Science.gov

Sample records for air-sea temperature difference

  1. Characteristics of easterly-induced snowfall in Yeongdong and its relationship to air-sea temperature difference

    NASA Astrophysics Data System (ADS)

    Nam, Hyoung-Gu; Kim, Byung-Gon; Han, Sang-Ok; Lee, Chulkyu; Lee, Seoung-Soo

    2014-08-01

    Characteristics of snowfall episodes have been investigated for the past ten years in order to study its association with lowlevel stability and air-sea temperature difference over the East Sea. In general, the selected snowfall episodes have similar synoptic setting such as the Siberian High extended to northern Japan along with the Low passing by the southern Korean Peninsula, eventually resulting in the easterly flow in the Yeongdong region. Especially in the heavy snowfall episodes, convective unstable layers have been identified over the East sea due to relatively warm sea surface temperature (SST) about 8˜10°C and specifically cold pool around 1˜2 km above the surface level (ASL), which can be derived from Regional Data Assimilation and Prediction System (RDAPS), but that have not been clearly exhibited in the weak snowfall episodes. The basic mechanism to initiate snowfall around Yeongdong seems to be similar to that of lake-effect snowstorms around Great Lakes in the United States (Kristovich et al., 2003). Difference of equivalent potential temperature ( θ e ) between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually began to increase in the pre-snowfall period and reached their maximum values in the course of the period, whose air (850 hPa) — sea temperature difference and snowfall intensity in case of the heavy snowfall episodes are almost larger than 20°C and 6 tims greater than the weak snowfall episodes, respectively. Interestingly, snowfall appeared to begin in case of an air-sea temperature difference exceeding over 15°C. The current analysis is overall consistent with the previous finding (Lee et al., 2012) that an instabilityinduced moisture supply to the lower atmosphere from the East sea, being cooled and saturated in the lower layer, so to speak, East Sea-Effect Snowfall (SES), would make a low-level ice cloud which eventually moves inland by the easterly flow. In addition, a longlasting

  2. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  3. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  4. A diagram of wind speed versus air-sea temperature difference to understand the dynamics of the marine atmospheric boundary layer off northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2015-04-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at land-sea coastline discontinuities. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from measurement platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents updated results of measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal and offshore sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the North Sea illustrates how the wind characteristics vary spatially over large distances. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  5. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  6. Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    NASA Astrophysics Data System (ADS)

    Ward, B.; Wanninkhof, R.; McGillis, W. R.; Jessup, A. T.; Degrandpre, M. D.; Hare, J. E.; Edson, J. B.

    2004-08-01

    The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of -4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.

  7. Air-sea interactions and oceanic processes in the development of different Atlantic Niño patterns

    NASA Astrophysics Data System (ADS)

    Martin-Rey, Marta; Polo, Irene; Rodríguez-Fonseca, Belén; Lazar, Alban

    2016-04-01

    Atlantic Niño is the leading mode of inter-annual variability of the tropical Atlantic basin at inter-annual time scales. A recent study has put forward that two different Atlantic Niño patterns co-exist in the tropical Atlantic basin during negative phases of the Atlantic Multidecadal Oscillation. The leading mode, Basin-Wide (BW) Atlantic Niño is characterized by an anomalous warming extended along the whole tropical basin. The second mode, the Dipolar (D) Atlantic Niño presents positive Sea Surface Temperature (SST) anomalies in the central-eastern equatorial band, surrounded by negative ones in the North and South tropical Atlantic. The BW Atlantic Niño is associated with a weakening of both Azores and Sta Helena High, which reduces the tropical trades during previous autumn-winter. On the other hand, the D-Atlantic Niño is related to a strengthening of the Azores and a weakening of Helena High given rise to a meridional Sea Level Pressure (SLP) gradient that originates an intensification of the subtropical trades and anomalous westerlies along the equatorial band. This different wind forcing suggests that different oceanic processes could act in the development of the BW and D Atlantic Niño patterns. For this reason, an inter-annual simulation with the ocean NEMO model has been performed and the heat budget analysis has been analysed for each Atlantic Niño mode. The results suggest that the two Atlantic Nino configurations have different timing. The heat budget analysis reveals that BW Atlantic Nino SST pattern is due to anomalous air-sea heat fluxes in the south tropical and western equatorial Atlantic during the autumn-winter, while vertical processes are responsible of the warming in the central and eastern part of the basin during late-winter and spring. For the D-Atlantic Nino, the subtropical cooling is attributed to turbulent heat fluxes, the equatorial SST signal is mainly forced by vertical entrainment. The role of the oceanic waves in the

  8. Air-sea gas transfer for two gases of different solubility (CO2 and O2)

    NASA Astrophysics Data System (ADS)

    Rutgersson, A.; Andersson, A.; Sahlée, E.

    2016-05-01

    At the land-based marine measuring site Östergarnsholm in the Baltic Sea, the eddy covariance technique was used to measure air-sea fluxes of carbon dioxide and oxygen. High- frequency measurements of oxygen were taken with a Microx TX3 optode using the luminescence lifetime technique. The system gives reasonable oxygen fluxes after the limited frequency response of the sensor was corrected for. For fluxes of carbon dioxide the LICOR-7500 instrument was used. Using flux data to estimate transfer velocities indicates higher transfer velocity for oxygen compared to carbon dioxide for winds above 5 m/s. There are too few data for any extensive conclusions, but a least-square fit of the data gives a cubic wind speed dependence of oxygen corresponding to k 660 = 0.074U 3 10. The more effective transfer for oxygen compared to carbon dioxide above 5 m/s is most likely due to enhanced efficiency of oxygen exchange across the surface. Oxygen has lower solubility compared with carbon dioxide and might be more influenced by near surface processes such as microscale wave breaking or sea spray.

  9. Air-sea temperature decoupling in western Europe during the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Sánchez Goñi, María Fernanda; Bard, Edouard; Landais, Amaelle; Rossignol, Linda; D'Errico, Francesco

    2013-10-01

    A period of continental ice growth between about 80,000 and 70,000 years ago was controlled by a decrease in summer insolation, and was among the four largest ice expansions of the past 250,000 years. The moisture source for this ice sheet expansion, known as the Marine Isotope Stage (MIS) 5a/4 transition, has been proposed to be the warm subpolar and northern subtropical Atlantic Ocean. However, the mechanism by which glaciers kept growing through three suborbital cooling events within this period, which were associated with iceberg discharge in the North Atlantic and cooling over Greenland, is unclear. Here we reconstruct parallel records of sea surface and air temperatures from marine microfossil and pollen data, respectively, from two sediment cores collected within the northern subtropical gyre. The thermal gradient between the cold air and warmer sea increased throughout the MIS5a/4 transition, and was marked by three intervals of even more pronounced thermal gradients associated with the C20, C19 and C18' cold events. We argue that the warm ocean surface along the western European margin provided a source of moisture that was transported, through northward-tracking storms, to feed ice sheets in colder Greenland, northern Europe and the Arctic.

  10. Interannual and seasonal variabilities in air-sea CO2 fluxes along the U.S. eastern continental shelf and their sensitivity to increasing air temperatures and variable winds

    NASA Astrophysics Data System (ADS)

    Cahill, Bronwyn; Wilkin, John; Fennel, Katja; Vandemark, Doug; Friedrichs, Marjorie A. M.

    2016-02-01

    Uncertainty in continental shelf air-sea CO2 fluxes motivated us to investigate the impact of interannual and seasonal variabilities in atmospheric forcing on the capacity of three shelf regions along the U.S. eastern continental shelf to act as a sink or source of atmospheric CO2. Our study uses a coupled biogeochemical-circulation model to simulate scenarios of "present-day" and "future-perturbed" mesoscale forcing variability. Overall, the U.S. eastern continental shelf acts as a sink for atmospheric CO2. There is a clear gradient in air-sea CO2 flux along the shelf region, with estimates ranging from -0.6 Mt C yr-1 in the South Atlantic Bight (SAB) to -1.0 Mt C yr-1 in the Mid-Atlantic Bight (MAB) and -2.5 Mt C yr-1 in the Gulf of Maine (GOM). These fluxes are associated with considerable interannual variability, with the largest interannual signal exhibited in the Gulf of Maine. Seasonal variability in the fluxes is also evident, with autumn and winter being the strongest CO2 sink periods and summer months exhibiting some outgassing. In our future-perturbed scenario spatial differences tend to cancel each other out when the fluxes are integrated over the MAB and GOM, resulting in only minor differences between future-perturbed and present-day air-sea CO2 fluxes. This is not the case in the SAB where the position of the along-shelf gradient shifts northward and the SAB becomes a source of CO2 to the atmosphere (0.7 Mt C yr-1) primarily in response to surface warming. Our results highlight the importance of temperature in regulating air-sea CO2 flux variability.

  11. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  12. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  13. Air-sea interactions and precipitation over the tropical oceans

    NASA Technical Reports Server (NTRS)

    Gautier, C.

    1992-01-01

    In this lecture, the author principally discusses air-sea exchanges that are relevant to climate and global problems. The processes of interest are those acting over time scales of months to decades, which in some instances are influenced by smaller-time-scale processes, down to the diurnal time scale. The repsective influence of these processes varies with regions, seasons and scales over which they occur and, because these processes are mostly nonlinear, scale interactions can be quite complex. Owing to the breadth of the topic addressed, the discussion is mostly focused on the tropical regions where air-sea interactions and precipitation processes eventually affect the entire globe. This allows a look in more detail at some air-sea processes, such as those associated with the El Nino southern oscillation (ENSO). This oscillation, which affects the climate of the entire globe, acts over periods of a year or longer and is caused, primarily, by sea surface temperature (SST) variations in the tropical Pacific. As a result, SST variability is often used as an indicator of coupled ocean-atmosphere low-frequency variability. Global or basin scale processes can uniquely be observed from space-born instruments with the coverage required. Space based techniques have been developed during the last decade which can now be used to illustrate the scientific issues presented and the presentation concludes with an overview of some Earth Observing System (EOS) capabilities for addressing air-sea interactions and hydrology issues.

  14. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  15. Infrared propagation in the air-sea boundary layer

    NASA Astrophysics Data System (ADS)

    Larsen, R.; Preedy, K. A.; Drake, G.

    1990-03-01

    Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.

  16. Climatic impacts of stochastic fluctuations in air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Williams, Paul D.

    2012-05-01

    Air-sea fluxes vary partly on scales that are too small or fast to be resolved explicitly by global climate models. This paper proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate. The paper then demonstrates the mechanism in climate simulations with a comprehensive coupled general circulation model. Significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  17. Annual sea ice. An air-sea gas exchange moderator

    SciTech Connect

    Gosink, T.A.; Kelley, J.J.

    1982-01-01

    Arctic annual sea ice, particularly when it is relatively warm (> -15/sup 0/C) permits significant gas exchange between the sea and air throughout the entire year. Sea ice, particularly annual sea ice, differs from freshwater ice with respect to its permeability to gases. The presence of brine allows for significant air-sea-ice exchange of CO/sub 2/ throughout the winter, which may significantly affect the global carbon dioxide balance. Other trace gases are also noted to be enriched in sea ice, but less is known about their importance to air-sea-interactions at this time. Both physical and biological factors cause and modify evolution of gases from the surface of sea ice. Quantitative and qualitative descriptions of the nature and physical behavior of sea ice with respect to brine and gases are discussed.

  18. Air-sea coupling in the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Souza, J. M.; Powell, B.; Mattheus, D.

    2014-12-01

    A coupled numerical model is used to investigate the ocean-atmosphere interaction in the lee of the Hawaiian archipelago. The wind curl generated by the island blocking of the trade winds is known to give rise to ocean eddies; however, the impact of the sea surface temperature (SST) and velocity fronts associated with these eddies on the atmosphere is less understood. The main coupling mechanisms are: (i) changes in the near-surface stability and surface stress, (ii) vertical transfer of momentum from higher atmospheric levels to the ocean surface due to an increase of the turbulence in the boundary layer, (iii) secondary circulations associated with perturbations in the surface atmospheric pressure over the SST fronts, and (iv) the impact of the oceanic eddy currents on the net momentum transferred between the atmosphere and the ocean. To assess the relative contribution from each process, a coupled simulation between the Regional Ocean Modeling System (ROMS) and the Weather Research and Forecasting (WRF) models is conducted for the main Hawaiian Islands. The impact of the coupling, the perturbation of the mean wind pattern, and the different spatial scales involved in the air-sea exchanges of momentum and heat are explored.

  19. Air-sea interactions during strong winter extratropical storms

    NASA Astrophysics Data System (ADS)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-09-01

    A high-resolution, regional coupled atmosphere-ocean model is used to investigate strong air-sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air-sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air-sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere-ocean modeling framework.

  20. Observational Buoy Studies of Coastal Air-Sea Fluxes.

    NASA Astrophysics Data System (ADS)

    Frederickson, Paul A.; Davidson, Kenneth L.

