeochemical coupled approach previously adopted for diagnosis of CO2 <span class="hlt">fluxes</span> in Ocean-dominated margin (OceMar) to assesses the CO2 <span class="hlt">fluxes</span> and their seasonality in Arabian <span class="hlt">Sea</span> using data collected during five US JGOFS Arabian <span class="hlt">Sea</span> Process Study cruises (ttn-043, ttn-045, ttn-049, ttn-053, ttn-054) conducted from September 1994 to December 1995. The pCO2 estimated during the 5 cruises was 396±5μatm, 359±7 μatm, 373±7 μatm, 379±9 μatm and 387±12 μatm, respectively, which agreed well with the pCO2 observed during the cruises of 389±8 μatm, 361±6 μatm, 366±6 μatm, 371±8 μatm and 367±11 μatm from underway measurements. This strongly suggests that our semi-analytical diagnostic approach in the OceMar framework can evaluate the pCO2 in Arabian <span class="hlt">Sea</span>. Our coupled diagnostic approach assumes that water mass mixing, biological response and <span class="hlt">air-sea</span> exchange under steady state over a similar time scale. This assumption should be justified at the region with intensified upwelling where decoupling between upwelling and biological response may occur, where only water mass mixing and <span class="hlt">air-sea</span> CO2 exchange should be accounted for. This presentation will also examine the seasonality of the CO2 dynamics and its controls.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.8787G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.8787G"><span>Assessing recent <span class="hlt">air-sea</span> freshwater <span class="hlt">flux</span> changes using a surface temperature-salinity space framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos</p> <p>2016-12-01</p> <p>A novel assessment of recent changes in <span class="hlt">air-sea</span> freshwater <span class="hlt">fluxes</span> has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater <span class="hlt">fluxes</span> appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1438C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1438C"><span>Seasonal and spatial variations in surface pCO2 and <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> in the Chesapeake Bay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, W. J.; Chen, B.</p> <p>2017-12-01</p> <p>Bay-wide observations of surface water partial pressure of carbon dioxide (pCO2) were conducted in May, June, August, and October 2016 to study the spatial and seasonal variations in surface pCO2 and to estimate <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> in the Chesapeake Bay. Overall, high surface pCO2 in the upper-bay decreased downstream rapidly below the atmospheric value near the bay bridge in the mid-bay and then increased slightly to the lower-bay where pCO2 approached the atmospheric level. Over the course of a year, pCO2 was higher than 1000 µatm in the upper bay and the highest pCO2 (2500 µatm) was observed in August. Significant biologically-induced pCO2 undersaturation was observed at the upper part of the mid-bay in August with pCO2 as low as 50 µatm and oversaturated DO% of 200%. In addition to biological control, vertical mixing and upwelling controlled by wind direction and tidal stage played an important role in controlling surface pCO2 in the mid-bay as is evidenced by co-occurrence of high pCO2 with low temperature and low oxygen or high salinity from the subsurface. These physical processes occurred regularly and in short time scale of hours, suggesting they must be considered in the assessment of annual <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span>. Seasonally, the upper-bay acted as a source for atmospheric CO2 over the course of a year. The boundary of upper and mid bay transited from a CO2 source to a sink from May to August and was a source again in October due to strong biological production in summer. In contrast, the mid-bay represented as a CO2 source with large temporal variation due to dynamic hydrographic settings. The lower-bay transited from a weak sink in May to equilibrated with the atmosphere from June to August, while became a source again in October. Moreover, the CO2 <span class="hlt">flux</span> could be reversed very quickly under episodic severe weather events. Thus further research, including the influence of severe weather and subsequent bloom, is needed to get better understanding of the carbon</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..742J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..742J"><span>In situ evaluation of <span class="hlt">air-sea</span> CO2 gas transfer velocity in an inner estuary using eddy covariance - with a special focus on the importance of using reliable CO2-<span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jørgensen, E. T.; Sørensen, L. L.; Jensen, B.; Sejr, M. K.</p> <p>2012-04-01</p> <p>The <span class="hlt">air-sea</span> exchange of CO2 or CO2 <span class="hlt">flux</span> is driven by the difference in the partial pressure of CO2 in the water and the atmosphere (ΔpCO2), the solubility of CO2 (K0) and the gas transfer velocity (k) (Wanninkhof et al., 2009;Weiss, 1974) . ΔpCO2 and K0 are determined with relatively high precision and it is estimated that the biggest uncertainty when modelling the <span class="hlt">air-sea</span> <span class="hlt">flux</span> is the parameterization of k. As an example; the estimated global <span class="hlt">air-sea</span> <span class="hlt">flux</span> increases by 70 % when using the parameterization by Wanninkhof and McGillis (1999) instead of Wanninkhof (1992) (Rutgersson et al., 2008). In coastal areas the uncertainty is even higher and only few studies have focused on determining transfer velocity for the coastal waters and even fewer on estuaries (Borges et al., 2004;Rutgersson et al., 2008). The transfer velocity (k600) of CO2 in the inner estuary of Roskilde Fjord, Denmark was investigated using eddy covariance CO2 <span class="hlt">fluxes</span> (ECM) and directly measured ΔpCO2 during May and June 2010. The data was strictly sorted to heighten the certainty of the results and the outcome was; DS1; using only ECM, and DS2; including the inertial dissipation method (IDM). The inner part of Roskilde Fjord showed to be a very biological active CO2 sink and preliminary results showed that the average k600 was more than 10 times higher than transfer velocities from similar studies of other coastal areas. The much higher transfer velocities were estimated to be caused by the greater fetch and shallower water in Roskilde Fjord, which indicated that turbulence in both <span class="hlt">air</span> and water influence k600. The wind speed parameterization of k600 using DS1 showed some scatter but when including IDM the r2 of DS2 reached 0.93 with an exponential parameterization, where U10 was based on the Businger-Dyer relationships using friction velocity and atmospheric stability. This indicates that some of the uncertainties coupled with CO2 <span class="hlt">fluxes</span> calculated by the ECM are removed when including the IDM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8.1093P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8.1093P"><span>The potential of using remote sensing data to estimate <span class="hlt">air-sea</span> CO2 exchange in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase</p> <p>2017-12-01</p> <p>In this article, we present the first climatological map of <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> over the Baltic <span class="hlt">Sea</span> based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 <span class="hlt">fluxes</span> are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude <span class="hlt">flux</span> estimations. Furthermore, the CO2 <span class="hlt">fluxes</span> were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in <span class="hlt">fluxes</span> reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic <span class="hlt">Sea</span>, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open <span class="hlt">sea</span> (-4 mmol m-2 d-1). In its entirety, the Baltic <span class="hlt">Sea</span> acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890062534&hterms=moisture+condensation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmoisture%2Bcondensation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890062534&hterms=moisture+condensation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmoisture%2Bcondensation"><span>Boundary layer warming by condensation - <span class="hlt">Air-sea</span> interaction during an extreme cold <span class="hlt">air</span> outbreak from the eastern coast of the United States</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grossman, Robert L.</p> <p>1988-01-01</p> <p>Studies on an intense cold <span class="hlt">air</span> outbreak that took place after a cold <span class="hlt">air</span> cyclogenesis on January 27, 1986 are reviewed. Particular attention is given to data obtained during a multiaircraft research mission carried out on January 28, 1986 as part of the Genesis of Atlantic Lows Experiment. It was found that condensation <span class="hlt">heating</span> of the subcloud layer <span class="hlt">air</span> was comparable to <span class="hlt">heating</span> by turbulent <span class="hlt">flux</span> divergence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867961','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867961"><span>Optical <span class="hlt">heat</span> <span class="hlt">flux</span> gauge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.</p> <p>1991-01-01</p> <p>A <span class="hlt">heat</span> <span class="hlt">flux</span> gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the <span class="hlt">heat</span> <span class="hlt">flux</span> on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA34004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA34004R"><span>Large eddy simulation of <span class="hlt">heat</span> entrainment under Arctic <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand</p> <p>2017-11-01</p> <p><span class="hlt">Sea</span> ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping <span class="hlt">heat</span> from solar radiation. The interaction of these warm layers with a moving ice basal surface is investigated using large eddy simulation. We find that the presence of the NSTM enhances <span class="hlt">heat</span> entrainment from the mixed layer. Another conclusion from our work is that there is no <span class="hlt">heat</span> entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the <span class="hlt">heat</span> <span class="hlt">flux</span> at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent <span class="hlt">heat</span> <span class="hlt">flux</span> from the mixed layer that is approximately 70% of the total ocean-to-ice <span class="hlt">heat</span> <span class="hlt">flux</span> estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840016704','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840016704"><span>Performance of thermal barrier coatings in high <span class="hlt">heat</span> <span class="hlt">flux</span> environments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, R. A.; Berndt, C. C.</p> <p>1984-01-01</p> <p>Thermal barrier coatings were exposed to the high temperature and high <span class="hlt">heat</span> <span class="hlt">flux</span> produced by a 30 kW plasma torch. Analysis of the specimen <span class="hlt">heating</span> rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven <span class="hlt">heating</span> caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was <span class="hlt">heat</span> treated in argon also did not surface spall. <span class="hlt">Heat</span> treatment in <span class="hlt">air</span> led to spalling in as early as 2 cycle from <span class="hlt">heating</span> stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high <span class="hlt">heat</span> <span class="hlt">flux</span> conditions of this study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014337"><span>Thin Film <span class="hlt">Heat</span> <span class="hlt">Flux</span> Sensors: Design and Methodology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fralick, Gustave C.; Wrbanek, John D.</p> <p>2013-01-01</p> <p>Thin Film <span class="hlt">Heat</span> <span class="hlt">Flux</span> Sensors: Design and Methodology: (1) <span class="hlt">Heat</span> <span class="hlt">flux</span> is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of <span class="hlt">heat</span> <span class="hlt">flux</span> is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of <span class="hlt">heat</span> <span class="hlt">flux</span> provides a value for the convective <span class="hlt">heat</span> transfer coefficient that can be compared with the value provided by CFD codes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26931659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26931659"><span><span class="hlt">Air-sea</span> exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China <span class="hlt">Sea</span>, the Hainan Island, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei</p> <p>2016-06-01</p> <p>The <span class="hlt">air-sea</span> exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying <span class="hlt">air</span> in the tropical coast (Luhuitou fringing reef) of the South China <span class="hlt">Sea</span> (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in <span class="hlt">air</span> and surface waters, estimate the <span class="hlt">air-sea</span> Hg(0) <span class="hlt">flux</span>, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in <span class="hlt">air</span> and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to <span class="hlt">air</span> (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The <span class="hlt">air-sea</span> Hg(0) <span class="hlt">fluxes</span> were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) <span class="hlt">fluxes</span> was mainly attributed to the greatly temporal variation of wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AcMeS..27..308F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AcMeS..27..308F"><span>Numerical study on the impacts of the bogus data assimilation and <span class="hlt">sea</span> spray parameterization on typhoon ducts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fei, Jianfang; Ding, Juli; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua</p> <p>2013-06-01</p> <p>The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and <span class="hlt">sea</span> spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon's ambient boundary layer structure. <span class="hlt">Sea</span> spray affects typhoon ducts mainly by changing the latent <span class="hlt">heat</span> (LH) <span class="hlt">flux</span> at the <span class="hlt">air-sea</span> interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the <span class="hlt">sea</span> spray; otherwise, the typhoon duct is weakened. The <span class="hlt">sea</span> spray induced changes in the <span class="hlt">air-sea</span> sensible <span class="hlt">heat</span> (SH) <span class="hlt">flux</span> and LH <span class="hlt">flux</span> are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060032490&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsonar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060032490&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsonar"><span>Combined Satellite - and ULS-Derived <span class="hlt">Sea</span>-Ice <span class="hlt">Flux</span> in the Weddell <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, M.; Liu, X.; Harms, S.</p> <p>2000-01-01</p> <p>Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume <span class="hlt">flux</span> record at points along a <span class="hlt">flux</span> gate across the Weddell <span class="hlt">Sea</span>, Antarctica.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoRL..3314803Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoRL..3314803Z"><span>Impacts of winter storms on <span class="hlt">air-sea</span> gas exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Weiqing; Perrie, Will; Vagle, Svein</p> <p>2006-07-01</p> <p>The objective of this study is to investigate <span class="hlt">air-sea</span> gas exchange during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on <span class="hlt">sea</span> state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the <span class="hlt">flux</span> rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867881','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867881"><span>Optical <span class="hlt">heat</span> <span class="hlt">flux</span> gauge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.</p> <p>1991-01-01</p> <p>A <span class="hlt">heat</span> <span class="hlt">flux</span> gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the <span class="hlt">heat</span> <span class="hlt">flux</span> on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A23A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A23A..04C"><span><span class="hlt">Air-Sea</span> Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curcic, M.; Chen, S. S.</p> <p>2016-02-01</p> <p>The atmosphere and ocean are coupled through momentum, enthalpy, and mass <span class="hlt">fluxes</span>. Accurate representation of these <span class="hlt">fluxes</span> in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating <span class="hlt">air-sea</span> momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of <span class="hlt">sea</span> surface temperature and upper ocean parameterization on <span class="hlt">air-sea</span> enthalpy <span class="hlt">fluxes</span> in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of <span class="hlt">air-sea</span> coupling processes in coupled prediction models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/467708-measurements-co-sub-fluxes-bubbles-from-tower-during-asgasex','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/467708-measurements-co-sub-fluxes-bubbles-from-tower-during-asgasex"><span>Measurements of CO{sub 2} <span class="hlt">fluxes</span> and bubbles from a tower during ASGASEX</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leeuw, G. de; Kunz, G.J.; Larsen, S.E.</p> <p>1994-12-31</p> <p>The <span class="hlt">Air-Sea</span> Gas Exchange experiment ASGASEX was conducted from August 30 until October 1st from the Meetpost Noordwijk (MPN), a research tower in the North <span class="hlt">Sea</span> at 9 km from the Dutch coast. The objective of ASGASEX was a study of parameters affecting the <span class="hlt">air-sea</span> exchange of gases, and a comparison of experimental methods to derive the exchange coefficient for CO{sub 2}. A detailed description of the ASGASEX experiment is presented in Oost. The authors` contribution to ASGASEX was a micro-meteorological package to measure the <span class="hlt">fluxes</span> of CO{sub 2}, momentum, <span class="hlt">heat</span> and water vapor, and an instrument to measure themore » size distribution of bubbles just below the <span class="hlt">sea</span> surface. In this contribution the authors report preliminary results from the CO{sub 2} <span class="hlt">flux</span> measurements and the bubble measurements. The latter was made as part of a larger study on the influence of bubbles on gas exchange in cooperation with the University of Southampton and the University of Galway.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26219636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26219636"><span>A <span class="hlt">heat</span> <span class="hlt">flux</span> modulator from carbon nanotubes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Shaohui; Zhang, Guang; Xia, Dan; Liu, Changhong; Fan, Shoushan</p> <p>2015-08-28</p> <p>For a <span class="hlt">heat</span> <span class="hlt">flux</span> modulator, the most difficult problem is that the main carriers named 'phonons' have little response to external fields. Of the existing studies on <span class="hlt">heat</span> <span class="hlt">flux</span> modulators, most were theoretical work and the materials systems for the theoretical calculations were artificial lattices. In this paper, we made a <span class="hlt">heat</span> modulator with ultrathin buckypaper which was made of multi-layer carbon nanotube sheets overlapped together, and achieved an on/off ratio whose value was 1.41 using an pendent block in experiments without special optimizations. When the temperatures of the two sides were of appropriate values, we could even see a negative <span class="hlt">heat</span> <span class="hlt">flux</span>. Intuitively, the <span class="hlt">heat</span> <span class="hlt">flux</span> was tuned by the gap between the buckypaper and the pendent gate, and we observed that there was <span class="hlt">heat</span> transferred to the pendent block. The structure of the modulator is similar to a CNT transistor with a contactless gate, hence this type of micromodulator will be easy to manufacture in the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA629979','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA629979"><span>Analysis of Near-Surface Oceanic Measurements Obtained During the Low-Wind Component of the Coupled Boundary Layers and <span class="hlt">Air-Sea</span> Transfer (CBLAST) Experiment</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-09-30</p> <p>temperature and the upwelling IR radiative <span class="hlt">heat</span> <span class="hlt">flux</span> were obtained from a pyrometer . The <span class="hlt">heat</span> <span class="hlt">fluxes</span> are combined to compute the net <span class="hlt">heat</span> <span class="hlt">flux</span> into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the <span class="hlt">sea</span> surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1084256','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1084256"><span>Tracking <span class="hlt">heat</span> <span class="hlt">flux</span> sensors for concentrating solar applications</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Andraka, Charles E; Diver, Jr., Richard B</p> <p>2013-06-11</p> <p>Innovative tracking <span class="hlt">heat</span> <span class="hlt">flux</span> sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With <span class="hlt">flux</span> sensors mounted near a receiver's aperture, the <span class="hlt">flux</span> gradient near the focus of a dish or trough collector can be used to precisely position the focused solar <span class="hlt">flux</span> on the receiver. The <span class="hlt">heat</span> <span class="hlt">flux</span> sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to <span class="hlt">heat</span> <span class="hlt">flux</span> intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a <span class="hlt">heat</span> sink to maintain an acceptable operating temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820007826','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820007826"><span>Analysis of the surface <span class="hlt">heat</span> balance over the world ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esbensen, S. K.</p> <p>1981-01-01</p> <p>It is possible to estimate long term monthly mean latent and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> over the ocean to within or approximately 20% relative accuracy of the bulk aerodynamic formulas, by using observations of the monthly mean surface wind speed and the monthly mean <span class="hlt">sea</span> <span class="hlt">air</span> temperature and humidity differences. It is possible to make an estimate of the <span class="hlt">fluxes</span> on a month to month basis from monthly averaged surface data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1726S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1726S"><span>Impact of winter cooling on the northern part of the Black <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savchenko, Anatolii</p> <p>2016-07-01</p> <p>Climate change in the future may have a negative impact on many countries due to the increasing surface temperature and <span class="hlt">sea</span> level rise. Probably, unprecedented largest positive trend of surface temperature, which observed since the mid XX century, has associated with increasing human activities around the world. Moreover, this warming will continue in this century, and at the end of the XXI century will be 2 - 5 ºC. Thus, investigation and monitoring of current climate are very important and necessary tasks. Regional model data (downscaling) and satellite data are used, because of underdeveloped network of meteorological stations in the northern part of the Black <span class="hlt">Sea</span> region. Experiment of downscaling was carried out for the Black <span class="hlt">Sea</span> region with a high spatial resolution of 0.22° x 0.22° for 1958 - 2007(daily values). For the Black <span class="hlt">Sea</span> were also used satellite data of <span class="hlt">sea</span> surface temperature(SST) from MyOcean-2 Project, which CNR(Rome) has reprocessed Pathfinder V5.2 (PFV52) AVHRR data over period 1981 - 2012 with daily gap-free maps (L4) at the original PFV52 resolution at 0.04° x 0.04°. Correlation between satellite SST and surface temperature from regional model climate are amounted 0,99. Thus, surface temperature of model and satellite data for the Black <span class="hlt">Sea</span> is much correlated between yourself. The following integral characteristics of the Black <span class="hlt">Sea</span> are referred to the area of <span class="hlt">sea</span> limited by the 44 - 47º N and 28 - 34º E. Maximum cooling of the north-western part of the Black <span class="hlt">Sea</span> in winter is occurs after invasion of cold <span class="hlt">air</span> across the northern border of the basin. In addition, this water area is also interesting in the presence of her huge oil and gas reserves, as well as the construction of liquefied gas (crude oil) terminals. The maximum values of total <span class="hlt">heat</span> <span class="hlt">flux</span> (sensible + latent <span class="hlt">heat</span> <span class="hlt">fluxes</span>= Q) corresponding to the minimum values of SST are observed during the periods of the negative phase of the NAO. Besides, <span class="hlt">fluxes</span> with extreme days P (Q) = 95</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123...53F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123...53F"><span>The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface <span class="hlt">Heat</span> <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.</p> <p>2018-01-01</p> <p><span class="hlt">Sea</span>-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface <span class="hlt">heat</span> <span class="hlt">flux</span>. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave <span class="hlt">heat</span> <span class="hlt">flux</span> for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave <span class="hlt">heat</span> <span class="hlt">flux</span> into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the <span class="hlt">sea</span> surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal <span class="hlt">heat</span> <span class="hlt">flux</span> estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JNuM..176..110W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JNuM..176..110W"><span>Structures for handling high <span class="hlt">heat</span> <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watson, R. D.</p> <p>1990-12-01</p> <p>The divertor is reconized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand <span class="hlt">heat</span> <span class="hlt">fluxes</span> > 5 MW/m 2. High velocity, sub-cooled water with twisted tape inserts for enhanced <span class="hlt">heat</span> transfer provides a critical <span class="hlt">heat</span> <span class="hlt">flux</span> limit of 40-60 MW/m 2. Uncertainties in physics and engineering <span class="hlt">heat</span> <span class="hlt">flux</span> peaking factors require that the design <span class="hlt">heat</span> <span class="hlt">flux</span> not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and <span class="hlt">heat</span> sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high <span class="hlt">heat</span> <span class="hlt">flux</span> components.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21233734-measurement-gas-species-temperatures-coal-burnout-wall-heat-fluxes-mwe-lignite-fired-boiler-different-overfire-air-damper-openings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21233734-measurement-gas-species-temperatures-coal-burnout-wall-heat-fluxes-mwe-lignite-fired-boiler-different-overfire-air-damper-openings"><span>Measurement of gas species, temperatures, coal burnout, and wall <span class="hlt">heat</span> <span class="hlt">fluxes</span> in a 200 MWe lignite-fired boiler with different overfire <span class="hlt">air</span> damper openings</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jianping Jing; Zhengqi Li; Guangkui Liu</p> <p></p> <p>Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire <span class="hlt">air</span> (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and <span class="hlt">heat</span> <span class="hlt">flux</span> and boiler efficiency were measured. Cold <span class="hlt">air</span> experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary <span class="hlt">air</span> region in the burner. As the secondary <span class="hlt">air</span> flow increases, the axial velocity of <span class="hlt">air</span> flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of <span class="hlt">air</span> flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary <span class="hlt">air</span> region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and <span class="hlt">heat</span> <span class="hlt">flux</span> in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP21B0868P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP21B0868P"><span>Temperature Dynamics in Very Shallow Water Bodies: the Role of <span class="hlt">Heat</span> <span class="hlt">Fluxes</span> at the Soil-Water Interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pivato, M.; Carniello, L.; Silvestri, S.; Marani, M.; Gardner, J.</p> <p>2016-12-01</p> <p>Water temperature represents one of the crucial factors driving the ecological processes in water bodies. Many contributions are available in the literature that describe temperature dynamics in deep basins as lakes or <span class="hlt">seas</span>. Those basins are typically stratified which makes important to represent the vertical profile of the water temperature. Dealing with shallow water bodies, such as rivers, shallow lakes and lagoons, simplifies the problem because the water temperature can be assumed uniform in the water column. Conversely, the <span class="hlt">heat</span> exchange at the soil-water interface assumes an important role in the water temperature dynamics. Notwithstanding, very few studies and data about this process are available in the literature. In order to provide more insight on the soil contribution to water temperature dynamics, we performed ad hoc field measurements in the Venice lagoon,. We selected a location on a tidal flat in the northern part of the lagoon, close to the Sant'Erasmo Island, where we measured the temperature within the water column and the first 1.5 m of the soil. Data collection started in July 2015 and is still ongoing. We used the data to characterize the <span class="hlt">heat</span> <span class="hlt">flux</span> at the water-soil interface in different periods of the year and to develop a "point" model for describing the evolution of the temperature in the water column. The insight on the process provided by the data and by the point model: i) enabled us to determine the soil thermal properties (diffusivity and <span class="hlt">heat</span> capacity); ii) confirms the uniform profile of the water temperature in the water column; iii) demonstrates that the <span class="hlt">heat</span> <span class="hlt">flux</span> at the soil-water interface is comparable with other <span class="hlt">fluxes</span> at the <span class="hlt">air</span>-water interface and iv) highlights the important role exerted by advective water <span class="hlt">fluxes</span>. The latter will be accounted for developing a module for describing the dynamic of the temperature to be coupled with an already existing 2D hydrodynamic model of the Venice lagoon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MicST..27..369W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MicST..27..369W"><span>Experiments of Transient Condensation <span class="hlt">Heat</span> Transfer on the <span class="hlt">Heat</span> <span class="hlt">Flux</span> Senor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue</p> <p>2015-09-01</p> <p>The influence of transient <span class="hlt">heat</span> transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation <span class="hlt">heat</span> and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as <span class="hlt">heat</span> pipes, loop <span class="hlt">heat</span> pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit <span class="hlt">heat</span> transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation <span class="hlt">heat</span> <span class="hlt">flux</span> on vertical surface is higher than it on horizontal surface. The transit <span class="hlt">heat</span> <span class="hlt">flux</span> of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation <span class="hlt">heat</span> <span class="hlt">flux</span> with vapor forced convection is many times more than it with natural convection. All of <span class="hlt">heat</span> <span class="hlt">flux</span> for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and <span class="hlt">heat</span> transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867765','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867765"><span>Optical <span class="hlt">heat</span> <span class="hlt">flux</span> gauge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.</p> <p>1991-01-01</p> <p>A <span class="hlt">heat</span> <span class="hlt">flux</span> gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the <span class="hlt">heat</span> <span class="hlt">flux</span> on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...173...70C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...173...70C"><span><span class="hlt">Air-sea</span> CO2 <span class="hlt">fluxes</span> for the Brazilian northeast continental shelf in a climatic transition region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carvalho, A. C. O.; Marins, R. V.; Dias, F. J. S.; Rezende, C. E.; Lefèvre, N.; Cavalcante, M. S.; Eschrique, S. A.</p> <p>2017-09-01</p> <p>Oceanographic cruises were carried out in October 2012 (3°S-5°S and 38,5°W-35,5°W) and in September 2014 (1°S-4°S and 43°W-37°W), measuring atmospheric and <span class="hlt">sea</span> surface CO2 fugacity (fCO2) underway in the northeast coast of Brazil. <span class="hlt">Sea</span> surface water samples were also collected for chlorophyll a, nutrients and DOC analysis. During the second cruise, the sampling area covered a transition between semi-arid to more humid areas of the coast, with different hydrologic and rainfall regimes. The seawater fCO2sw, in October 2012, was in average 400.9 ± 7.3μatm and 391.1 ± 6.3 μatm in September 2014. For the atmosphere, the fCO2<span class="hlt">air</span> in October 2012 was 375.8 ± 2.0 μatm and in September 2014, 368.9 ± 2.2 μatm. The super-saturation of the seawater in relation to the atmosphere indicates a source of CO2 to the atmosphere. The entire study area presents oligotrophic conditions. Despite the low concentrations, Chl a and nutrients presented significant influence on fCO2sw, particularly in the westernmost and more humid part of the northeast coast, where river <span class="hlt">fluxes</span> are three orders of magnitude larger than eastern rivers and rainfall events are more intense and constant. fCO2sw spatial distribution presented homogeneity along the same transect and longitudinal heterogeneity, between east and west, reinforcing the hypothesis of transition between two regions of different behaviour. The fCO2sw at the eastern portion was controlled by parameters such as temperature and salinity. At the western portion, fCO2sw was influenced by nutrient and Chl a. Calculated instantaneous CO2 <span class="hlt">flux</span> ranged from + 1.66 to + 7.24 mmol m- 2 d- 1 in the first cruise and + 0.89 to + 14.62 mmol m- 2 d- 1 in the second cruise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1030872','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1030872"><span>Effects of Mixed Layer Shear on Vertical <span class="hlt">Heat</span> <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-12-01</p> <p>correlation of ice speed to <span class="hlt">heat</span> <span class="hlt">flux</span> (r = .312, p < .001). Relationships between ice speed and shear (r = .107, p < .001), ice speed and inverse ...Richardson number (r = .035, p = .256), inverse Richardson number and <span class="hlt">heat</span> <span class="hlt">flux</span> (r = .3, p < .001), <span class="hlt">heat</span> content and <span class="hlt">heat</span> <span class="hlt">flux</span> (r = .084, p < .001) were...correlation of ice speed to <span class="hlt">heat</span> <span class="hlt">flux</span> (r = .312, p < .001). Relationships between ice speed and shear (r = .107, p < .001), ice speed and inverse Richardson</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1373840-novel-approach-evaluate-soil-heat-flux-calculation-analytical-review-nine-methods-soil-heat-flux-calculation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1373840-novel-approach-evaluate-soil-heat-flux-calculation-analytical-review-nine-methods-soil-heat-flux-calculation"><span>A novel approach to evaluate soil <span class="hlt">heat</span> <span class="hlt">flux</span> calculation: An analytical review of nine methods: Soil <span class="hlt">Heat</span> <span class="hlt">Flux</span> Calculation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gao, Zhongming; Russell, Eric S.; Missik, Justine E. C.</p> <p></p> <p>We evaluated nine methods of soil <span class="hlt">heat</span> <span class="hlt">flux</span> calculation using field observations. All nine methods underestimated the soil <span class="hlt">heat</span> <span class="hlt">flux</span> by at least 19%. This large underestimation is mainly caused by uncertainties in soil thermal properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25639080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25639080"><span>[Distribution, <span class="hlt">flux</span> and biological consumption of carbon monoxide in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> in summer].