    2003-02-01

    Recent advancements in measurement and analysis techniques have allowed air-sea fluxes to be measured directly from moving platforms at sea relatively easily. These advances should lead to improved surface flux parameterizations, and thus to improved coupled atmosphere-ocean modeling. The Naval Postgraduate School has developed a `flux buoy' (FB) that directly measures air-sea fluxes, mean meteorological parameters, and one-dimensional and directional wave spectra. In this study, the FB instrumentation and data analysis techniques are described, and the data collected during two U.S. east coast buoy deployments are used to examine the impact of atmospheric and surface wave properties on air-sea momentum transfer in coastal ocean regions. Data obtained off Duck, North Carolina, clearly show that, for a given wind speed, neutral drag coefficients in offshore winds are higher than those in onshore winds. Offshore wind drag coefficients observed over the wind speed range from 5 to 21 m s1 were modeled equally well by a linear regression on wind speed, and a Charnock model with a constant of 0.016. Measurements from an FB deployment off Wallops Island, Virginia, show that neutral drag coefficients in onshore winds increase as the wind-wave direction differences increase, especially beyond ±60°.

  1. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2004-01-01

    The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.

  2. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  3. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  4. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  5. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  6. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L.

    2012-04-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes from the ocean to the atmosphere, the amount of heat available to the tropical cyclone is predicated by the initial depth of the mixed layer and strength of the stratification level that set the level of entrainment mixing at the base of the oceanic mixed layer. For example in oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean (and sea surface temperatures) quickly which reduces the air-sea fluxes. This is an example of negative feedback from the ocean to the atmosphere. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture is available through the sea surface. When tropical cyclones move into favorable or neutral atmospheric conditions (low vertical shear, anticyclonic circulation aloft), tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina and Rita in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. These effects and possible impact on TC deepening and weakening underscores the necessity of having complete 3-D ocean measurements juxtaposed with atmospheric profiler measurements.

  7. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  8. The SOLAS air-sea gas exchange experiment (SAGE) 2004

    NASA Astrophysics Data System (ADS)

    Harvey, Mike J.; Law, Cliff S.; Smith, Murray J.; Hall, Julie A.; Abraham, Edward R.; Stevens, Craig L.; Hadfield, Mark G.; Ho, David T.; Ward, Brian; Archer, Stephen D.; Cainey, Jill M.; Currie, Kim I.; Devries, Dawn; Ellwood, Michael J.; Hill, Peter; Jones, Graham B.; Katz, Dave; Kuparinen, Jorma; Macaskill, Burns; Main, William; Marriner, Andrew; McGregor, John; McNeil, Craig; Minnett, Peter J.; Nodder, Scott D.; Peloquin, Jill; Pickmere, Stuart; Pinkerton, Matthew H.; Safi, Karl A.; Thompson, Rona; Walkington, Matthew; Wright, Simon W.; Ziolkowski, Lori A.

    2011-03-01

    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX's), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO 2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF 6/ 3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence ( Fv/ Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX's, rates of net primary production and column-integrated chlorophyll a concentrations had

  9. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  10. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  11. Joint Air Sea Interaction (JASIN) experiment, Northwest coast of Scotland

    NASA Technical Reports Server (NTRS)

    Businger, J. A.

    1981-01-01

    The joint air sea interaction (JASIN) experiment took place off the Northwest coast of Scotland. Sea surface and boundary layer parameters were measured. The JASIN data was used as ground truth for various sensors on the SEASAT satellite.

  12. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  13. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  14. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  15. Unstable Air-Sea Interaction in the Extratropical North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1999-01-01

    The possibility of coupled modes in the extratropical North Atlantic has fascinated the climate community since 1960's. A significant aspect of such modes is an unstable air-sea interaction, also called positive feedback, where disturbances between the atmosphere and ocean grow unbound. If a delayed response exists before the negative feedback takes effect, an oscillatory behaviour will develop. Here we explore the relationship between heat flux (positive upward) and sea surface temperature (SST). Positive feedback is characterized by a cross-correlation between the two where correlation maintains a negative sign whether SST or heat flux leads. We use model results and observations to argue that in the North Atlantic there exist regions with positive feedback. The two main locations coincide with the well-known north-south SST dipole where anomalies of opposite sign occupy areas east of Florida and north-east of Newfoundland. We show that oceanic dynamics, wave propagation and advection, give rise to oceanic anomalies in these regions. Subsequently these anomalies are amplified by atmosphere- ocean interaction: thus a positive feedback.

  16. Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?

    NASA Astrophysics Data System (ADS)

    Halloran, P. R.

    2012-06-01

    The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid

  17. Climatic Impacts of a Stochastic Parameterization of Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The atmosphere and ocean are coupled by the exchange of fluxes across the ocean surface. Air-sea fluxes vary partly on scales that are too small and fast to be resolved explicitly in numerical models of weather and climate, making them a candidate for stochastic parameterization. This presentation proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even though the mean fluctuation is zero. The mechanism relies on a fundamental asymmetry in the physics of the ocean mixed layer: positive surface buoyancy fluctuations cannot undo the vertical mixing caused by negative fluctuations. The mechanism has much in common with Stommel's mixed-layer demon. The presentation demonstrates the mechanism in climate simulations with a comprehensive coupled atmosphere-ocean general circulation model (SINTEX-G). In the SINTEX-G simulations with stochastic air-sea buoyancy fluxes, significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  18. Linking air-sea energy exchanges and European anchovy potential spawning ground

    NASA Astrophysics Data System (ADS)

    Grammauta, R.; Molteni, D.; Basilone, G.; Guisande, C.; Bonanno, A.; Aronica, S.; Giacalone, G.; Fontana, I.; Zora, M.; Patti, B.; Cuttitta, A.; Buscaino, G.; Sorgente, R.; Mazzola, S.

    2008-10-01

    The physical and chemical processes of the sea greatly affect the reproductive biology of fishes, mainly influencing both the numbers of spawned eggs and the survivorship of early stages up to the recruitment period. In the central Mediterranean, the European anchovy constitutes one of the most important fishery resource. Because of its short living nature and of its recruitment variability, associated to high environmental variability, this small pelagic species undergo high interannual fluctuation in the biomass levels. Despite several efforts were addressed to characterize fishes spawning habitat from the oceanographic point of view, very few studies analyze the air-sea exchanges effects. To characterize the spawning habitat of these resources a specific technique (quotient rule analysis) was applied on air-sea heat fluxes, wind stress, sea surface temperature and turbulence data, collected in three oceanographic surveys during the summer period of 2004, 2005 and 2006. The results showed the existence of preferred values in the examined physical variables, associated to anchovy spawning areas. Namely, for heat fluxes the values were around -40 W/m2, for wind stress 0.04-0.11 N/m2, for SST 23°C, and 300 - 500 m3s-3 for wind mixing. Despite the obtained results are preliminary, this is the first relevant analysis on the air-sea exchanges and their relationship with the fish biology of pelagic species.

  19. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  20. Air-sea interaction and spatial variability of the surface evaporation duct in a coastal environment

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.

    Aircraft observations are presented of the horizontal variability in the depth of the surface evaporation duct and the relationship with the mesoscale structure of air-sea interaction processes. The 2-dimensional fields of near-surface wind, stress, wind-stress curl, air and sea-surface temperature are measured directly for flow around a headland. The sea surface temperature field indicates cold upwelling driven by the wind-stress curl. Boundary-layer stability responds rapidly to the spatial changes in surface temperature. These changes result in modification of the evaporation duct, which decreases significantly in depth over the cooler upwelling water.

  1. Mueller matrix imaging of targets under an air-sea interface.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2009-01-10

    The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air-sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air-sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images. PMID:19137035

  2. Sensitivity of Air-sea Exchange In A Regional Scale Coupled Ice/ocean/atmosphere Model

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R.

    The sub-systems ice, ocean and atmosphere are coupled on the global as well as the regional scale. However, regional coupled modeling is only in the beginning, full cou- pled models which are able to describe the interaction on the regional scale and the feedback mechanism are rare at the moment. For the North Sea and the Baltic Sea such a coupled model has been developed and exemplary integrated over a full seasonal cy- cle. By comparison of different regionalization studies the impact of the regional at- mospheric modeling and coupling on the air sea fluxes have been investigated. It was shown that the regionalization as well as the coupling show strong influence on the air/sea fluxes and thus on the oceanic conditions. Further problems in regional mod- eling like the description of storm track variability and its influence on the regional ocean model were identified.

  3. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  4. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  5. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  6. Reconstruction of super-resolution fields of ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the Southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.

    2015-01-01

    The knowledge of Green House Gases GHGs fluxes at the air-sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2, pCO2, and air-sea CO2 fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution of pCO2, and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO2 with respect to in-situ measurements are smaller than for CarbonTracker.

  7. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  8. Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.; González-Dávila, M.; Santana-Casiano, J. M.

    2015-09-01

    An accurate quantification of the role of the ocean as source/sink of greenhouse gases (GHGs) requires to access the high-resolution of the GHG air-sea flux at the interface. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2 ( pCO2) and air-sea CO2 fluxes at super resolution (4 km, i.e., 1/32° at these latitudes) using sea surface temperature (SST) and ocean color (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution pCO2 and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the microcanonical multifractal formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multi-resolution analysis performed on the signal of the so-called singularity exponents allows for the correct and near optimal cross-scale inference of GHG fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small-scale variability. We examine different combinations of ocean color and sea surface temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in situ measurements by means of statistical errors. We find that mean absolute and relative errors in the inferred values of pCO2 with respect to in situ measurements are smaller than for CarbonTracker.

  9. Atlantic Air-Sea Interaction Revisited

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J.

    INTRODUCTION DATA AND MODELS THE ANALYSIS METHOD ATMOSPHERIC FORCING OF NORTH ATLANTIC SEA SURFACE TEMPERATURES NORTH ATLANTIC SEA SURFACE TEMPERATURE FORCING OF THE ATMOSPHERE Observational Evidence Model Results POTENTIAL SEASONAL PREDICTABILITY BASED ON THE ATMOSPHERE GENERAL - CIRCULATION MODEL CONCLUSIONS AND DISCUSSION REFERENCES

  10. Air-sea interaction with multiple sensors - Seasat legacy

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2003-01-01

    By flying a number of ocean observing sensors together, Seasat demonstrated potential of not only sensor synergism, but also science synergism, which has illuminated the path of spacebased air-sea interaction studies in more than two decades since its demise.

  11. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  12. A review of the sources of uncertainties when estimating global-scale turbulent air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Brodeau, Laurent; Barnier, Bernard

    2015-04-01

    Bulk formulae are used to estimate turbulent air-sea fluxes needed to provide surface boundary conditions to most of present-day OGCMs, AGCMs and coupled Earth systems. This study aims at making an inventory of the major sources of uncertainties and errors made when estimating turbulent air-sea fluxes with the bulk method, namely wind stress, evaporation (latent heat flux) and sensible heat flux. We use 6-hourly near-surface atmospheric fields and daily SST of ERA-Interim to compute global estimates of these fluxes during the last three decades. Those fluxes are computed using different bulk routines and different types of physical and numerical simplifications widely used within the GCM community. Moreover, to assess the sensitivity of these flux estimates to possible errors in the input atmospheric fields and SST, user-controlled biases are applied to each of these fields prior to bulk computation. As a result, a quantification of the potential sources of uncertainties related to the accuracy of both the parametrization and input fields is proposed. Any parametrization-related approximation can also be expressed in terms of a bias on a given input field. We find that the largest source of flux uncertainties is the choice of the bulk algorithm used to estimate the bulk transfer coefficients. The resulting disagreement in terms of globally-averaged heat flux and evaporation is 8 W/m2 and 1 Sv. In mid latitudes, this heat flux disagreement is about 10 W/m2, which independently compares to a bias of 1 m/s in surface wind speed, 3° in SST, 0.5° in surface temperature, or a modification of 5% in the surface humidity. Our study also underlies the relative importance of the accuracy of the estimate of the air density and the specific humidity at saturation.

  13. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  14. Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Davolio, S.

    2016-02-01

    Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.

  15. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  16. Atmospheric variability and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Middleton, J. W.; Reiter, E. R.

    1980-01-01

    The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index.

  17. Impact of air-sea interaction on East Asian summer monsoon climate in WRF

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Jung; Hong, Song-You

    2010-10-01

    This study investigates the effects of air-sea interaction on the simulated East Asian summer monsoon (EASM) climate in a regional climate model. An ocean mixed layer model with a revised surface roughness length formulation that was originally designed for tropical cyclone simulation and a prognostic sea surface skin temperature scheme that considers the heat budget at the water surface are systematically evaluated on the monsoonal climate over East Asia for July 2006 in the regional Weather Research and Forecasting (WRF) model. Also, 9-year (2000-2008) June-August simulations are performed to evaluate the overall impacts of these three components on the simulated EASM climatology. The 1 month simulation for July 2006 reveals that the inclusion of the ocean mixed layer model cools the water surface due to enhanced mixing, in particular, when winds are strong. Such cooling is largely compensated by the inclusion of prognostic skin temperature since solar heating in daytime overwhelms the cooling in nighttime. The revised surface roughness length effectively reduces the surface heat flux by reducing the exchange coefficients, against the conventional Charnock formula. Consideration of the three components together results in the reduction of systemic biases of excessive precipitation and weakening of the North Pacific high in the summer climate from 2000 to 2008. It is concluded that the methodology designed in this study can be an efficient way to represent the air-sea interaction in regional atmospheric models for numerical weather prediction and climate simulation.

  18. Ocean Carbon Cycling and CO2 Air-Sea Exchange in Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Plattner, G.; Gruber, N.; Lachkar, Z.; Frenzel, H.; Loher, D.

    2008-12-01

    Eastern boundary current (EBC) upwelling systems are regions of intense biogeochemical transformations and transports. Strong upwelling of nutrient- and carbon-rich waters tends to lead to CO2 outgassing nearshore and biologically-driven CO2 uptake offshore. Yet, the net air-sea CO2 balance of EBCs remains unknown. High near-shore productivity coupled with filaments and other meso- and submesoscale phenomena cause a substantial lateral export of organic carbon. We investigate these coastal processes in the California Current (CalCS) and the Canary Current Systems (CanCS), on the basis of the eddy-resolving, physical-biogeochemical model ROMS. Our results confirm the onshore-offshore trends in the air-sea fluxes, with substantial spatial and temporal differences due to topography, upwelling strength, and eddy activity. The CalCS is modeled to be, on average, a very small source of CO2 to the atmosphere, consistent with a recent data-based estimate by Chavez and Takahashi, while for the CanCS this is not clear yet. Regarding offshore transport, the CalCS appears to be stronger than the CanCS. Spatio-temporal variability of all carbon fluxes is substantial, particularly nearshore, posing a tremendous challenge for observing systems targeting e.g. air-sea CO2 fluxes in these dynamic regions. Further analyses of the processes that determine the mean carbon fluxes and their spatio-temporal variability will be presented. Characteristic differences and similarities between the two EBC systems will be discussed.

  19. The ocean skin temperature distribution and the bulk-skin temperature difference

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Phadnis, K.; Atmane, M.; Zappa, C.; Loewen, M.; Asher, B.

    2008-12-01

    An experiment in a wind-wave flume was conducted to investigate the relationship between the bulk-skin temperature difference (deltaT) and the ocean skin temperature distribution (Tskin PDF). Skin temperature was measured with an infrared radiometer, bulk temperature was measured with a profiler, and the distribution was measured with an infrared camera. The gradient flux technique was used to measure the net heat flux, which was varied by controlling the wind speed, air-water temperature difference, and relative humidity. This data set provides a unique opportunity to compare direct measurements of deltaT to the Tskin PDF. We found that the percentile of the distribution of measured skin temperatures that corresponded to the measured sub-skin bulk temperature was in the 99.8th or higher percentile for 18 out of 21 cases and higher than the 99.9th percentile when deltaT > 0.15 K. This result shows that the bulk temperature corresponds to the maximum value in the Tskin PDF. We found that the analytical expression for fitting the distribution developed by Garbe et al. [JGR, 2004] was successfully only when the distribution was truncated at the 99.9th percentile, removing the warmest temperatures. However, because the measured bulk temperature (Tbulk) was found to correspond to these same warmest temperatures, especially when deltaT > 0.15 K, our results demonstrate that the method of Garbe et al. [2004] underestimates Tbulk and therefore deltaT. This conclusion was supported by comparing deltaT values from the GasEx01 cruise reported by Garbe et al. [2004] with deltaT from concurrent, direct measurements of Tskin and Tbulk The comparison showed that deltaT from the PDF fitting technique consistently underestimated the measured deltaT by an average factor of 5. We have shown that the skin layer is completely renewed by near-surface turbulence, which is a fundamental assumption of surface renewal theory. Paradoxically, we also have shown that a technique based on a

  20. Impact of Sea Spray on Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Mueller, James

    2013-11-01

    The contributions of sea spray drops to the total air-sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution: the number of drops formed at the ocean surface and the per-drop contribution to the fluxes. To estimate these per-droplet fluxes, we present results from a large number of drop trajectories, which are simulated with a recently developed Lagrangian Stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. Then, using commonly accepted spray generation functions we present estimates of spray fluxes which account for the mediating feedback effects from the droplets on the atmosphere. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate. We further show that the spray fluxes may be especially sensitive to the size distribution of the drops. The total effective air-sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds. Funded by grants OCE-0850663 and OCE-0748767 from the National Science Foundation.

  1. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  2. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  3. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  4. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  5. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  6. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  7. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  8. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment

    SciTech Connect

    Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M. ); Marullo, S. ); Boehm, E. )

    1993-02-15

    Measurements of radiative fluxes were carried out in the Tyrrhenian Sea in fall and winter as part of the Tyrrhenian Eddy Multi-Platform Observations Experiment (TEMPO). These measurements have supplied the first experimental radiation data set over this basin. Seasonal variation of the different components of the budget are investigated. Since data collection was carried out in an area in which a quasi-permanent eddy is present, the behavior of the radiation parameters across the frontal zone is analyzed. The most interesting result of the air-sea interaction in proximity of a marine front consists in the covariation of sea surface temperature and downwelling long-wave radiation. Contemporaneous satellite data show a clear correlation between sea surface structure and horizontal distribution of columnar atmospheric water content. Therefore this inhomogeneity clearly is one of the main factors responsible for the variation of the downwelling radiation across the front. A comparison between experimental data and results of some of the most widely used bulk formulae is carried out for both short- and long-wave radiation. The mean differnece between measured and empirical solar radiation values is less than 3%, while in the case of the net long-wave radiation budge, poor agreement is found. Indeed, a 30 W/m[sup 2] bias results from the comparison. This discrepancy is consistent with the imbalance between previous bulk calculations of total heat budget at the surface and corresponding hydrographical observations of heat exchange at Gibraltar. 30 refs., 6 figs., 9 tabs.

  9. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  10. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  11. The NEMO-AROME WMED high-resolution air-sea coupled system: impact on dense water formation

    NASA Astrophysics Data System (ADS)

    Léger, Fabien; Lebeaupin Brossier, Cindy; Giordani, Hervé; Arsouze, Thomas; Beuvier, Jonathan; Bouin, Marie-Noëlle; Ducrocq, Véronique; Fourrié, Nadia

    2016-04-01

    The North-Western Mediterranean Sea is a key location where intense air-sea exchanges occur, especially during winter when the succession of strong northerly and north-westerly wind boosts the dense water formation. The second Special Observation Period (SOP2) of the HyMeX program, which took place between 1st February and 15th March 2013, was dedicated to the observation of the dense water formation and ocean deep convection processes. During this period, several platforms sampled the area, providing a unique dataset to better identify the coupled processes leading to dense water formation. This study investigates the impacts of the fine scale ocean-atmosphere coupled processes on dense water formation during winter 2012-2013. We developed the coupling between the NEMO-WMED36 ocean model (1/36° resolution) and the AROME-WMED numerical weather prediction model (2.5 km resolution) and ran the high-resolution air-sea coupled system over SOP2. The coupled simulation is compared to an ocean-only simulation forced by AROME-WMED operational forecasts and to air-sea observations collected during the HyMeX SOP2. The results show small differences in term of surface fluxes. Dense water formation is slightly changed in the coupled simulation, whereas fine-scale ocean processes are significantly modified.

  12. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  13. Air--Sea CO2 Cycling in the Southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Else, Brent Gordon Thomas

    During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air-sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO 2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze-up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break-up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind-driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO 2sw in Amundsen Gulf, we derived an annual budget of air-sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of airsea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes---including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates

  14. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gao, Zhongyong; Chen, Liqi; Sun, Heng; Chen, Baoshan; Cai, Wei-Jun

    2012-12-01

    The uptake of carbon dioxide (CO2) by the Arctic Ocean is most likely increasing because of the rapid sea-ice retreat that lifted the barriers preventing gas exchange and light penetration for biological growth. Measurements of atmospheric and surface sea water partial pressure of CO2 (pCO2) were conducted during the Chinese National Arctic Research Expedition (CHINARE) cruises from July to September in 2003 and 2008. The latitudinal distribution of pCO2 along the 169°W transect showed a below-atmopsheric pCO2 level in most of the Western Arctic Ocean, with distinct regional differences from Bering Strait northward to the Central Acrctic Ocean. The average air-sea CO2 fluxes on the shelf and slope of the Chukchi Sea were -17.0 and -8.1 mmol m-2 d-1 respectively. In the ice-free zone, the partially ice-covered zone, and the heavily ice-covered zone of the Canada Basin, the fluxes were -4.2, -8.6, -2.5 mmol m-2 d-1 respectively. These rates are lower than other recent estimates. Our new results not only confirmed previous observations that most areas of the Western Arctic Ocean were a CO2 sink in general, but they also revealed that the previously unsampled central basins were a moderate CO2 sink. Analysis of controlling factors in different areas shows that pCO2 in Bering Strait was influenced not only by the Bering inflow waters but also by the high biological production. However, pCO2 fluctuated sharply because of strong water mixing both laterally and vertically. In the marginal ice zone (Chukchi Sea), pCO2 was controlled by ice melt and biological production, both of which would decrease pCO2 onshore of the ice edge. In the nearly ice-free southern Canada Basin, pCO2 increasd latitudinally as a result of atmospheric CO2 uptake due to intensive gas exchange, increased temperature, and decresed biological CO2 uptake due to limited nutrient supply. Finally, pCO2 was moderately lower than the atmospheric value and was relatively stable under the ice sheet of the

  15. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2015-05-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to, for example, short-term temporal variability in wind speed, atmospheric mixing height and atmospheric CO2 concentration. With this study, the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2w) has been developed for this coastal area based on available data from monitoring stations and on-board pCO2w measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short-term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010, the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short-term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2w fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer

  16. Impacts of air-sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example

    NASA Astrophysics Data System (ADS)

    He, J.; He, R.; Zhang, Y.

    2015-11-01

    Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere-ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results show that different cumulus parameterization schemes can result in an 85 m difference in the domain averaged planetary boundary layer height (PBLH), and 4.8 mm difference in the domain averaged daily precipitation. Comparing to WRF/Chem without air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface temperature of 0.1 and 1.0 °C, respectively. The simulated differences in the surface concentrations of ozone (O3) and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 μg m-3, respectively. The largest changes simulated from WRF/Chem-ROMS in surface concentrations of O3 and particulate matter with diameter less than and equal to 2.5 μm (PM2.5) occur not only along coast and remote ocean, but also over some inland areas. Extensive validations against observations, show that WRF/Chem-ROMS improves the predictions of most cloud and radiative variables, and surface concentrations of some chemical species such as sulfur dioxide, nitric acid, maximum 1 h and 8 h O3, sulfate, ammonium, nitrate, and particulate matter with diameter less than and equal to 10 μm (PM10). This illustrates the benefits and needs of using coupled atmospheric-ocean model with advanced model representations of air-sea interactions for

  17. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-09-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.6 ± 0.3, -0.9 ± 0.3 and -0.5 ± 0.3 mol C m-2 yr-1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m-2 yr-1 in the sWEC and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of -1.11 ± 0.32 Tg C yr-1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to

  18. Dynamics of air-sea CO2 fluxes in the North-West European Shelf based on Voluntary Observing Ship (VOS) and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-04-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 dataset based on voluntary observing ship (VOS) measurements in the Western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in north-west European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), the gas transfer velocity coefficient (K), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with relative uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 dataset (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish Seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT database and obtained relatively robust results with an average precision of 4 ± 22 μatm in the seasonally stratified nWEC and the southern and northern CS (sCS and nCS), but less promising results in the permanently well-mixed sWEC, IS and Cap Lizard (CL) waters. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.4, -0.9 and -0.4 mol C m-2 year-1 in the nCS, sCS and nWEC, respectively, whereas, permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2, 0.4 and 0.4 mol C m-2 year-1 in the sWEC, CL and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over six provinces for the last decade and obtained the first annual average uptake of -0.95 Tg C year-1 for this

  19. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2014-12-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to e.g. short-term temporal variability in wind speed, atmospheric mixing height and the atmospheric CO2 concentration. With this study the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2) has been developed for this coastal area based on available data from monitoring stations and underway pCO2 measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010 the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish Straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2 fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer velocity

  20. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  1. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in delta37Cl--a statistical inference.

    PubMed

    Shirodkar, P V; Xiao, Y K; Sarkar, A; Dalal, S G; Chivas, A R

    2006-02-01

    The behaviors of chlorine isotopes in relation to air-sea flux variables have been investigated through multivariate statistical analyses (MSA). The MSA technique provides an approach to reduce the data set and was applied to a set of 7 air-sea flux variables to supplement and describe the variation in chlorine isotopic compositions (delta37Cl) of ocean water. The variation in delta37Cl values of surface ocean water from 51 stations in 4 major world oceans--the Pacific, Atlantic, Indian and the Southern Ocean has been observed from -0.76 to +0.74 per thousand (av. 0.039+/-0.04 per thousand). The observed delta37Cl values show basic homogeneity and indicate that the air-sea fluxes act differently in different oceanic regions and help to maintain the balance between delta37Cl values of the world oceans. The study showed that it is possible to model the behavior of chlorine isotopes to the extent of 38-73% for different geographical regions. The models offered here are purely statistical in nature; however, the relationships uncovered by these models extend our understanding of the constancy in delta37Cl of ocean water in relation to air-sea flux variables. PMID:16214214

  2. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  3. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  4. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  5. Microclimatic Temperature Relationships over Different Surfaces.

    ERIC Educational Resources Information Center

    Williams, Thomas B.

    1991-01-01

    Describes a study of temperature variations over different surfaces in an urban campus setting. Explains that researchers sampled temperatures over grass, bare soil, gravel, concrete, and blacktop. Reports that grassy areas registered the highest morning temperatures and lowest afternoon temperatures. (SG)

  6. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  7. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  8. Distinctive precursory air-sea signals between regular and super El Niños

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Behera, Swadhin K.; Doi, Takeshi

    2016-08-01

    Statistically different precursory air-sea signals between a super and a regular El Niño group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Niño events during 1958-2008 are first separated into two groups: a super El Niño group (S-group) and a regular El Niño group (R-group). Composite analysis shows that a significantly larger SST anomaly (SSTA) tendency appears in S-group than in R-group during the onset phase [April-May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly ( u'). This is attributed to the difference in the thermocline depth anomaly ( D') over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D' is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.