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jing; Lu, Xiao-Lan; Yang, Gui-Peng; Xu, Guan-Qiu</p> <p>2014-11-01</p> <p>Carbon monoxide (CO) concentration distribution, <span class="hlt">sea-to-air</span> <span class="hlt">flux</span> and microbial consumption rate constant, along with atmospheric CO mixing ratio, were measured in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> in summer. Atmospheric CO mixing ratios varied from 68 x 10(-9) -448 x 10(-9), with an average of 117 x 10(-9) (SD = 68 x 10(-9), n = 36). Overall, the concentrations of atmospheric CO displayed a decreasing trend from the coastal stations to the offshore stations. The surface water CO concentrations in the investigated area ranged from 0.23-7.10 nmol x L(-1), with an average of 2.49 nmol x L(-1) (SD = 2.11, n = 36). The surface water CO concentrations were significantly affected by sunlight. Vertical profiles showed that CO concentrations rapidly declined with depth, with the maximum values appearing in the surface water. CO concentrations exhibited obvious diurnal variations in the study area, with the maximum values being 6-40 folds higher than the minimum values. Minimal concentrations of CO all occurred before dawn. However, the maximal concentrations of CO occurred at noon. Marked diurnal variation in the concentrations of CO in the water column indicated that CO was produced primarily by photochemistry. The surface CO concentrations were oversaturated relative to the atmospheric concentrations and the saturation factors ranged from 1.99-99.18, with an average of 29.36 (SD = 24.42, n = 29). The East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> was a net source of atmospheric CO. The <span class="hlt">sea-to-air</span> <span class="hlt">fluxes</span> of CO in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> ranged 0.37-44.84 μmol x (m2 x d)(-1), with an average of 12.73 μmol x (m2 x d)(-1) (SD = 11.40, n = 29). In the incubation experiments, CO concentrations decreased exponentially with incubation time and the processes conformed to the first order reaction characteristics. The microbial CO consumption rate constants (K(co)) in the surface water ranged from 0.12 to 1.45 h(-1), with an average of 0.47 h(-1) (SD = 0</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3762D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3762D"><span>Comparison of the ocean surface vector winds over the Nordic <span class="hlt">Seas</span> and their application for ocean modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dukhovskoy, Dmitry; Bourassa, Mark</p> <p>2017-04-01</p> <p>Ocean processes in the Nordic <span class="hlt">Seas</span> and northern North Atlantic are strongly controlled by <span class="hlt">air-sea</span> <span class="hlt">heat</span> and momentum <span class="hlt">fluxes</span>. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic <span class="hlt">Seas</span> for deep convection. In winter, intensive cooling and possibly salt <span class="hlt">flux</span> from newly formed <span class="hlt">sea</span> ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> to the <span class="hlt">sea</span> ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in <span class="hlt">air-sea</span> <span class="hlt">heat</span> and momentum <span class="hlt">fluxes</span>, water mass formation, ocean circulation, as well as volume and <span class="hlt">heat</span> transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic <span class="hlt">Seas</span> and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> during storm events. Next, it is hypothesized that discrepancies in the wind vorticity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24952420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24952420"><span>Methods, <span class="hlt">fluxes</span> and sources of gas phase alkyl nitrates in the coastal <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc</p> <p>2014-10-01</p> <p>The daily and seasonal atmospheric concentrations, deposition <span class="hlt">fluxes</span> and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North <span class="hlt">Sea</span> were determined. An adapted sampler design for low- and high-volume <span class="hlt">air</span>-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in <span class="hlt">air</span> samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. <span class="hlt">Air</span> mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main <span class="hlt">air</span> masses on AN levels in the <span class="hlt">air</span>. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK <span class="hlt">air</span> masses, while longer chain ANs prevailed in continental <span class="hlt">air</span>. The overall mean N <span class="hlt">fluxes</span> of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen <span class="hlt">flux</span> were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1448Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1448Z"><span>Seasonal variation of <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> in the Terra Nova Bay of the Ross <span class="hlt">Sea</span>, Antarctica, based on year-round pCO2 observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.</p> <p>2017-12-01</p> <p>The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking <span class="hlt">sea</span>-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross <span class="hlt">Sea</span>, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast <span class="hlt">sea</span>-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although <span class="hlt">sea</span>-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the <span class="hlt">sea</span>-ice concentration was minimal. With growing <span class="hlt">sea</span> ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of <span class="hlt">sea</span>-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7274828','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7274828"><span>Optical <span class="hlt">heat</span> <span class="hlt">flux</span> gauge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.</p> <p>1991-04-09</p> <p>A <span class="hlt">heat</span> <span class="hlt">flux</span> gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the <span class="hlt">heat</span> <span class="hlt">flux</span> on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004475','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004475"><span>High <span class="hlt">heat</span> <span class="hlt">flux</span> measurements and experimental calibrations/characterizations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kidd, Carl T.</p> <p>1992-01-01</p> <p>Recent progress in techniques employed in the measurement of very high <span class="hlt">heat</span>-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved <span class="hlt">heat-flux</span> sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute <span class="hlt">heat-flux</span> calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of <span class="hlt">heat-flux</span> probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high <span class="hlt">heat-flux</span> levels are shown. Typical AEDC high-enthalpy arc heater <span class="hlt">heat-flux</span> data recently obtained with a Calspan-fabricated null-point probe model are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980017166','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980017166"><span>Forced Convection Boiling and Critical <span class="hlt">Heat</span> <span class="hlt">Flux</span> of Ethanol in Electrically <span class="hlt">Heated</span> Tube Tests</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.</p> <p>1998-01-01</p> <p>Electrically <span class="hlt">heated</span> tube tests were conducted to characterize the critical <span class="hlt">heat</span> <span class="hlt">flux</span> (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical <span class="hlt">heat</span> <span class="hlt">fluxes</span> up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical <span class="hlt">heat</span> <span class="hlt">flux</span> was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical <span class="hlt">heat</span> <span class="hlt">flux</span>. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical <span class="hlt">heat</span> <span class="hlt">flux</span> did not result in wall burnout. This result may significantly increase the engine <span class="hlt">heat</span> <span class="hlt">flux</span> design envelope for higher pressure conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A54C..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A54C..02M"><span>Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved <span class="hlt">Sea</span>-Salt Particle <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.</p> <p>2017-12-01</p> <p>The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production <span class="hlt">fluxes</span>. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle <span class="hlt">fluxes</span> using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for <span class="hlt">sea</span>-salt and ammoniums sulfate particle <span class="hlt">fluxes</span>. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the <span class="hlt">air</span> collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the <span class="hlt">sea</span>-salt particle <span class="hlt">fluxes</span> measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The <span class="hlt">sea</span>-salt particle detection limit of the Hy-Res REA <span class="hlt">flux</span> system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and <span class="hlt">sea</span>-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the <span class="hlt">sea</span>-salt particle <span class="hlt">fluxes</span>. In principle, the instrument can be applied to measure <span class="hlt">fluxes</span> of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860018364','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860018364"><span>Senstitivity analysis of horizontal <span class="hlt">heat</span> and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-<span class="hlt">air</span> outbreaks. M.S. Thesis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, Y. V.</p> <p>1986-01-01</p> <p>The effects of external parameters on the surface <span class="hlt">heat</span> and vapor <span class="hlt">fluxes</span> into the marine atmospheric boundary layer (MABL) during cold-<span class="hlt">air</span> outbreaks are investigated using the numerical model of Stage and Businger (1981a). These <span class="hlt">fluxes</span> are nondimensionalized using the horizontal <span class="hlt">heat</span> (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface <span class="hlt">flux</span> estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, <span class="hlt">sea</span> surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060044030&hterms=SLP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSLP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060044030&hterms=SLP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSLP"><span>Ross <span class="hlt">sea</span> ice motion, area <span class="hlt">flux</span>, and deformation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>kwok, Ron</p> <p>2005-01-01</p> <p>The <span class="hlt">sea</span> ice motion, area export, and deformation of the Ross <span class="hlt">Sea</span> ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross <span class="hlt">Sea</span>. With the passive microwave ice motion, the area export at a <span class="hlt">flux</span> gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area <span class="hlt">flux</span> that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross <span class="hlt">Sea</span> produces almost twice its own area of <span class="hlt">sea</span> ice during the winter. Cross-gate <span class="hlt">sea</span> level pressure (SLP) gradients explain 60% of the variance in the ice area <span class="hlt">flux</span>. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross <span class="hlt">Sea</span> Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983tehs.nasa...45A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983tehs.nasa...45A"><span>Development of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors for turbine airfoils and combustor liners</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, W. H.</p> <p>1983-10-01</p> <p>The design of durable turbine airfoils that use a minimum amount of cooling <span class="hlt">air</span> requires knowledge of the <span class="hlt">heat</span> loads on the airfoils during engine operation. Measurement of these <span class="hlt">heat</span> loads will permit the verification or modification of the analytical models used in the design process and will improve the ability to predict and confirm the thermal performance of turbine airfoil designs. <span class="hlt">Heat</span> <span class="hlt">flux</span> sensors for turbine blades and vanes must be compatible with the cast nickel-base and cobalt-base materials used in their fabrication and will need to operate in a hostile environment with regard to temperature, pressure and thermal cycling. There is also a need to miniaturize the sensors to obtain measurements without perturbing the <span class="hlt">heat</span> flows that are to be measured.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6719V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6719V"><span><span class="hlt">Air-sea</span> exchange over Black <span class="hlt">Sea</span> estimated from high resolution regional climate simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velea, Liliana; Bojariu, Roxana; Cica, Roxana</p> <p>2013-04-01</p> <p>Black <span class="hlt">Sea</span> is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other <span class="hlt">seas</span>, standard observations of the atmosphere are limited in time and space and available observation-based estimations of <span class="hlt">air-sea</span> exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of <span class="hlt">air-sea</span> exchange over Black <span class="hlt">Sea</span>, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the <span class="hlt">heat</span> and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: <span class="hlt">Air-sea</span> exchange in the Black <span class="hlt">Sea</span> estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.1229W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.1229W"><span>On the calculation of <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of CO2 in the presence of temperature and salinity gradients</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.</p> <p>2016-02-01</p> <p>The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the <span class="hlt">flux</span> of carbon dioxide (CO2) across the <span class="hlt">sea</span> surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of <span class="hlt">flux</span> require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 <span class="hlt">fluxes</span> of a cool skin on the <span class="hlt">sea</span> surface is large and ubiquitous. An opposing effect on calculated <span class="hlt">fluxes</span> is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 <span class="hlt">flux</span> calculations, though these haline effects are generally weaker than the thermal effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4279525','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4279525"><span><span class="hlt">Heat</span> <span class="hlt">Flux</span> Sensors for Infrared Thermography in Convective <span class="hlt">Heat</span> Transfer</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso</p> <p>2014-01-01</p> <p>This paper reviews the most dependable <span class="hlt">heat</span> <span class="hlt">flux</span> sensors, which can be used with InfraRed (IR) thermography to measure convective <span class="hlt">heat</span> transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various <span class="hlt">heat</span> <span class="hlt">flux</span> sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21H2245L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21H2245L"><span>Impact of Land-<span class="hlt">Sea</span> Thermal Contrast on Inland Penetration of <span class="hlt">Sea</span> Fog over The Yellow <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H. Y.; Chang, E. C.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> fog can be classified into a cold <span class="hlt">sea</span> fog that occurs when <span class="hlt">sea</span> surface temperature (SST) is colder than <span class="hlt">sea</span> <span class="hlt">air</span> temperature (SAT) and a warm <span class="hlt">sea</span> fog that occurs when the SST is warmer than the SAT. We simulated two <span class="hlt">sea</span> fog events over the Yellow <span class="hlt">Sea</span> which is surrounded by Korean Peninsula and mainland China using Weather Research and Forecasting (WRF) model. Our first aim is to understand contributions of major factors for the <span class="hlt">sea</span> fog formation. First, the two <span class="hlt">sea</span> fog events are designated as cold and warm types, and cooling rates as well as moistening rates are calculated employing bulk aerodynamic methods. Both cases show cooling and moistening by turbulent <span class="hlt">fluxes</span> play an important role in condensation either favorably or unfavorably. However, longwave radiative cooling is as or even stronger than turbulent cooling, suggesting it is the most decisive factor in formation of <span class="hlt">sea</span> fogs regardless of their type. Our second purpose of the study is to understand inland penetration of <span class="hlt">sea</span> fog in terms of thermal contrast (TC) and it was conducted through sensitivity tests of SST and land skin temperature (LST). In the SST sensitivity tests, increase of SSTs lead to that of upward turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> so that SATs rise which are responsible for evaporation of cloud waters and it is common response of the two events. In addition, change of the SST induce that of the TC and may affect the inland penetration of <span class="hlt">sea</span> fog. However, when the cloud waters over the <span class="hlt">sea</span> evaporate, it is hard to fully determine the inland penetration. As a remedy for this limitation, LST is now modified instead of SST to minimize the evaporation effect, maintaining the equivalent TC. In the case of cold <span class="hlt">sea</span> fog, land <span class="hlt">air</span> temperature (LAT) is warmer than SAT. Here, decrease of the LAT leads to weakening of the TC and favors the inland penetration. On the other hand, LAT is colder than the SAT in the warm <span class="hlt">sea</span> fog event. When the LAT decreases, the TC is intensified resulting in blocking of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9.1641P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9.1641P"><span>Modeling the <span class="hlt">air-sea</span> feedback system of Madeira Island</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pullen, Julie; Caldeira, Rui; Doyle, James D.; May, Paul; Tomé, Ricardo</p> <p>2017-07-01</p> <p>A realistic nested data-assimilating two-way coupled ocean/atmosphere modeling study (highest resolution 2 km) of Madeira Island was conducted for June 2011, when conditions were favorable for atmospheric vortex shedding. The simulation's island lee region exhibited relatively cloud-free conditions, promoting warmer ocean temperatures (˜2°C higher than adjacent waters). The model reasonably reproduced measured fields at 14 meteorological stations, and matched the dimensions and magnitude of the warm <span class="hlt">sea</span> surface temperature (SST) wake imaged by satellite. The warm SSTs in the wake are shown to imprint onto the atmospheric boundary layer (ABL) over several diurnal cycles by modulating the ABL depth up to ˜200-500 m. The erosion and dissipation of the warm ocean wake overnight was aided by atmospheric drainage flow and offshore advection of cold <span class="hlt">air</span> (ΔT = 2°C) that produced strong upward <span class="hlt">heat</span> <span class="hlt">fluxes</span> (˜50 W/m2 sensible and ˜250 W/m2 latent) on an episodic basis. Nevertheless, the warm wake was never entirely eroded at night due to the cumulative effect of the diurnal cycle. The spatial pattern of the diurnal warming varied day-to-day in location and extent. Significant mutual interaction of the oceanic and atmospheric boundary layers was diagnosed via <span class="hlt">fluxes</span> and temperature cross sections and reinforced by sensitivity runs. The simulation produces for the first time the interactive nature of the ocean and atmosphere boundary layers in the warm wake region of an island with complex terrain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039994"><span>Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin</p> <p>2012-01-01</p> <p>The coastal areas of the North-Western Mediterranean <span class="hlt">Sea</span> are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant <span class="hlt">air-sea</span> interactions, strong winds and large <span class="hlt">sea</span>-state can have catastrophic consequences in the coastal areas. To investigate these <span class="hlt">air-sea</span> interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean <span class="hlt">Sea</span> that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant <span class="hlt">sea</span> surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface <span class="hlt">heat</span> budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent <span class="hlt">heat</span> <span class="hlt">fluxes</span> also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum <span class="hlt">flux</span> parameterization as well as <span class="hlt">air-sea</span> and <span class="hlt">air</span>-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030000755','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030000755"><span>Corrections of <span class="hlt">Heat</span> <span class="hlt">Flux</span> Measurements on Launch Vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.</p> <p>2002-01-01</p> <p>Knowledge of aerothermally induced convective <span class="hlt">heat</span> transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface <span class="hlt">heat</span> <span class="hlt">flux</span> gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of <span class="hlt">heat</span> conduction, are used to measure the incident <span class="hlt">heat</span> <span class="hlt">flux</span>. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the <span class="hlt">heat</span> <span class="hlt">flux</span> incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive <span class="hlt">heat</span> transfer from the hotter insulation can cause the calorimeter to indicate <span class="hlt">heat</span> <span class="hlt">fluxes</span> higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.H32G..07O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.H32G..07O"><span>Measuring Subsurface Water <span class="hlt">Fluxes</span> Using a <span class="hlt">Heat</span> Pulse Sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ochsner, T. E.; Wang, Q.; Horton, R.</p> <p>2001-12-01</p> <p>Subsurface water <span class="hlt">flux</span> is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. <span class="hlt">Heat</span> pulse sensors have been proposed as promising tools for measuring subsurface water <span class="hlt">fluxes</span>. Our <span class="hlt">heat</span> pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water <span class="hlt">flux</span>, a 15-s <span class="hlt">heat</span> pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, <span class="hlt">heat</span> pulse methods have required cumbersome mathematical analysis to calculate soil water <span class="hlt">flux</span> from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water <span class="hlt">flux</span> and the ratio of the temperature increase downstream from the line <span class="hlt">heat</span> source to the temperature increase upstream from the line <span class="hlt">heat</span> source. The simplicity of this relationship makes <span class="hlt">heat</span> pulse sensors a more attractive option for measuring subsurface water <span class="hlt">fluxes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008740','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008740"><span>Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-<span class="hlt">Heat-Flux</span> Laser Testing using Luminescence Imaging</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.</p> <p>2011-01-01</p> <p>This presentation showed progress made in extending luminescence-base delamination monitoring to TBCs exposed to high <span class="hlt">heat</span> <span class="hlt">fluxes</span>, which is an environment that much better simulates actual turbine engine conditions. This was done by performing upconversion luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was employed to create the desired <span class="hlt">heat</span> <span class="hlt">flux</span>. Upconverison luminescence refers to luminescence where the emission is at a higher energy (shorter wavelength) than the excitation. Since there will be negligible background emission at higher energies than the excitation, this methods produces superb contrast. Delamination contrast is produced because both the excitation and emission wavelengths are reflected at delamination cracks so that substantially higher luminescence intensity is observed in regions containing delamination cracks. Erbium was selected as the dopant for luminescence specifically because it exhibits upconversion luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used to produce the <span class="hlt">heat</span> <span class="hlt">flux</span> in combination with forced <span class="hlt">air</span> backside cooling. Testing was performed at a lower (95 W/sq cm) and higher (125 W/sq cm) <span class="hlt">heat</span> <span class="hlt">flux</span> as well as furnace cycling at 1163C for comparison. The lower <span class="hlt">heat</span> <span class="hlt">flux</span> showed the same general behavior as furnace cycling, a gradual, "spotty" increase in luminescence associated with debond progression; however, a significant difference was a pronounced incubation period followed by acceleration delamination progression. These results indicate that extrapolating behavior from furnace cycling measurements will grossly overestimate remaining life under high <span class="hlt">heat</span> <span class="hlt">flux</span> conditions. The higher <span class="hlt">heat</span> <span class="hlt">flux</span> results were not only accelerated, but much different in character. Extreme bond coat rumpling occurred, and delamination propagation extended over much larger areas before precipitating macroscopic TBC failure. This indicates that under the higher <span class="hlt">heat</span> <span class="hlt">flux</span> (and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP41A0954M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP41A0954M"><span>New geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> map of Greenland and the Iceland hotspot track</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martos, Y. M.; Jordan, T. A.; Catalan, M.; Jordan, T. M.; Bamber, J. L.; Vaughan, D. G.</p> <p>2017-12-01</p> <p>Greenland is the second largest reservoir of water on Earth and about 80% of its surface is covered by ice. It is mainly composed of Archean blocks that collided during the Early Proterozoic. Indirect methods have been used to study its subglacial thermal conditions, geology and lithospheric structure. Numerous regions of basal melting are identified in the central and north Greenland but their relationship with geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> is not yet clear. Crustal thickness derived by seismology and gravity data are consistent, showing no significant lateral variations, and providing average values of about 40 and 36 km respectively. Even though Greenland is considered a craton its crust has been affected by the presume passage of the Iceland hotspot since at least 100 Ma. Here we present the newest and highest resolution Curie Depth and geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> maps for Greenland as well as their associated uncertainties. For estimating the Curie Depths we applied spectral methods to aeromagnetic data from the World Digital Magnetic Anomaly Map WDMAM2.0. Calculated Curie Depths vary from 25 to 50 km with shallower values located to the east. A thermal model is built based on the 1D <span class="hlt">heat</span> conduction equation and considering steady state conditions. The thermal parameters are then optimized using local values derived from direct measurements, temperature profiles and more indirect methods such as radar imaging. The <span class="hlt">heat</span> <span class="hlt">flux</span> distribution shows higher spatial variability and a very different pattern than previously proposed and with values of 50-80 mW/m2. We identify a NW-SE high <span class="hlt">heat</span> <span class="hlt">flux</span> feature crossing Greenland which we correlate with the Iceland hotspot track. Additionally, to evaluate the lithospheric structure we calculate the Bouguer anomaly from GOCO5s satellite free <span class="hlt">air</span> data and construct several gravity models across the proposed hotspot track. We show that a dense lower crust body in the same location the high <span class="hlt">heat</span> <span class="hlt">flux</span> trend is permissible from a gravimetric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO54B3239T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO54B3239T"><span>Argo float observations of basin-scale deep convection in the Irminger <span class="hlt">Sea</span> during winter 2011-2012</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thierry, V.; Piron, A.; Mercier, H.; Caniaux, G.</p> <p>2016-02-01</p> <p>An analysis of Argo data during the 2011-2012 winter revealed the presence of an exceptionally large number of profiles over the Irminger Basin with mixed layer depths (MLD) exceeding 700 m, which was deep enough to reach the pool of the intermediate Labrador <span class="hlt">Sea</span> Water located in the Irminger <span class="hlt">Sea</span>. Among them, 4 profiles exhibited an MLD of 1000 m, which was the maximum value observed this winter. Owing to the exceptional Argo sampling in the Irminger <span class="hlt">Sea</span> during that winter the different phases of the mixed layer deepening down to 1000 m and their spatial extents were observed for the first time in the Irminger <span class="hlt">Sea</span>. Two intense convective periods occurred in late January south of Cape Farewell and in late February-early March east of Greenland. A final deepening period was observed in mid-March during which the deepest mixed layers were observed. This long deepening period occurred in large regional areas and was followed by a rapid restratification phase. A mixed layer <span class="hlt">heat</span> budget along the trajectories of the 4 floats that sampled the deepest mixed layers showed that <span class="hlt">heat</span> loss at the <span class="hlt">air-sea</span> interface was mainly responsible for <span class="hlt">heat</span> content variations in the mixed layer. Greenland Tip Jets were of primary importance for the development of deep convection in the Irminger <span class="hlt">Sea</span> in the 2011-2012 winter. They enhanced the winter <span class="hlt">heat</span> loss and two long (more than 24 hours), intense and close in time late events boosted the mixed layer deepening down to 1000m. Net <span class="hlt">air-sea</span> <span class="hlt">fluxes</span>, the number of Greenland Tip Jets, the stratification of the water column, the NAO index and Ekman-induced <span class="hlt">heat</span> <span class="hlt">flux</span> are pertinent indicators to assess the favorable conditions for the development of deep convection in the Irminger <span class="hlt">Sea</span>. When considering each of those indicators, we concluded that the 2011-2012 event was not significantly different compared to the three other documented occurrences of deep convection in the Irminger <span class="hlt">Sea</span>.This work is a contribution to the NAOS project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002STIN...0310478C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002STIN...0310478C"><span>Diamond Microchannel <span class="hlt">Heat</span> Sink Designs For High <span class="hlt">Heat</span> <span class="hlt">Flux</span> Thermal Control</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.</p> <p>2002-08-01</p> <p>Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. <span class="hlt">heat</span> <span class="hlt">Flux</span> levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive <span class="hlt">heat</span> <span class="hlt">flux</span> levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond <span class="hlt">heat</span> spreaders to reduce <span class="hlt">flux</span> levels at or near to its source, and some have suggested that diamond microchannel <span class="hlt">heat</span> sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel <span class="hlt">heat</span> sinks to representative high <span class="hlt">heat</span> <span class="hlt">flux</span> problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel <span class="hlt">heat</span> sink has been fabricated, and another is in process and will be performance tested. The <span class="hlt">heat</span> sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH34B..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH34B..07S"><span>Oceanographic, <span class="hlt">Air-sea</span> Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, A.; Dean, C.</p> <p>2017-12-01</p> <p>The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean <span class="hlt">heat</span> content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and <span class="hlt">air-sea</span> interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the <span class="hlt">sea</span> surface temperature drops below the <span class="hlt">air</span> temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent <span class="hlt">heat</span> <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> and reduces the net longwave irradiance from the <span class="hlt">sea</span> surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the <span class="hlt">sea</span> surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the <span class="hlt">sea</span> surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868695','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868695"><span>Quantitative method for measuring <span class="hlt">heat</span> <span class="hlt">flux</span> emitted from a cryogenic object</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Duncan, Robert V.</p> <p>1993-01-01</p> <p>The present invention is a quantitative method for measuring the total <span class="hlt">heat</span> <span class="hlt">flux</span>, and of deriving the total power dissipation, of a <span class="hlt">heat-fluxing</span> object which includes the steps of placing an electrical noise-emitting <span class="hlt">heat-fluxing</span> object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the <span class="hlt">heat-fluxing</span> object or a temperature-dependent resistive thin film in intimate contact with the <span class="hlt">heat-fluxing</span> object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the <span class="hlt">heat-fluxing</span> object, and the temperature of the liquid helium bath when the electrical noise emitted by the <span class="hlt">heat-fluxing</span> object becomes greatly reduced, is determined. The total <span class="hlt">heat</span> <span class="hlt">flux</span> from the <span class="hlt">heat-fluxing</span> object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6278578','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6278578"><span>Quantitative method for measuring <span class="hlt">heat</span> <span class="hlt">flux</span> emitted from a cryogenic object</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Duncan, R.V.</p> <p>1993-03-16</p> <p>The present invention is a quantitative method for measuring the total <span class="hlt">heat</span> <span class="hlt">flux</span>, and of deriving the total power dissipation, of a <span class="hlt">heat-fluxing</span> object which includes the steps of placing an electrical noise-emitting <span class="hlt">heat-fluxing</span> object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the <span class="hlt">heat-fluxing</span> object or a temperature-dependent resistive thin film in intimate contact with the <span class="hlt">heat-fluxing</span> object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the <span class="hlt">heat-fluxing</span> object, and the temperature of the liquid helium bath when the electrical noise emitted by the <span class="hlt">heat-fluxing</span> object becomes greatly reduced, is determined. The total <span class="hlt">heat</span> <span class="hlt">flux</span> from the <span class="hlt">heat-fluxing</span> object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988ClDy....3...93C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988ClDy....3...93C"><span>Late Pleistocene variations in Antarctic <span class="hlt">sea</span> ice II: effect of interhemispheric deep-ocean <span class="hlt">heat</span> exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crowley, Thomas J.; Parkinson, Claire L.</p> <p>1988-10-01</p> <p>Variations in production rates of warm North Atlantic Deep Water (NADW) have been proposed as a mechanism for linking climate fluctuations in the northern and southern hemispheres during the Pleistocene. We have tested this hypothesis by examining the sensitivity of a thermodynamic/dynamic model for Antarctic <span class="hlt">sea</span> ice to changes in vertical ocean <span class="hlt">heat</span> <span class="hlt">flux</span> and comparing the simulations with modified CLIMAP <span class="hlt">sea</span>-ice maps for 18 000 B.P. Results suggest that changes in NADW production rates, and the consequent changes in the vertical ocean <span class="hlt">heat</span> <span class="hlt">flux</span> in the Antarctic, can only account for about 20% 30% of the overall variance in Antarctic <span class="hlt">sea</span>-ice extent. This conclusion has been validated against an independent geological data set involving a time series of <span class="hlt">sea</span>-surface temperatures from the subantarctic. The latter comparison suggests that, although the overall influence of NADW is relatively minor, the linkage may be much more significant at the 41 000-year obliquity period. Despite some limitations in the models and geological data, we conclude that NADW variations may have played only a modest role in causing late Pleistocene climate change in the high latitudes of the southern hemisphere. Our conclusion is consistent with calculations by Manabe and Broccoli (1985) suggesting that atmospheric CO2 changes may be more important for linking the two hemispheres.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43D2472C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43D2472C"><span>Sensitivity of the <span class="hlt">sea</span> ice concentration over the Kara-Barents <span class="hlt">Sea</span> in autumn to the winter temperature variability over East Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, K. H.; Chang, E. C.</p> <p>2017-12-01</p> <p>In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the <span class="hlt">sea</span> ice concentration over the Kara-Barents (KB) <span class="hlt">Sea</span> in autumn, which can affect winter temperature variability over East Asia. Prescribed <span class="hlt">sea</span> ice conditions are 1) climatological autumn <span class="hlt">sea</span> ice concentration obtained from 1982 to 2016, 2) reduced autumn <span class="hlt">sea</span> ice concentration by 50% of the climatology, and 3) increased autumn <span class="hlt">sea</span> ice concentration by 50% of climatology. Differently prescribed <span class="hlt">sea</span> ice concentration changes surface albedo, which affects surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> and near-surface <span class="hlt">air</span> temperature. The reduced (increased) <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> increases (decreases) near-surface <span class="hlt">air</span> temperature that leads the lower (higher) <span class="hlt">sea</span> level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> has remote effects on the <span class="hlt">sea</span> level pressure patterns over the East Asian region. The lower (higher) <span class="hlt">sea</span> level pressure over the KB <span class="hlt">sea</span> by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> in autumn can lead the colder (warmer) surface <span class="hlt">air</span> temperature over East Asia in winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO34A3045P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO34A3045P"><span>Long-terms Change of <span class="hlt">Sea</span> Surface Temperature in the South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Y. G.; Choi, A.</p> <p>2016-02-01</p> <p>Using the Hadley Centre Global <span class="hlt">Sea</span> Ice and <span class="hlt">Sea</span> Surface Temperature (HadISST) the long term trend in the South China <span class="hlt">Sea</span> (SCS) <span class="hlt">sea</span> surface temperature (SST) between 1950 and 2008 is investigated. Both in winter and summer SST was increased by comparable amounts, but the warming patterns and the governing processes was different. During winter warming rate was greater in the deep basin in the central part, while during summer near the southern part. In winter the net <span class="hlt">heat</span> <span class="hlt">flux</span> into the <span class="hlt">sea</span> was increased and could contribute to the warming. The pattern of the <span class="hlt">heat</span> <span class="hlt">flux</span>, however, was different from that of the warming. The <span class="hlt">heat</span> <span class="hlt">flux</span> was increased over the coastal area where warming was weaker, but decreased in deeper part where warming was stronger. The northeasterly monsoon wind weakened to lower the shoreward Ekman transport and the <span class="hlt">sea</span> surface height gradient. The cyclonic gyre that transports cold northern water to south was weakened to warm the ocean. The effect manifested more strongly southward western boundary currents, and subsequently cold advection. In summer the net surface <span class="hlt">heat</span> <span class="hlt">flux</span>, however, was reduced and could not contribute to the warming. Over the southern part of the ocean the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is antiparallel to the mean SST gradient. Firstly, southeastward cold advection is reduced to warm the surface near the southeastern boundary of the SCS. The upwelling southeast of Vietnam was also weakened to raise the SST east of Vietnam. Thus the weakening of the wind in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS32B0482E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS32B0482E"><span>The Coupled Boundary Layers and <span class="hlt">Air-Sea</span> Transfer (CBLAST) Experiments at the Martha's Vineyard Coastal Observatory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edson, J. B.</p> <p>2001-12-01</p> <p>The Woods Hole Oceanographic Institution (WHOI) completed the initial phase of the Martha's Vineyard Coastal Observatory (MVCO) in July of 2001. The MVCO is being using to monitor coastal atmospheric and oceanic processes. Specifically, the observatory is expected to: - Provide continuous long-term observations for climate studies. - Provide a reliable system and rugged sensors that allow opportunistic sampling of extreme events. - Provide a local climatology for intensive, short duration field campaigns. - Further facilitate regional studies of coastal processes by providing infrastructure that supports easy access to power and data. This talk provides an example of the last two objectives using the low wind component of the Office of Naval Research's (ONR) Coupled Boundary Layers and <span class="hlt">Air-Sea</span> Transfer (CBLAST) program. CBLAST-LOW has been designed to investigate <span class="hlt">air-sea</span> interaction and coupled atmospheric and oceanic boundary layer dynamics at low wind speeds where the dynamic processes are driven and/or strongly modulated by thermal forcing. This effort is being carried out by scientists at WHOI, NPS, NOAA, NRL, Rutgers, UW/APL, JH/APL, OSU, NCAR, and other institutions, and includes observational and modeling components. The MVCO is providing observations and infrastructure in support of several intensive operating periods in the summers of 2001, 2002, and possibly 2003. During these periods, the observational network around the observatory was and will be greatly expanded using traditional oceanographic moorings and bottom mounted instrumentation, innovative 2- and 3-D moored and drifting arrays, survey ships, AUVs, satellite remote sensing, and heavily instrumented aircraft. In addition, the MVCO cabled components will be extended out to the 20-m isobath where we plan to deploy a 35-m tower. The tower will be instrumented from 15-m above the ocean surface to the ocean bottom with instruments capable of directly measuring the momentum, <span class="hlt">heat</span>, and radiative</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010069509','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010069509"><span>A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>A dataset including daily- and monthly-mean turbulent <span class="hlt">fluxes</span> (momentum, latent <span class="hlt">heat</span>, and sensible <span class="hlt">heat</span>) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface <span class="hlt">air</span> humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent <span class="hlt">heat</span> <span class="hlt">flux</span> show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent <span class="hlt">heat</span> <span class="hlt">flux</span> show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent <span class="hlt">fluxes</span> and input variables are generally in good agreement with one of the best global analyzed <span class="hlt">flux</span> datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent <span class="hlt">heat</span> <span class="hlt">flux</span> and <span class="hlt">sea-air</span> humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface <span class="hlt">air</span> humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible <span class="hlt">heat</span> <span class="hlt">flux</span> is generally within +/-5</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS21B1971J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS21B1971J"><span>High-resolution modeling of local <span class="hlt">air-sea</span> interaction within the Marine Continent using COAMPS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.</p> <p>2016-12-01</p> <p>The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled <span class="hlt">air-sea</span> interaction and intra seasonal oscillations. The complex distribution of islands, shallow <span class="hlt">seas</span> with fairly small <span class="hlt">heat</span> storage and deep <span class="hlt">seas</span> with large <span class="hlt">heat</span> capacity is challenging to model. Diurnal convection over land-<span class="hlt">sea</span> is part of a land-<span class="hlt">sea</span> breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal <span class="hlt">seas</span>. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the <span class="hlt">air-sea</span> interaction associated with the land-<span class="hlt">sea</span> breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22A..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22A..08W"><span><span class="hlt">Heat</span> transfer in melt ponds with convection and radiative <span class="hlt">heating</span>: observationally-inspired modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.</p> <p>2016-12-01</p> <p>Melt ponds have key impacts on the evolution of Arctic <span class="hlt">sea</span> ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net <span class="hlt">heat-flux</span> perturbation of only a few Watts per square metre sufficient to explain the thinning of <span class="hlt">sea</span> ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective <span class="hlt">heat</span> transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy <span class="hlt">fluxes</span> and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative <span class="hlt">heating</span> and surface <span class="hlt">fluxes</span>. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative <span class="hlt">flux</span> and sensible <span class="hlt">heat</span> <span class="hlt">flux</span> at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming <span class="hlt">heat</span> <span class="hlt">flux</span> that is re-emitted to the atmosphere or transferred downward into the <span class="hlt">sea</span> ice to drive melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2333B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2333B"><span>On the importance of high-frequency <span class="hlt">air</span>-temperature fluctuations for spectroscopic corrections of open-path carbon dioxide <span class="hlt">flux</span> measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver</p> <p>2015-04-01</p> <p>A growing number of studies report systematic differences in CO2 <span class="hlt">flux</span> estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span>, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible <span class="hlt">heat</span> <span class="hlt">flux</span> and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and <span class="hlt">air</span> temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and <span class="hlt">air</span> temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast <span class="hlt">air</span>-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency <span class="hlt">air</span>-temperature fluctuations associated with the atmospheric surface-layer turbulent <span class="hlt">heat</span> exchange. If not corrected adequately, these fast <span class="hlt">air</span>-temperature variations can cause</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000003033','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000003033"><span>Numerical Analysis of a Radiant <span class="hlt">Heat</span> <span class="hlt">Flux</span> Calibration System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.</p> <p>1998-01-01</p> <p>A radiant <span class="hlt">heat</span> <span class="hlt">flux</span> gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the <span class="hlt">heat</span> <span class="hlt">flux</span> gages calibrated in it are to provide useful data during radiant <span class="hlt">heating</span> ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and <span class="hlt">heat</span> <span class="hlt">flux</span> gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident <span class="hlt">heat</span> <span class="hlt">flux</span> on the gage face, and flat plate erosion. Initial gage <span class="hlt">heat</span> <span class="hlt">flux</span> predictions from the model are found to be within 17% of experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/963766','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/963766"><span>QUANTIFICATION OF <span class="hlt">HEAT</span> <span class="hlt">FLUX</span> FROM A REACTING THERMITE SPRAY</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Eric Nixon; Michelle Pantoya</p> <p>2009-07-01</p> <p>Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify <span class="hlt">heat</span> <span class="hlt">flux</span> from a thermite spray is the objective of this study. Quick response sensors such as thin film <span class="hlt">heat</span> <span class="hlt">flux</span> sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that willmore » allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse <span class="hlt">heat</span> conduction code to calculate <span class="hlt">heat</span> <span class="hlt">flux</span> values. The details of this device are discussed and illustrated. Temperature and <span class="hlt">heat</span> <span class="hlt">flux</span> measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material <span class="hlt">heat</span> <span class="hlt">flux</span> sensor provides quantitative data with good repeatability.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985tehs.nasa...51A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985tehs.nasa...51A"><span>Development of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors for turbine airfoils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.</p> <p>1985-10-01</p> <p>The objectives of this program are to develop <span class="hlt">heat</span> <span class="hlt">flux</span> sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these <span class="hlt">heat</span> <span class="hlt">flux</span> sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank <span class="hlt">heat</span> source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify <span class="hlt">heat</span> <span class="hlt">flux</span> measurements produced by these sensors. The results of the cylinder in cross flow tests are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880001761','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880001761"><span>Development of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors for turbine airfoils</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.</p> <p>1985-01-01</p> <p>The objectives of this program are to develop <span class="hlt">heat</span> <span class="hlt">flux</span> sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these <span class="hlt">heat</span> <span class="hlt">flux</span> sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank <span class="hlt">heat</span> source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify <span class="hlt">heat</span> <span class="hlt">flux</span> measurements produced by these sensors. The results of the cylinder in cross flow tests are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4562J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4562J"><span>Causes and Consequences of Exceptional North Atlantic <span class="hlt">Heat</span> Loss in Recent Winters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu</p> <p>2016-04-01</p> <p>The mid-high latitude North Atlantic loses large amounts of <span class="hlt">heat</span> to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that <span class="hlt">heat</span> loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean <span class="hlt">heat</span> loss will be discussed. In 2013-2014, the net <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme <span class="hlt">heat</span> loss will be shown to be severe latent and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic <span class="hlt">Seas</span>. The associated <span class="hlt">sea</span> level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter <span class="hlt">heat</span> loss had a significant impact on the ocean extending from the <span class="hlt">sea</span> surface into the deeper layers and a re-emergent cold <span class="hlt">Sea</span> Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme <span class="hlt">heat</span> loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface <span class="hlt">heat</span> loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994usee.work..203D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994usee.work..203D"><span>Measurement of a surface <span class="hlt">heat</span> <span class="hlt">flux</span> and temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.</p> <p>1994-04-01</p> <p>The <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured <span class="hlt">heat</span> <span class="hlt">flux</span> q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high <span class="hlt">heat</span> <span class="hlt">fluxes</span>. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensor is directly proportional to the <span class="hlt">heat</span> <span class="hlt">flux</span>. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface <span class="hlt">heat</span> <span class="hlt">flux</span>. A version of the <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031900','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031900"><span>Measurement of a surface <span class="hlt">heat</span> <span class="hlt">flux</span> and temperature</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.</p> <p>1994-01-01</p> <p>The <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured <span class="hlt">heat</span> <span class="hlt">flux</span> q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high <span class="hlt">heat</span> <span class="hlt">fluxes</span>. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensor is directly proportional to the <span class="hlt">heat</span> <span class="hlt">flux</span>. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface <span class="hlt">heat</span> <span class="hlt">flux</span>. A version of the <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1409744','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1409744"><span>Effects of a Circulating-water Garment and Forced-<span class="hlt">air</span> Warming on Body <span class="hlt">Heat</span> Content and Core Temperature</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.</p> <p>2005-01-01</p> <p>Background: Forced-<span class="hlt">air</span> warming is sometimes unable to maintain perioperative normothermia. We therefore compared <span class="hlt">heat</span> transfer, regional <span class="hlt">heat</span> distribution, and core rewarming of forced-<span class="hlt">air</span> warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-<span class="hlt">air</span> cover. Overall, <span class="hlt">heat</span> balance was determined from the difference between cutaneous <span class="hlt">heat</span> loss (thermal <span class="hlt">flux</span> transducers) and metabolic <span class="hlt">heat</span> production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal <span class="hlt">flux</span> transducers, and “deep” arm and foot thermometers. Results: <span class="hlt">Heat</span> production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in <span class="hlt">heat</span> transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-<span class="hlt">air</span> warming had no effect on posterior <span class="hlt">heat</span> transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body <span class="hlt">heat</span> content 56% more than forced <span class="hlt">air</span>. Core temperatures thus increased faster than with circulating water than forced <span class="hlt">air</span>, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue <span class="hlt">heat</span> content increased twice as much as core <span class="hlt">heat</span> content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more <span class="hlt">heat</span> than forced <span class="hlt">air</span>, with the difference resulting largely from posterior <span class="hlt">heating</span>. Circulating water rewarmed patients 0.4°C/h faster than forced <span class="hlt">air</span>. A substantial peripheral</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...35a2003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...35a2003A"><span>The potential role of <span class="hlt">sea</span> spray droplets in facilitating <span class="hlt">air-sea</span> gas transfer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreas, E. L.; Vlahos, P.; Monahan, E. C.</p> <p>2016-05-01</p> <p>For over 30 years, <span class="hlt">air-sea</span> interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in <span class="hlt">air-sea</span> gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether <span class="hlt">sea</span> spray droplets can facilitate <span class="hlt">air-sea</span> gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on <span class="hlt">air-sea</span> gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ <span class="hlt">air</span> , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the <span class="hlt">air</span>-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ocgy...58..240P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ocgy...58..240P"><span>Sediment <span class="hlt">Flux</span> of Particulate Organic Phosphorus in the Open Black <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parkhomenko, A. V.; Kukushkin, A. S.</p> <p>2018-03-01</p> <p>The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black <span class="hlt">Sea</span> is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment <span class="hlt">fluxes</span> from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the <span class="hlt">sea</span> and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average <span class="hlt">flux</span> with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment <span class="hlt">flux</span> from the photosynthetic layer and ascending phosphate <span class="hlt">flux</span> to this layer is shown, which suggests their balance in the open <span class="hlt">sea</span>. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940024321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940024321"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> instrumentation for Hyflite thermal protection system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Diller, T. E.</p> <p>1994-01-01</p> <p>Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior <span class="hlt">heat</span> treatment of the sputtered pads. Sample <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a <span class="hlt">Heat</span> <span class="hlt">Flux</span> Microsensors in a shock tube facility at Virginia Tech. The response of the <span class="hlt">heat</span> <span class="hlt">flux</span> sensor was measured to be faster than 10 micro-s.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..550H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..550H"><span>The Impact of <span class="hlt">Air-Sea</span> Interactions on the Representation of Tropical Precipitation Extremes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.</p> <p>2018-02-01</p> <p>The impacts of <span class="hlt">air-sea</span> interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model <span class="hlt">sea</span>-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, <span class="hlt">air-sea</span> feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface <span class="hlt">fluxes</span>, and SST.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22390783-robustness-analysis-air-heating-plant-control-law-using-polynomial-chaos','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22390783-robustness-analysis-air-heating-plant-control-law-using-polynomial-chaos"><span>Robustness analysis of an <span class="hlt">air</span> <span class="hlt">heating</span> plant and control law by using polynomial chaos</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.</p> <p>2014-12-10</p> <p>This paper presents a robustness analysis of an <span class="hlt">air</span> <span class="hlt">heating</span> plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the <span class="hlt">air</span> input (that forces the <span class="hlt">air</span> through the tube) and a mass <span class="hlt">flux</span> sensor in the output. A <span class="hlt">heating</span> resistance warms the <span class="hlt">air</span> as it flows inside the tube, and a thermo-couple sensor measures the <span class="hlt">air</span> temperature. The plant has thus two inputs (the fan's rotation intensity and <span class="hlt">heat</span> generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (<span class="hlt">air</span> temperature and <span class="hlt">air</span> mass <span class="hlt">flux</span>, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass <span class="hlt">flux</span> sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcSci..13..997P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcSci..13..997P"><span>The spatial and interannual dynamics of the surface water carbonate system and <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> in the outer shelf and slope of the Eurasian Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pipko, Irina I.; Pugach, Svetlana P.; Semiletov, Igor P.; Anderson, Leif G.; Shakhova, Natalia E.; Gustafsson, Örjan; Repina, Irina A.; Spivak, Eduard A.; Charkin, Alexander N.; Salyuk, Anatoly N.; Shcherbakova, Kseniia P.; Panova, Elena V.; Dudarev, Oleg V.</p> <p>2017-11-01</p> <p>The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of <span class="hlt">air</span>, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) <span class="hlt">flux</span> between the ocean and the atmosphere, and the feedback of this <span class="hlt">flux</span> to climate. Knowledge of relevant processes in the Arctic <span class="hlt">seas</span> improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic <span class="hlt">seas</span> (the Barents, Kara, Laptev, and East Siberian <span class="hlt">seas</span>) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic <span class="hlt">seas</span> was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic <span class="hlt">sea</span>-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic <span class="hlt">seas</span>. The large, open, highly productive water area in the northern Barents <span class="hlt">Sea</span> enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic <span class="hlt">seas</span> under the 2007 environmental conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V"><span>The ocean mixed layer under Southern Ocean <span class="hlt">sea</span>-ice: seasonal cycle and forcing.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.</p> <p>2016-02-01</p> <p>The mixed-layer at the surface of the ocean is the gateway for all exchanges between <span class="hlt">air</span> and <span class="hlt">sea</span>. A vast area of the Southern Ocean is however seasonally capped by <span class="hlt">sea</span>-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and <span class="hlt">sea</span>-ice plays a key role for water-mass formation and circulation, carbon cycle, <span class="hlt">sea</span>-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under <span class="hlt">sea</span>-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under <span class="hlt">sea</span>-ice. Mixed-layer budgets of <span class="hlt">heat</span> and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of <span class="hlt">sea</span> surface salinity and temperature are primarily driven by surface processes, dominated by <span class="hlt">sea</span>-ice freshwater <span class="hlt">flux</span> for the salt budget, and by <span class="hlt">air-sea</span> <span class="hlt">flux</span> for the <span class="hlt">heat</span> budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional <span class="hlt">sea</span>-ice distribution or <span class="hlt">sea</span>-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...162...27C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...162...27C"><span>Diurnal variability of CO2 <span class="hlt">flux</span> at coastal zone of Taiwan based on eddy covariance observation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan</p> <p>2018-06-01</p> <p>In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 <span class="hlt">flux</span> near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore <span class="hlt">air-sea</span> and <span class="hlt">air</span>-land CO2 <span class="hlt">fluxes</span> exhibited a significant diurnal variability and a substantial day-night difference. The net <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net <span class="hlt">air</span>-land CO2 <span class="hlt">flux</span> was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. The result suggests that the strength of the diurnal <span class="hlt">air-sea</span> CO2 <span class="hlt">flux</span> is strongly influenced by the local wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2048J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2048J"><span>The influence of surface roughness and turbulence on <span class="hlt">heat</span> <span class="hlt">fluxes</span> from an oil palm plantation in Jambi, Indonesia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander</p> <p>2018-05-01</p> <p>Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of <span class="hlt">heat</span> and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on <span class="hlt">heat</span> (sensible and latent) <span class="hlt">fluxes</span> by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. <span class="hlt">Fluxes</span> of <span class="hlt">heat</span> were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence <span class="hlt">heat</span> <span class="hlt">fluxes</span>; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards <span class="hlt">air</span> temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering <span class="hlt">air</span> temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5275074','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5275074"><span>Remote high-temperature insulatorless <span class="hlt">heat-flux</span> gauge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Noel, B.W.</p> <p>1993-12-28</p> <p>A remote optical <span class="hlt">heat-flux</span> gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the <span class="hlt">heat</span> <span class="hlt">flux</span> incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial <span class="hlt">heat-flux</span> measurements can be made by scanning the light across the surface of the gauge. 3 figures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869091','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869091"><span>Remote high-temperature insulatorless <span class="hlt">heat-flux</span> gauge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Noel, Bruce W.</p> <p>1993-01-01</p> <p>A remote optical <span class="hlt">heat-flux</span> gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the <span class="hlt">heat</span> <span class="hlt">flux</span> incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial <span class="hlt">heat-flux</span> measurements can be made by scanning the light across the surface of the gauge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..195...16M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..195...16M"><span><span class="hlt">Sea</span> spray aerosol <span class="hlt">fluxes</span> in the Baltic <span class="hlt">Sea</span> region: Comparison of the WAM model with measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz</p> <p>2017-08-01</p> <p><span class="hlt">Sea</span> spray aerosol <span class="hlt">flux</span> is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland <span class="hlt">seas</span>, e.g., the Baltic <span class="hlt">Sea</span>. The Baltic <span class="hlt">Sea</span> is one of the largest brackish inland <span class="hlt">seas</span> by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic <span class="hlt">Sea</span> have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of <span class="hlt">sea</span> spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of <span class="hlt">sea</span> spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic <span class="hlt">Sea</span> during four scientific cruises. The gradient method was used to determinate aerosol <span class="hlt">fluxes</span>. The <span class="hlt">fluxes</span> were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different <span class="hlt">sea</span> spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1015G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1015G"><span>Evaluation of the swell effect on the <span class="hlt">air-sea</span> gas transfer in the coastal zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.</p> <p>2016-04-01</p> <p><span class="hlt">Air-sea</span> gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas <span class="hlt">fluxes</span>, however, there is still a lack of information and the influence of the ocean surface waves on the <span class="hlt">air-sea</span> interaction and gas <span class="hlt">flux</span> behavior must be validated. In this study, as part of the "<span class="hlt">Sea</span> Surface Roughness as <span class="hlt">Air-Sea</span> Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the <span class="hlt">flux</span> of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean <span class="hlt">flux</span> of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005688','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005688"><span>Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way <span class="hlt">Air-sea</span> Interactions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong</p> <p>2011-01-01</p> <p>Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way <span class="hlt">air-sea</span> interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential <span class="hlt">heating</span> patterns and surface energy <span class="hlt">fluxes</span>. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent <span class="hlt">heat</span> <span class="hlt">flux</span> is underestimated and sensible <span class="hlt">heat</span> <span class="hlt">flux</span> and surface temperature over India are markedly overestimated. In addition, the moisture <span class="hlt">fluxes</span> do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy <span class="hlt">fluxes</span> is needed to achieve an improved simulation for the mature monsoon period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......186G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......186G"><span>Closed-form solution of temperature and <span class="hlt">heat</span> <span class="hlt">flux</span> in embedded cooling channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griggs, Steven Craig</p> <p>1997-11-01</p> <p>An analytical method is discussed for predicting temperature in a layered composite material with embedded cooling channels. The cooling channels are embedded in the material to maintain its temperature at acceptable levels. Problems of this type are encountered in the aerospace industry and include high-temperature or high-<span class="hlt">heat-flux</span> protection for advanced composite-material skins of high-speed <span class="hlt">air</span> vehicles; thermal boundary-layer flow control on supersonic transports; or infrared signature suppression on military vehicles. A Green's function solution of the diffusion equation is used to simultaneously predict the global and localized effects of temperature in the material and in the embedded cooling channels. The integral method is used to solve the energy equation with fluid flow to find the solution of temperature and <span class="hlt">heat</span> <span class="hlt">flux</span> in the cooling fluid and material simultaneously. This method of calculation preserves the three-dimensional nature of this problem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACPD...1532367X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACPD...1532367X"><span>Modeling of the anthropogenic <span class="hlt">heat</span> <span class="hlt">flux</span> and its effect on <span class="hlt">air</span> quality over the Yangtze River Delta region, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, M.; Liao, J.; Wang, T.; Zhu, K.; Zhuang, B.; Han, Y.; Li, M.; Li, S.</p> <p>2015-11-01</p> <p>Anthropogenic <span class="hlt">heat</span> (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and the diurnal variations into the simulations. By running this upgraded WRF/Chem for two typical months in 2010, the impacts of AH on the meteorology and <span class="hlt">air</span> quality over the YRD region are studied. The results show that the AH <span class="hlt">fluxes</span> over YRD have been growing in recent decades. In 2010, the annual mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m-2 respectively, with the high values of 113.5 W m-2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban <span class="hlt">heat</span> island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m <span class="hlt">air</span> temperature increases by 1.6 °C in January and 1.4 °C in July, the planetary boundary layer height rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s-1 in January and 0.5 m s-1 in July, with higher increment at night. And the enhanced vertical movement can transport more moisture to higher levels, which causes the decrease of water vapor at the ground level and the increase in the upper PBL, and thereby induces the accumulative precipitation to increase by 15-30 % over the megacities in July. The adding AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary <span class="hlt">air</span> pollutants decrease near surface and increase at the upper levels, due mainly to the increases of PBLH, surface wind speed and upward <span class="hlt">air</span> vertical movement. But surface O3 concentrations increase in the urban areas, with maximum changes of 2.5 ppb in January and 4</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..11911729D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..11911729D"><span>Modeling the lava <span class="hlt">heat</span> <span class="hlt">flux</span> during severe effusive volcanic eruption: An important impact on surface <span class="hlt">air</span> quality</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durand, Jonathan; Tulet, Pierre; Leriche, Maud; Bielli, Soline; Villeneuve, Nicolas; Muro, Andrea Di; Fillipi, Jean-Baptiste</p> <p>2014-10-01</p> <p>The Reunion Island experienced its biggest eruption of Piton de la Fournaise Volcano during April 2007. Known as the eruption of the century, this event degassed more than 230 kt of SO2. Theses emissions led to important health issues, accompanied by environmental and infrastructure degradations. This modeling study uses the mesoscale chemical model MesoNH-C to simulate the transport of gaseous SO2 between 2 and 7 April, with a focus on the influence of <span class="hlt">heat</span> <span class="hlt">fluxes</span> from lava. This study required the implementation of a reduced chemical scheme, a basic surface model, and an estimation of lava <span class="hlt">heat</span> <span class="hlt">fluxes</span> in the atmospheric model. The model was able to reproduce general trends of this eruption, in particular the crossing of trade wind inversion, the SO2 surface concentration (with highest peak of SO2 of 600 μg m-3 observed on 4 April for western Reunion locations), and the wet deposition associated to rainfall. A sensitivity study shows that without <span class="hlt">heat</span> <span class="hlt">fluxes</span> over the vent and the lava flow, simulated SO2 surface concentration are up to 45 times higher than observed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS51B1667W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS51B1667W"><span>Development and evaluation of an empirical diurnal <span class="hlt">sea</span> surface temperature model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weihs, R. R.; Bourassa, M. A.