  9. Air-sea exchange of dimethylsulfide in the Southern Ocean: Measurements from SO GasEx compared to temperate and tropical regions

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B. W.; Fairall, C. W.; Archer, S. D.; Huebert, B. J.

    2011-04-01

    In the Southern Ocean Gas Exchange Experiment (SO GasEx), we measured an atmospheric dimethylsulfide (DMS) concentration of 118 ± 54 pptv (1σ), a DMS sea-to-air flux of 2.9 ± 2.1 μmol m-2 d-1 by eddy covariance, and a seawater DMS concentration of 1.6 ± 0.7 nM. Dividing flux by the concurrent air-sea concentration difference yields the transfer velocity of DMS (kDMS). The kDMS in the Southern Ocean was significantly lower than previous measurements in the equatorial east Pacific, Sargasso Sea, northeast Atlantic, and southeast Pacific. Normalizing kDMS for the temperature dependence in waterside diffusivity and solubility results in better agreement among various field studies and suggests that the low kDMS in the Southern Ocean is primarily due to colder temperatures. The higher solubility of DMS at a lower temperature results in greater airside control and less transfer of the gas by bubbles formed from breaking waves. The final normalized DMS transfer velocity is similar to k of less soluble gases such as carbon dioxide in low-to-moderate winds; in high winds, DMS transfer velocity is significantly lower because of the reduced bubble-mediated transfer.

  10. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  11. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  12. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  13. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  14. Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions

    NASA Astrophysics Data System (ADS)

    Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale

    2014-05-01

    Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between

  15. Measuring important parameters for air-sea heat exchange

    NASA Astrophysics Data System (ADS)

    Garbe, Christoph; Schimpf, Uwe; Jaehne, Bernd

    2002-03-01

    The heat transfer between the ocean and the atmosphere is one of the most important parameters governing the global climate. Important parameters include the heat transfer velocity and the net heat flux as well as parameters of the underlying transport model. However, the net heat flux is hard to measure since processes take place in the thermal boundary layer, that is the topmost layer of the ocean less than 1 mm thick. Current techniques rely on three independent measurements of the constituent fluxes, the sensible heat flux, latent heat flux and radiative flux. They depend on indirect measurements of meteorological parameters and rely on a combination of data from different sensors using a number of heuristic assumptions. High relative errors and the need for long temporal averaging reduce the practicability of these techniques. In this paper a novel technique is presented that circumvents these drawbacks by directly measuring the net heat flux across the air-water interface with a single low-NETD infrared camera. A newly developed digital image processing technique allows to simultaneously estimating the surface velocity field and parameters of the temporal temperature change. In particular, this technique allows estimating the total derivative of the temperature with respect to time from a sequence of infrared images, together with error bounds on the estimates. This derivative can be used to compute the heat flux density and the heat transfer velocity, as well as the probability density function of the underlying surface renewal model. It is also possible to estimate the bulk-skin temperature difference given rise to by the net heat flux. Our technique has been successfully used in both laboratory measurements in the Heidelberg Aeolotron, as well as in field measurements in the equatorial pacific during the NOAA GasExII experiment this spring. The data show that heat flux measurements to an accuracy of better than 5% on a time scale of seconds are feasible.

  16. Detection of Temperature Difference in Neuronal Cells

    PubMed Central

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-01-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source. PMID:26925874

  17. The air-sea interface and surface stress under tropical cyclones.

    PubMed

    Soloviev, Alexander V; Lukas, Roger; Donelan, Mark A; Haus, Brian K; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms(-1). Around 60 ms(-1), the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  18. A Unified Air-Sea Visualization System: Survey on Gridding Structures

    NASA Technical Reports Server (NTRS)

    Anand, Harsh; Moorhead, Robert

    1995-01-01

    The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.

  19. Influence of precipitation on the CO2 air-sea flux, an eddy covariance field study

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alexander; Steinhoff, Tobias; Marandino, Christa

    2016-04-01

    During the SPACES-OASIS cruise (July-August 2015) from Durban, SA to Male, MV direct fluxes of CO2 and dimethyl sulfide (DMS) were measured using the eddy covariance (EC) technique. The cruise covered areas of sources and sinks for atmospheric CO2, where the bulk concentration gradient measurements resembled the Takahashi (2009) climatology. Most of the time, bulk CO2 fluxes (F=k* [cwater-cair]), calculated with the parametrization (k) by Nightingale et al. 2000, were in general agreement with direct EC measurements. However, during heavy rain events, the directly measured CO2 fluxes were 4 times higher than predicted. It has been previously described that rain influences the k parametrization of air-sea gas exchange, but this alone cannot explain the measured discrepancy. There is evidence that freshwater input and a change in the carbonate chemistry causes the water side concentration of ?c=cwater-cair to decrease. Unfortunately this cannot be detected by most bulk measurement systems. Using the flux measurements of an additional gas like DMS, this rain influence can be evaluated as DMS does not react to changes in the carbonate system and has a different solubility. A pending question is if the enhanced flux of CO2 in the ocean is sequestered into the ocean mixed layer and below. This question will be tackled using the GOTM model to understand the implications for the global carbon cycle.

  20. The air-sea interface and surface stress under tropical cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2014-06-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms-1. Around 60 ms-1, the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone.

  1. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  2. The air-sea interface and surface stress under tropical cyclones

    PubMed Central

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms−1. Around 60 ms−1, the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  3. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2013-08-01

    nutrient concentrations of the upwelled waters a primary determinant of the overall source/sink nature of the CalCS. The comparison of the standard simulation with one for preindustrial conditions show that the CalCS is taking up anthropogenic CO2 at a rate of about -1 mol C m-2 yr-1, implying that the region was a small source of CO2 to the atmosphere in preindustrial times. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. There are important differences among the subregions. Notably, the total variance of the fluxes in the central nearshore CalCS is roughly 4-5 times larger than elsewhere. Most of the variability in pCO2 is associated with the seasonal cycle, except in the nearshore, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The dominance of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source/sink nature of this region reliably.

  4. Effects of the Tibetan Plateau on the onsetof the summer monsoon in South Asia: The role of the air-sea interaction

    NASA Astrophysics Data System (ADS)

    Abe, Manabu; Hori, Masatake; Yasunari, Tetsuzo; Kitoh, Akio

    2013-02-01

    Using both a coupled atmosphere-ocean general circulation model (GCM) and an atmospheric GCM, we investigate the effects of the Tibetan Plateau (TP) on the onset of the South Asian summer monsoon by conducting simulations with and without the TP. In the coupled GCM, the presence of the TP causes the monsoon onset to occur approximately 15 days later in the Arabian Sea (AS) and India (ID) and approximately 10 days earlier in the Bay of Bengal (BB). These changes are attributed to different atmospheric circulation patterns and different conditions within the adjacent oceans, such as the AS and the BB. When the TP is included, lower sea surface temperatures (SSTs) in the AS contribute to a stable lower atmosphere, which suppresses convection over the AS and ID in May. In contrast, low pressure over South Asia, caused by the TP, induces a southwesterly toward the BB that transports a substantial amount of water vapor to the BB. This flow results in an earlier monsoon in the BB. Without the TP, higher SSTs that are formed in the AS in May destabilize the lower atmosphere and create a depression, resulting in an earlier onset of the monsoon over the AS and ID. Consequently, the cyclonic circulation spreads abruptly to the BB, and precipitation begins to increase over the BB. Therefore, the air-sea interaction in the adjacent ocean under the influence of the TP strongly modulates the onset of the South Asian summer monsoon. This modulation was verified by the atmospheric GCM experiments.

  5. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  6. Interannual variability of wintertime temperature on the inner continental shelf of the Middle Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Connolly, Thomas P.; Lentz, Steven J.

    2014-09-01

    The shallow depth of the inner continental shelf allows for rapid adjustment of the ocean to air-sea exchange of heat and momentum compared with offshore locations. Observations during 2001-2013 are used to evaluate the contributions of air-sea heat flux and oceanic advection to interannual variability of inner-shelf temperature in the Middle Atlantic Bight. Wintertime processes are important for interpreting regional interannual variability at nearshore locations since winter anomalies account for 69-77% of the variance of the annual anomalies and are correlated over broad along-shelf scales, from New England to North Carolina. At the Martha's Vineyard Coastal Observatory on the 12 m isobath, a heat budget is used to test the hypothesis that interannual differences in winter temperatures are due solely to air-sea heat flux. Bimonthly averages of air-sea heat flux are correlated with temporal changes in temperature, but overestimate the observed wintertime cooling. Velocity and satellite-derived temperature data show that interannual variability in wintertime surface cooling is partially compensated for by alongshore advection of warmer water from the west at this particular location. It is also shown that surface heat flux is a strong function of air-sea temperature difference. Because of this coupling between ocean and air temperatures in shallow water, along-shelf advection can significantly modify the surface heat flux at seasonal and interannual time scales. While along-shelf advection at relatively small (˜100 km) scales can be an important component of the heat budget over the inner shelf, interannual temperature variability is still largely determined by adjustment to large-scale air-temperature anomalies.

  7. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  8. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  9. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  10. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  11. Interannual Variability of South-Eastern African Summer Rainfall. Part 1: Relationships with Air-Sea Interaction Processes

    NASA Astrophysics Data System (ADS)

    Rocha, Alfredo; Simmonds, Ian

    1997-03-01

    This paper investigates the role that air-sea interaction processes may play in interannual variability of south-eastern African summer rainfall. The principal spatial modes of south-eastern African summer rainfall are first identified using principal component analysis. Four modes are retained. The most important mode of variability is found to represent rainfall variability over most of the domain, particularly in the regions to the south.The influence of ENSO (as measured by the SOI) on summer rainfall is investigated in detail for different SOI leads. The relationship is such that during the summer following the onset of an ENSO event, south-eastern Africa tends to experience dry conditions. Strongest relationships are found with the SOI leading rainfall by about 3 to 6 months.A second index, the Brandon-Marion Index (BMI) which is indicative of changes in the pressure field over the Indian Ocean correlates with rainfall better than the SOI. Strongest correlations are found when this index leads rainfall by about 1 to 3 months. More importantly, a partial correlation analysis reveals that the BMI influences rainfall independently of ENSO. Both the SOI and the BMI are potential predictors of summer rainfall.An investigation of rainfall associations with global SST anomalies reveals areas in the tropical Indian and Pacific Oceans that are linked with rainfall changes over the subcontinent. The relationship is such that warm anomalies tend to be followed by dry conditions over much of south-eastern Africa. Strongest relationships are found when SSTs lead the rainfall season by about 1 to 3 months. Well-defined atmospheric anomalies are identified during dry south-eastern African summers. These include, amongst others, anomalously warm tropospheric temperatures and marked low-level cyclonic circulation anomalies over the central Indian Ocean, which generate abnormally weak easterly winds along much of the south-eastern coast of Africa. These perturbations to the

  12. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  13. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    NASA Astrophysics Data System (ADS)

    Padin, X. A.; Vázquez-Rodríguez, M.; Castaño, M.; Velo, A.; Alonso-Pérez, F.; Gago, J.; Gilcoto, M.; Álvarez, M.; Pardo, P. C.; de La Paz, M.; Ríos, A. F.; Pérez, F. F.

    2010-05-01

    A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2) in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of -3 ± 18 μatm (Takahashi et al., 2009). The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m-2 yr-1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of -0.16 ± 0.01 yr-1 coinciding with a declination of -3.5 ± 0.9 μatm yr-1 in the air-sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of -0.09 ± 0.03 mol m-2 yr-1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m-2 y-1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr-1 and a wind speed decrease of -0.58 ± 0.14 m s-1 yr-1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño - Southern Oscillation episodes. Contrary the surface waters of the

  14. Temporal variations in air-sea CO2 exchange near large kelp beds near San Diego, California

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2015-01-01

    study presents nearly continuous air-sea CO2 flux for 7 years using the eddy covariance method for nearshore water near San Diego, California, as well as identifying environmental processes that appear to control temporal variations in air-sea CO2 flux at different time scales using time series decomposition. Monthly variations in CO2 uptake are shown to be positively influenced by photosynthetically active photon flux density (PPFD) and negatively related to wind speeds. In contrast to the monthly scale, wind speeds often influenced CO2 uptake positively on an hourly scale. Interannual variations in CO2 flux were not correlated with any independent variables, but did reflect surface area of the adjacent kelp bed in the following year. Different environmental influences on CO2 flux at different temporal scales suggest the importance of long-term flux monitoring for accurately identifying important environmental processes for the coastal carbon cycle. Overall, the study area was a strong CO2 sink into the sea (CO2 flux of ca. -260 g C m-2 yr-1). If all coastal areas inhabited by macrophytes had a similar CO2 uptake rate, the net CO2 uptake from these areas alone would roughly equal the net CO2 sink estimated for the entire global coastal ocean to date. A similar-strength CO2 flux, ranging between -0.09 and -0.01 g C m-2 h-1, was also observed over another kelp bed from a pilot study of boat-based eddy covariance measurements.