</p> <p>2013-12-01</p> <p>An innovative method is developed to determine the diurnal <span class="hlt">heating</span> amplitude of <span class="hlt">sea</span> surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from <span class="hlt">heating</span> that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes <span class="hlt">heating</span> of the upper few meters of the ocean, which become buoyantly stable; this <span class="hlt">heating</span> causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface <span class="hlt">heat</span> <span class="hlt">flux</span> estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the <span class="hlt">heating</span> differential. An empirical algorithm using a pre-dawn <span class="hlt">sea</span> surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk <span class="hlt">flux</span> algorithm. Inputs for the <span class="hlt">flux</span> model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and <span class="hlt">air-sea</span> interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (<span class="hlt">air</span> temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100031255&hterms=sss&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsss','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100031255&hterms=sss&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsss"><span>Assessing the Potential to Derive <span class="hlt">Air-Sea</span> Freshwater <span class="hlt">Fluxes</span> from Aquarius-Like Observations of Surface Salinity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhen, Li; Adamec, David</p> <p>2009-01-01</p> <p>A state-of-the-art numerical model is used to investigate the possibility of determining freshwater <span class="hlt">flux</span> fields from temporal changes io <span class="hlt">sea</span>-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater <span class="hlt">flux</span> estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater <span class="hlt">fluxes</span> and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950037243&hterms=impact+art&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimpact%2Bart','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950037243&hterms=impact+art&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimpact%2Bart"><span>The impact of land-surface wetness heterogeneity on mesoscale <span class="hlt">heat</span> <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Fei; Avissar, Roni</p> <p>1994-01-01</p> <p>Vertical <span class="hlt">heat</span> <span class="hlt">fluxes</span> associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent <span class="hlt">fluxes</span>, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale <span class="hlt">fluxes</span> in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these <span class="hlt">fluxes</span> in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale <span class="hlt">heat</span> <span class="hlt">fluxes</span> and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale <span class="hlt">heat</span> <span class="hlt">fluxes</span>. Empirical functions were derived to characterize the relationships between mesoscale <span class="hlt">heat</span> <span class="hlt">fluxes</span> and the spatial distribution of land-surface wetness. The strongest mesoscale <span class="hlt">heat</span> <span class="hlt">fluxes</span> were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale <span class="hlt">heat</span> <span class="hlt">fluxes</span> are weakened by large-scale background winds but remain significant even with moderate winds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4718T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4718T"><span>Experimental investigation of effect of surface gravity waves and spray on <span class="hlt">heat</span> and momentum <span class="hlt">flux</span> at strong wind conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily</p> <p>2015-04-01</p> <p>The most important characteristics that determine the interaction between atmosphere and ocean are <span class="hlt">fluxes</span> of momentum, <span class="hlt">heat</span> and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the <span class="hlt">heat</span> transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the <span class="hlt">sea</span> surface resistance due to enhanced form drag, the <span class="hlt">sea</span> spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of <span class="hlt">heat</span> transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and <span class="hlt">heat</span> within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and <span class="hlt">heat</span> in a stably stratified temperature turbulent boundary layer <span class="hlt">air</span> flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000037971&hterms=round&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dround','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000037971&hterms=round&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dround"><span>Year-Round Pack Ice in the Weddell <span class="hlt">Sea</span>, Antarctica: Response and Sensitivity to Atmospheric and Oceanic Forcing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III</p> <p>1997-01-01</p> <p>Using a dynamic-thermodynamic numerical <span class="hlt">sea</span>-ice model, external oceanic and atmospheric forcings on <span class="hlt">sea</span> ice in the Weddell <span class="hlt">Sea</span> are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is <span class="hlt">air</span> temperature. Ocean <span class="hlt">heat</span> <span class="hlt">flux</span> has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell <span class="hlt">Sea</span>. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell <span class="hlt">Sea</span> where dry continental <span class="hlt">air</span> has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean <span class="hlt">heat</span> <span class="hlt">flux</span> and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean <span class="hlt">heat</span>-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940008316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940008316"><span>Measuring surface <span class="hlt">fluxes</span> in CAPE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kanemasu, E. T.; D-Shah, T.; Nie, Dalin</p> <p>1992-01-01</p> <p>Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy <span class="hlt">fluxes</span> (i.e., net radiation, soil <span class="hlt">heat</span> <span class="hlt">fluxes</span>, sensible <span class="hlt">heat</span> <span class="hlt">flux</span> and latent <span class="hlt">heat</span> <span class="hlt">flux</span>), <span class="hlt">air</span> temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JGRD..10924101G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JGRD..10924101G"><span><span class="hlt">Flux</span> and turbulence measurements at a densely built-up site in Marseille: <span class="hlt">Heat</span>, mass (water and carbon dioxide), and momentum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.</p> <p>2004-12-01</p> <p>Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale <span class="hlt">fluxes</span> in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The <span class="hlt">flux</span> and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and <span class="hlt">sea</span> breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible <span class="hlt">heat</span> <span class="hlt">flux</span> dominates in the daytime, although the storage <span class="hlt">heat</span> <span class="hlt">flux</span> is a significant term that peaks before solar noon. The turbulent latent <span class="hlt">heat</span> <span class="hlt">flux</span> is small but not negligible. Carbon dioxide <span class="hlt">fluxes</span> show that this central city district is almost always a source, but the vegetation reduces the magnitude of the <span class="hlt">fluxes</span> in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6470A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6470A"><span>Warm layer and cool skin corrections for bulk water temperature measurements for <span class="hlt">air-sea</span> interaction studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.</p> <p>2017-08-01</p> <p>The <span class="hlt">sea</span> surface temperature (SST) relevant to <span class="hlt">air-sea</span> interaction studies is the temperature immediately adjacent to the <span class="hlt">air</span>, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled <span class="hlt">Air-Sea</span> Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to <span class="hlt">sea</span> spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation <span class="hlt">flux</span> on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation <span class="hlt">flux</span>. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24C..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24C..04C"><span>Improving Global Net Surface <span class="hlt">Heat</span> <span class="hlt">Flux</span> with Ocean Reanalysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carton, J.; Chepurin, G. A.; Chen, L.; Grodsky, S.</p> <p>2017-12-01</p> <p>This project addresses the current level of uncertainty in surface <span class="hlt">heat</span> <span class="hlt">flux</span> estimates. Time mean surface <span class="hlt">heat</span> <span class="hlt">flux</span> estimates provided by atmospheric reanalyses differ by 10-30W/m2. They are generally unbalanced globally, and have been shown by ocean simulation studies to be incompatible with ocean temperature and velocity measurements. Here a method is presented 1) to identify the spatial and temporal structure of the underlying errors and 2) to reduce them by exploiting hydrographic observations and the analysis increments produced by an ocean reanalysis using sequential data assimilation. The method is applied to <span class="hlt">fluxes</span> computed from daily state variables obtained from three widely used reanalyses: MERRA2, ERA-Interim, and JRA-55, during an eight year period 2007-2014. For each of these seasonal <span class="hlt">heat</span> <span class="hlt">flux</span> errors/corrections are obtained. In a second set of experiments the <span class="hlt">heat</span> <span class="hlt">fluxes</span> are corrected and the ocean reanalysis experiments are repeated. This second round of experiments shows that the time mean error in the corrected <span class="hlt">fluxes</span> is reduced to within ±5W/m2 over the interior subtropical and midlatitude oceans, with the most significant changes occuring over the Southern Ocean. The global <span class="hlt">heat</span> <span class="hlt">flux</span> imbalance of each reanalysis is reduced to within a few W/m2 with this single correction. Encouragingly, the corrected forms of the three sets of <span class="hlt">fluxes</span> are also shown to converge. In the final discussion we present experiments beginning with a modified form of the ERA-Int reanalysis, produced by the DAKKAR program, in which state variables have been individually corrected based on independent measurements. Finally, we discuss the separation of <span class="hlt">flux</span> error from model error.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2014F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2014F"><span>Ocean <span class="hlt">heat</span> budget analysis on <span class="hlt">sea</span> surface temperature anomaly in western Indian Ocean during strong-weak Asian summer monsoon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fathrio, Ibnu; Manda, Atsuyoshi; Iizuka, Satoshi; Kodama, Yasu-Masa; Ishida, Sachinobu</p> <p>2018-05-01</p> <p>This study presents ocean <span class="hlt">heat</span> budget analysis on <span class="hlt">seas</span> surface temperature (SST) anomalies during strong-weak Asian summer monsoon (southwest monsoon). As discussed by previous studies, there was close relationship between variations of Asian summer monsoon and SST anomaly in western Indian Ocean. In this study we utilized ocean <span class="hlt">heat</span> budget analysis to elucidate the dominant mechanism that is responsible for generating SST anomaly during weak-strong boreal summer monsoon. Our results showed ocean advection plays more important role to initate SST anomaly than the atmospheric prcess (surface <span class="hlt">heat</span> <span class="hlt">flux</span>). Scatterplot analysis showed that vertical advection initiated SST anomaly in western Arabian <span class="hlt">Sea</span> and southwestern Indian Ocean, while zonal advection initiated SST anomaly in western equatorial Indian Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT........56V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT........56V"><span>Modeling of a <span class="hlt">heat</span> sink and high <span class="hlt">heat</span> <span class="hlt">flux</span> vapor chamber</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vadnjal, Aleksander</p> <p></p> <p>An increasing demand for a higher <span class="hlt">heat</span> <span class="hlt">flux</span> removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high <span class="hlt">heat</span> <span class="hlt">flux</span> evaporator and micro channel <span class="hlt">heat</span> sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and <span class="hlt">heat</span> transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and <span class="hlt">heat</span> transfer coefficients. The calculation show good agreement with the experimental data. For the <span class="hlt">heat</span> transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of <span class="hlt">heating</span> are also investigated in order to determine how it influences the <span class="hlt">heat</span> transfer coefficient. A higher <span class="hlt">heat</span> <span class="hlt">fluxes</span> in small area condensers led us to the micro channels in contrast to the classical <span class="hlt">heat</span> fin design. A micro channel can have various shapes to enhance <span class="hlt">heat</span> transfer, but the shape that will lead to a higher <span class="hlt">heat</span> <span class="hlt">flux</span> removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two <span class="hlt">heat</span> transfer mechanisms; (1) porous media</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4297L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4297L"><span>Using eddy covariance to measure the dependence of <span class="hlt">air-sea</span> CO2 exchange rate on friction velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian</p> <p>2018-03-01</p> <p>Parameterisation of the <span class="hlt">air-sea</span> gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of <span class="hlt">air-sea</span> interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for <span class="hlt">air-sea</span> <span class="hlt">flux</span> measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of <span class="hlt">air-sea</span> CO2 and momentum <span class="hlt">fluxes</span> from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1214990','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1214990"><span><span class="hlt">Air</span>-Cooled <span class="hlt">Heat</span> Exchanger for High-Temperature Power Electronics: Preprint</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Waye, S. K.; Lustbader, J.; Musselman, M.</p> <p>2015-05-06</p> <p>This work demonstrates a direct <span class="hlt">air</span>-cooled <span class="hlt">heat</span> exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental <span class="hlt">heat</span> dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device <span class="hlt">heat</span> <span class="hlt">fluxes</span>. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1131309-diagnostic-quantifying-heat-flux-from-thermite-spray','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1131309-diagnostic-quantifying-heat-flux-from-thermite-spray"><span>A diagnostic for quantifying <span class="hlt">heat</span> <span class="hlt">flux</span> from a thermite spray</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>E. P. Nixon; M. L. Pantoya; D. J. Prentice</p> <p>2010-02-01</p> <p>Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify <span class="hlt">heat</span> <span class="hlt">flux</span> from a thermite spray is the objective of this study. Quick response sensors such as thin film <span class="hlt">heat</span> <span class="hlt">flux</span> sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allowmore » for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse <span class="hlt">heat</span> conduction code to calculate <span class="hlt">heat</span> <span class="hlt">flux</span> values. The details of this device are discussed and illustrated. Temperature and <span class="hlt">heat</span> <span class="hlt">flux</span> measurements of various thermite sprays are reported. Results indicate that this newly designed <span class="hlt">heat</span> <span class="hlt">flux</span> sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhLA..380..452G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhLA..380..452G"><span>Understanding of <span class="hlt">flux</span>-limited behaviors of <span class="hlt">heat</span> transport in nonlinear regime</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Yangyu; Jou, David; Wang, Moran</p> <p>2016-01-01</p> <p>The classical Fourier's law of <span class="hlt">heat</span> transport breaks down in highly nonequilibrium situations as in nanoscale <span class="hlt">heat</span> transport, where nonlinear effects become important. The present work is aimed at exploring the <span class="hlt">flux</span>-limited behaviors based on a categorization of existing nonlinear <span class="hlt">heat</span> transport models in terms of their theoretical foundations. Different saturation <span class="hlt">heat</span> <span class="hlt">fluxes</span> are obtained, whereas the same qualitative variation trend of <span class="hlt">heat</span> <span class="hlt">flux</span> versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other <span class="hlt">heat</span> <span class="hlt">flux</span> limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized <span class="hlt">heat</span> transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear <span class="hlt">heat</span> transport beyond the diffusive limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8300V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8300V"><span>Intraday evaporation and <span class="hlt">heat</span> <span class="hlt">fluxes</span> variation at <span class="hlt">air</span>-water interface of extremely shallow lakes in Chilean Andean Plateau</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vergara, Jaime; de la Fuente, Alberto</p> <p>2016-04-01</p> <p>Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, <span class="hlt">heat</span> and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the <span class="hlt">air</span>-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum <span class="hlt">fluxes</span>, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent <span class="hlt">heat</span>, sensible <span class="hlt">heat</span>, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2223K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2223K"><span>Study on coal char ignition by radiant <span class="hlt">heat</span> <span class="hlt">flux</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korotkikh, A. G.; Slyusarskiy, K. V.</p> <p>2017-11-01</p> <p>The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in <span class="hlt">heat</span> <span class="hlt">flux</span> density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high <span class="hlt">heat</span> <span class="hlt">flux</span> region and lower in low <span class="hlt">heat</span> <span class="hlt">flux</span> region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional <span class="hlt">heat</span> transfer equation with radiant <span class="hlt">heat</span> transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=287479','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=287479"><span>The effect of <span class="hlt">heat</span> <span class="hlt">fluxes</span> on ammonia emission from swine waste lagoon based on neural network analyses</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., <span class="hlt">air</span> temperatures, solar radiation, and <span class="hlt">heat</span> <span class="hlt">fluxes</span>)...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/111419','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/111419"><span>A comparison of critical <span class="hlt">heat</span> <span class="hlt">flux</span> in tubes and bilaterally <span class="hlt">heated</span> annuli</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Doerffer, S.; Groeneveld, D.C.; Cheng, S.C.</p> <p>1995-09-01</p> <p>This paper examines the critical <span class="hlt">heat</span> <span class="hlt">flux</span> (CHF) behaviour for annular flow in bilaterally <span class="hlt">heated</span> annuli and compares it to that in tubes and unilaterally <span class="hlt">heated</span> annuli. It was found that the differences in CHF between bilaterally and unilaterally <span class="hlt">heated</span> annuli or tubes strongly depend on pressure and quality. the CHF in bilaterally <span class="hlt">heated</span> annuli can be predicted by tube CHF prediction methods for the simultaneous CHF occurrence at both surfaces, and the following flow conditions: pressure 7-10 MPa, mass <span class="hlt">flux</span> 0.5-4.0 Mg/m{sup 2}s and critical quality 0.23-0.9. The effect on CHF of the outer-to-inner surface <span class="hlt">heat</span> <span class="hlt">flux</span> ratio, wasmore » also examined. The prediction of CHF for bilaterally <span class="hlt">heated</span> annuli was based on the droplet-diffusion model proposed by Kirillov and Smogalev. While their model refers only to CHF occurrence at the inner surface, we extended it to cases where CHF occurs at the outer surface, and simultaneously at both surfaces, thus covering all cases of CHF occurrence in bilaterally <span class="hlt">heated</span> annuli. From the annuli CHF data of Becker and Letzter, we derived empirical functions required by the model. the proposed equations provide good accuracy for the CHF data used in this study. Moreover, the equations can predict conditions at which CHF occurs simultaneously at both surfaces. Also, this method can be used for cases with only one <span class="hlt">heated</span> surface.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhLA..381.3621L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhLA..381.3621L"><span>Size effects in non-linear <span class="hlt">heat</span> conduction with <span class="hlt">flux</span>-limited behaviors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shu-Nan; Cao, Bing-Yang</p> <p>2017-11-01</p> <p>Size effects are discussed for several non-linear <span class="hlt">heat</span> conduction models with <span class="hlt">flux</span>-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, <span class="hlt">heat</span> <span class="hlt">flux</span> will not exist in problems with sufficiently small scale. The existence of <span class="hlt">heat</span> <span class="hlt">flux</span> needs the sizes of <span class="hlt">heat</span> conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear <span class="hlt">heat</span> conduction models with <span class="hlt">flux</span>-limited behaviors. For sufficiently small scale <span class="hlt">heat</span> conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier <span class="hlt">heat</span> conduction in the type of fast diffusion, which can also predict <span class="hlt">flux</span>-limited behaviors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJTP...52.3598A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJTP...52.3598A"><span>Gravitational Collapse with <span class="hlt">Heat</span> <span class="hlt">Flux</span> and Gravitational Waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmad, Zahid; Ahmed, Qazi Zahoor; Awan, Abdul Sami</p> <p>2013-10-01</p> <p>In this paper, we investigated the cylindrical gravitational collapse with <span class="hlt">heat</span> <span class="hlt">flux</span> by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of <span class="hlt">heat</span> <span class="hlt">flux</span> on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410179W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410179W"><span>Results from a lab study of melting <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiese, M.; Griewank, P.; Notz, D.</p> <p>2012-04-01</p> <p><span class="hlt">Sea</span>-ice melting is a complex process which is not fully understood yet. In order to study <span class="hlt">sea</span>-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow <span class="hlt">sea</span> ice with different salinities at least 10 cm thick. Then we let the ice melt at different <span class="hlt">air</span> temperatures and oceanic <span class="hlt">heat</span> <span class="hlt">fluxes</span>. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of <span class="hlt">sea</span> ice (<span class="hlt">heat</span> capacity, <span class="hlt">heat</span> conductivity and latent <span class="hlt">heat</span> of fusion) are very sensitive to salinity variations. For example the <span class="hlt">heat</span> capacity of <span class="hlt">sea</span> ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances <span class="hlt">heat</span> conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting <span class="hlt">sea</span> ice makes it much more difficult to measure representative values.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5870R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5870R"><span>A direct estimate of poleward volume, <span class="hlt">heat</span>, and freshwater <span class="hlt">fluxes</span> at 59.5°N between Greenland and Scotland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossby, T.; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik</p> <p>2017-07-01</p> <p>The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of <span class="hlt">heat</span> from low to high latitudes. In this study, we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler with Argo profiles (to 2000 m) to estimate poleward volume, <span class="hlt">heat</span>, and freshwater <span class="hlt">flux</span> at 59.5°N between Greenland and Scotland. This is made possible thanks to the vessel Nuka Arctica that operates on a 3 week schedule between Greenland and Denmark. For the period late 2012 to early 2016, the deseasoned mean meridional overturning circulation reaches a 18.4 ± 3.4 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger <span class="hlt">Sea</span> to 1000 m in Rockall Trough. The total <span class="hlt">heat</span> and freshwater <span class="hlt">fluxes</span> across 59.5°N = 399 ± 74 TW and -0.20 ± 0.04 Sv, where the uncertainties are principally due to that of the MOC. Analysis of altimetric <span class="hlt">sea</span> surface height variations along exactly the same route reveals a somewhat stronger geostrophic flow north during this period compared to the 23 year mean suggesting that for a long-term mean the above <span class="hlt">flux</span> estimates should be reduced slightly to 17.4 Sv, 377 TW, and -0.19 Sv, respectively, with the same estimate uncertainties. The ADCP program is ongoing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011344"><span>Explosive Boiling at Very Low <span class="hlt">Heat</span> <span class="hlt">Fluxes</span>: A Microgravity Phenomenon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.</p> <p>1993-01-01</p> <p>The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat <span class="hlt">heating</span> surface at very low <span class="hlt">heat</span> <span class="hlt">fluxes</span> in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire <span class="hlt">heating</span> surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the <span class="hlt">heating</span> surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low <span class="hlt">heat</span> <span class="hlt">fluxes</span> (0.2 to 1.2 kW/sq m). For a <span class="hlt">heat</span> <span class="hlt">flux</span> of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of <span class="hlt">heating</span>. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this <span class="hlt">heat</span> <span class="hlt">flux</span> the vapor blanketing the <span class="hlt">heating</span> surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z"><span>Effects of <span class="hlt">Sea</span>-Surface Waves and Ocean Spray on <span class="hlt">Air-Sea</span> Momentum <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ting; Song, Jinbao</p> <p>2018-04-01</p> <p>The effects of <span class="hlt">sea</span>-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the <span class="hlt">sea</span> surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and <span class="hlt">sea</span>-surface drag coefficients were calculated for low to high wind speeds for wind-generated <span class="hlt">sea</span> at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and <span class="hlt">sea</span>-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the <span class="hlt">sea</span>-spray generation layer, accelerating near-<span class="hlt">sea</span>-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhST..170a4007B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhST..170a4007B"><span>Comparison of <span class="hlt">heat</span> <span class="hlt">flux</span> measurement techniques during the DIII-D metal ring campaign</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.</p> <p>2017-12-01</p> <p>The <span class="hlt">heat</span> <span class="hlt">fluxes</span> expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the <span class="hlt">heat</span> <span class="hlt">flux</span> conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited <span class="hlt">heat</span> <span class="hlt">flux</span> on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) <span class="hlt">heat</span> <span class="hlt">flux</span> measurements. We see agreement of the TC, LP, and IRTV data within 20% of the <span class="hlt">heat</span> <span class="hlt">flux</span> averaged over the entire discharge, and that all three diagnostics suggest parallel <span class="hlt">heat</span> <span class="hlt">flux</span> at the OSP location increases linearly with input <span class="hlt">heating</span> power. The TC and LP <span class="hlt">heat</span> <span class="hlt">flux</span> time traces during the discharge trend together during large changes to the average <span class="hlt">heat</span> <span class="hlt">flux</span>. By subtracting the LP measured inter-ELM <span class="hlt">heat</span> <span class="hlt">flux</span> from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM <span class="hlt">heat</span> <span class="hlt">fluxes</span> from TC data. This over-estimates the IRTV measured ELM <span class="hlt">heat</span> <span class="hlt">fluxes</span> by a factor of 1.9, and could be due to the simplicity of the TC <span class="hlt">heat</span> <span class="hlt">flux</span> model and the assumed ELM energy pulse shape. ELM <span class="hlt">heat</span> <span class="hlt">fluxes</span> deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM <span class="hlt">heat</span> <span class="hlt">flux</span> estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our <span class="hlt">heat</span> <span class="hlt">flux</span> measurements when these edges</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850027078','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850027078"><span>Development of advanced high-temperature <span class="hlt">heat</span> <span class="hlt">flux</span> sensors. Phase 2: Verification testing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkinson, W. H.; Cyr, M. A.; Strange, R. R.</p> <p>1985-01-01</p> <p>A two-phase program is conducted to develop <span class="hlt">heat</span> <span class="hlt">flux</span> sensors capable of making <span class="hlt">heat</span> <span class="hlt">flux</span> measurements throughout the hot section of gas turbine engines. In Phase 1, three types of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant <span class="hlt">heat</span> loads to more fully characterize the combustor environment. Test results show the <span class="hlt">heat</span> <span class="hlt">flux</span> sensors to be in good agreement with radiometer probes and the predicted data trends. In general, <span class="hlt">heat</span> <span class="hlt">flux</span> sensors have strong potential for use in combustor development programs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B23A0388H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B23A0388H"><span>Solution for Minimizing Surface <span class="hlt">Heating</span> Effect for Fast Open-Path CO2 <span class="hlt">Flux</span> Measurements in Cold Environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hupp, J. R.; Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Eckles, R. D.</p> <p>2010-12-01</p> <p>Open-path design of the high speed gas analyzers is a well-established configuration widely used for measurements of CO2 <span class="hlt">fluxes</span> and concentrations. This configuration has advantages and deficiencies. Advantages include excellent frequency response, long-term stability, low sensitivity to window contamination, low-power pump-free operation, and infrequent calibration requirements. Deficiencies include susceptibility to precipitation and icing, and a potential need for instrument surface <span class="hlt">heating</span> correction in extremely cold environments. In spite of the deficiencies, open-path measurements often provide data coverage that would not have been possible using traditional closed-path approach. Data loss from precipitation and icing may not always be prevented for the open-path instruments, while <span class="hlt">heating</span> effect does not pose a problem for CO2 <span class="hlt">flux</span> in warm environments. Even in cold environments, the impact of <span class="hlt">heating</span> on CO2 <span class="hlt">flux</span> is much smaller than other well-known effects, such as Webb-Pearman-Leuning terms, or frequency response corrections for closed-path analyzers. Nonetheless, instrument surface <span class="hlt">heating</span> effect in cold environments could be addressed scientifically, via developing the theoretical corrections, and instrumentally, via measuring fast integrated <span class="hlt">air</span> temperature in the optical path, or via enclosing the open-path instrument into a low-power short-intake design. Here we provide an alternative way to minimize or eliminate open-path <span class="hlt">heating</span> effect, achieved by minimizing or eliminating the temperature gradient between the instrument surface and ambient <span class="hlt">air</span>. Open-path low temperature controlled design is discussed in comparison with two other approaches (e.g., traditional open-path design and closed-path design) in terms of their field performance for Eddy Covariance <span class="hlt">flux</span> measurements in the cold. This study presents field data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less <span class="hlt">heat</span> during</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..583M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..583M"><span>Dynamics of <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span> based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec</p> <p>2014-05-01</p> <p>Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of <span class="hlt">sea</span> surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and <span class="hlt">air-sea</span> CO2 <span class="hlt">fluxes</span>. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646773','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646773"><span>High geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> measured below the West Antarctic Ice Sheet</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil</p> <p>2015-01-01</p> <p>The geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The <span class="hlt">heat</span> <span class="hlt">flux</span> at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward <span class="hlt">heat</span> <span class="hlt">flux</span> through the WAIS of 105 ± 13 mW/m2. The difference between these <span class="hlt">heat</span> <span class="hlt">flux</span> values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26601210','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26601210"><span>High geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> measured below the West Antarctic Ice Sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil</p> <p>2015-07-01</p> <p>The geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The <span class="hlt">heat</span> <span class="hlt">flux</span> at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward <span class="hlt">heat</span> <span class="hlt">flux</span> through the WAIS of 105 ± 13 mW/m(2). The difference between these <span class="hlt">heat</span> <span class="hlt">flux</span> values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.138..168H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.138..168H"><span>Drag and <span class="hlt">heat</span> <span class="hlt">flux</span> reduction mechanism of blunted cone with aerodisks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Wei; Li, Lang-quan; Yan, Li; Zhang, Tian-tian</p> <p>2017-09-01</p> <p>The major challenge among a number of design requirements for hypersonic vehicles is the reduction of drag and aerodynamic <span class="hlt">heating</span>. Of all these techniques of drag and <span class="hlt">heat</span> <span class="hlt">flux</span> reduction, application of forward facing aerospike conceived in 1950s is an effective and simpler technique to reduce the drag as well as the <span class="hlt">heat</span> transfer rate for blunt nosed bodies at hypersonic Mach numbers. In this paper, the flow fields around a blunt cone with and without aerodisk flying at hypersonic Mach numbers are computed numerically, and the numerical simulations are conducted by specifying the freestream velocity, static pressure and static temperatures at the inlet of the computational domain with a three-dimensional, steady, Reynolds-averaged Navier-Stokes equation. An aerodisk is attached to the tip of the rod to reduce the drag and <span class="hlt">heat</span> <span class="hlt">flux</span> further. The influences of the length of rod and the diameter of aerodisk on the drag and <span class="hlt">heat</span> <span class="hlt">flux</span> reduction mechanism are analyzed comprehensively, and eight configurations are taken into consideration in the current study. The obtained results show that for all aerodisks, the reduction in drag of the blunt body is proportional to the extent of the recirculation dead <span class="hlt">air</span> region. For long rods, the aerodisk is found not that beneficial in reducing the drag, and an aerodisk is more effective than an aerospike. The spike produces a region of recirculation separated flow that shields the blunt-nosed body from the incoming flow, and the recirculation region is formed around the root of the spike up to the reattachment point of the flow at the shoulder of the blunt body. The dynamic pressure in the recirculation area is highly reduced and thus leads to the decrease in drag and <span class="hlt">heat</span> load on the surface of the blunt body. Because of the reattachment of the shear layer on the shoulder of the blunt body, the pressure near that point becomes large.