  15. An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Chang, You-Soon; Drevillon, Marie; Ferry, Nicolas; Fujii, Yosuke; Köhl, Armin; Storto, Andrea; Toyoda, Takahiro; Wang, Xiaochun; Waters, Jennifer; Xue, Yan; Yin, Yonghong; Barnier, Bernard; Hernandez, Fabrice; Kumar, Arun; Lee, Tong; Masina, Simona; Andrew Peterson, K.

    2015-10-01

    Sixteen monthly air-sea heat flux products from global ocean/coupled reanalyses are compared over 1993-2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993-2009 of 4.2 ± 1.1 W m-2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1-2 W m-2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m-2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m-2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S-15°N) over 2007-2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001-2009, also show the ORA-IP ensemble has 16 W m-2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

  16. Contrast of local air-sea relationships between 10-20-day and 30-60-day intraseasonal oscillations during May-September over the South China Sea and western North Pacific

    NASA Astrophysics Data System (ADS)

    Ye, Kunhui; Wu, Renguang

    2015-12-01

    Present study compares local air-sea relationship of 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the South China Sea (SCS) and western North Pacific (WNP) during May through September for the period 1998-2010. It is shown that sea surface temperature (SST) has a larger intraseasonal variance in the North Indian Ocean, the SCS, and subtropical WNP on the 30-60-day time scale, but in tropical WNP on the 10-20-day time scale. The local correlation of SST with rain, surface shortwave radiation (SWR) and latent heat flux (LHF) displays a southwest-northeast tilted structure on the 10-20-day time scale, but a broad west-east pattern with a larger correlation on the 30-60-day time scale. The time of SST leading rain is larger in off-equatorial regions than in near-equatorial regions for both types of ISOs, whereas the time of rain leading SST is larger in near-equatorial regions than in off-equatorial regions. A similar feature is seen for SWR, but an opposite feature for LHF. The atmospheric ISOs induce intraseasonal SST variations through cloud-radiation and wind-evaporation changes. The intraseasonal SST variations feedback on the atmosphere through modulation of atmospheric stability over off-equatorial regions on both timescales. The SST impacts on the atmosphere appear larger on the 30-60-day time scale than on the 10-20-day time scale. The distinct spatial patterns of local air-sea relationship on the two types of ISOs are associated with different spatial structures in both atmospheric ISO-associated SWR and LHF anomalies and SST-induced atmospheric stability anomalies.

  17. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  18. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  19. Myoglobin solvent structure at different temperatures

    SciTech Connect

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  20. Air-sea interaction in the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  1. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  2. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  3. Satellite observations of air-sea interaction over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Xie, S.; Nonaka, M.; Hafner, J.; Liu, W. T.

    2002-12-01

    Satellite microwave measurements are analyzed, revealing robust co-variability in sea surface temperature (SST) and wind speed over the Kuroshio and its Extension (KE). Ocean hydrodynamic instabilities cause the KE to meander and result into large SST variations. Increased (reduced) wind speeds are found to be associated with warm (cold) SST anomalies. This positive SST-wind correlation in KE is confirmed by in-situ buoy measurements and is consistent with a vertical shear adjustment mechanism. Namely, an increase in SST reduces the static stability of the near-surface atmosphere, intensifying the vertical turbulence mixing and bringing fast-moving air from aloft to the sea surface. South of Japan, the Kuroshio is known to vary between nearshore and offshore paths. Both paths seem semi-permanent and can persist months to years. As the Kuroshio shifts its path, coherent wind changes are detected. In particular, winds are high south of Tokyo when the Kuroshio takes the nearshore path while they are greatly reduced when this warm current leaves the coast in the offshore path. Further upstream in the East China Sea, on the warmer flank of the Kuroshio Front, there are a zone of high wind speed and a band of raining cloud due to the region's unstable atmospheric stratification near the surface. Surface wind convergence is roughly collocated with the Kuroshio Current. By increasing the baroclinicity and condensational heating, the Kuroshio Front aids the growth of the so-called Taiwan cyclone, an important winter weather phenomenon for Japan. The positive SST-wind correlation over the strong Kuroshio Current and its extension is opposite to the negative one often observed in regions of weak currents such as south of the Aleutian low that is considered to be indicative of atmosphere-to-ocean forcing.

  4. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  5. Development of an Eddy Covariance System for Air-Sea Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Marandino, C. A.; McCormick, C.; Saltzman, E. S.

    2006-12-01

    We are developing a ship-based system to measure the air-sea pCO2 gradient and air-sea turbulent flux of CO2 over the ocean. The eddy covariance flux system uses off-the-shelf instruments to measure the turbulent wind vector (Campbell Scientific CSAT3 sonic anemometer), platform motion (Systron Donner Motion Pak II), and carbon dioxide molar density (LiCor 7000 Infrared Gas Analyzer). Two major sources of uncertainty in calculated fluxes are the effect of water vapor fluctuations on air density fluctuations (the WPL effect, Webb, Pearman and Leuning. 1980), and a spurious CO2 signal due to the sensitivity of the gas analyzer to platform motion (McGillis et al., 1998). Two flux systems were deployed side-by-side on a cruise from Manzanillo, Mexico to Puntas Arenas, Chile, in January 2006. Results from the cruise are presented, with a focus on our attempts to reduce biases in the calculated air-sea CO2 flux due to the WPL effect and the motion sensitivity of the gas analyzer.

  6. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra. PMID:26903095

  7. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  8. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  9. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  10. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  11. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  12. Minimum Temperatures, Diurnal Temperature Ranges and Temperature Inversions in Limestone Sinkholes of Different Sizes and Shapes

    SciTech Connect

    Whiteman, Charles D.; Haiden, Thomas S.; Pospichal, Bernhard; Eisenbach, Stefan; Steinacker, Reinhold

    2004-08-01

    Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the 1300 m MSL Duerrenstein Plateau near Lunz, Austria have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as -28.5°C. Surprisingly, temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controlling cooling for basins in this size range and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.

  13. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  14. Weak ENSO asymmetry due to weak nonlinear air-sea interaction in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wang, Fan; Sun, De-Zheng

    2016-03-01

    State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities. Significantly weak ENSO asymmetry and weakly nonlinear air-sea interaction over the tropical Pacific was found in CMIP5 (Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air-sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air-sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni˜no events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni˜no events, especially the extreme El Ni˜no events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure (especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.

  15. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  16. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  17. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  18. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  19. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    PubMed Central

    Mayol, Eva; Jiménez, María A.; Herndl, Gerhard J.; Duarte, Carlos M.; Arrieta, Jesús M.

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 104 and 1.6 × 107 microbes per m2 of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m2 every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  20. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  1. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  2. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  3. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  4. Radically Different Kinetics at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  5. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  6. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-05-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC

  7. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2014-02-01

    We quantify the CO2 source/sink nature of the California Current System (CalCS) and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2) in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-biogeochemical oceanic model on the basis of the Regional Oceanic Modeling System (ROMS). In the annual mean, the entire CalCS within 800 km of the coast and from ∼33° N to 46° N is essentially neutral with regard to atmospheric CO2: the model simulates an integrated uptake flux of -0.9 ± 3.6 Tg C yr-1, corresponding to an average flux density of -0.05 ± 0.20 mol C m-2 yr-1. This near zero flux is a consequence of an almost complete regional compensation between (i) strong outgassing in the nearshore region (first 100 km) that brings waters with high concentrations of dissolved inorganic carbon (DIC) to the surface and (ii) and a weaker, but more widespread uptake flux in the offshore region due to an intense biological reduction of this DIC, driven by the nutrients that are upwelled together with the DIC. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. Most of the variability in pCO2 is associated with the seasonal cycle, with the exception of the nearshore region, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The prevalence of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source

  8. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  9. The spatial-temporal variability of air-sea momentum fluxes observed at a tidal inlet

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Laxague, N. J. M.; Reniers, A. J. H. M.; Graber, H. C.

    2015-02-01

    Coastal waters are an aerodynamically unique environment that has been little explored from an air-sea interaction point of view. Consequently, most studies must assume that open ocean-derived parameterizations of the air-sea momentum flux are representative of the nearshore wind forcing. Observations made at the New River Inlet in North Carolina, during the Riverine and Estuarine Transport experiment (RIVET), were used to evaluate the suitability of wind speed-dependent, wind stress parameterizations in coastal waters. As part of the field campaign, a small, agile research vessel was deployed to make high-resolution wind velocity measurements in and around the tidal inlet. The eddy covariance method was employed to recover direct estimates of the 10 m neutral atmospheric drag coefficient from the three-dimensional winds. Observations of wind stress angle, near-surface currents, and heat flux were used to analyze the cross-shore variability of wind stress steering off the mean wind azimuth. In general, for onshore winds above 5 m/s, the drag coefficient was observed to be two and a half times the predicted open ocean value. Significant wind stress steering is observed within 2 km of the inlet mouth, which is observed to be correlated with the horizontal current shear. Other mechanisms such as the reduction in wave celerity or depth-limited breaking could also play a role. It was determined that outside the influence of these typical coastal processes, the open ocean parameterizations generally represent the wind stress field. The nearshore stress variability has significant implications for observations and simulations of coastal transport, circulation, mixing, and general surf-zone dynamics.

  10. Compact optical system for imaging underwater and through the air/sea interface

    NASA Astrophysics Data System (ADS)

    Alley, Derek; Mullen, Linda; Laux, Alan

    2012-06-01

    Typical line-of-sight (LOS)/monostatic optical imaging systems include a laser source and receiver that are co-located on the same platform. The performance of such systems is deteriorated in turbid ocean water due to the large amount of light that is scattered on the path to and from an object of interest. Imagery collected with the LOS/monostatic system through the air/sea interface is also distorted due to wave focusing/defocusing effects. The approach of this project is to investigate an alternate, non-line-of-sight (NLOS)/bistatic approach that offers some advantages over these traditional LOS/monostatic imaging techniques. In this NLOS system the laser and receiver are located on separate platforms with the laser located closer to the object of interest. As the laser sequentially scans the underwater object, a time-varying intensity signal corresponding to reflectivity changes in the object is detected by the distant receiver. A modulated laser illuminator is used to communicate information about the scan to the distant receiver so it can recreate the image with the collected scattered light. This NLOS/bistatic configuration also enables one to view an underwater target through the air-sea interface (transmitter below the surface and receiver above the surface) without the distortions experienced with the LOS/monostatic sensor. In this paper, we will review the results of recent laboratory water tank experiments where an underwater object was imaged with the receiver both below and above the sea surface.

  11. An Approach to Minimizing Artifacts Caused by Cross-Sensitivity in the Determination of Air-Sea CO2 Flux Using the Eddy-Covariance Technique

    NASA Astrophysics Data System (ADS)

    Duan, Ziqiang; Gao, Huiwang; Gao, Zengxiang; Wang, Renlei; Xue, Yuhuan; Yao, Xiaohong

    2013-07-01

    The air-sea CO2 flux was measured from a research vessel in the North Yellow Sea in October 2007 using an open-path eddy-covariance technique. In 11 out of 64 samples, the normalized spectra of scalars (C}2, water vapour, and temperature) showed similarities. However, in the remaining samples, the normalized CO2 spectra were observed to be greater than those of water vapour and temperature at low frequencies. In this paper, the noise due to cross-sensitivity was identified through a combination of intercomparisons among the normalized spectra of three scalars and additional analyses. Upon examination, the cross-sensitivity noise appeared to be mainly present at frequencies {<}0.8 Hz. Our analysis also suggested that the high-frequency fluctuations of CO2 concentration (frequency {>}0.8 Hz) was probably less affected by the cross-sensitivity. To circumvent the cross-sensitivity issue, the cospectrum in the high-frequency range 0.8-1.5 Hz, instead of the whole range, was used to estimate the CO2 flux by taking the contribution of the high frequency to the CO2 flux to be the same as the contribution to the water vapour flux. The estimated air-sea CO2 flux in the North Yellow Sea was -0.039 ± 0.048 mg m^{-2} s^{-1}, a value comparable to the estimates using the inertial dissipation method and Edson's method (Edson et al., J Geophys Res 116:C00F10, 2011).

  12. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  13. Second international conference on air-sea interaction and on meteorology and oceanography of the coastal zone

    SciTech Connect

    1994-12-31

    This conference was held September 22--27, 1994 in Lisbon, Portugal. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on air-sea interactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air-sea fluxes, and ocean eddies

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian A.; Miller, Arthur J.; Seo, Hyodae

    2013-05-01

    Ocean-atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean-atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000-2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)-flux coupler is invoked in a separate run to isolate the impact of the mesoscale (˜50-200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST-wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST-wind stress and SST-heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean

  15. Extreme air-sea interaction over the North Atlantic subpolar gyre during the winter of 2013-2014 and its sub-surface legacy

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Jacobs, Zoe L.; Marsh, Robert; Sinha, Bablu; Van Sebille, Erik

    2016-06-01

    Exceptionally low North American temperatures and record-breaking precipitation over the British Isles during winter 2013-2014 were interconnected by anomalous ocean evaporation over the North Atlantic subpolar gyre region (SPG). This evaporation (or oceanic latent heat release) was accompanied by strong sensible heat loss to the atmosphere. The enhanced heat loss over the SPG was caused by a combination of surface westerly winds from the North American continent and northerly winds from the Nordic Seas region that were colder, drier and stronger than normal. A distinctive feature of the air-sea exchange was that the enhanced heat loss spanned the entire width of the SPG, with evaporation anomalies intensifying in the east while sensible heat flux anomalies were slightly stronger upstream in the west. The immediate impact of the strong air-sea fluxes on the ocean-atmosphere system included a reduction in ocean heat content of the SPG and a shift in basin-scale pathways of ocean heat and atmospheric freshwater transport. Atmospheric reanalysis data and the EN4 ocean data set indicate that a longer-term legacy of the winter has been the enhanced formation of a particularly dense mode of Subpolar Mode Water (SPMW)—one of the precursors of North Atlantic Deep Water and thus an important component of the Atlantic Meridional Overturning Circulation. Using particle trajectory analysis, the likely dispersal of newly-formed SPMW is evaluated, providing evidence for the re-emergence of anomalously cold SPMW in early winter 2014/2015.

  16. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  17. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  18. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  19. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  20. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  1. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic

    NASA Astrophysics Data System (ADS)

    Cai, Minghong; Ma, Yuxin; Xie, Zhiyong; Zhong, Guangcai; MöLler, Axel; Yang, Haizhen; Sturm, Renate; He, Jianfeng; Ebinghaus, Ralf; Meng, Xiang-Zhou

    2012-03-01

    Surface seawater and boundary layer air samples were collected on the icebreaker Xuelong (Snow Dragon) during the Fourth Chinese Arctic Research Expedition (CHINARE2010) cruise in the North Pacific and Arctic Oceans during 2010. Samples were analyzed for organochlorine pesticides (OCPs), including three isomers of hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), and two isomers of heptachlor epoxide. The gaseous total HCH (ΣHCHs) concentrations were approximately four times lower (average 12.0 pg m-3) than those measured during CHINARE2008 (average 51.4 pg m-3), but were comparable to those measured during CHINARE2003 (average 13.4 pg m-3) in the same study area. These changes are consistent with the evident retreat of sea ice coverage from 2003 to 2008 and increase of sea ice coverage from 2008 to 2009 and 2010. Gaseous β-HCH concentrations in the atmosphere were typically below the method detection limit, consistent with the expectation that ocean currents provide the main transport pathway for β-HCH into the Arctic. The concentrations of all dissolved HCH isomers in seawater increase with increasing latitude, and levels of dissolved HCB also increase (from 5.7 to 7.1 pg L-1) at high latitudes (above 73°N). These results illustrate the role of cold condensation processes in the transport of OCPs. The observed air-sea gas exchange gradients in the Arctic Ocean mainly favored net deposition of OCPs, with the exception of those for β-HCH, which favored volatilization.

  2. The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, Anja; Galgani, Luisa

    2016-02-01

    The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW), ˜ 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  3. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  4. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  5. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  6. Air-sea Energy Transfer at Mesoscale in a Coupled High-resolution Model: Impact of Resolution and Current Feedback

    NASA Astrophysics Data System (ADS)

    Jullien, S.; Colas, F.; Masson, S. G.; Oerder, V.; Echevin, V.; Samson, G.; Crétat, J.; Berthet, S.; Hourdin, C.

    2015-12-01

    Winds are usually considered to force the ocean but recent studies suggested that oceanic mesoscale activity, characterized by eddies, filaments and fronts, could also affect the wind field. These structures feature abrupt changes in sea surface temperature (SST), surface pressure and surface currents that could impact the atmosphere by enhancing/reducing air-sea fluxes, accelerating/decelerating winds, modifying the wind-pressure balance… At this time, the detailed processes associated to such coupling, its intensity and significance remain a matter of research. Here, a state-of-the-art WRF-OASIS-NEMO coupled model is set up over a wide tropical channel (45°S-45°N) at various resolutions: 3/4°, 1/4° and 1/12° in both the ocean and the atmosphere. Several experiments are conducted in forced, partially or fully coupled modes, to highlight the effect of resolution and the role of SST vs. current feedback to energy injection into the ocean and the atmosphere. In strong mesoscale activity regions, a negative wind power input from the atmosphere to the ocean is seen at scales ranging from 100km to more than 1000km. Nonexistent at 3/4°, this negative forcing, acting against oceanic mesoscale activity, is almost twice more important at 1/12° than at 1/4°. In addition, partially coupled simulations, i.e. without current feedback, show that the impact of thermal coupling on this process is very limited. Energy injection to the marine atmospheric boundary layer also features imprints from oceanic mesoscale. Energy injection by scales shorter than 300km represents up to 20% of the total. Finally we show that increasing oceanic resolution, and therefore mesoscale activity, is necessary to resolve the full wind stress spectrum and has an upscaling effect by enhancing atmospheric mesoscale, which is larger scale than in the ocean. Using 1/4°oceanic resolution instead of 1/12° leads to a 50% loss of energy in the atmospheric mesoscale.

  7. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  8. Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  9. Ground surface temperature simulation for different land covers

    NASA Astrophysics Data System (ADS)

    Herb, William R.; Janke, Ben; Mohseni, Omid; Stefan, Heinz G.

    2008-07-01

    SummaryA model for predicting temperature time series for dry and wet land surfaces is described, as part of a larger project to assess the impact of urban development on the temperature of surface runoff and coldwater streams. Surface heat transfer processes on impervious and pervious land surfaces were investigated for both dry and wet weather periods. The surface heat transfer equations were combined with a numerical approximation of the 1-D unsteady heat diffusion equation to calculate pavement and soil temperature profiles to a depth of 10 m. Equations to predict the magnitude of the radiative, convective, conductive and evaporative heat fluxes at a dry or wet surface, using standard climate data as input, were developed. A model for the effect of plant canopies on surface heat transfer was included for vegetated land surfaces. Given suitable climate data, the model can simulate the land surface and sub-surface temperatures continuously throughout a six month time period or for a single rainfall event. Land surface temperatures have been successfully simulated for pavements, bare soil, short and tall grass, a forest, and two agricultural crops (corn and soybeans). The simulations were run for three different locations in US, and different years as imposed by the availability of measured soil temperature and climate data. To clarify the effect of land use on surface temperatures, the calibrated coefficients for each land use and the same soil coefficients were used to simulate surface temperatures for a six year climate data set from Albertville, MN. Asphalt and concrete give the highest surface temperatures, as expected, while vegetated surfaces gave the lowest. Bare soil gives surface temperatures that lie between those for pavements and plant-covered surfaces. The soil temperature model predicts hourly surface temperatures of bare soil and pavement with root-mean-square errors (RMSEs) of 1-2 °C, and hourly surface temperatures of vegetation-covered surfaces

  10. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-04-01

    This study reports thus far a most comprehensive dataset of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS) based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability of sea surface pCO2 in the ECS except in winter when it ranged in a narrow band of 330 to 360 μatm. In this context, we categorized the ECS into five different domains featured with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in fall. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in fall (> 350 μatm). In the northern ECS shelf, pCO2 in summer and fall was > 340 μatm in most areas, higher than in winter and spring. In the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux in the entire ECS shelf was -10.0 ± 2.0 mmol m-2 d-1 in winter, -11.7 ± 3.6 mmol m-2 d-1 in spring, -3.5 ± 4.6 mmol m-2 d-1 in summer and -2.3 ± 3.1 mmol m-2 d-1 in fall. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation of pCO2, which differ from the spatial variance nor the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was -6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  11. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  12. Occurrence and air/sea-exchange of novel organic pollutants in the marine environment

    NASA Astrophysics Data System (ADS)

    Ebinghaus, R.; Xie, Z.

    2006-12-01

    A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface sea water and atmosphere of the North Sea. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North Sea is an important input pathway. The net fluxes indicate that the air sea exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.

  13. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  14. The marine boundary layer - new findings from the Östergarnsholm air-sea interaction site

    NASA Astrophysics Data System (ADS)

    Smedman, A.; Högström, U.

    2003-04-01

    From studies at the air-sea interaction site Östergarnsholm, a coherent picture of how waves interact with the atmosphere is now beginning to emerge. It is clear that the surface of the ocean behaves similar to that of a solid surface with regard to the turbulence structure in the surface layer only for conditions of pure wind sea, i.e. during the phase when waves are in the process of being built up by increasing wind. At that stage of wave development, the dominant waves are short and move slowly relative to the wind. Then the drag coefficient CDN is a function only of the wave age, expressed as u*/c_p (where u* is friction velocity and c_p is the phase velocity of the dominant waves). The relation obtained by us is identical to the corresponding expression obtained from several recent ocean experiments, Drennan et al. (2000). As soon as the wave field develops behind the "pure wind sea" stage towards conditions where relatively long waves start to gain importance, inter-actions caused by these longer waves are felt in the atmosphere at our lowest turbulence measuring height, 10 m. For example it is demonstrated that the logarithmic wind law is not valid in near-neutral conditions except when pure wind sea conditions prevail and, further that for mixed seas and swell conditions, CDN is a function not only of the wave age parameter u*/c_p but also of a second wave parameter E_1/E_2, which is a measure of the proportion of energy of relatively long waves to short waves. The neutral Stanton Number, CHN, is found to follow predictions from surface-renewal theory quite well for unstable conditions up to a wind speed of about 10 ms-1. For higher wind speed CHN increases with increasing wind speed and the interpretation is made that spray is the cause of the increase.

  15. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  16. An overview of sea state conditions and air-sea fluxes during RaDyO

    NASA Astrophysics Data System (ADS)

    Zappa, Christopher J.; Banner, Michael L.; Schultz, Howard; Gemmrich, Johannes R.; Morison, Russel P.; Lebel, Deborah A.; Dickey, Tommy

    2012-07-01

    Refining radiative-transfer modeling capabilities for light transmission through the sea surface requires a more detailed prescription of the sea surface roughness beyond the probability density function of the sea surface slope field. To meet this need, exciting new measurement methodologies now provide the opportunity to enhance present knowledge of sea surface roughness, especially at the microscale. In this context, two intensive field experiments using R/PFloating Instrument Platformwere staged within the Office of Naval Research's Radiance in a Dynamic Ocean (RaDyO) field program in the Santa Barbara Channel and in the central Pacific Ocean south of Hawaii. As part of this program, our team gathered and analyzed a comprehensive suite of sea surface roughness measurements designed to provide optimal coverage of fundamental optical distortion processes associated with the air-sea interface. This contribution describes the ensemble of instrumentation deployed. It provides a detailed documentation of the ambient environmental conditions that prevailed during the RaDyO field experiments. It also highlights exciting new sea surface roughness measurement capabilities that underpin a number of the scientific advances resulting from the RaDyO program. For instance, a new polarimetric imaging camera highlights the complex interplay of wind and surface currents in shaping the roughness of the sea surface that suggests the traditional Cox-Munk framework is not sufficient. In addition, the breaking crest length spectral density derived from visible and infrared imagery is shown to be modulated by the development of the wavefield (wave age) and alignment of wind and surface currents at the intermediate (dominant) scale of wave breaking.

  17. Air-sea boundary layer dynamics in the presence of mesoscale surface currents

    NASA Astrophysics Data System (ADS)

    Rooth, Claes; Xie, Lian

    1992-09-01

    In the presence of surface currents, a shear stress at the air-sea interface is induced by the surface currents. In the case of a unidirectional current, a quadratic stress law leads to a stress curl proportional to and opposing the surface current vorticity even with a uniform wind. This causes a spindown effect on the surface vorticity field at a rate proportional to the wind speed. In the steady state, or in slowly varying processes which can be treated as parametrically developing quasi-steady states, the surface-layer potential vorticity modulation causes upwelling and downwelling patterns associated with the surface-current vorticity. These effects are analyzed for an idealized jet current, and for a physical situation characteristic of a Gulf Stream boundary ring along the Florida Keys, where the induced transport patterns may be important for onshore transport of fish and spiny lobster larvae, as well as for onshore transport to the Florida Keys of general flotsam transported past them by the Gulf Stream. The spindown time scale (t*) for a 1.5-layer system is H/( ρ'cdVa) for a surface jet on the deformation radius scale (where H is the thickness of the surface layer, Va the surface wind speed, ρ' the air to water density ratio and cd the surface drag coefficient) and increases for large horizontal scales in proportion to the current width squared. For a typical wind speed of 5 m/s and a density normalized drag coefficient ρ'cd= 2 × 10-6, t* is on the order of 1 month for a 30-m surface layer. In the more general case of a stratified interior water column, the vorticity spindown directly affects only the potential vorticity of the surface layer and generally leads to subsurface velocity and vorticity maxima for mesoscale eddies and jets.