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914314B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914314B"><span>The forgotten component of sub-glacial <span class="hlt">heat</span> flow: Upper crustal <span class="hlt">heat</span> production and resultant total <span class="hlt">heat</span> <span class="hlt">flux</span> on the Antarctic Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burton-Johnson, Alex; Halpin, Jacqueline; Whittaker, Joanne; Watson, Sally</p> <p>2017-04-01</p> <p>Seismic and magnetic geophysical methods have both been employed to produce estimates of <span class="hlt">heat</span> <span class="hlt">flux</span> beneath the Antarctic ice sheet. However, both methods use a homogeneous upper crustal model despite the variable concentration of <span class="hlt">heat</span> producing elements within its composite lithologies. Using geological and geochemical datasets from the Antarctic Peninsula we have developed a new methodology for incorporating upper crustal <span class="hlt">heat</span> production in <span class="hlt">heat</span> <span class="hlt">flux</span> models and have shown the greater variability this introduces in to estimates of crustal <span class="hlt">heat</span> <span class="hlt">flux</span>, with implications for glaciological modelling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A33B0143S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A33B0143S"><span>Influence of <span class="hlt">sea</span>-ice coverage, <span class="hlt">sea</span>-surface temperatures and latent <span class="hlt">heat</span> release on baroclinic instability of an Arctic cyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenov, A.; Zhang, X.</p> <p>2012-12-01</p> <p>Arctic <span class="hlt">sea</span> ice has shrunk drastically and Arctic storm activity has intensified over last decades. To improve understanding <span class="hlt">air-ice-sea</span> interactions in the context of storm activity, we conducted a modeling study of a selected intense storm that invaded and was persistent for prolonged time in the central Arctic Ocean during March 16-22, 2011. A series of control and sensitivity simulations were carried out by employing the Weather Research and Forecasting (WRF) model, which was configured using two nested domains at a resolution of 10 km for the inner domain and 30 km for the outer domain. The control simulations well captured the cyclone genesis, regeneration, track and intensity. Diagnostic analysis and a comparison between the and sensitivity experiments suggest that the strong intensity, regeneration, and long-lasting duration of the cyclone were driven by unusually sustained baroclinic instability, which was resulted due to (1) anomalously reduced <span class="hlt">sea</span>-ice coverage and strong advection of <span class="hlt">heat</span>, moisture and vorticity from the North Atlantic; and (2) a release of latent <span class="hlt">heat</span> due to condensation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010048424&hterms=dataset&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddataset','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010048424&hterms=dataset&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddataset"><span>A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent <span class="hlt">Fluxes</span> Over Global Oceans</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>The surface turbulent <span class="hlt">fluxes</span> of momentum, latent <span class="hlt">heat</span>, and sensible <span class="hlt">heat</span> over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface <span class="hlt">heat</span> budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent <span class="hlt">fluxes</span> over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent <span class="hlt">fluxes</span> are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) <span class="hlt">sea</span> surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) <span class="hlt">air-sea</span> temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface <span class="hlt">air</span> humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent <span class="hlt">heat</span> <span class="hlt">flux</span>) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent <span class="hlt">fluxes</span> and input variables derived from FS and F11 SSM/Is show reasonable</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29624394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29624394"><span>Ultrahigh <span class="hlt">Flux</span> Thin Film Boiling <span class="hlt">Heat</span> Transfer Through Nanoporous Membranes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Qingyang; Chen, Renkun</p> <p>2018-05-09</p> <p>Phase change <span class="hlt">heat</span> transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical <span class="hlt">heat</span> <span class="hlt">flux</span> (CHF) of phase change <span class="hlt">heat</span> transfer, either evaporation or boiling, is limited by vapor <span class="hlt">flux</span> from the liquid-vapor interface, known as the upper limit of <span class="hlt">heat</span> <span class="hlt">flux</span>. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as <span class="hlt">heat</span> <span class="hlt">flux</span> increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the <span class="hlt">heat</span> transfer. Our work provides a new nanostructuring approach to achieve ultrahigh <span class="hlt">heat</span> <span class="hlt">flux</span> in phase change <span class="hlt">heat</span> transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling <span class="hlt">heat</span> transfer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L"><span>Temporal variatiions of <span class="hlt">Sea</span> ice cover in the Baltic <span class="hlt">Sea</span> derived from operational <span class="hlt">sea</span> ice products used in NWP.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, Martin; Paul, Gerhard; Potthast, Roland</p> <p>2014-05-01</p> <p><span class="hlt">Sea</span> ice cover is a crucial parameter for surface <span class="hlt">fluxes</span> of <span class="hlt">heat</span> and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of <span class="hlt">heat</span> and moisture from the surface to the atmosphere and allows for cold and dry <span class="hlt">air</span> mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and <span class="hlt">sea</span> ice cover in their NWP models. To the knowledge of the author there are mainly two global <span class="hlt">sea</span> ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic <span class="hlt">Sea</span> provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic <span class="hlt">Sea</span> and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14..127P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14..127P"><span>Observations of brine plumes below melting Arctic <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peterson, Algot K.</p> <p>2018-02-01</p> <p>In <span class="hlt">sea</span> ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent <span class="hlt">sea</span> ice melt. Turbulence measurements 1 m below melting <span class="hlt">sea</span> ice north of Svalbard reveal anticorrelated <span class="hlt">heat</span> and salt <span class="hlt">fluxes</span>. From the observations, 131 salty plumes descending from the warm <span class="hlt">sea</span> ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic <span class="hlt">heat</span> through bottom melt. Calculated over a composite plume, oceanic <span class="hlt">heat</span> and salt <span class="hlt">fluxes</span> during the plumes account for 6 and 9 % of the total <span class="hlt">fluxes</span>, respectively, while only lasting in total 0.5 % of the time. The observed salt <span class="hlt">flux</span> accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt <span class="hlt">fluxes</span> to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the <q>new Arctic</q>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhPl...16b2501S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhPl...16b2501S"><span>Divertor <span class="hlt">heat</span> <span class="hlt">flux</span> mitigation in the National Spherical Torus Experimenta)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team</p> <p>2009-02-01</p> <p>Steady-state handling of divertor <span class="hlt">heat</span> <span class="hlt">flux</span> is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of <span class="hlt">heat</span> <span class="hlt">flux</span> to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic <span class="hlt">flux</span> expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak <span class="hlt">flux</span> reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-<span class="hlt">heated</span> H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor <span class="hlt">heat</span> <span class="hlt">flux</span> profiles and recombination, particle <span class="hlt">flux</span> and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak <span class="hlt">heat</span> <span class="hlt">flux</span> reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002665&hterms=geomagnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgeomagnetism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002665&hterms=geomagnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgeomagnetism"><span>GEM-CEDAR Challenge: Poynting <span class="hlt">Flux</span> at DMSP and Modeled Joule <span class="hlt">Heat</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rastaetter, Lutz; Shim, Ja Soon; Kuznetsova, Maria M.; Kilcommons, Liam M.; Knipp, Delores J.; Codrescu, Mihail; Fuller-Rowell, Tim; Emery, Barbara; Weimer, Daniel R.; Cosgrove, Russell; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002665'); toggleEditAbsImage('author_20170002665_show'); toggleEditAbsImage('author_20170002665_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002665_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002665_hide"></p> <p>2016-01-01</p> <p>Poynting <span class="hlt">flux</span> into the ionosphere measures the electromagnetic energy coming from the magnetosphere. This energy <span class="hlt">flux</span> can vary greatly between quiet times and geomagnetic active times. As part of the Geospace Environment Modeling-coupling energetics and dynamics of atmospheric regions modeling challenge, physics-based models of the 3-D ionosphere and ionospheric electrodynamics solvers of magnetosphere models that specify Joule <span class="hlt">heat</span> and empirical models specifying Poynting <span class="hlt">flux</span> were run for six geomagnetic storm events of varying intensity. We compared model results with Poynting <span class="hlt">flux</span> values along the DMSP-15 satellite track computed from ion drift meter and magnetic field observations. Although being a different quantity, Joule <span class="hlt">heat</span> can in practice be correlated to incoming Poynting <span class="hlt">flux</span> because the energy is dissipated primarily in high latitudes where Poynting <span class="hlt">flux</span> is being deposited. Within the physics-based model group, we find mixed results with some models overestimating Joule <span class="hlt">heat</span> and some models agreeing better with observed Poynting <span class="hlt">flux</span> rates as integrated over auroral passes. In contrast, empirical models tend to underestimate integrated Poynting <span class="hlt">flux</span> values. Modeled Joule <span class="hlt">heat</span> or Poynting <span class="hlt">flux</span> patterns often resemble the observed Poynting <span class="hlt">flux</span> patterns on a large scale, but amplitudes can differ by a factor of 2 or larger due to the highly localized nature of observed Poynting <span class="hlt">flux</span> deposition that is not captured by the models. In addition, the positioning of modeled patterns appear to be randomly shifted against the observed Poynting <span class="hlt">flux</span> energy input. This study is the first to compare Poynting <span class="hlt">flux</span> and Joule <span class="hlt">heat</span> in a large variety of models of the ionosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20770232-investigation-saturated-critical-heat-flux-single-uniformly-heated-microchannel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20770232-investigation-saturated-critical-heat-flux-single-uniformly-heated-microchannel"><span>Investigation of saturated critical <span class="hlt">heat</span> <span class="hlt">flux</span> in a single, uniformly <span class="hlt">heated</span> microchannel</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wojtan, Leszek; Revellin, Remi; Thome, John R.</p> <p>2006-08-15</p> <p>A series of tests have been performed to determine the saturated critical <span class="hlt">heat</span> <span class="hlt">flux</span> (CHF) in 0.5 and 0.8mm internal diameter microchannel tubes as a function of refrigerant mass velocity, <span class="hlt">heated</span> length, saturation temperature and inlet liquid subcooling. The tested refrigerants were R-134a and R-245fa and the <span class="hlt">heated</span> length of microchannel was varied between 20 and 70mm. The results show a strong dependence of CHF on mass velocity, <span class="hlt">heated</span> length and microchannel diameter but no influence of liquid subcooling (2-15{sup o}C) was observed. The experimental results have been compared to the well-known CHF single-channel correlation of Y. Katto and H.more » Ohno [An improved version of the generalized correlation of critical <span class="hlt">heat</span> <span class="hlt">flux</span> for the forced convective boiling in uniformly <span class="hlt">heated</span> vertical tubes, Int. J. <span class="hlt">Heat</span> and Mass Transfer 27 (9) (1984) 1641-1648] and the multichannel correlation of W. Qu and I. Mudawar [Measurement and correlation of critical <span class="hlt">heat</span> <span class="hlt">flux</span> in two-phase microchannel <span class="hlt">heat</span> sinks, Int. J. <span class="hlt">Heat</span> and Mass Transfer 47 (2004) 2045-2059]. The comparison shows that the correlation of Katto-Ohno predicts microchannel data with a mean absolute error of 32.8% with only 41.2% of the data falling within a +/-15% error band. The correlation of Qu and Mudawar shows the same trends as the CHF data but significantly overpredicts them. Based on the present experimental data, a new microscale version of the Katto-Ohno correlation for the prediction of CHF during saturated boiling in microchannels has been proposed. (author)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33M..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33M..04H"><span>An Analysis of Inter-annual Variability and Uncertainty of Continental Surface <span class="hlt">Heat</span> <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, S. Y.; Deng, Y.; Wang, J.</p> <p>2016-12-01</p> <p>The inter-annual variability and the corresponding uncertainty of land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> during the first decade of the 21st century are re-evaluated at continental scale based on the <span class="hlt">heat</span> <span class="hlt">fluxes</span> estimated by the maximum entropy production (MEP) model. The MEP model predicted <span class="hlt">heat</span> <span class="hlt">fluxes</span> are constrained by surface radiation <span class="hlt">fluxes</span>, automatically satisfy surface energy balance, and are independent of temperature/moisture gradient, wind speed, and roughness lengths. The surface radiation <span class="hlt">fluxes</span> and temperature data from Clouds and the Earth's Radiant Energy System and the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce the global surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> with land-cover data from the NASA Energy and Water cycle Study (NEWS). Our analysis shows that the annual means of continental latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> have increasing trends associated with increasing trends in surface net radiative <span class="hlt">fluxes</span>. The sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> also have increasing trends over most continents except for South America. Ground <span class="hlt">heat</span> <span class="hlt">fluxes</span> have little trends. The continental-scale analysis of the MEP <span class="hlt">fluxes</span> are compared with other existing global surface <span class="hlt">fluxes</span> data products and the implications of the results for inter-annual to decadal variability of regional surface energy budget are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920009517','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920009517"><span>Miniature high temperature plug-type <span class="hlt">heat</span> <span class="hlt">flux</span> gauges</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.</p> <p>1992-01-01</p> <p>The objective is to describe continuing efforts to develop methods for measuring surface <span class="hlt">heat</span> <span class="hlt">flux</span>, gauge active surface temperature, and <span class="hlt">heat</span> transfer coefficient quantities. The methodology involves inventing a procedure for fabricating improved plug-type <span class="hlt">heat</span> <span class="hlt">flux</span> gauges and also for formulating inverse <span class="hlt">heat</span> conduction models and calculation procedures. These models and procedures are required for making indirect measurements of these quantities from direct temperature measurements at gauge interior locations. Measurements of these quantities were made in a turbine blade thermal cycling tester (TBT) located at MSFC. The TBT partially simulates the turbopump turbine environment in the Space Shuttle Main Engine. After the TBT test, experiments were performed in an arc lamp to analyze gauge quality.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992ThApC..46...53B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992ThApC..46...53B"><span>Tests of a robust eddy correlation system for sensible <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanford, J. H.; Gay, L. W.</p> <p>1992-03-01</p> <p>Sensible <span class="hlt">heat</span> <span class="hlt">flux</span> estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. <span class="hlt">Flux</span> totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible <span class="hlt">heat</span> <span class="hlt">flux</span> measurements can be combined with net radiation and soil <span class="hlt">heat</span> <span class="hlt">flux</span> measurements to estimate latent <span class="hlt">heat</span> as a residual in the surface energy balance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.5861S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.5861S"><span>Gradient <span class="hlt">flux</span> measurements of <span class="hlt">sea-air</span> DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.</p> <p>2018-04-01</p> <p>Direct measurements of marine dimethylsulfide (DMS) <span class="hlt">fluxes</span> are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and <span class="hlt">flux</span> of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS <span class="hlt">fluxes</span> were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient <span class="hlt">flux</span> (GF) technique from an autonomous catamaran platform. Catamaran <span class="hlt">flux</span> measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. <span class="hlt">Flux</span> measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS <span class="hlt">fluxes</span> derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two <span class="hlt">flux</span> methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric <span class="hlt">heat</span> <span class="hlt">flux</span> enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF <span class="hlt">fluxes</span> of DMS provides confidence in compilation of <span class="hlt">flux</span> estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850o0002F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850o0002F"><span><span class="hlt">Heat</span> transfer experiments with a central receiver tube subjected to unsteady and non-uniform <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernández-Torrijos, María; Marugán-Cruz, Carolina; Sobrino, Celia; Santana, Domingo</p> <p>2017-06-01</p> <p>In this work, a molten salt test loop to study the <span class="hlt">heat</span> transfer process in external molten salt receivers is described. The experimental installation is formed by a cylindrical molten salt tank, a pump, a flow meter, and an induction heater to generate the <span class="hlt">heat</span> <span class="hlt">flux</span>, which is applied in a small rectangular region of the tube surface. In central tower plants, the external receiver pipe is considered to be under unilateral concentrated solar radiation, because only one side of the pipe receives high <span class="hlt">heat</span> <span class="hlt">flux</span>. The main advantage of using an induction heater is the control of <span class="hlt">heating</span> in different areas of the tube. In order to measure the effects of a non-homogenous and unsteady <span class="hlt">heat</span> <span class="hlt">flux</span> on the wall temperature distribution a series of experiments have been carried out. 4 K-type thermocouples have been welded at different axial and azimuthal positions of the pipe to obtain the wall temperature distribution. Different temperature measurements have been made varying the <span class="hlt">heat</span> <span class="hlt">flux</span> and water velocity to study their effects on the <span class="hlt">heat</span> transfer process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........59F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........59F"><span>Southern Ocean Eddy <span class="hlt">Heat</span> <span class="hlt">Flux</span> and Eddy-Mean Flow Interactions in Drake Passage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foppert, Annie</p> <p></p> <p>The Antarctic Circumpolar Current (ACC) is a complex current system composed of multiple jets that is both unique to the world's oceans and relatively under observed compared with other current systems. Observations taken by current- and pressure-recording inverted echo sounders (CPIES) over four years, from November 2007 to November 2011, quantify the mean structure of one of the main jets of the ACC - the Polar Front - in a composite-mean sense. While the array of CPIES deployed in Drake Passage included a 3 x 7 local dynamics array, analysis of the Polar Front makes use of the line of CPIES that spanned the width of Drake Passage (C-Line). The Polar Front tends to prefer one of two locations, separated along the C-Line by 1° of latitude, with the core of the jet centered on corresponding geopotential height contours (with a 17 cm dierence between the northern and southern jets). Potential vorticity fields suggest that the Polar Front is susceptible to baroclinic instability, regardless of whether it is found upstream (farther south along the C-Line) or downstream (farther north along the C-Line) of the Shackleton Fracture Zone (SFZ), yet the core of the jet remains a barrier to smaller-scale mixing, as inferred from estimated mixing lengths. Within the local dynamics array of CPIES, the observed offset between eddy <span class="hlt">heat</span> <span class="hlt">flux</span> (EHF) and eddy kinetic energy (EKE) and the alignment of EHF with <span class="hlt">sea</span> surface height (SSH) standard deviation motivates a proxy for depth-integrated EHF that can be estimated from available satellite SSH data. An eddy-resolving numerical model develops the statistics of a logarithmic fit between SSH standard deviation and cross-frontal EHF that is applied to the ACC in a circumglobal sense. We find 1.06 PW enters the ACC from the north and 0.02 PW exits towards Antarctica. The magnitude of the estimated EHF, along with contemporaneous estimates of the mean <span class="hlt">heat</span> <span class="hlt">flux</span>, suggests that the <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> south of the PF is an overestimate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28437986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28437986"><span>Control and design <span class="hlt">heat</span> <span class="hlt">flux</span> bending in thermal devices with transformation optics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Guoqiang; Zhang, Haochun; Jin, Yan; Li, Sen; Li, Yao</p> <p>2017-04-17</p> <p>We propose a fundamental latent function of control <span class="hlt">heat</span> transfer and <span class="hlt">heat</span> <span class="hlt">flux</span> density vectors at random positions on thermal materials by applying transformation optics. The expressions for <span class="hlt">heat</span> <span class="hlt">flux</span> bending are obtained, and the factors influencing them are investigated in both 2D and 3D cloaking schemes. Under certain conditions, more than one degree of freedom of <span class="hlt">heat</span> <span class="hlt">flux</span> bending exists corresponding to the temperature gradients of the 3D domain. The <span class="hlt">heat</span> <span class="hlt">flux</span> path can be controlled in random space based on the geometrical azimuths, radial positions, and thermal conductivity ratios of the selected materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993SPIE.1997..486C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993SPIE.1997..486C"><span>New low-cost high <span class="hlt">heat</span> <span class="hlt">flux</span> source</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Dah Yu</p> <p>1993-11-01</p> <p>Intense <span class="hlt">heat</span> sources are needed to address new manufacturing techniques, such as, the Rapid Thermal Process for silicon wafer manufacturing. The current technology of high <span class="hlt">heat</span> <span class="hlt">flux</span> sources is the laser for its ability to do welding and cutting is well-known. The laser with its coherent radiation allows an image to be focused down to very small sizes to reach extremely high <span class="hlt">heat</span> <span class="hlt">flux</span>. But the laser also has problems: it is inefficient in its use because of its singular wave length and brings up OSHA safety related problems. Also heavy industrial manufacturing requires much higher total energy in addition to the high <span class="hlt">heat</span> <span class="hlt">flux</span> which makes the current laser system too slow to be economical. The system I am proposing starts with a parabolic curve. If the curve is rotated about the axis of the parabola, it generates the classical parabolic reflector as we know it. On the other hand, when the curve is rotated about the chord, a line passing through the focal point and perpendicular to the axis, generates a new surface called the Orthogonal Parabolic Surface. A new optical reflector geometry is presented which integrates a linear white light (continuum spectra) source through a coherent path to be focused to a very small area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186946','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186946"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> from magmatic hydrothermal systems related to availability of fluid recharge</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.</p> <p>2015-01-01</p> <p>Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface <span class="hlt">heat</span> <span class="hlt">flux</span> indicates system resource potential, and can be inferred from soil CO2 <span class="hlt">flux</span> measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 <span class="hlt">flux</span> surveys worldwide to compare <span class="hlt">heat</span> <span class="hlt">flux</span> from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with <span class="hlt">heat</span> <span class="hlt">flux</span>. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and <span class="hlt">heat</span> <span class="hlt">flux</span> interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system <span class="hlt">heat</span> output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 <span class="hlt">flux</span> as a resource evaluation tool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BoLMe.124..269P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BoLMe.124..269P"><span>Divergence of turbulent <span class="hlt">fluxes</span> in the surface layer: case of a coastal city</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pigeon, G.; Lemonsu, A.; Grimmond, C. S. B.; Durand, P.; Thouron, O.; Masson, V.</p> <p>2007-08-01</p> <p>This study quantifies the processes that take place in the layer between the mean building height and the measurement level of an energy balance micrometeorological tower located in the dense old core of a coastal European city. The contributions of storage, vertical advection, horizontal advection and radiative divergence for <span class="hlt">heat</span> are evaluated with the available measurements and with a three-dimensional, high-resolution meteorological simulation that had been evaluated against observations. The study focused on a summer period characterized by <span class="hlt">sea</span>-breeze flows that affect the city. In this specific configuration, it appears that the horizontal advection is the dominant term. During the afternoon when the <span class="hlt">sea</span> breeze is well established, correction of the sensible <span class="hlt">heat</span> <span class="hlt">flux</span> with horizontal <span class="hlt">heat</span> advection increases the measured sensible <span class="hlt">heat</span> <span class="hlt">flux</span> up to 100 W m-2. For latent <span class="hlt">heat</span> <span class="hlt">flux</span>, the horizontal moisture advection converted to equivalent latent <span class="hlt">heat</span> <span class="hlt">flux</span> suggests a decrease of 50 W m-2. The simulation reproduces well the temporal evolution and magnitude of these terms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160014496&hterms=layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlayer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160014496&hterms=layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlayer"><span>The Open-Ocean Sensible <span class="hlt">Heat</span> <span class="hlt">Flux</span> and Its Significance for Arctic Boundary Layer Mixing During Early Fall</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ganeshan, Manisha; Wu, Dongliang</p> <p>2016-01-01</p> <p>The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal <span class="hlt">sea</span> ice growth. The open-ocean sensible <span class="hlt">heat</span> <span class="hlt">flux</span>, a crucial mechanism of excessive ocean <span class="hlt">heat</span> loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible <span class="hlt">heat</span> <span class="hlt">flux</span> (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold <span class="hlt">air</span> advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible <span class="hlt">heat</span> exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13B0517B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13B0517B"><span>A new <span class="hlt">heat</span> <span class="hlt">flux</span> model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic <span class="hlt">heat</span> production</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.</p> <p>2017-12-01</p> <p>We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial <span class="hlt">heat</span> <span class="hlt">flux</span> and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial <span class="hlt">heat</span> <span class="hlt">flux</span>, and that <span class="hlt">heat</span> <span class="hlt">flux</span> values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher <span class="hlt">heat</span> <span class="hlt">flux</span> on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high <span class="hlt">heat</span> <span class="hlt">flux</span> values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial <span class="hlt">heat</span> <span class="hlt">flux</span> must utilize a heterogeneous upper crust with variable radioactive <span class="hlt">heat</span> production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new <span class="hlt">heat</span> <span class="hlt">flux</span> model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic <span class="hlt">heat</span> production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850067082&hterms=Biddle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBiddle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850067082&hterms=Biddle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBiddle"><span>Evidence for ion <span class="hlt">heat</span> <span class="hlt">flux</span> in the light ion polar wind</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Biddle, A. P.; Moore, T. E.; Chappell, C. R.</p> <p>1985-01-01</p> <p>Cold flowing hydrogen and helium ions have been observed using the retarding ion mass spectrometer on board the Dynamics Explorer 1 spacecraft in the dayside magnetosphere at subauroral latitudes. The ions show a marked <span class="hlt">flux</span> asymmetry with respect to the relative wind direction. The observed data are fitted by a model of drifting Maxwellian distributions perturbed by a first order-Spritzer-Haerm <span class="hlt">heat</span> <span class="hlt">flux</span> distribution function. It is shown that both ion species are supersonic just equatorward of the auroral zone at L = 14, and the shape of asymmetry and direction of the asymmetry are consistent with the presence of an upward <span class="hlt">heat</span> <span class="hlt">flux</span>. At L = 6, both species evolve smoothly into warmer subsonic upward flows with downward <span class="hlt">heat</span> <span class="hlt">fluxes</span>. In the case of subsonic flows the downward <span class="hlt">heat</span> <span class="hlt">flux</span> implies a significant <span class="hlt">heat</span> source at higher altitudes. Spin curves of the spectrometer count rate versus the spin phase angle are provided.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930022364','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930022364"><span>Progress in the measurement of SSME turbine <span class="hlt">heat</span> <span class="hlt">flux</span> with plug-type sensors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.</p> <p>1991-01-01</p> <p>Data reduction was completed for tests of plug-type <span class="hlt">heat</span> <span class="hlt">flux</span> sensors (gauges) in a turbine blade thermal cycling tester (TBT) that is located at NASA/Marshall Space Flight Center, and a typical gauge is illustrated. This is the first time that <span class="hlt">heat</span> <span class="hlt">flux</span> has been measured in a Space Shuttle Main Engine (SSME) Turbopump Turbine environment. The development of the concept for the gauge was performed in a <span class="hlt">heat</span> <span class="hlt">flux</span> measurement facility at Lewis. In this facility, transient and steady state absorbed surface <span class="hlt">heat</span> <span class="hlt">flux</span> information was obtained from transient temperature measurements taken at points within the gauge. A schematic of the TBT is presented, and plots of the absorbed surface <span class="hlt">heat</span> <span class="hlt">flux</span> measured on the three blades tested in the TBT are presented. High quality <span class="hlt">heat</span> <span class="hlt">flux</span> values were measured on all three blades. The experiments demonstrated that reliable and durable gauges can be repeatedly fabricated into the airfoils. The experiment <span class="hlt">heat</span> <span class="hlt">flux</span> data are being used for verification of SSME analytical stress, boundary layer, and <span class="hlt">heat</span> transfer design models. Other experimental results and future plans are also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.167..469Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.167..469Z"><span>Long-term Turbulent Sensible-<span class="hlt">Heat-Flux</span> Measurements with a Large-Aperture Scintillometer in the Centre of Łódź, Central Poland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz</p> <p>2018-06-01</p> <p>We investigate the area-averaged sensible <span class="hlt">heat</span> <span class="hlt">flux</span> (QH) obtained with a scintillometer along a 3.1-km path length over the city centre of Łódź, Central Poland. The annual cycle of QH peaks in June but is lower by the middle of summer. In winter, due to a large amount of anthropogenic <span class="hlt">heat</span> input, QH remains positive all day long, with positive night-time <span class="hlt">fluxes</span> also found during months with frequent cold advection, e.g., June 2010. In the diurnal cycle of this <span class="hlt">flux</span>, several features specific to urban areas are seen: the peak shifts 1-2 h after noon, the <span class="hlt">heat</span> <span class="hlt">flux</span> turns from positive to negative 1-2 h after sunset. In Łódź QH was observed during inflow from the north and north-west, i.e. from the city centre. As this area is mostly covered with impervious materials, most of the <span class="hlt">heat</span> exchanged between the ground and the overlying <span class="hlt">air</span> is in the form of sensible <span class="hlt">heat</span> <span class="hlt">flux</span>. Under the conditions of inflow from the east and south-east, the maximum <span class="hlt">heat</span> <span class="hlt">flux</span> is approximately 100 W m^{-2} lower than during the inflow from the city centre, since more vegetation exists to the east and south-east of the scintillometer path. Cold and warm advection are found to be a vital factor in the observed <span class="hlt">heat-flux</span> variability in the centre of Łódź.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.tmp....3Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.tmp....3Z"><span>Long-term Turbulent Sensible-<span class="hlt">Heat-Flux</span> Measurements with a Large-Aperture Scintillometer in the Centre of Łódź, Central Poland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz</p> <p>2018-01-01</p> <p>We investigate the area-averaged sensible <span class="hlt">heat</span> <span class="hlt">flux</span> (QH ) obtained with a scintillometer along a 3.1-km path length over the city centre of Łódź, Central Poland. The annual cycle of QH peaks in June but is lower by the middle of summer. In winter, due to a large amount of anthropogenic <span class="hlt">heat</span> input, QH remains positive all day long, with positive night-time <span class="hlt">fluxes</span> also found during months with frequent cold advection, e.g., June 2010. In the diurnal cycle of this <span class="hlt">flux</span>, several features specific to urban areas are seen: the peak shifts 1-2 h after noon, the <span class="hlt">heat</span> <span class="hlt">flux</span> turns from positive to negative 1-2 h after sunset. In Łódź QH was observed during inflow from the north and north-west, i.e. from the city centre. As this area is mostly covered with impervious materials, most of the <span class="hlt">heat</span> exchanged between the ground and the overlying <span class="hlt">air</span> is in the form of sensible <span class="hlt">heat</span> <span class="hlt">flux</span>. Under the conditions of inflow from the east and south-east, the maximum <span class="hlt">heat</span> <span class="hlt">flux</span> is approximately 100 W m^{-2} lower than during the inflow from the city centre, since more vegetation exists to the east and south-east of the scintillometer path. Cold and warm advection are found to be a vital factor in the observed <span class="hlt">heat-flux</span> variability in the centre of Łódź.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33B0157H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33B0157H"><span>Distributed Sensible <span class="hlt">Heat</span> <span class="hlt">Flux</span> Measurements for Wireless Sensor Networks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.