  18. Model estimating the effect of marginal ice zone processes on the phytoplankton primary production and air-sea flux of CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Martjyanov, Stanislav

    2016-04-01

    This study is aimed to assess the impact of sea ice on the primary production of phytoplankton (PPP) and air-sea CO2 flux in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes: 1) a module of sea ice with 7 categories, and 2) the 11-component module of marine pelagic ecosystem developed in the St. Petersburg Branch, Institute of Oceanology. The model is driven by atmospheric forcing, prescribed from the reanalysis NCEP / NCAR, and conditions on the open sea boundary, prescribed from the regional model of the atmosphere-ocean-sea ice-ocean biogeochemistry, developed at Max Planck Institute for Meteorology, Hamburg. Comparison of the model results for the period 1998-2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll "a" concentration and PPP in the Barents Sea. Model estimates of the annual PPP for whole sea, APPmod, appeared in 1.5-2.3 times more than similar estimates, APPdata, from satellite data. The main reasons for this discrepancy are: 1) APPdata refers to the open water, while APPmod, to the whole sea area (under the pack ice and marginal ice zone (MIZ) was produced 16 - 38% of PPP); and 2) values of APPdata are underestimated because of the subsurface chlorophyll maximum. During the period 1998-2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15%. This reduction was accompanied by an increase in annual PPP of the sea at 54 and 63%, based, respectively, on satellite data and the model for the open water. According to model calculations for the whole sea area, the increase is only 19%. Using a simple 7-component model of oceanic carbon cycle incorporated into the above hydrodynamic model, the CO2 exchange between the atmosphere and sea has been estimated in different conditions. In the absence of biological

  19. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-09-01

    This study reports the most comprehensive data set thus far of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS), based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability in sea surface pCO2 in the ECS except in winter, when it ranged across a narrow band of 330 to 360 μatm. We categorized the ECS into five different domains featuring with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in autumn. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in autumn (> 350 μatm). On the northern ECS shelf, pCO2 in summer and autumn was > 340 μatm in most areas, higher than in winter and spring. On the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux on the entire ECS shelf was -10.0 ± 2.0 in winter, -11.7 ± 3.6 in spring, -3.5 ± 4.6 in summer and -2.3 ± 3.1 mmol m-2 d-1 in autumn. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation in pCO2 rather than the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was 6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  20. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2015-12-01

    The infrared phase curves of low-eccentricity transiting hot Jupiters show a trend of increasing flux amplitude, or increasing day-night temperature difference, with increasing equilibrium temperature. Here we utilize atmospheric circulation modeling and analytic theory to understand this trend, and the more general question: what processes control heat redistribution in tidally-locked giant planet atmospheres? We performed a wide range of 3D numerical simulations of the atmospheric circulation with simplified forcing, and constructed an analytic theory that explains the day-night temperature differences in these simulations over a wide parameter space. Our analytic theory shows that day-night temperature differences in tidally-locked planet atmospheres are mediated by wave propagation. If planetary-scale waves are free to propagate longitudinally, they will efficiently flatten isentropes and lessen day-night temperature differences. If these waves are damped, the day-night temperature differences will necessarily be larger. We expect that wave propagation in hot Jupiter atmospheres can be damped in two ways: by either radiative cooling or frictional drag. Both of these processes increase in efficacy with increasing equilibrium temperature, as radiative cooling is directly related to the cube of temperature and magnetically-induced (Lorentz) drag becomes stronger with increasing partial ionization and hence temperature. We find that radiative cooling plays the largest role in damping wave propagation and hence plays the biggest role in controlling day-night temperature differences. As a result, day-night temperature differences in hot Jupiter atmospheres decrease with increasing pressure and increase with increasing stellar flux. One can apply this result to phase curve observations of individual hot Jupiters in multiple bandpasses, as varying flux amplitudes between wavelengths implies that different photospheric pressure levels are being probed. Namely, a larger

  1. Variability of Rotational Temperatures from Different OH Rovibrational Levels

    NASA Astrophysics Data System (ADS)

    Vimal, D. V.; Slanger, T. G.

    2011-12-01

    TThe Meinel band emission lines from rovibrationally excited OH in its electronic ground state in the nightglow are widely used as a diagnostic tool to investigate key mesospheric variables such as temperature, tides, and gravity waves. The OH rotational temperature has been extensively studied to ascertain both long- and short-term variability in the upper atmosphere. Current controversy in the literature regarding the possible variability of temperatures deduced from different OH rovibrational levels limits our ability to compare data from different sources. Researchers tend to use a monitoring vibrational level for OH Meinel bands that is most convenient for their instrument. Background sky spectra captured by astronomical instruments provide detailed records of optical emissions in the upper atmosphere. For this study we utilized existing sky spectra from the Keck telescopes in Mauna Kea and the Very Large Telescope in Chile for the OH Meinel bands bound by the extremes (υ = 3, 8). We compared these results with the temperatures deduced from the O2 0-1 Atmospheric band at 865 nm. This latter emission, emanating from a long-lived species, should represent the true kinetic temperature at the altitude of emission and therefore puts a cap on how high the temperature difference can be between the nominal OH altitude (87 km) and the 95-km altitude of the O2 emission. We present the results of our analysis and discuss the implications for mesospheric temperature retrievals from OH emissions. This work was supported by NSF grant ATM-0924781 from NSF CEDAR.

  2. Simulation of soil temperature dynamics with models using different concepts.

    PubMed

    Sándor, Renáta; Fodor, Nándor

    2012-01-01

    This paper presents two soil temperature models with empirical and mechanistic concepts. At the test site (calcaric arenosol), meteorological parameters as well as soil moisture content and temperature at 5 different depths were measured in an experiment with 8 parcels realizing the combinations of the fertilized, nonfertilized, irrigated, nonirrigated treatments in two replicates. Leaf area dynamics was also monitored. Soil temperature was calculated with the original and a modified version of CERES as well as with the HYDRUS-1D model. The simulated soil temperature values were compared to the observed ones. The vegetation reduced both the average soil temperature and its diurnal amplitude; therefore, considering the leaf area dynamics is important in modeling. The models underestimated the actual soil temperature and overestimated the temperature oscillation within the winter period. All models failed to account for the insulation effect of snow cover. The modified CERES provided explicitly more accurate soil temperature values than the original one. Though HYDRUS-1D provided more accurate soil temperature estimations, its superiority to CERES is not unequivocal as it requires more detailed inputs. PMID:22792047

  3. Simulation of Soil Temperature Dynamics with Models Using Different Concepts

    PubMed Central

    Sándor, Renáta; Fodor, Nándor

    2012-01-01

    This paper presents two soil temperature models with empirical and mechanistic concepts. At the test site (calcaric arenosol), meteorological parameters as well as soil moisture content and temperature at 5 different depths were measured in an experiment with 8 parcels realizing the combinations of the fertilized, nonfertilized, irrigated, nonirrigated treatments in two replicates. Leaf area dynamics was also monitored. Soil temperature was calculated with the original and a modified version of CERES as well as with the HYDRUS-1D model. The simulated soil temperature values were compared to the observed ones. The vegetation reduced both the average soil temperature and its diurnal amplitude; therefore, considering the leaf area dynamics is important in modeling. The models underestimated the actual soil temperature and overestimated the temperature oscillation within the winter period. All models failed to account for the insulation effect of snow cover. The modified CERES provided explicitly more accurate soil temperature values than the original one. Though HYDRUS-1D provided more accurate soil temperature estimations, its superiority to CERES is not unequivocal as it requires more detailed inputs. PMID:22792047

  4. Spatial and temporal variability of air-sea CO2 exchange of alongshore waters in summer near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2014-03-01

    Alongshore water off Barrow, Alaska is a useful area for studying the carbon cycle of the Arctic coastal sea, because the different coastal characteristics extant in the area likely represent much larger regions of the coastal water of the western Arctic Ocean. Especially noteworthy is the inflow shelf water transferred northward by the Arctic Coastal Current into the Chukchi Sea from the North Pacific and turbid water in the Elson Lagoon where a significant amount of coastal erosion has been reported along the extensive coastal line and where a part of the water from the lagoon drains into the Beaufort Sea adjacent to the Chukchi Sea. To investigate spatial and temporal variations of air-sea CO2 flux (CO2 flux) of the alongshore water, partial pressure of CO2 of surface seawater (pCO2sw) was measured in summer, 2007 and 2008, and CO2 flux was directly measured by eddy covariance at a fixed point for the Beaufort Sea in summer 2008. Measured pCO2sw in the Chukchi Sea side was the lowest in the beginning of the measurement season and increased later in the season both in 2007 and 2008. The average CO2 flux estimated based on pCO2sw in the Chukchi Sea side was -0.10 μmol m-2 s-1 (±0.1 s.d.) using the sign convention of positive fluxes into the atmosphere from the ocean. pCO2sw in the Beaufort Sea and the Elson Lagoon was relatively higher in early summer and decreased in the middle of the summer. The overall average CO2 flux was -0.07 μmol m-2 s-1 (±0.1 s.d.) for the Beaufort Sea side and -0.03 μmol m-2 s-1 (±0.07 s.d.) for the Elson Lagoon respectively, indicating a sink of CO2 despite high carbon inflows from the terrestrial margin into the Elson Lagoon. A strong sink of CO2 was often observed from the Beaufort Sea by eddy covariance in the middle of the summer. This sink activity in the middle summer in the Beaufort Sea and Elson Lagoon was likely due to biological carbon uptake as inferred by low apparent oxygen utilization and high chlorophyll

  5. The air-sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica.

    PubMed

    Lakaschus, Sonke; Weber, Kurt; Wania, Frank; Bruhn, Regina; Schrems, Otto

    2002-01-15

    Hexachlorocyclohexanes (HCHs) were determined simultaneously in air and seawater during two cruises across the Atlantic Ocean between the Arctic Ocean (Ny-Alesund/ Svalbard, 79 degrees N; 12 degrees E) and the Antarctic Continent (Neumayer Station/ Ekstroem Ice Shelf, 70 degrees S; 8.2 degrees W) in 1999/ 2000. The concentrations of alpha-HCH and gamma-HCH in air and surface waters of the Arctic exceeded those in Antarctica by 1-2 orders of magnitude. The gaseous concentrations of gamma-HCH were highest above the North Sea and between 20 degrees N and 30 degrees S. Fugacity fractions were used to estimate the direction of the air-sea gas exchange. These showed for alpha-HCH thatthe measured concentrations in both phases were close to equilibrium in the North Atlantic (78 degrees N-40 degrees N), slightly undersaturated between 30 degrees N and 10 degrees S and again close to equilibrium between 20 degrees S and 50 degrees S. Y-HCH has reached phase equilibrium in the North Atlantic as alpha-HCH, but the surface waters of the tropical and southern Atlantic were strongly undersaturated with y-HCH, especially between 30 degrees N and 20 degrees S. These findings are significantly different from two earlier estimates around 1990 as a result of global emission changes within the past decade. Therefore, we investigated the time trend of the HCHs in the surface waters of the Atlantic between 50 degrees N and 60 degrees S on the basis of archived samples taken in 1987-1997 and those from 1999. A decrease of alpha-HCH by a factor of approximately 4 is observed at all sampling locations. No decrease of gamma-HCH occurred between 30 degrees N and 30 degrees S, but there was a decrease in the North Atlantic, North Sea, and in the South Atlantic south of 40 degrees S. The constant level of gamma-HCH in the tropical Atlantic confirms the conclusion that the tropical Atlantic acts as a sink for y-HCH at present time. The measured alpha-HCH seawater concentrations were compared

  6. Interannual variability of the air-sea heat exchange in the western Mediterranean in relation to the deep-water formation processes

    NASA Astrophysics Data System (ADS)

    Soto, J.; Criado Aldeanueva, F.; García Lafuente, J.; Sanchez Román, A.; Carracedo, L.

    2009-04-01

    A 60-year long time series of heat fluxes (long and short wave radiation, sensible and latent contributions) from NCEP reanalysis dataset and a 22-year long time series of Sea Surface Temperature (SST) from JPL AVHRR Oceans Pathfinder dataset have been combined to study the seasonal and interannual variability of air-sea heat exchanges over the Mediterranean Sea and correlate them with the characteristics of the Mediterranean outflow through the Strait of Gibraltar collected in the frame of the INGRES projects in the last years. Special attention has been devoted to the historically reported deep-water formation basin of the Western Mediterranean (Gulf of Lions) during the pre-conditioning (November and December) and winter seasons. Until around 1970, no clear trend is found in the net heat flux winter series since positive and negative anomalies are observed alternatively. From then onwards, negative anomalies are frequently observed until the 2003-2006 positive events. A net heat loss of about 150 W/m2 is observed in 2005, the highest value since 1956, especially due to evaporation losses towards the atmosphere. The anomalously cold air and sea surface temperature in the area help to increase this contribution that reflects in a higher fraction of Western Mediterranean Deep Water (WMDW) in the outflow through the Strait.

  7. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  8. A comparison of the temperature difference according to the placement of a nasopharyngeal temperature probe

    PubMed Central

    Lim, Hyungsun; Kim, Boram; Kim, Dong-Chan; Lee, Sang-Kyi

    2016-01-01

    Background The purpose of this study was to compare temperatures measured at three different sites where a nasopharyngeal temperature probe is commonly placed. Methods Eighty elective abdominal surgical patients were enrolled. After anesthesia induction, four temperature probes were placed at the nasal cavity, upper portion of the nasopharynx, oropharynx, and the esophagus. The placement of the nasopharyngeal temperature probes was evaluated using a flexible nasendoscope, and the depth from the nares was measured. The four temperatures were simultaneously recorded at 10-minute intervals for 60 minutes. Results The average depths of the probes that were placed in the nasal cavity, upper nasopharynx, and the oropharynx were respectively 5.7 ± 0.9 cm, 9.9 ± 0.7 cm, and 13.6 ± 1.7 cm from the nares. In the baseline temperatures, the temperature differences were significantly greater in the nasal cavity 0.32 (95% CI; 0.27-0.37)℃ than in the nasopharynx 0.02 (0.01–0.04)℃, and oropharynx 0.02 (−0.01 to 0.05)℃ compared with the esophagus (P < 0.001). These differences were maintained for 60 minutes. Twenty patients showed a 0.5℃ or greater temperature difference between the nasal cavity and the esophagus, but no patient showed such a difference at the nasopharynx and oropharynx. Conclusions During general anesthesia, the temperatures measured at the upper nasopharynx and the oropharynx, but not the nasal cavity, reflected the core temperature. Therefore, the authors recommend that a probe should be placed at the nasopharynx (≈ 10 cm) or oropharynx (≈ 14 cm) with mucosal attachment for accurate core temperature measurement. PMID:27482312

  9. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  10. The influence of sea ice cover on air-sea gas exchange estimated with radon-222 profiles

    NASA Astrophysics Data System (ADS)

    Rutgers van der Loeff, Michiel M.; Cassar, Nicolas; Nicolaus, Marcel; Rabe, Benjamin; Stimac, Ingrid

    2014-05-01

    Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.