</p> <p>2015-12-01</p> <p>The sensible <span class="hlt">heat</span> <span class="hlt">flux</span> component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the <span class="hlt">flux</span> variance method based on convective scaling has been much less explored and applied. <span class="hlt">Flux</span> variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible <span class="hlt">heat</span> <span class="hlt">flux</span> over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the <span class="hlt">flux</span> measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible <span class="hlt">heat</span> <span class="hlt">flux</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.123....7K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.123....7K"><span>Is the oceanic <span class="hlt">heat</span> <span class="hlt">flux</span> on the central Amundsen <span class="hlt">sea</span> shelf caused by barotropic or baroclinic currents?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon</p> <p>2016-01-01</p> <p>The glaciers that drain the West Antarctic Ice Sheet into the Amundsen <span class="hlt">Sea</span> are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated <span class="hlt">heat</span> flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen <span class="hlt">Sea</span> shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of <span class="hlt">sea</span> surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of <span class="hlt">heat</span> appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24570212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24570212"><span>Mercury in precipitation at an urbanized coastal zone of the Baltic <span class="hlt">Sea</span> (Poland).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Falkowska, Lucyna</p> <p>2014-11-01</p> <p>Wet deposition is an important source of metals to the <span class="hlt">sea</span>. The temporal variability of Hg concentrations in precipitation, and the impact of <span class="hlt">air</span> masses of different origins over the Polish coastal zone were assessed. Samples of precipitation were collected (August 2008-May 2009) at an urbanized coastal station in Poland. Hg analyses were conducted using CVAFS. These were the first measurements of Hg concentration in precipitation obtained in the Polish coastal zone. Since Poland was identified as the biggest emitter of Hg to the Baltic, these data are very important. In the <span class="hlt">heating</span> and non-<span class="hlt">heating</span> season, Hg concentrations in precipitation were similar. Hg wet deposition <span class="hlt">flux</span> dominated in summer, when the production of biomass in the aquatic system was able to actively adsorb Hg. Input of metal to the <span class="hlt">sea</span> was attributed to regional and distant sources. Maritime <span class="hlt">air</span> masses, through transformation of Hg(0), were an essential vector of mercury in precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412137Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412137Z"><span>Urban <span class="hlt">heat</span> <span class="hlt">fluxes</span> in the subsurface of Cologne, Germany</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, K.; Bayer, P.; Blum, P.</p> <p>2012-04-01</p> <p>Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban <span class="hlt">heat</span> island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic <span class="hlt">heat</span> migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban <span class="hlt">heat</span> <span class="hlt">fluxes</span> in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy <span class="hlt">fluxes</span> in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy <span class="hlt">fluxes</span> within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and <span class="hlt">heat</span> transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban <span class="hlt">heat</span> <span class="hlt">flux</span> that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface <span class="hlt">heat</span> transport and temperature development is comprehensively discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12836556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12836556"><span>[A review on research of land surface water and <span class="hlt">heat</span> <span class="hlt">fluxes</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Rui; Liu, Changming</p> <p>2003-03-01</p> <p>Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>. In this paper, the processes of experimental research on land surface water and <span class="hlt">heat</span> <span class="hlt">fluxes</span> are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> and evapotranspiration. These models are also analyzed in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JNuM..258..672M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JNuM..258..672M"><span>On the use of flat tile armour in high <span class="hlt">heat</span> <span class="hlt">flux</span> components</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merola, M.; Vieider, G.</p> <p>1998-10-01</p> <p>The possibility to have a flat tile geometry for those high <span class="hlt">heat</span> <span class="hlt">flux</span> components subjected to a convective <span class="hlt">heat</span> <span class="hlt">flux</span> (namely the divertor dump target, lower vertical target, and the limiter) has been investigated. Because of the glancing incidence of the power load, if an armour tile falls off an extremely high <span class="hlt">heat</span> <span class="hlt">flux</span> hits the leading edge of the adjacent tile. As a result a rapid temperature increase occurs in the armour-<span class="hlt">heat</span> sink joint. The <span class="hlt">heat</span> <span class="hlt">flux</span> to the water coolant also increases rapidly up to a factor of 1.7 and 2.3 for a beryllium and CFC armour, respectively, thus causing possible critical <span class="hlt">heat</span> <span class="hlt">flux</span> problems. Thermal stresses in the armour-<span class="hlt">heat</span> sink joint double in less than 0.4 s and triplicate after 1 s thus leading to a possible cascade failure. Therefore the use of a flat tile geometry for these components does not seem to be appropriate. In this case a monoblock geometry gives a much more robust solution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ZaMP...69...71B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ZaMP...69...71B"><span>Systems with a constant <span class="hlt">heat</span> <span class="hlt">flux</span> with applications to radiative <span class="hlt">heat</span> transport across nanoscale gaps and layers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Budaev, Bair V.; Bogy, David B.</p> <p>2018-06-01</p> <p>We extend the statistical analysis of equilibrium systems to systems with a constant <span class="hlt">heat</span> <span class="hlt">flux</span>. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net <span class="hlt">heat</span> <span class="hlt">flux</span>. This development provides a long needed foundation for addressing problems of nanoscale <span class="hlt">heat</span> transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative <span class="hlt">heat</span> <span class="hlt">flux</span> between narrowly spaced half-spaces maintained at different temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001SPIE.4244...74M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001SPIE.4244...74M"><span>Sequential cryogen spraying for <span class="hlt">heat</span> <span class="hlt">flux</span> control at the skin surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart</p> <p>2001-05-01</p> <p><span class="hlt">Heat</span> transfer rate at the skin-<span class="hlt">air</span> interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair <span class="hlt">heat</span> transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass <span class="hlt">flux</span> of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass <span class="hlt">flux</span> control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A24E..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A24E..03S"><span>Comparison of MERRA-2 and ECCO-v4 ocean surface <span class="hlt">heat</span> <span class="hlt">fluxes</span>: Consequences of different forcing feedbacks on ocean circulation and implications for climate data assimilation.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.</p> <p>2017-12-01</p> <p>Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate <span class="hlt">fluxes</span> between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to <span class="hlt">heat</span> <span class="hlt">fluxes</span> from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent <span class="hlt">fluxes</span> of <span class="hlt">heat</span> and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in <span class="hlt">sea</span> level. The bulk formulae and interactive outgoing long wave radiation, although providing <span class="hlt">air-sea</span> feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864502','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864502"><span><span class="hlt">Air</span> <span class="hlt">heating</span> system</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Primeau, John J.</p> <p>1983-03-01</p> <p>A self-starting, fuel-fired, <span class="hlt">air</span> <span class="hlt">heating</span> system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an <span class="hlt">air</span> blower which passes <span class="hlt">air</span> over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of <span class="hlt">heat</span> exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28i2102V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28i2102V"><span>Expanding Taylor bubble under constant <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves</p> <p>2016-09-01</p> <p>Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating <span class="hlt">Heat</span> Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant <span class="hlt">heat</span> <span class="hlt">flux</span> density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-<span class="hlt">heating</span> of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass <span class="hlt">flux</span> at the liquid-vapor interface. Global <span class="hlt">heat</span> exchange is also investigated, showing a strong decreasing of the PHP performance to convey <span class="hlt">heat</span> by phase change means for large meniscus velocities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6713305-third-law-thermodynamics-presence-heat-flux','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6713305-third-law-thermodynamics-presence-heat-flux"><span>Third law of thermodynamics in the presence of a <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Camacho, J.</p> <p>1995-01-01</p> <p>Following a maximum entropy formalism, we study a one-dimensional crystal under a <span class="hlt">heat</span> <span class="hlt">flux</span>. We obtain the phonon distribution function and evaluate the nonequilibrium temperature, the specific <span class="hlt">heat</span>, and the entropy as functions of the internal energy and the <span class="hlt">heat</span> <span class="hlt">flux</span>, in both the quantum and the classical limits. Some analogies between the behavior of equilibrium systems at low absolute temperature and nonequilibrium steady states under high values of the <span class="hlt">heat</span> <span class="hlt">flux</span> are shown, which point to a possible generalization of the third law in nonequilibrium situations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B41D0328R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B41D0328R"><span>Methane <span class="hlt">fluxes</span> and their controlling processes in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rehder, G. J.; Fossing, H.; Lapham, L.; Endler, R.; Spiess, V.; Bruchert, V.; Nguyen, T.; Gülzow, W.; Schneider von Deimling, J.; Conley, D. J.; Jorgensen, B.</p> <p>2010-12-01</p> <p>The Baltic <span class="hlt">Sea</span> is an ideal natural laboratory to study the methane cycle in the framework of diagenetic processes. With its brackish character and a gradient from nearly marine to almost limnic conditions, a strong permanent haline stratification leading to large vertical redox gradients in the water column, and a sedimentation history which resulted in the deposition of organic-rich young post-glacial sediments over older glacial and post-glacial strata with very low organic content, the Baltic allows to study the role of a variety of key parameters for early diagenetic processes including the methane cycle. Within the BONUS + Project “Baltic Gas”, a 3.5 week scientific expedition of RV Maria S. Merian in August 2010 was dedicated to study the methane cycle in the various basins of the Baltic <span class="hlt">Sea</span>, with strong emphasis on the metabolic reactions of early diagenesis and the occurrence of shallow gas deposits. Various subbottom profiling systems were used to map the thickness and structure of organic-rich deposits and build the base for a detailed coring program for biogeochemical analysis, including methane, sulfur compounds, iron, and other compounds. Methane gradients in connection with the information of the areal extend of organic-rich deposits are used to estimate the diffusive <span class="hlt">flux</span> from the sediments into the water column and the rate of methane oxidation, with changing importance of sulfate as oxidant along the salinity gradient. On selected key stations, rate measurements of methanogenic and methanotrophic reactions were executed. The methane distribution in the water column was comprehensively assessed, revealing amongst other findings a drastic increase in bottom water methane concentration between the post bloom summer situation and the situation in the winter of 2009, in connection to the occurrence of a benthic nepheloid layer. <span class="hlt">Air-sea</span> <span class="hlt">flux</span> measurements were executed along the ship’s track comprising all major basins of the Baltic. The talk gives</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960023961','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960023961"><span>An Investigation of the Compatibility of Radiation and Convection <span class="hlt">Heat</span> <span class="hlt">Flux</span> Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liebert, Curt H.</p> <p>1996-01-01</p> <p>A method for determining time-resolved absorbed surface <span class="hlt">heat</span> <span class="hlt">flux</span> and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, <span class="hlt">heat</span> transfer and durability models. A practical <span class="hlt">heat</span> <span class="hlt">flux</span> gage fabrication procedure and a simple one-dimensional inverse <span class="hlt">heat</span> conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and <span class="hlt">heat</span> <span class="hlt">flux</span> gradient in the direction of <span class="hlt">heat</span> transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective <span class="hlt">heating</span> and cooling environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NucFu..57i2006U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NucFu..57i2006U"><span>Baseline high <span class="hlt">heat</span> <span class="hlt">flux</span> and plasma facing materials for fusion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.</p> <p>2017-09-01</p> <p>In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high <span class="hlt">heat</span> and particle <span class="hlt">flux</span>. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle <span class="hlt">flux</span> (including T and He), high <span class="hlt">heat</span> <span class="hlt">flux</span>, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient <span class="hlt">heat</span> loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high <span class="hlt">heat</span> <span class="hlt">flux</span> components (C. Hardie, M. Porton, and M. Gilbert).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002DSRII..49.1173S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002DSRII..49.1173S"><span>Winter and summer monsoon water mass, <span class="hlt">heat</span> and freshwater transport changes in the Arabian <span class="hlt">Sea</span> near 8°N</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen</p> <p></p> <p>The differences in the water mass distributions and transports in the Arabian <span class="hlt">Sea</span> between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian <span class="hlt">Sea</span>. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red <span class="hlt">Sea</span> Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian <span class="hlt">Sea</span>. Estimates of the overturning circulation of the Arabian <span class="hlt">Sea</span> were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The <span class="hlt">heat</span> <span class="hlt">flux</span> across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived <span class="hlt">heat</span> <span class="hlt">flux</span> estimates. Freshwater <span class="hlt">fluxes</span> across 8°N also were computed, yielding northward freshwater <span class="hlt">fluxes</span> of 0.07 Sv in January 1998 and 0</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1373011-midlatitude-atmospheric-responses-arctic-sensible-heat-flux-anomalies-community-climate-model-version-atmospheric-response-arctic-shfs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1373011-midlatitude-atmospheric-responses-arctic-sensible-heat-flux-anomalies-community-climate-model-version-atmospheric-response-arctic-shfs"><span>Midlatitude atmospheric responses to Arctic sensible <span class="hlt">heat</span> <span class="hlt">flux</span> anomalies in Community Climate Model, Version 4: Atmospheric Response to Arctic SHFs</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mills, Catrin M.; Cassano, John J.; Cassano, Elizabeth N.</p> <p></p> <p>Possible linkages between Arctic <span class="hlt">sea</span> ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> with the self-organizing map technique to identify Arctic sensible <span class="hlt">heat</span> <span class="hlt">flux</span> anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagatemore » downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/321026-single-side-conduction-modeling-high-heat-flux-coolant-channels','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/321026-single-side-conduction-modeling-high-heat-flux-coolant-channels"><span>Single-side conduction modeling for high <span class="hlt">heat</span> <span class="hlt">flux</span> coolant channels</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Boyd, R.D. Sr.</p> <p></p> <p>In the development of plasma-facing components (PFCs), most investigators have erroneously postulated negligible water critical <span class="hlt">heat</span> <span class="hlt">flux</span> dependence on the coolant channel length-to-diameter (L/D) ratio above a constant value of L/D. Although encouraging results have been obtained in characterizing peaking factors for local two-dimensional boiling curves and critical <span class="hlt">heat</span> <span class="hlt">flux</span>, additional experimental data and theoretical model development are needed to validate the applicability to PFCs. Both these and related issues will affect the flow boiling correlation and data reduction associated with the development of PFCs for fusion reactors and other physical problems that are dependent on conduction modeling in themore » <span class="hlt">heat</span> <span class="hlt">flux</span> spectrum of applications. Both exact solutions and numerical conjugate analyses are presented for a one-side <span class="hlt">heated</span> (OSH) geometry. The results show (a) the coexistence of three flow regimes inside an OSH circular geometry, (b) the correlational dependence of the inside wall <span class="hlt">heat</span> <span class="hlt">flux</span> and temperature, and (c) inaccuracies that could arise in some data reduction procedures.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1373693-gyrokinetic-projection-divertor-heat-flux-width-from-present-tokamaks-iter','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1373693-gyrokinetic-projection-divertor-heat-flux-width-from-present-tokamaks-iter"><span>Gyrokinetic projection of the divertor <span class="hlt">heat-flux</span> width from present tokamaks to ITER</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chang, Choong Seock; Ku, Seung -Hoe; Loarte, Alberto; ...</p> <p>2017-07-11</p> <p>Here, the XGC1 edge gyrokinetic code is used to study the width of the <span class="hlt">heat-flux</span> to divertor plates in attached plasma condition. The <span class="hlt">flux</span>-driven simulation is performed until an approximate power balance is achieved between the <span class="hlt">heat-flux</span> across the steep pedestal pressure gradient and the <span class="hlt">heat-flux</span> on the divertor plates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000083879','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000083879"><span>A <span class="hlt">Sea</span>-Surface Radiation Data Set for Climate Applications in the Tropical Western Pacific and South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.</p> <p>2000-01-01</p> <p>The <span class="hlt">sea</span>-surface shortwave and longwave radiative <span class="hlt">fluxes</span> have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China <span class="hlt">Sea</span> during the South China <span class="hlt">Sea</span> Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the <span class="hlt">heating</span> of the ocean in the tropical western Pacific and the South China <span class="hlt">Sea</span>. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative <span class="hlt">heating</span> of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative <span class="hlt">heating</span> exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave <span class="hlt">fluxes</span> at top of the atmosphere and the radiative transfer calculations of clear-sky <span class="hlt">fluxes</span>, this surface radiation data set is also used to study the impact of clouds on the solar <span class="hlt">heating</span> of the atmosphere. It is found that clouds enhance the atmospheric solar <span class="hlt">heating</span> by approx. 20 W/sq m in the tropical western Pacific and the South China <span class="hlt">Sea</span>. This result is important for evaluating the accuracy of solar <span class="hlt">flux</span> calculations in clear and cloudy atmospheres.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.196...62S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.196...62S"><span>Intense <span class="hlt">air-sea</span> exchanges and heavy orographic precipitation over Italy: The role of Adriatic <span class="hlt">sea</span> surface temperature uncertainty</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stocchi, Paolo; Davolio, Silvio</p> <p>2017-11-01</p> <p>Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense <span class="hlt">air-sea</span> interactions and it is reasonable to hypothesize that the Adriatic <span class="hlt">sea</span> surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour <span class="hlt">fluxes</span> across the Italian coast and atmospheric water budget over the Adriatic <span class="hlt">Sea</span> have been developed and applied in order to characterize the <span class="hlt">air</span> mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of <span class="hlt">air</span> that flows over the Adriatic <span class="hlt">Sea</span>. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21096099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21096099"><span>Theoretical simulation of the dual-<span class="hlt">heat-flux</span> method in deep body temperature measurements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Ming; Chen, Wenxi</p> <p>2010-01-01</p> <p>Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-<span class="hlt">heat-flux</span> method has been shown experimentally to be competitive with the conventional zero-<span class="hlt">heat</span>-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-<span class="hlt">heat-flux</span> probe in deep body temperature measurements to validate the fundamental principles of the dual-<span class="hlt">heat-flux</span> method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-<span class="hlt">heat-flux</span> probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-<span class="hlt">heat-flux</span> probe. Insights in improving the performance of the dual-<span class="hlt">heat-flux</span> method were discussed for further studies of dual-<span class="hlt">heat-flux</span> probes, taking into account structural and geometric considerations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=311956','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=311956"><span>Neural network analysis on the effect of <span class="hlt">heat</span> <span class="hlt">fluxes</span> on greenhouse gas emissions from anaerobic swine waste treatment lagoon</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In this study, we examined the various meteorological factors (i.e., <span class="hlt">air</span> temperatures, solar radiation, and <span class="hlt">heat</span> <span class="hlt">fluxes</span>) that potentially affect greenhouse gas (GHG) emissions from swine waste lagoon. GHG concentrations (methane, carbon dioxide, and nitrous oxide) were monitored using a photoacous...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21A1048R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21A1048R"><span>A Large Eddy Simulation Study of <span class="hlt">Heat</span> Entrainment under <span class="hlt">Sea</span> Ice in the Canadian Arctic Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.</p> <p>2016-12-01</p> <p><span class="hlt">Sea</span> ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of <span class="hlt">heat</span> from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between <span class="hlt">sea</span> ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect <span class="hlt">sea</span> ice thickness because the strongly-stratified halocline prevents <span class="hlt">heat</span> from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of <span class="hlt">heat</span> from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much <span class="hlt">heat</span> can be entrained from the PSW layer to the <span class="hlt">sea</span> ice. Our results can be used to improve parameterizations of vertical <span class="hlt">heat</span> <span class="hlt">flux</span> under <span class="hlt">sea</span> ice in coarse-grid ocean and climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50...83B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50...83B"><span>Greenland coastal <span class="hlt">air</span> temperatures linked to Baffin Bay and Greenland <span class="hlt">Sea</span> ice conditions during autumn through regional blocking patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.</p> <p>2018-01-01</p> <p>Variations in <span class="hlt">sea</span> ice freeze onset and regional <span class="hlt">sea</span> surface temperatures (SSTs) in Baffin Bay and Greenland <span class="hlt">Sea</span> are linked to autumn surface <span class="hlt">air</span> temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland <span class="hlt">Sea</span>. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern <span class="hlt">sea</span> ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm <span class="hlt">air</span> from lower latitudes and local warm <span class="hlt">air</span> advection onshore from ocean-atmosphere sensible <span class="hlt">heat</span> exchange through ice-free or thin ice-covered <span class="hlt">seas</span> bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP13A1863Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP13A1863Z"><span>Evidence of strong ocean <span class="hlt">heating</span> during glacial periods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimov, S. A.; Zimov, N.</p> <p>2013-12-01</p> <p>Numerous hypotheses have addressed glacial-interglacial climatic dynamics, but none of them explain the sharp 25C temperature increase in Greenland in the last deglaciation (Cuffey et al. 1995; Dahl-Jensen et al. 1998). These robust data were obtained through analyzing the temperature profile in the Greenland ice sheet where cold from the last glaciation is preserved in the depth of the glacial sheet. We suggest that during glaciations the ocean accumulated energy: interior ocean water <span class="hlt">heated</span> up to ~20-30C and during deglaciation this energy is released. In the analogy with reconstructing the ice sheet temperature profiles, the most reliable proof of ocean interior warming during the last glaciation is the <span class="hlt">heat</span> <span class="hlt">flux</span> profiles in the bottom sediments. In the final reports based on temperature measurements conducted during the DSDP (Deep <span class="hlt">Sea</span> Drilling Project) it is stated that <span class="hlt">heat</span> <span class="hlt">flux</span> in the bottom sediments doesn't vary with depth and consequently there were no substantial temperature changes in the ocean interior during the last glacial cycle, and <span class="hlt">heat</span> <span class="hlt">flux</span> on the surface of the ocean bottom is the geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> (Erickson et al., 1975, Hyndman et al., 1987). However, we have critically investigated data in all initial reports of all deep <span class="hlt">sea</span> drilling projects and have noticed that all temperature data show that <span class="hlt">heat</span> flow decreases strongly with depth (a minimum of 40 mW/m2), i.e. most of the <span class="hlt">heat</span> <span class="hlt">flux</span> detected on the surface of the ocean floor is not the geothermal <span class="hlt">heat</span> <span class="hlt">flux</span> but remaining <span class="hlt">heat</span> that bottom sediments release. Sharp shifts in <span class="hlt">heat</span> flow are seen within boreholes at depths crossing gas hydrate bottom. All this means that during the last glacial period interior water temperature was on 25-30C degrees warmer. Conversely, in isolated <span class="hlt">seas</span> <span class="hlt">heat</span> flow in the sediments shows little change with depth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23962','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23962"><span>A modified force-restore approach to modeling snow-surface <span class="hlt">heat</span> <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charles H. Luce; David G. Tarboton</p> <p>2001-01-01</p> <p>Accurate modeling of the energy balance of a snowpack requires good estimates of the snow surface temperature. The snow surface temperature allows a balance between atmospheric <span class="hlt">heat</span> <span class="hlt">fluxes</span> and the conductive <span class="hlt">flux</span> into the snowpack. While the dependency of atmospheric <span class="hlt">fluxes</span> on surface temperature is reasonably well understood and parameterized, conduction of <span class="hlt">heat</span> from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002mwoc.conf...39M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002mwoc.conf...39M"><span>Contagious Coronal <span class="hlt">Heating</span> from Recurring Emergence of Magnetic <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, R. L.; Falconer, D. A.; Sterling, A. C.</p> <p>2002-01-01</p> <p>For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal <span class="hlt">heating</span> in and around the old bipole in response to new magnetic <span class="hlt">flux</span> emergence within the old bipole. The observations show: 1. In each active region, new <span class="hlt">flux</span> emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal <span class="hlt">heating</span>, and enhanced coronal <span class="hlt">heating</span> occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the <span class="hlt">flux</span> emergence. 4. There are episodes of enhanced coronal <span class="hlt">heating</span> in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged <span class="hlt">flux</span> within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal <span class="hlt">heating</span>. We Also Note That The Reason For The recurrence of <span class="hlt">flux</span> emergence in old active regions may be that active-region <span class="hlt">flux</span> tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022350&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DMagnetic%2BFlux','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022350&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DMagnetic%2BFlux"><span>Contagious Coronal <span class="hlt">Heating</span> from Recurring Emergence of Magnetic <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Ronald L.; Falconer, David; Sterling, Alphonse; Whitaker, Ann F. (Technical Monitor)</p> <p>2001-01-01</p> <p>For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal <span class="hlt">heating</span> in and around the old bipole in response to new magnetic <span class="hlt">flux</span> emerge= within the old bipole. The observations show: 1. In each active region, new <span class="hlt">flux</span> emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal <span class="hlt">heating</span>, and enhanced coronal <span class="hlt">heating</span> occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the <span class="hlt">flux</span> emergence. 4. There are episodes of enhanced coronal <span class="hlt">heating</span> in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged <span class="hlt">flux</span> within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal <span class="hlt">heating</span>. We also note that the reason for the recurrence of <span class="hlt">flux</span> emergence in old active regions may be that active region <span class="hlt">flux</span> tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC54A..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC54A..08R"><span>The Uptake of <span class="hlt">Heat</span> and Carbon by the Southern Ocean in the CMIP5 Earth System Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, J. L.; Stouffer, R. J.; Dunne, J. P.; John, J. G.</p> <p>2011-12-01</p> <p>The Southern Ocean surrounding the Antarctic continent accounts for a disproportionate share of the <span class="hlt">heat</span> and carbon dioxide that is removed from contact with the atmosphere into the ocean. The vigorous <span class="hlt">air-sea</span> exchange driven by the Southern Hemisphere Westerlies, combined with the dearth of observations, makes the Southern Ocean a major source of uncertainty in projecting the rate of warming of our atmosphere, especially considering that the vertical mixing of the ocean and the corollary <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> may be vulnerable to climate change. We assess the <span class="hlt">heat</span> and carbon uptake by the Southern Ocean in future simulations by the IPCC-AR5 Earth System Models (ESMs), focusing on the GFDL simulations. Using the 1860 control simulation as our baseline, we explore the differences in <span class="hlt">heat</span> and carbon uptake between the major "Representative Concentration Pathways" (RCPs) as simulated by the various ESMs in order to quantify the uncertainties in the climate projections related to the Southern Ocean window into the deep ocean reservoir.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23M..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23M..03C"><span>Relationship Between <span class="hlt">Sea</span> Surface Temperature and Surface <span class="hlt">Heat</span> Balance Trends in the Tropical Oceans: The Crucial Role of Surface Wind Trends</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, K. H.; Vizy, E. K.; Sun, X.</p> <p>2016-12-01</p> <p>Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface <span class="hlt">heat</span> balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface <span class="hlt">heat</span> budgets and <span class="hlt">sea</span> surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net <span class="hlt">heat</span> <span class="hlt">flux</span> from the atmosphere to the ocean. Trends in the net longwave and sensible <span class="hlt">heat</span> <span class="hlt">fluxes</span> are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent <span class="hlt">heat</span> <span class="hlt">flux</span> trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent <span class="hlt">heat</span> <span class="hlt">flux</span> dominates and explains much of the regionality of the multi-decadal <span class="hlt">heat</span> <span class="hlt">flux</span> trends. However, trends in the net surface <span class="hlt">heat</span> <span class="hlt">flux</span> alone do not match the observed SSTs trends well, indicating that the redistribution of <span class="hlt">heat</span> within the ocean mixed layer is also important. Ocean mixed layer <span class="hlt">heat</span> budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66..917A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66..917A"><span>Surface wave effects on water temperature in the Baltic <span class="hlt">Sea</span>: simulations with the coupled NEMO-WAM model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter</p> <p>2016-08-01</p> <p>Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and <span class="hlt">heat</span> exchange at regional scale (the Baltic <span class="hlt">Sea</span>). Four scenarios—including Stokes-Coriolis force, <span class="hlt">sea</span>-state dependent energy <span class="hlt">flux</span> (additional turbulent kinetic energy due to breaking waves), <span class="hlt">sea</span>-state dependent momentum <span class="hlt">flux</span> and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic <span class="hlt">Sea</span>, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to <span class="hlt">sea</span>-state dependent energy <span class="hlt">flux</span>. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual <span class="hlt">sea</span> state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for <span class="hlt">sea</span>-state dependent momentum <span class="hlt">flux</span> results in modified <span class="hlt">heat</span> exchange at the water-<span class="hlt">air</span> boundary which consequently leads to warming of surface water compared to control simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25826919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25826919"><span>[Distributions and <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of dissolved nitrous oxide in the Yangtze River estuary and its adjacent marine area in spring and summer].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling</p> <p>2014-12-01</p> <p>Distributions and <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open <span class="hlt">sea</span>. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The <span class="hlt">sea-to-air</span> <span class="hlt">fluxes</span> of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26520258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26520258"><span>Energy <span class="hlt">flux</span> parametrization as an opportunity to get Urban <span class="hlt">Heat</span> Island insights: The case of Athens, Greece (Thermopolis 2009 Campaign).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Loupa, G; Rapsomanikis, S; Trepekli, A; Kourtidis, K</p> <p>2016-01-15</p> <p>Energy <span class="hlt">flux</span> parameterization was effected for the city of Athens, Greece, by utilizing two approaches, the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) and the Bulk Approach (BA). In situ acquired data are used to validate the algorithms of these schemes and derive coefficients applicable to the study area. Model results from these corrected algorithms are compared with literature results for coefficients applicable to other cities and their varying construction materials. Asphalt and concrete surfaces, canyons and anthropogenic <span class="hlt">heat</span> releases were found to be the key characteristics of the city center that sustain the elevated surface and <span class="hlt">air</span> temperatures, under hot, sunny and dry weather, during the Mediterranean summer. A relationship between storage <span class="hlt">heat</span> <span class="hlt">flux</span> plus anthropogenic energy <span class="hlt">flux</span> and temperatures (surface and lower atmosphere) is presented, that results in understanding of the interplay between temperatures, anthropogenic energy releases and the city characteristics under the Urban <span class="hlt">Heat</span> Island conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OPhy...15....4F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OPhy...15....4F"><span>Numerical modeling of the thermoelectric cooler with a complementary equation for <span class="hlt">heat</span> circulation in <span class="hlt">air</span> gaps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui</p> <p>2017-03-01</p> <p>In this paper, a numerical model is developed by combining thermodynamics with <span class="hlt">heat</span> transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for <span class="hlt">heat</span> circulation in <span class="hlt">air</span> gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the <span class="hlt">heat</span> flowing through <span class="hlt">air</span> gaps which forms <span class="hlt">heat</span> circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant <span class="hlt">heat</span> <span class="hlt">flux</span> reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with <span class="hlt">heat</span> source and sink assembly. At constant power dissipation, steady temperatures of <span class="hlt">heat</span> source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different <span class="hlt">heat</span> transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and <span class="hlt">heat</span> <span class="hlt">flux</span>, <span class="hlt">heat</span> loss of the device vertical surfaces and measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060029193&hterms=air+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dair%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060029193&hterms=air+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dair%2Bmeasurement"><span><span class="hlt">Sea</span> surface temperature measurements with <span class="hlt">AIRS</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aumann, H.</p> <p>2003-01-01</p> <p>The comparison of global <span class="hlt">sea</span> surface skin temperature derived from cloud-free <span class="hlt">AIRS</span> super window channel at 2616 cm-1 (sst2616) with the Real-Time Global <span class="hlt">Sea</span> Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPJO5002H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPJO5002H"><span><span class="hlt">Heat-Flux</span> Measurements from Collective Thomson-Scattering Spectra</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.</p> <p>2015-11-01</p> <p>Collective Thomson scattering was used to measure <span class="hlt">heat</span> <span class="hlt">flux</span> in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the <span class="hlt">flux</span> of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the <span class="hlt">flux</span> of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm <span class="hlt">flux</span> <m:mfenced close=")" open="(" separators="">qSH = - κ∇Te </m:mfenced> and are in good agreement with the values of the <span class="hlt">heat</span> <span class="hlt">flux</span> measured from the scattering-feature asymmetries. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860002759','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860002759"><span>Turbine blade and vane <span class="hlt">heat</span> <span class="hlt">flux</span> sensor development, phase 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkinson, W. H.; Cyr, M. A.; Strange, R. R.</p> <p>1985-01-01</p> <p>The development of <span class="hlt">heat</span> <span class="hlt">flux</span> sensors for gas turbine blades and vanes and the demonstration of <span class="hlt">heat</span> transfer measurement methods are reported. The performance of the <span class="hlt">heat</span> <span class="hlt">flux</span> sensors was evaluated in a cylinder in cross flow experiment and compared with two other <span class="hlt">heat</span> <span class="hlt">flux</span> measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21D0970Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21D0970Z"><span>Two-wavelength Method Estimates <span class="hlt">Heat</span> <span class="hlt">fluxes</span> over Heterogeneous Surface in North-China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, G.; Zheng, N.; Zhang, J.</p> <p>2017-12-01</p> <p><span class="hlt">Heat</span> <span class="hlt">fluxes</span> is a key process of hydrological and <span class="hlt">heat</span> transfer of soil-plant-atmosphere continuum (SPAC), and now it is becoming an important topic in meteorology, hydrology, ecology and other related research areas. Because the temporal and spatial variation of <span class="hlt">fluxes</span> at regional scale is very complicated, it is still difficult to measure <span class="hlt">fluxes</span> at the kilometer scale over a heterogeneous surface. A technique called "two-wavelength method" which combines optical scintillometer with microwave scintillometer is able to measure both sensible and latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> over large spatial scales at the same time. The main purpose of this study is to investigate the <span class="hlt">fluxes</span> over non-uniform terrain in North-China. Estimation of <span class="hlt">heat</span> <span class="hlt">fluxes</span> was carried out with the optical-microwave scintillometer and an eddy covariance (EC) system over heterogeneous surface in Tai Hang Mountains, China. EC method was set as a benchmark in the study. Structure parameters obtained from scintillometer showed that the typical measurement values of Cn2 are around 10-13 m-2/3 for microwave scintillometer, and values of Cn2 were around 10-15 m-2/3 for optical scintillometer. The correlation of <span class="hlt">heat</span> <span class="hlt">fluxes</span> (H) derived from scintillometer and EC system showed as a ratio of 1.05,and with R2=0.75, while the correlation of latent <span class="hlt">heat</span> <span class="hlt">fluxes</span> (LE) showed as 1.29 with R2=0.67. It was also found that <span class="hlt">heat</span> <span class="hlt">fluxes</span> derived from the two system showed good agreement (R2=0.9 for LE, R2=0.97 for H) when the Bowen ratio (β) was 1.03, while discrepancies showed significantly when β=0.75, and RMSD in H was 139.22 W/m2, 230.85 W/m2 in LE respectively.Experiment results in our research shows that, the two-wavelength method gives a larger <span class="hlt">heat</span> <span class="hlt">fluxes</span> over the study area, and a deeper study should be conduct. We expect that our investigate and analysis can be promoted the application of scintillometry method in regional evapotranspiration measurements and relevant disciplines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H51K1361Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H51K1361Z"><span>Effects of cold front passage on turbulent <span class="hlt">fluxes</span> over a large inland water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Q.; Liu, H.</p> <p>2011-12-01</p> <p>Turbulent <span class="hlt">fluxes</span> of sensible and latent <span class="hlt">heat</span> over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, <span class="hlt">air</span> temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy <span class="hlt">fluxes</span>. For the typical cold front event selected from April 11 to 14, <span class="hlt">air</span> temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-<span class="hlt">air</span> interface dropped 0.7 kPa. The behavior difference in the water-<span class="hlt">air</span> interface was caused by the passage of cold, dry <span class="hlt">air</span> masses immediately behind the cold front. During the cold front event, sensible <span class="hlt">heat</span> and latent <span class="hlt">heat</span> <span class="hlt">flux</span> increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible <span class="hlt">heat</span> <span class="hlt">flux</span> was proportional to the product of wind speed and the temperature gradient of water-<span class="hlt">air</span> interface, with a correlation coefficient of 0.95. Latent <span class="hlt">heat</span> <span class="hlt">flux</span> was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both <span class="hlt">fluxes</span> and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water <span class="hlt">heat</span> storage energy and turbulent <span class="hlt">fluxes</span> was also examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1185970-cold-climate-retrofit-applications-air-air-heat-pumps','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1185970-cold-climate-retrofit-applications-air-air-heat-pumps"><span>Cold Climate and Retrofit Applications for <span class="hlt">Air-to-Air</span> <span class="hlt">Heat</span> Pumps</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baxter, Van D</p> <p>2015-01-01</p> <p><span class="hlt">Air</span> source <span class="hlt">heat</span> pumps (ASHP) including <span class="hlt">air-to-air</span> ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low <span class="hlt">heating</span> efficiency and capacity at cold outdoor temperatures. Retrofitting <span class="hlt">air-to-air</span> ASHPs to existing buildings is relatively easy if the building already has an <span class="hlt">air</span> distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit <span class="hlt">heat</span> pumps or central <span class="hlt">heat</span> pumps coupled to small diameter, high velocity (SDHV) <span class="hlt">air</span> distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using <span class="hlt">air-to-air</span> ASHP systems.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1011M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1011M"><span>Inorganic carbon <span class="hlt">fluxes</span> on the Mackenzie Shelf of the Beaufort <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso</p> <p>2018-02-01</p> <p>The Mackenzie Shelf in the southeastern Beaufort <span class="hlt">Sea</span> is a region that has experienced large changes in the past several decades as warming, <span class="hlt">sea</span>-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC <span class="hlt">flux</span> was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and <span class="hlt">sea</span>-ice melt on carbon dynamics and <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JGR....90.2409Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JGR....90.2409Z"><span><span class="hlt">Air-to-sea</span> <span class="hlt">fluxes</span> of lipids at Enewetak Atoll</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zafiriou, Oliver C.; Gagosian, Robert B.; Peltzer, Edward T.; Alford, Jane B.; Loder, T.</p> <p>1985-02-01</p> <p>We report data for the Enewetak site of the SEAREX program from the rainy season in 1979. The concentrations of n-alkanes, n-alkanols, sterols, n-alkanoic acids and their salts, and total organic compounds in rain are reported, as well as the apparent gaseous hydrocarbon concentrations. These data and information on the particulate forms are analyzed in conjunction with ancillary chemical and meteorological data to draw inferences about sources, <span class="hlt">fluxes</span>, and chemical speciations. While the higher molecular weight lipid biomarker components are exclusively terrestrial, the organic carbon in rain may be derived from atmospheric transformations of terrestrial carbon. Distinctively marine components are nearly absent. Comparison of the scavenging ratios of the organic components in rain vs. those for clays reveals that the alkanoic acids and the higher molecular weight alkanols behave as essentially particulate materials, whereas lower alkanols and most hydrocarbons show much higher scavenging ratios, probably due to the involvement of a gaseous phase or sampling artifact. Vaporization in the atmosphere and scavenging of a gas phase would lead to higher scavenging ratios; vaporization during sampling would give low aerosol concentrations and high gas-phase concentrations, leading to high scavenging ratios. The major <span class="hlt">fluxes</span> at Enewetak result from rain rather than dry deposition, and extrapolating the measured values to meaningful annual averages requires adjustment for seasonally varying source intensity and rain dynamics. Aerosol data for other seasons and other substances are used to correct for source-strength intensity variations, and a 210Pb/organic compound correlation is established and extrapolated to adjust for rainfall volume effects. These corrections, assumed independent and applied together, yield inferred <span class="hlt">fluxes</span> 2.5-9 times larger than the <span class="hlt">fluxes</span> calculated for mean concentrations. The inferred <span class="hlt">fluxes</span> to the ocean, while small compared to primary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64331&Lab=NERL&keyword=evapotranspiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64331&Lab=NERL&keyword=evapotranspiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A COUPLED LAND-SURFACE AND DRY DEPOSITION MODEL AND COMPARISON TO FIELD MEASUREMENTS OF SURFACE <span class="hlt">HEAT</span>, MOISTURE, AND OZONE <span class="hlt">FLUXES</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We have developed a coupled land-surface and dry deposition model for realistic treatment of surface <span class="hlt">fluxes</span> of <span class="hlt">heat</span>, moisture, and chemical dry deposition within a comprehensive <span class="hlt">air</span> quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840052365&hterms=coke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcoke','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840052365&hterms=coke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcoke"><span>Supercritical convection, critical <span class="hlt">heat</span> <span class="hlt">flux</span>, and coking characteristics of propane</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rousar, D. C.; Gross, R. S.; Boyd, W. C.</p> <p>1984-01-01</p> <p>The <span class="hlt">heat</span> transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically <span class="hlt">heated</span> Monel K-500 tubes. A design correlation for supercritical <span class="hlt">heat</span> transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical <span class="hlt">heat</span> <span class="hlt">flux</span> measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed <span class="hlt">heat</span> <span class="hlt">flux</span> conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040082184&hterms=hear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040082184&hterms=hear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhear"><span>Offline GCSS Intercomparison of Cloud-Radiation Interaction and Surface <span class="hlt">Fluxes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, W.-K.; Johnson, D.; Krueger, S.; Zulauf, M.; Donner, L.; Seman, C.; Petch, J.; Gregory, J.</p> <p>2004-01-01</p> <p>Simulations of deep tropical clouds by both cloud-resolving models (CRMs) and single-column models (SCMs) in the GEWEX Cloud System Study (GCSS) Working Group 4 (WG4; Precipitating Convective Cloud Systems), Case 2 (19-27 December 1992, TOGA-COARE IFA) have produced large differences in the mean <span class="hlt">heating</span> and moistening rates (-1 to -5 K and -2 to 2 grams per kilogram respectively). Since the large-scale advective temperature and moisture "forcing" are prescribed for this case, a closer examination of two of the remaining external types of "forcing", namely radiative <span class="hlt">heating</span> and <span class="hlt">air/sea</span> hear and moisture transfer, are warranted. This paper examines the current radiation and surface <span class="hlt">flux</span> of parameterizations used in the cloud models participating in the GCSS WG4, be executing the models "offline" for one time step (12 s) for a prescribed atmospheric state, then examining the surface and radiation <span class="hlt">fluxes</span> from each model. The dynamic, thermodynamic, and microphysical fluids are provided by the GCE-derived model output for Case 2 during a period of very active deep convection (westerly wind burst). The surface and radiation <span class="hlt">fluxes</span> produced from the models are then divided into prescribed convective, stratiform, and clear regions in order to examine the role that clouds play in the <span class="hlt">flux</span> parameterizations. The results suggest that the differences between the models are attributed more to the surface <span class="hlt">flux</span> parameterizations than the radiation schemes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3291C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3291C"><span>Progress in remote sensing of global land surface <span class="hlt">heat</span> <span class="hlt">fluxes</span> and evaporations with a turbulent <span class="hlt">heat</span> exchange parameterization method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xuelong; Su, Bob</p> <p>2017-04-01</p> <p>Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-<span class="hlt">air</span> <span class="hlt">heat</span> and water exchange <span class="hlt">fluxes</span>. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and <span class="hlt">heat</span> roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface <span class="hlt">fluxes</span> applicable for GCM model verification or comparison. A <span class="hlt">flux</span> network data library (more 200 <span class="hlt">flux</span> towers) was collected to verify the designed method. Important progress in remote sensing of global land <span class="hlt">flux</span> and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930022365','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930022365"><span>Thin film <span class="hlt">heat</span> <span class="hlt">flux</span> sensor for Space Shuttle Main Engine turbine environment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Will, Herbert</p> <p>1991-01-01</p> <p>The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film <span class="hlt">heat</span> <span class="hlt">flux</span> sensors can provide <span class="hlt">heat</span> loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient <span class="hlt">heat</span> <span class="hlt">flux</span> information. A thin film <span class="hlt">heat</span> <span class="hlt">flux</span> sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810038158&hterms=Parkinsons+circulation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DParkinsons%2Bcirculation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810038158&hterms=Parkinsons+circulation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DParkinsons%2Bcirculation"><span><span class="hlt">Sea</span> ice simulations based on fields generated by the GLAS GCM. [Goddard Laboratory for Atmospheric Sciences General Circulation Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, C. L.; Herman, G. F.</p> <p>1980-01-01</p> <p>The GLAS General Circulation Model (GCM) was applied to the four-month simulation of the thermodynamic part of the Parkinson-Washington <span class="hlt">sea</span> ice model using atmospheric boundary conditions. The <span class="hlt">sea</span> ice thickness and distribution were predicted for the Jan. 1-Apr. 30 period using the GCM-fields of solar and infrared radiation, specific humidity and <span class="hlt">air</span> temperature at the surface, and snow accumulation; the sensible <span class="hlt">heat</span> and evaporative surface <span class="hlt">fluxes</span> were consistent with the ground temperatures produced by the ice model and the <span class="hlt">air</span> temperatures determined by the atmospheric concept. It was concluded that the Parkinson-Washington <span class="hlt">sea</span> ice model results in acceptable ice concentrations and thicknesses when used with GLAS GCM for the Jan.-Apr. period suggesting the feasibility of fully coupled ice-atmosphere simulations with these two approaches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/761855','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/761855"><span>Recent High <span class="hlt">Heat</span> <span class="hlt">Flux</span> Tests on W-Rod-Armored Mockups</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NYGREN,RICHARD E.; YOUCHISON,DENNIS L.; MCDONALD,JIMMIE M.</p> <p>2000-07-18</p> <p>In the authors initial high <span class="hlt">heat</span> <span class="hlt">flux</span> tests on small mockups armored with W rods, done in the small electron beam facility (EBTS) at Sandia National Laboratories, the mockups exhibited excellent thermal performance. However, to reach high <span class="hlt">heat</span> <span class="hlt">fluxes</span>, they reduced the <span class="hlt">heated</span> area to only a portion ({approximately}25%) of the sample. They have now begun tests in their larger electron beam facility, EB 1200, where the available power (1.2 MW) is more than enough to <span class="hlt">heat</span> the entire surface area of the small mockups. The initial results indicate that, at a given power, the surface temperatures of rods inmore » the EB 1200 tests is somewhat higher than was observed in the EBTS tests. Also, it appears that one mockup (PW-10) has higher surface temperatures than other mockups with similar height (10mm) W rods, and that the previously reported values of absorbed <span class="hlt">heat</span> <span class="hlt">flux</span> on this mockup were too high. In the tests in EB 1200 of a second mockup, PW-4, absorbed <span class="hlt">heat</span> <span class="hlt">fluxes</span> of {approximately}22MW/m{sup 2} were reached but the corresponding surface temperatures were somewhat higher than in EBTS. A further conclusion is that the simple 1-D model initially used in evaluating some of the results from the EBTS testing was not adequate, and 3-D thermal modeling will be needed to interpret the results.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol4/pdf/CFR-2014-title21-vol4-sec211-46.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol4/pdf/CFR-2014-title21-vol4-sec211-46.pdf"><span>21 CFR 211.46 - Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and... Buildings and Facilities § 211.46 Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over <span class="hlt">air</span> pressure, micro-organisms, dust...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol4/pdf/CFR-2013-title21-vol4-sec211-46.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol4/pdf/CFR-2013-title21-vol4-sec211-46.pdf"><span>21 CFR 211.46 - Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and... Buildings and Facilities § 211.46 Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over <span class="hlt">air</span> pressure, micro-organisms, dust...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol4/pdf/CFR-2012-title21-vol4-sec211-46.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol4/pdf/CFR-2012-title21-vol4-sec211-46.pdf"><span>21 CFR 211.46 - Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and... Buildings and Facilities § 211.46 Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over <span class="hlt">air</span> pressure, micro-organisms, dust...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol4/pdf/CFR-2011-title21-vol4-sec211-46.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol4/pdf/CFR-2011-title21-vol4-sec211-46.pdf"><span>21 CFR 211.46 - Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and... Buildings and Facilities § 211.46 Ventilation, <span class="hlt">air</span> filtration, <span class="hlt">air</span> <span class="hlt">heating</span> and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over <span class="hlt">air</span> pressure, micro-organisms, dust...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23636599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23636599"><span>Neutral poly- and perfluoroalkyl substances in <span class="hlt">air</span> and seawater of the North <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhiyong; Zhao, Zhen; Möller, Axel; Wolschke, Hendrik; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf</p> <p>2013-11-01</p> <p>Concentrations of neutral poly- and perfluoroalkyl substances (PFASs), such as fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sufonamidoethanols (FASEs), and fluorotelomer acrylates (FTACs), have been simultaneously determined in surface seawater and the atmosphere of the North <span class="hlt">Sea</span>. Seawater and <span class="hlt">air</span> samples were taken aboard the German research vessel Heincke on the cruise 303 from 15 to 24 May 2009. The concentrations of FTOHs, FASAs, FASEs, and FTACs in the dissolved phase were 2.6-74, <0.1-19, <0.1-63, and <1.0-9.0 pg L(-1), respectively. The highest concentrations were determined in the estuary of the Weser and Elbe rivers and a decreasing concentration profile appeared with increasing distance from the coast toward the central part of the North <span class="hlt">Sea</span>. Gaseous FTOHs, FASAs, FASEs, and FTACs were in the range of 36-126, 3.1-26, 3.7-19, and 0.8-5.6 pg m(-3), which were consistent with the concentrations determined in 2007 in the North <span class="hlt">Sea</span>, and approximately five times lower than those reported for an urban area of Northern Germany. These results suggested continuous continental emissions of neutral PFASs followed by transport toward the marine environment. <span class="hlt">Air</span>-seawater gas exchanges of neutral PFASs were estimated using fugacity ratios and the two-film resistance model based upon paired <span class="hlt">air</span>-seawater concentrations and estimated Henry's law constant values. Volatilization dominated for all neutral PFASs in the North <span class="hlt">Sea</span>. The <span class="hlt">air</span>-seawater gas exchange <span class="hlt">fluxes</span> were in the range of 2.5×10(3)-3.6×10(5) pg m(-2) for FTOHs, 1.8×10(2)-1.0×10(5) pg m(-2) for FASAs, 1.1×10(2)-3.0×10(5) pg m(-2) for FASEs and 6.3×10(2)-2.0×10(4) pg m(-2) for FTACs, respectively. These results suggest that the <span class="hlt">air</span>-seawater gas exchange is an important process that intervenes in the transport and fate for neutral PFASs in the marine environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917050Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917050Z"><span>Mesoscale eddies control meridional <span class="hlt">heat</span> <span class="hlt">flux</span> variability in the subpolar North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun</p> <p>2017-04-01</p> <p>The meridional <span class="hlt">heat</span> <span class="hlt">flux</span> in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide <span class="hlt">heat</span> <span class="hlt">flux</span> across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding <span class="hlt">heat</span> <span class="hlt">flux</span> in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional <span class="hlt">heat</span> <span class="hlt">flux</span> on the order of 0.3PW, which is the dominant source for the <span class="hlt">heat</span> <span class="hlt">flux</span> change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional <span class="hlt">heat</span> <span class="hlt">flux</span> variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional <span class="hlt">heat</span> <span class="hlt">flux</span> variability in the subpolar North Atlantic.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ClDy...41.3203V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ClDy...41.3203V"><span>Understanding Madden-Julian-Induced <span class="hlt">sea</span> surface temperature variations in the North Western Australian Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vialard, J.; Drushka, K.; Bellenger, H.; Lengaigne, M.; Pous, S.; Duvel, J. P.</p> <p>2013-12-01</p> <p>The strongest large-scale intraseasonal (30-110 day) <span class="hlt">sea</span> surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40-50 day timescale within the NWAB, associated with ~40 Wm-2 net <span class="hlt">heat</span> <span class="hlt">fluxes</span> (primarily shortwave and latent) and ~0.02 Nm-2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface <span class="hlt">heat</span> <span class="hlt">flux</span> forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and <span class="hlt">air-sea</span> <span class="hlt">heat</span> <span class="hlt">flux</span> perturbations in the NWAB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164318','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1164318"><span>Institute for High <span class="hlt">Heat</span> <span class="hlt">Flux</span> Removal (IHHFR). Phases I, II, and III</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Boyd, Ronald D.</p> <p>2014-08-31</p> <p>The IHHFR focused on interdisciplinary applications as it relates to high <span class="hlt">heat</span> <span class="hlt">flux</span> engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high <span class="hlt">heat</span> <span class="hlt">flux</span> performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high <span class="hlt">heat</span> <span class="hlt">flux</span> flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side <span class="hlt">heat</span> <span class="hlt">flux</span> experiments to produce 2-D boiling curves and 3-D conjugate <span class="hlt">heat</span> transfer measurements for single-side <span class="hlt">heated</span> test sections. This work provides data for comparisons with previously developed andmore » new single-side <span class="hlt">heated</span> correlations and approaches that address the single-side <span class="hlt">heated</span> effect on <span class="hlt">heat</span> transfer. In addition, this work includes the addition of single-side <span class="hlt">heated</span> circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate <span class="hlt">heat</span> transfer controlling parameters.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MicNa...4....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MicNa...4....1H"><span>Nanoporous membrane device for ultra high <span class="hlt">heat</span> <span class="hlt">flux</span> thermal management</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.</p> <p>2018-02-01</p> <p>High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary <span class="hlt">heat</span> <span class="hlt">flux</span> while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high <span class="hlt">heat</span> <span class="hlt">flux</span> dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the <span class="hlt">heat</span> dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated <span class="hlt">heat</span> <span class="hlt">fluxes</span> of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the <span class="hlt">heated</span> substrate to ambient vapor. This <span class="hlt">heat</span> <span class="hlt">flux</span>, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures <span class="hlt">heat</span> conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high <span class="hlt">flux</span> thermal management strategy over large areas for high-performance electronics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000389','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000389"><span>Evaporation on/in Capillary Structures of High <span class="hlt">Heat</span> <span class="hlt">Flux</span> Two-Phase Devices</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Faghri, Amir; Khrustalev, Dmitry</p> <p>1996-01-01</p> <p>Two-phase devices (<span class="hlt">heat</span> pipes, capillary pumped loops, loop <span class="hlt">heat</span> pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high <span class="hlt">heat</span> <span class="hlt">flux</span> and zero-g applications, to provide fluid transport and enhanced <span class="hlt">heat</span> transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long <span class="hlt">heat</span> pipe evaporators and high thermal resistance of loop <span class="hlt">heat</span> pipe evaporators with high <span class="hlt">heat</span> <span class="hlt">fluxes</span>, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high <span class="hlt">heat</span> <span class="hlt">fluxes</span>. The present paper addresses some theoretical aspects of this investigation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AnGeo..14..986E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AnGeo..14..986E"><span>Study of the <span class="hlt">air-sea</span> interactions at the mesoscale: the SEMAPHORE experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.</p> <p>1996-09-01</p> <p>The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and <span class="hlt">air-sea</span> interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the <span class="hlt">sea</span> surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a <span class="hlt">heating</span> loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in <span class="hlt">heat</span> <span class="hlt">fluxes</span> between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum <span class="hlt">flux</span> bulk</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190499','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190499"><span>Viscous relaxation of Ganymede's impact craters: Constraints on <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.</p> <p>2017-01-01</p> <p>Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high <span class="hlt">heat</span> flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the <span class="hlt">heat</span> <span class="hlt">flux</span> within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic <span class="hlt">heating</span> alone, even if all of the relaxed craters are ancient and experienced the high radiogenic <span class="hlt">fluxes</span> present early in the satellite’s history. For craters with diameter ≥ 10 km, <span class="hlt">heat</span> <span class="hlt">fluxes</span> of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the <span class="hlt">fluxes</span> are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “<span class="hlt">heat</span> pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when <span class="hlt">heat</span> <span class="hlt">fluxes</span> as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the <span class="hlt">heat</span> <span class="hlt">fluxes</span> derived here and those inferred from other tectonic features suggests that a single event</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..296..275B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..296..275B"><span>Viscous relaxation of Ganymede's impact craters: Constraints on <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.</p> <p>2017-11-01</p> <p>Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high <span class="hlt">heat</span> flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the <span class="hlt">heat</span> <span class="hlt">flux</span> within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic <span class="hlt">heating</span> alone, even if all of the relaxed craters are ancient and experienced the high radiogenic <span class="hlt">fluxes</span> present early in the satellite's history. For craters with diameter ≥ 10 km, <span class="hlt">heat</span> <span class="hlt">fluxes</span> of 40-50 mW m-2 can reproduce the observed crater depths, but only if the <span class="hlt">fluxes</span> are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived "<span class="hlt">heat</span> pulses" with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when <span class="hlt">heat</span> <span class="hlt">fluxes</span> as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the <span class="hlt">heat</span> <span class="hlt">fluxes</span> derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013026"><span>Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and <span class="hlt">Air-sea</span> Roughness</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.</p> <p>2013-01-01</p> <p>A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the <span class="hlt">air-sea</span> interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave <span class="hlt">heat</span> <span class="hlt">flux</span>, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum <span class="hlt">flux</span> convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum <span class="hlt">flux</span> convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcMod..84...51L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcMod..84...51L"><span>Processes driving <span class="hlt">sea</span> ice variability in the Bering <span class="hlt">Sea</span> in an eddying ocean/<span class="hlt">sea</span> ice model: Mean seasonal cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.</p> <p>2014-12-01</p> <p>The seasonal cycle of <span class="hlt">sea</span> ice variability in the Bering <span class="hlt">Sea</span>, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/<span class="hlt">sea</span>-ice model configured in the Community Earth System Model (CESM) framework. The ocean/<span class="hlt">sea</span>-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos <span class="hlt">Sea</span> Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of <span class="hlt">sea</span> ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The <span class="hlt">sea</span> ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy <span class="hlt">flux</span> between the atmosphere and the ice in the northern region and by <span class="hlt">heat</span> <span class="hlt">flux</span> from the ocean to the ice along the southern ice edge, especially on the western side. The <span class="hlt">sea</span> ice force balance analysis shows that <span class="hlt">sea</span> ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated <span class="hlt">sea</span> ice was mainly formed in the northern Bering <span class="hlt">Sea</span>, with the maximum ice growth rate occurring along the coast due to cold <span class="hlt">air</span> from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model <span class="hlt">sea</span> ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering <span class="hlt">Sea</span>, model <span class="hlt">sea</span> ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn..68..457M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn..68..457M"><span>Dynamics behind warming of the southeastern Arabian <span class="hlt">Sea</span> and its interruption based on in situ measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy</p> <p>2018-05-01</p> <p>A study of the inter-annual variability of the warming of the southeastern Arabian <span class="hlt">Sea</span> (<span class="hlt">SEAS</span>) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the <span class="hlt">SEAS</span> (e.g., net <span class="hlt">heat</span> <span class="hlt">flux</span>, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the <span class="hlt">SEAS</span> (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the <span class="hlt">SEAS</span>. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest <span class="hlt">sea</span> surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest <span class="hlt">sea</span> surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer <span class="hlt">heat</span> budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net <span class="hlt">heat</span> <span class="hlt">flux</span>, not by other factors like advection and entrainment. The inter-annual variability analysis of the net <span class="hlt">heat</span> <span class="hlt">flux</span> and its components, averaged over a box region of the <span class="hlt">SEAS</span>, showed a substantial latent <span class="hlt">heat</span> <span class="hlt">flux</span> release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net <span class="hlt">heat</span> <span class="hlt">flux</span>. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the <span class="hlt">SEAS</span> during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12916843','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12916843"><span>Improving mercury <span class="hlt">flux</span> chamber measurements over water surface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lanzillotra, E; Ceccarini, C; Ferrara, R</p> <p>2003-07-01</p> <p>A modified floating <span class="hlt">flux</span> chamber was designed and used to measure mercury evasional <span class="hlt">fluxes</span> in a coastal area of the Mediterranean <span class="hlt">Sea</span> in different meteo-marine conditions during the hours of maximum insolation (PAR intensity 360-430 W m(-2)) in the summer season. The chamber has been modified providing a flap at the inlet port preventing the back-flow of <span class="hlt">air</span> from the interior of the chamber. Results demonstrate that the modified <span class="hlt">flux</span> chamber gives <span class="hlt">flux</span> values noticeably higher both in rippled <span class="hlt">sea</span> conditions (mean value 7.88 +/- 1.45 ng m(-2) h(-1)) and in rough <span class="hlt">sea</span> conditions (mean value 21.71 +/- 2.17 ng m(-2) h(-1)) with respect to those obtained by using the unmodified chamber (respectively 5.23 +/- 0.67 and 14.15 +/- 1.03 ng m(-2) h(-1)).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994GMS....85..313O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994GMS....85..313O"><span>Variability of the atmospheric energy <span class="hlt">flux</span> across 70°N computed from the GFDL data set</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Overland, James E.; Turet, Philip</p> <p></p> <p>The primary energy balance for the arctic atmosphere is through northward advection of moist static energy—sensible <span class="hlt">heat</span>, potential energy, and latent heat—balanced by long wave radiation to space. Energy <span class="hlt">flux</span> from <span class="hlt">sea</span> ice and marginal <span class="hlt">seas</span> contributes perhaps 20-30% of the outgoing radiation north of 70°N in winter and absorbs a nearly equal amount during summer. Thorndike's toy model shows that extreme climate states with no ice growth or melt can occur by changing the latitudinal energy <span class="hlt">flux</span> by ±20-30% out of an annual mean <span class="hlt">flux</span> of 100 W m-2. We extend the previous work on latitudinal energy <span class="hlt">flux</span> by Nakamura and Oort (NO) to a 25-year record and investigate temporal variability. Our annual latitudinal energy <span class="hlt">flux</span> was 103 W m-2 compared to the NO value of 98 W m-2 this difference was from greater <span class="hlt">fluxes</span> during the winter. We found that mean winter (NDJFM) energy <span class="hlt">flux</span> was 121 W m-2 with a standard deviation of 11 W m-2. There were no large outliers in any year. An analysis of variance showed that interannual variability does not contribute towards explaining monthly variability of northward energy transport for the winter, summer or annual periods. Transient eddy <span class="hlt">flux</span> of sensible <span class="hlt">heat</span> into the arctic basin was the largest component of the total energy <span class="hlt">flux</span> and is concentrated near the longitudes of the Greenland <span class="hlt">Sea</span> (˜10°W) and the Bering and Chukchi <span class="hlt">Seas</span> (180°). There is a minimum in atmospheric <span class="hlt">heating</span> north of Greenland, a known region of thick ice. While there was little interannual variability of energy <span class="hlt">flux</span> across 70°N, there was considerable month-to-month variability and regional variability in poleward energy <span class="hlt">flux</span>. <span class="hlt">Sea</span> ice may playa role in storage and redistribution of energy in the arctic climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JSASS..58...68O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JSASS..58...68O"><span>Effects of Crack on <span class="hlt">Heat</span> <span class="hlt">Flux</span> in Hypersonic Shock/Boundary-Layer Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozawa, Hiroshi; Hanai, Katsuhisa; Kitamura, Keiichi; Mori, Koichi; Nakamura, Yoshiaki</p> <p></p> <p>A small crack on body surface led to a tragic accident in 2003, which is the Columbia accident. During the shuttle's re-entry, high temperature gas penetrated crack on leading-edge of the left wing and melted the aluminum structure, finally the Columbia blew up. Since early times, there are many fundamental studies about simple cavity-flow formed on body surface in hypersonic speeds. However, an investigation of Shock/Boundary-Layer Interaction (SBLI) on crack has not been researched. For multistage space transportation vehicle such as TSTO, SBLI is an inevitable problem, and then SBLI on crack becomes a critical issue for TSTO development. In this study, the effects of crack, where SBLI occurs, were investigated for TSTO hypersonic speed (M∞ = 8.1). A square crack locates at SBLI point on the TSTO booster. Results show that a crack and its depth strongly effect on peak <span class="hlt">heat</span> <span class="hlt">flux</span> and aerodynamic interaction flow-field. In the cases of shallow crack (d/C ≤ 0.10), there exist two high <span class="hlt">heat</span> <span class="hlt">flux</span> regions on crack floor, which locates at a flow reattachment region and a back end wall of crack. In this case, a peak <span class="hlt">heat</span> <span class="hlt">flux</span> at flow reattachment region becomes about 2 times as large as the stagnation point <span class="hlt">heat</span> <span class="hlt">flux</span>, which value becomes larger compared with a peak <span class="hlt">heat</span> <span class="hlt">flux</span> in the case of No-Crack TSTO. While in the case of deep crack (d/C = 0.20), overall <span class="hlt">heat</span> <span class="hlt">flux</span> on crack floor decreases to below the stagnation point <span class="hlt">heat</span> <span class="hlt">flux</span>. These results provide useful data for a development of TSTO thermal protection system (TPS) such as thermal protection tile.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009HMT....45..967S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009HMT....45..967S"><span>Flow boiling <span class="hlt">heat</span> transfer of R134a and R404A in a microfin tube at low mass <span class="hlt">fluxes</span> and low <span class="hlt">heat</span> <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spindler, Klaus; Müller-Steinhagen, Hans</p> <p>2009-05-01</p> <p>An experimental investigation of flow boiling <span class="hlt">heat</span> transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically <span class="hlt">heated</span>. The experiments have been performed at saturation temperatures between 0 and -20°C. The mass <span class="hlt">flux</span> was varied between 25 and 150 kg/m2s, the <span class="hlt">heat</span> <span class="hlt">flux</span> from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured <span class="hlt">heat</span> transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean <span class="hlt">heat</span> transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean <span class="hlt">heat</span> transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass <span class="hlt">flux</span> on the <span class="hlt">heat</span> transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass <span class="hlt">fluxes</span> for the microfin tube compared to the smooth tube.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1608P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1608P"><span>The ocean mixed layer under Southern Ocean <span class="hlt">sea</span>-ice: Seasonal cycle and forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît</p> <p>2017-02-01</p> <p>The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by <span class="hlt">sea</span>-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and <span class="hlt">sea</span>-ice plays a key role for water mass transformation, the carbon cycle, <span class="hlt">sea</span>-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under <span class="hlt">sea</span>-ice. Mixed-layer <span class="hlt">heat</span> and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of <span class="hlt">sea</span> surface salinity and temperature are primarily driven by surface processes, dominated by <span class="hlt">sea</span>-ice freshwater <span class="hlt">flux</span> for the salt budget and by <span class="hlt">air-sea</span> <span class="hlt">flux</span> for the <span class="hlt">heat</span> budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional <span class="hlt">sea</span>-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1183661','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1183661"><span>Critical <span class="hlt">Heat</span> <span class="hlt">Flux</span> Phenomena at HighPressure & Low Mass <span class="hlt">Fluxes</span>: NEUP Final Report Part I: Experiments</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Corradini, Michael; Wu, Qiao</p> <p>2015-04-30</p> <p>This report is a preliminary document presenting an overview of the Critical <span class="hlt">Heat</span> <span class="hlt">Flux</span> (CHF) phenomenon, the High Pressure Critical <span class="hlt">Heat</span> <span class="hlt">Flux</span> facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass <span class="hlt">flux</span> ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically <span class="hlt">heated</span> rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embeddedmore » in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass <span class="hlt">fluxes</span> of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020015705','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020015705"><span>Modeling Biogeochemical-Physical Interactions and Carbon <span class="hlt">Flux</span> in the Sargasso <span class="hlt">Sea</span> (Bermuda Atlantic Time-series Study site)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Signorini, Sergio R.; McClain, Charles R.; Christian, James R.</p> <p>2001-01-01</p> <p>An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon <span class="hlt">fluxes</span> in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The <span class="hlt">sea-air</span> <span class="hlt">flux</span> ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom <span class="hlt">flux</span> of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso <span class="hlt">Sea</span> by the warmest SST and lowest surface salinity of the period (1992-1998).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..3621605V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..3621605V"><span>A generalized model for the <span class="hlt">air-sea</span> transfer of dimethyl sulfide at high wind speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlahos, Penny; Monahan, Edward C.</p> <p>2009-11-01</p> <p>The <span class="hlt">air-sea</span> exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the <span class="hlt">air-sea</span> <span class="hlt">flux</span> of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (<10 m/s) but that these DMS transfer rates may diverge from other gases as wind speeds increase. Herein we provide a mechanism that predicts the attenuation of DMS transfer rates at high wind speeds. The model is based on the amphiphilic nature of DMS that leads to transfer delay at the water-bubble interface and becomes significant at wind speeds above >10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/128767-two-dimensional-stefan-problem-slightly-varying-heat-flux','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/128767-two-dimensional-stefan-problem-slightly-varying-heat-flux"><span>The two-dimensional Stefan problem with slightly varying <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gammon, J.; Howarth, J.A.</p> <p>1995-09-01</p> <p>The authors solve the two-dimensional stefan problem of solidification in a half-space, where the <span class="hlt">heat</span> <span class="hlt">flux</span> at the wall is a slightly varying function of positioning along the wall, by means of a large Stefan number approximation (which turns out to be equivalent to a small time solution), and then by means of the <span class="hlt">Heat</span> Balance Integral Method, which is valid for all time, and which agrees with the large Stefan number solution for small times. A representative solution is given for a particular form of the <span class="hlt">heat</span> <span class="hlt">flux</span> perturbation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..604S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..604S"><span>Arctic <span class="hlt">sea</span>-ice decline weakens the Atlantic Meridional Overturning Circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sévellec, Florian; Fedorov, Alexey V.; Liu, Wei</p> <p>2017-08-01</p> <p>The ongoing decline of Arctic <span class="hlt">sea</span> ice exposes the ocean to anomalous surface <span class="hlt">heat</span> and freshwater <span class="hlt">fluxes</span>, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study, we use an optimal <span class="hlt">flux</span> perturbation framework and comprehensive climate model simulations to estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally to <span class="hlt">sea</span>-ice decline. It is found that on decadal timescales, <span class="hlt">flux</span> anomalies over the subpolar North Atlantic have the largest impact on the AMOC, while on multi-decadal timescales (longer than 20 years), <span class="hlt">flux</span> anomalies in the Arctic become more important. These positive buoyancy anomalies spread to the North Atlantic, weakening the AMOC and its poleward <span class="hlt">heat</span> transport. Therefore, the Arctic <span class="hlt">sea</span>-ice decline may explain the suggested slow-down of the AMOC and the `Warming Hole’ persisting in the subpolar North Atlantic.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840024719','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840024719"><span>Turbine blade and vane <span class="hlt">heat</span> <span class="hlt">flux</span> sensor development, phase 1</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkinson, W. H.; Cyr, M. A.; Strange, R. R.</p> <p>1984-01-01</p> <p><span class="hlt">Heat</span> <span class="hlt">flux</span> sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two <span class="hlt">heat</span> <span class="hlt">flux</span> sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local <span class="hlt">heat</span> <span class="hlt">flux</span> to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional <span class="hlt">heat</span> flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984pwa..rept.....A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984pwa..rept.....A"><span>Turbine blade and vane <span class="hlt">heat</span> <span class="hlt">flux</span> sensor development, phase 1</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, W. H.; Cyr, M. A.; Strange, R. R.</p> <p>1984-08-01</p> <p><span class="hlt">Heat</span> <span class="hlt">flux</span> sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two <span class="hlt">heat</span> <span class="hlt">flux</span> sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local <span class="hlt">heat</span> <span class="hlt">flux</span> to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional <span class="hlt">heat</span> flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54..385S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54..385S"><span>Estimation of transient <span class="hlt">heat</span> <span class="hlt">flux</span> density during the <span class="hlt">heat</span> supply of a catalytic wall steam methane reformer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid</p> <p>2018-02-01</p> <p>Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the <span class="hlt">heat</span> transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional <span class="hlt">heat</span> transfer phenomenon during the <span class="hlt">heat</span> supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the <span class="hlt">heat</span> requirement of the endothermic reaction is supplied by electric <span class="hlt">heating</span> system. During the <span class="hlt">heat</span> supply, an unknown <span class="hlt">heat</span> <span class="hlt">flux</span> density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical <span class="hlt">heat</span> <span class="hlt">flux</span> estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the <span class="hlt">heat</span> <span class="hlt">flux</span> density which crosses the reactor wall is determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910029831&hterms=Hot+papers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DHot%2Bpapers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910029831&hterms=Hot+papers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DHot%2Bpapers"><span>A unique high <span class="hlt">heat</span> <span class="hlt">flux</span> facility for testing hypersonic engine components</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melis, Matthew E.; Gladden, Herbert J.</p> <p>1990-01-01</p> <p>This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-<span class="hlt">heat-flux</span> facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing <span class="hlt">heat</span> <span class="hlt">fluxes</span> ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and <span class="hlt">heat</span> <span class="hlt">fluxes</span> similar to those expected during hypersonic flights were achieved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900040276&hterms=heat+exchange&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheat%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900040276&hterms=heat+exchange&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheat%2Bexchange"><span>Late Pleistocene variations in Antarctica <span class="hlt">sea</span> ice. I - Effect of orbital isolation changes. II - Effect of interhemispheric deep-ocean <span class="hlt">heat</span> exchange</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crowley, Thomas J.; Parkinson, Claire L.</p> <p>1988-01-01</p> <p>A dynamic-thermodynamic <span class="hlt">sea</span>-ice model is presently used to ascertain the effects of orbitally-induced insolation changes on Antarctic <span class="hlt">sea</span>-ice cover; the results thus obtained are compared with modified CLIMAP reconstructions of <span class="hlt">sea</span>-ice 18,000 years ago. The minor influence exerted by insolation on Pleistocene <span class="hlt">sea</span>-ice distributions is attributable to a number of factors. In the second part of this investigation, variations in the production of warm North Atlantic Deep Water are proposed as a mechanism constituting the linkage between climate fluctuations in the Northern and Southern hemispheres during the Pleistocene; this hypothesis is tested by examining the sensitivity of the dynamic-thermodynamic model for Antarctic <span class="hlt">sea</span>-ice changes in vertical ocean <span class="hlt">heat</span> <span class="hlt">flux</span>, and comparing the simulations with modified CLIMAP <span class="hlt">sea</span>-ice maps for 18,000 years ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvA..91b2121L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvA..91b2121L"><span><span class="hlt">Heat</span> <span class="hlt">flux</span> and quantum correlations in dissipative cascaded systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio</p> <p>2015-02-01</p> <p>We study the dynamics of <span class="hlt">heat</span> <span class="hlt">flux</span> in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the <span class="hlt">heat</span> flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the <span class="hlt">heat-flux</span> rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total <span class="hlt">heat</span> <span class="hlt">flux</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DPPTP8051M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DPPTP8051M"><span>Turbulent transport regimes and the SOL <span class="hlt">heat</span> <span class="hlt">flux</span> width</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.</p> <p>2014-10-01</p> <p>Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) <span class="hlt">heat</span> <span class="hlt">flux</span> width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL <span class="hlt">heat</span> <span class="hlt">flux</span> width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel <span class="hlt">heat</span> transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a <span class="hlt">heat</span> <span class="hlt">flux</span> width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..11512054V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..11512054V"><span>Upper ocean bubble measurements from the NE Pacific and estimates of their role in <span class="hlt">air-sea</span> gas transfer of the weakly soluble gases nitrogen and oxygen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vagle, Svein; McNeil, Craig; Steiner, Nadja</p> <p>2010-12-01</p> <p>Simultaneous observations of upper-ocean bubble clouds, and dissolved gaseous nitrogen (N2) and oxygen (O2) from three winter storms are presented and analyzed. The data were collected on the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS) mooring located near Ocean Station Papa (OSP) at 50°N, 145°W in the NE Pacific during winter of 2003/2004. The bubble field was measured using an upward looking 200 kHz echosounder. Direct estimates of bubble mediated gas <span class="hlt">fluxes</span> were made using assumed bubble size spectra and the upward looking echosounder data. A one-dimensional biogeochemical model was used to help compare data and various existing models of bubble mediated <span class="hlt">air-sea</span> gas exchange. The direct bubble <span class="hlt">flux</span> calculations show an approximate quadratic/cubic dependence on mean bubble penetration depth. After scaling from N2/O2 to carbon dioxide, near surface, nonsupersaturating, <span class="hlt">air-sea</span> transfer rates, KT, for U10 > 12 m s-1 fall between quadratic and cubic relationships. Estimates of the subsurface bubble induced <span class="hlt">air</span> injection <span class="hlt">flux</span>, VT, show an approximate quadratic/cubic dependence on mean bubble penetration depth. Both KT and VT are much higher than those measured during Hurricane Frances over the wind speed range 12 < U10 < 23 m s-1. This result implies that over the open ocean and this wind speed range, older and more developed <span class="hlt">seas</span> which occur during winter storms are more effective in exchanging gases between the atmosphere and ocean than younger less developed <span class="hlt">seas</span> which occur during the rapid passage of a hurricane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.6071X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.6071X"><span>Modeling of the anthropogenic <span class="hlt">heat</span> <span class="hlt">flux</span> and its effect on regional meteorology and <span class="hlt">air</span> quality over the Yangtze River Delta region, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Min; Liao, Jingbiao; Wang, Tijian; Zhu, Kuanguang; Zhuang, Bingliang; Han, Yong; Li, Mengmeng; Li, Shu</p> <p>2016-05-01</p> <p>Anthropogenic <span class="hlt">heat</span> (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and <span class="hlt">air</span> quality over the YRD region are studied. The results show that the AH <span class="hlt">fluxes</span> over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m-2, respectively, with the high value of 113.5 W m-2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban <span class="hlt">heat</span> island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m <span class="hlt">air</span> temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height) rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s-1 in January and 0.5 m s-1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer), and thereby induces the accumulative precipitation to increase by 15-30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary <span class="hlt">air</span> pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward <span class="hlt">air</span> vertical movement. But surface O3 concentrations increase in the urban areas, with maximum</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED159074.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED159074.pdf"><span>Dynamic Performance of a Residential <span class="hlt">Air-to-Air</span> <span class="hlt">Heat</span> Pump.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kelly, George E.; Bean, John</p> <p></p> <p>This publication is a study of the dynamic performance of a 5-ton <span class="hlt">air-to-air</span> <span class="hlt">heat</span> pump in a residence in Washington, D.C. The effect of part-load operation on the <span class="hlt">heat</span> pump's cooling and <span class="hlt">heating</span> coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS44A..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS44A..01M"><span>Developments in Airborne Oceanography and <span class="hlt">Air-Sea</span> Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melville, W. K.</p> <p>2014-12-01</p> <p>, just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and <span class="hlt">air-sea</span> <span class="hlt">fluxes</span> from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of <span class="hlt">air-sea</span> interaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993SPIE.1739..306W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993SPIE.1739..306W"><span>High <span class="hlt">heat</span> <span class="hlt">flux</span> issues for plasma-facing components in fusion reactors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watson, Robert D.</p> <p>1993-02-01</p> <p>Plasma facing components in tokamak fusion reactors are faced with a number of difficult high <span class="hlt">heat</span> <span class="hlt">flux</span> issues. These components include: first wall armor tiles, pumped limiters, diverter plates, rf antennae structure, and diagnostic probes. Peak <span class="hlt">heat</span> <span class="hlt">fluxes</span> are 15 - 30 MW/m2 for diverter plates, which will operate for 100 - 1000 seconds in future tokamaks. Disruption <span class="hlt">heat</span> <span class="hlt">fluxes</span> can approach 100,000 MW/m2 for 0.1 ms. Diverter plates are water-cooled <span class="hlt">heat</span> sinks with armor tiles brazed on to the plasma facing side. <span class="hlt">Heat</span> sink materials include OFHC, GlidcopTM, TZM, Mo-41Re, and niobium alloys. Armor tile materials include: carbon fiber composites, beryllium, silicon carbide, tungsten, and molybdenum. Tile thickness range from 2 - 10 mm, and <span class="hlt">heat</span> sinks are 1 - 3 mm. A twisted tape insert is used to enhance <span class="hlt">heat</span> transfer and increase the burnout safety margin from critical <span class="hlt">heat</span> <span class="hlt">flux</span> limits to 50 - 60 MW/m2 with water at 10 m/s and 4 MPa. Tests using rastered electron beams have shown thermal fatigue failures from cracks at the brazed interface between tiles and the <span class="hlt">heat</span> sink after only 1000 cycles at 10 - 15 MW/m2. These fatigue lifetimes need to be increased an order of magnitude to meet future requirements. Other critical issues for plasma facing components include: surface erosion from sputtering and disruption erosion, eddy current forces and runaway electron impact from disruptions, neutron damage, tritium retention and release, remote maintenance of radioactive components, corrosion-erosion, and loss-of-coolant accidents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800015467','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800015467"><span>Gas and aerosol <span class="hlt">fluxes</span>. [emphasizing sulfur, nitrogen, and carbon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martens, C. S.</p> <p>1980-01-01</p> <p>The development of remote sensing techniques to address the global need for accurate distribution and <span class="hlt">flux</span> determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the <span class="hlt">heat</span> budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas <span class="hlt">fluxes</span>, <span class="hlt">sea</span> salt aerosol production, and the effect of <span class="hlt">sea</span> surface microlayer on gas and aerosol <span class="hlt">fluxes</span> are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880001849','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880001849"><span>Enhancement of surface-atmosphere <span class="hlt">fluxes</span> by desert-fringe vegetation through reduction of surface albedo and of soil <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Otterman, J.</p> <p>1987-01-01</p> <p>Under the arid conditions prevailing at the end of the dry season in the western Negev/northern Sinai region, vegetation causes a sharp increase relative to bare soil in the daytime sensible <span class="hlt">heat</span> <span class="hlt">flux</span> from the surface to the atmosphere. Two mechanisms are involved: the increase in the surface absorptivity and a decrease in the surface <span class="hlt">heat</span> <span class="hlt">flux</span>. By increasing the sensible <span class="hlt">heat</span> <span class="hlt">flux</span> to the atmosphere through the albedo and the soil <span class="hlt">heat</span> <span class="hlt">flux</span> reductions, the desert-fringe vegetation increases the daytime convection and the growth of the planetary boundary layer. Removal of vegetation by overgrazing, by reducing the sensible <span class="hlt">heat</span> <span class="hlt">flux</span>, tends to reduce daytime convective precipitation, producing higher probabilities of drought conditions. This assessment of overgrazing is based on observations in the Sinai/Negev, where the soil albedo is high and where overgrazing produces an essential bare soil. Even if the assessment for the Sinai/Negev does not quantitatively apply throughout Africa, the current practice in many African countries of maintaining a large population of grazing animals, can contribute through the mesoscale mechanisms described to reduce daytime convective precipitation, perpetuating higher probabilities of drought. Time-of-day analysis of precipitation in Africa appears worthwhile, to better assess the role of the surface conditions in contributing to drought.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6733B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6733B"><span>Ground <span class="hlt">heat</span> <span class="hlt">flux</span> and power sources of low-enthalpy geothermal systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bayer, Peter; Blum, Philipp; Rivera, Jaime A.</p> <p>2015-04-01</p> <p>Geothermal <span class="hlt">heat</span> pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole <span class="hlt">heat</span> exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental <span class="hlt">heat</span> <span class="hlt">flux</span> and power sources, as well as their temporal and spatial variability during geothermal <span class="hlt">heat</span> pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary <span class="hlt">heat</span> sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical <span class="hlt">heat</span> <span class="hlt">flux</span> from the surface dominates the basal <span class="hlt">heat</span> <span class="hlt">flux</span> towards a borehole. Both <span class="hlt">fluxes</span> need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground <span class="hlt">heat</span> <span class="hlt">fluxes</span> and only when the energy content of the geothermal reservoir is considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhST..170a4071S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhST..170a4071S"><span>Progress in extrapolating divertor <span class="hlt">heat</span> <span class="hlt">fluxes</span> towards large fusion devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team</p> <p>2017-12-01</p> <p><span class="hlt">Heat</span> load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with <span class="hlt">heat</span> load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, <span class="hlt">heat</span> load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient <span class="hlt">heat</span> loads towards large fusion devices. For transient <span class="hlt">heat</span> loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign <span class="hlt">heat</span> load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D <span class="hlt">heat</span> <span class="hlt">flux</span> pattern is induced on the divertor target, leading to local increase of the <span class="hlt">heat</span> <span class="hlt">flux</span> which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the <span class="hlt">heat</span> <span class="hlt">flux</span> disappears.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9455M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9455M"><span>Submesoscale <span class="hlt">Sea</span> Ice-Ocean Interactions in Marginal Ice Zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manucharyan, Georgy E.; Thompson, Andrew F.</p> <p>2017-12-01</p> <p>Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of <span class="hlt">sea</span> ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent <span class="hlt">sea</span> ice <span class="hlt">heating</span> and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in <span class="hlt">sea</span> ice forecasts. Here, we explore mechanical <span class="hlt">sea</span> ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the <span class="hlt">sea</span> ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of <span class="hlt">sea</span> ice mass and <span class="hlt">heat</span> across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-<span class="hlt">sea</span> ice <span class="hlt">heat</span> <span class="hlt">fluxes</span> are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent <span class="hlt">fluxes</span> of <span class="hlt">heat</span> and <span class="hlt">sea</span> ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and <span class="hlt">sea</span> ice thickness reduction in the Arctic Ocean, submesoscale <span class="hlt">sea</span> ice-ocean processes are expected to become increasingly prominent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PEPI..250...35S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PEPI..250...35S"><span>Dynamos driven by weak thermal convection and heterogeneous outer boundary <span class="hlt">heat</span> <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahoo, Swarandeep; Sreenivasan, Binod; Amit, Hagay</p> <p>2016-01-01</p> <p>We use numerical dynamo models with heterogeneous core-mantle boundary (CMB) <span class="hlt">heat</span> <span class="hlt">flux</span> to show that lower mantle lateral thermal variability may help support a dynamo under weak thermal convection. In our reference models with homogeneous CMB <span class="hlt">heat</span> <span class="hlt">flux</span>, convection is either marginally supercritical or absent, always below the threshold for dynamo onset. We find that lateral CMB <span class="hlt">heat</span> <span class="hlt">flux</span> variations organize the flow in the core into patterns that favour the growth of an early magnetic field. <span class="hlt">Heat</span> <span class="hlt">flux</span> patterns symmetric about the equator produce non-reversing magnetic fields, whereas anti-symmetric patterns produce polarity reversals. Our results may explain the existence of the geodynamo prior to inner core nucleation under a tight energy budget. Furthermore, in order to sustain a strong geomagnetic field, the lower mantle thermal distribution was likely dominantly symmetric about the equator.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA519623','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA519623"><span>The <span class="hlt">Air</span> Land <span class="hlt">Sea</span> Bulletin. Issue No. 2006-2, May 2006</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-05-01</p> <p>THE <span class="hlt">AIR</span> LAND <span class="hlt">SEA</span> BULLETIN Issue No. 2006-2 <span class="hlt">Air</span> Land <span class="hlt">Sea</span> Application (ALSA) Center May 2006 IN HOUSE Director’s Comments— Final Thoughts...4 US <span class="hlt">Air</span> Force Predator UAVs Have Moved Into a More Overt Strike Role [Jane’s Defence Weekly Reprint] ........................6...SUBTITLE The <span class="hlt">Air</span> Land <span class="hlt">Sea</span> Bulletin. Issue No. 2006-2, May 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..277...10L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..277...10L"><span>Linking lowermost mantle structure, core-mantle boundary <span class="hlt">heat</span> <span class="hlt">flux</span> and mantle plume formation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Mingming; Zhong, Shijie; Olson, Peter</p> <p>2018-04-01</p> <p>The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) <span class="hlt">heat</span> <span class="hlt">flux</span>. However, it is not clear if and how the variation of CMB <span class="hlt">heat</span> <span class="hlt">flux</span> and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB <span class="hlt">heat</span> <span class="hlt">flux</span> and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB <span class="hlt">heat</span> <span class="hlt">flux</span>. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB <span class="hlt">heat</span> <span class="hlt">flux</span>. Our modeling results indicate that plume-induced episodic variations of CMB <span class="hlt">heat</span> <span class="hlt">flux</span> link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>