  11. Temperature dependencies of Henry's law constants for different plant sesquiterpenes.

    PubMed

    Copolovici, Lucian; Niinemets, Ülo

    2015-11-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry's law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry's law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry's law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  12. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  13. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  14. General properties of the acoustic plate modes at different temperatures.

    PubMed

    Anisimkin, V I; Anisimkin, I V; Voronova, N V; Puсhkov, Yu V

    2015-09-01

    Using acoustic plate modes with SH-polarization and quartz crystal with Euler angles 0°, 132.75°, 90°, as an example, general properties of the acoustic plate modes at different temperatures are studied theoretically and experimentally in the range from -40 to +80°C. It is shown that in addition to well-known parameters responsible for temperature characteristics of acoustic waves the temperature coefficients of the acoustic plate modes depend on the mode order n, plate thickness h/λ, and expansion of the plate in direction of its thickness (h - thickness, λ - acoustic wavelength). These properties permit the mode sensitivity to be increased or decreased without replacing plate material and orientation. PMID:26002698

  15. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  16. Air-Sea Exchange and Budget of Sulfur and Oxygen-Containing Volatile Organic Compounds in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Omori, Y.; Inomata, S.; Iwata, T.; Kameyama, S.

    2015-12-01

    By combining proton transfer reaction-mass spectrometry (PTR-MS) and gradient flux (GF) technique, in situ measurement of air-sea fluxes of multiple volatile organic compounds (VOCs) was developed and deployed. Starting in 2008, we made in situ observations of air-sea fluxes at 15 locations as well as underway observations of marine air/surface seawater bulk concentrations in the Pacific Ocean, during eight research cruises by R/V Hakuho-Maru. The fluxes of biogenic trace gases, DMS and isoprene, were always positive, with the magnitudes being in accordance with previously reported. In contrast, the fluxes of oxygenated VOCs including acetone and acetaldehyde varied from negative to positive, suggesting that the tropical and subtropical Pacific are a source, while the North Pacific is a sink. A basin-scale budget of VOCs were determined for 4 biogeochemical provinces in the Pacific Ocean, and the role of oceans for VOCs were discussed with respect to physical and biogeochemical processes.

  17. LED Curing Lights and Temperature Changes in Different Tooth Sites

    PubMed Central

    Armellin, E.; Bovesecchi, G.; Coppa, P.; Pasquantonio, G.; Cerroni, L.

    2016-01-01

    Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ2. After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282

  18. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D

  19. Triaxial testing of polymer concrete materials under different temperature

    SciTech Connect

    Salami, M.R.; Zhao, S.

    1995-06-01

    Since polymer mortar materials are used in construction, there is a need for an accurate material model to predict the behavior of the materials under various loading conditions. To make use of a material failure model, it is necessary to determine the material constants by conducting laboratory tests on material specimens. To find the constants for a failure model the material will be subjected to static load testing at different temperatures and loading rates.

  20. Refinement of thermal imager minimum resolvable temperature difference calculating method

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Mykytenko, V. I.

    2015-11-01

    Calculating methods, which accurately predict minimum resolvable temperature difference (MRTD), are of significant interest for many years. The article deals with improvement the accuracy of determining the thermal imaging system MRTD by elaboration the visual perception model. We suggest MRTD calculating algorithm, which is based on a reliable approximation of the human visual system modulation transfer function (MTF) proposed by N. Nill. There was obtained a new expression for the bandwidth evaluation, which is independent of angular size of the Foucault bar target.

  1. The Effects of High Temperature on Gessoes with Different Admixtures

    NASA Astrophysics Data System (ADS)

    Budu, Ana-Maria; Sandu, Ion; Cristache, Raluca Anamaria

    2014-11-01

    This paper presents the effects of temperature on gessoes that have different substances added, usually used in painting or restoration to enhance the flexibility of the ground layer or to create a suitable gesso for the specific painting technique. Five samples of gesso were made and applied on Balsa wood (a dry, stable wood that is used in restoration for completing the missing elements of the panel). After the thermal treatment, the samples were analyzed optical, by microscopy and colorimetry. The results showed small differences in colour, but no cracks of the gessoes

  2. Piglets’ Surface Temperature Change at Different Weights at Birth

    PubMed Central

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  3. Guidelines for the air-sea interaction special study: An element of the NASA climate research program, JPL/SIO workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.

  4. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters. PMID:15490835

  5. Stall cleanliness and stall temperature of two different freestall bases.

    PubMed

    Wadsworth, B A; Stone, A E; Clark, J D; Ray, D L; Bewley, J M

    2015-06-01

    The objective of this study was to describe the differences in freestall cleanliness and stall temperature between a barn with Dual Chamber Cow Waterbeds (DCCW; Advanced Comfort Technology, Reedsburg, WI) and a barn with rubber-filled mattresses at the University of Kentucky Coldstream Dairy Research Farm from January 18, 2012, to May 3, 2013. Stall cleanliness was measured twice weekly (n=134) by the same 2 observers using a 0.91 m×0.91 m wire grid containing 128 equally sized rectangles (10.16 cm×5.08 cm). This grid was centered at the rear portion of the stall; a rectangle that was visibly wet or had any amount of feces present was defined as a dirty rectangle. Weekly stall temperature (n=66) was measured by the same observer during a.m. milkings in the same predetermined stalls. Feces and wet sawdust were removed from the stalls before stall temperatures were acquired. Temperatures were obtained using a handheld thermometer at 30.48 cm above the stall base as determined via dual laser measurements. Stall temperature was measured on the front, middle, and back of the stall first with clean sawdust and then with the sawdust removed from the stall and wiped clean with a towel. Daily temperature-humidity index (THI) was calculated using Kentucky climate data calculated through the University of Kentucky College of Agriculture via a data logger, located 5.63 km from the Coldstream Dairy Farm. Stall cleanliness was not different between the DCCW barn (26.09±0.89 rectangles) and the rubber-filled mattress barn (23.70±0.89 rectangles). Mean THI throughout the study was 64.39±0.82. Stall temperature was different among THI categories. Temperature-humidity index categories 1 (coldest), 2, 3, and 4 (warmest) had THI ranges of 22.94 to 50.77, 50.77 to 64.88, 64.88 to 78.75, and 78.75 to 101.59, respectively. Stall temperatures (°C; least squares means±SE) were 2.26±0.30, 8.86±0.30, 15.52±0.30, and 20.95±0.30 for THI categories 1 to 4, respectively. Stalls with

  6. Deposition Ice Nuclei Concentration at Different Temperatures and Supersaturations

    NASA Astrophysics Data System (ADS)

    López, M. L.; Avila, E.

    2013-05-01

    Ice formation is one of the main processes involved in the initiation of precipitation. Some aerosols serve to nucleate ice in clouds. They are called ice nuclei (IN) and they are generally solid particles, insoluble in water. At temperatures warmer than about -36°C the only means for initiation of the ice phase in the atmosphere involves IN, and temperature and supersaturation required to activate IN are considered as key information for the understanding of primary ice formation in clouds. The objective of this work is to quantify the IN concentration at ground level in Córdoba City, Argentina, under the deposition mode, that is to say that ice deposits on the IN directly from the vapor phase. It happens when the environment is supersaturated with respect to ice and subsaturated with respect to liquid water. Ice nuclei concentrations were measured in a cloud chamber placed in a cold room with temperature control down to -35°C. The operating temperature was varied between -15°C and -30°C. Ice supersaturation was ranged between 2 and 20 %. In order to quantify the number of ice particles produced in each experiment, a dish containing a supercooled solution of cane sugar, water and glycerol was placed on the floor of the cloud chamber. The activated IN grew at the expense of vapor until ice crystals were formed and these then fell down onto the sugar solution. Once there, these crystals could grow enough to be counted easily with a naked eye after a period of about three minutes, when they reach around 2 mm in diameter. In order to compare the present results with previously reported results, the data were grouped in three different ranges of supersaturation: the data with supersaturations between 2 and 8 %, the data with supersaturations between 8 and 14% and the data with supersaturations between 14 and 20 %. In the same way, in order to analize the behavior of IN concentration with supersaturation, the data were grouped for three different temperatures, the

  7. Chlorella Virus Encoded Deoxyuridine triphosphatases Exhibit different Temperature Optima

    SciTech Connect

    Zhang,Y.; Moriyama, H.; Homma, K.; Van Etten, J.

    2005-01-01

    A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg{sup 2+} for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K{sub m} of 11.7 {mu}M, a turnover k{sub cat} of 6.8 s{sup -1}, and a catalytic efficiency of k{sub cat}/K{sub m} = 5.8 x 105 M{sup -1} s{sup -1}. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37{sup o}C) than PBCV-1 dUTPase (50{sup o}C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81{yields}Ser81 and Thr84{yields}Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84{yields}Arg84, Glu81{yields}Ser81, and Glu81{yields}Ser81 plus Thr84{yields}Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55{sup o}C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.

  8. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  9. Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California, México

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, L.; Ocampo-Torres, F. J.

    2016-05-01

    The influence of wave-associated parameters controlling turbulent CO2 fluxes through the air-sea water interface is evaluated in a coastal region. The study area, located within the Todos Santos Bay, Baja California, México, was found to be a weak sink of CO2 with a mean flux of -1.32 µmol m-2s-1. The low correlation found between flux and wind speed (r = 0.09), suggests that the influence of other forcing mechanisms, besides wind, is important for gas transfer modulation through the sea surface, at least for the conditions found in this study. In addition, the results suggest that for short periods where an intensification of the wave conditions occurs, a CO2 flux response increases the transport of gas to the ocean.

  10. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  11. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  12. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N

    NASA Astrophysics Data System (ADS)

    Kelley, Cheryl A.; Jeffrey, Wade H.

    2002-07-01

    Water column samples from a transect cruise from southern Chile through the Panama Canal to the Gulf of Mexico were used to determine dissolved methane depth profiles and air-sea methane fluxes. In the Gulf of Mexico, surface concentrations were approximately 40% supersaturated with respect to the atmosphere, whereas near the equator and in the Peru upwelling region, 10-20% supersaturation generally occurred. These saturation ratios translate into an average flux of methane from the sea surface to the atmosphere of 0.38 μmol m-2 d-1. In addition, water column profiles of dissolved methane indicate that subsurface maxima in dissolved methane concentrations are a consistent feature of the open ocean, except near the equator. At the equator, the subsurface peak at the base of the mixed layer may be bowed down by the Equatorial Undercurrent. The highest methane concentration (12 nM) was observed in the Peru upwelling region.

  13. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    SciTech Connect

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.; Pimenta, M.A.; Dresselhaus, M.S.; Endo, M.; Hiraoka, T.

    1998-07-01

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However, Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.

  14. Thermoelectric properties and efficiency measurements under large temperature differences.

    PubMed

    Muto, A; Kraemer, D; Hao, Q; Ren, Z F; Chen, G

    2009-09-01

    The maximum efficiency of a thermoelectric generator is determined by the material's dimensionless figure of merit ZT. Real thermoelectric material properties are highly temperature dependent and are often measured individually using multiple measurement tools on different samples. As a result, reported ZT values have large uncertainties. In this work we present an experimental technique that eliminates some of these uncertainties. We measure the Seebeck coefficient, electrical conductivity, and thermal conductivity of a single element or leg, as well as the conversion efficiency, under a large temperature difference of 2-160 degrees C. The advantages of this technique include (1) the thermoelectric leg is mounted only once and all measurements are in the same direction and (2) the measured properties are corroborated by efficiency measurements. The directly measured power and efficiency are compared to the values calculated from the measured properties and agree within 0.4% and 2%, respectively. The realistic testing conditions of this technique make it ideal for material characterization prior to implementation in a real thermoelectric generator. PMID:19791947

  15. The Aeroclipper: A new instrument for quasi-Lagrangian measurements at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Duvel, J. P.; Reverdin, G.; Pichon, T.; Vargas, A.

    The Aeroclipper is a new balloon developed by CNES. The Aeroclipper is a balloon equipped with a cable extended by a guide-rope in contact with the surface of the ocean. The balloon is vertically stabilised at a given height (currently 40 to 60m above the sea surface) and move on quasi-Lagrangian trajectories depending on the surface wind. LMD (Laboratoire de Méteorologie Dynamique), LodyC (Laboratoire d'océanographie physique et de Climatologie) and ENSTA (Ecole Nationale Supérieure de Techniques Avancées) developed an instrumentation adapted to this new measurement system. This instrumentation is distributed on one atmospheric gondola and one oceanic gondola. The aim is to measure surface physical parameters (Air and sea surface temperatures, sea surface salinity, wind, pressure and humidity) and to derive turbulent fluxes of moisture, heat and momentum. The Aeroclippers will give legs of the different parameters at a relatively high spatial resolution and thus information on the perturbation of these parameters at mesoscale. A first test of the full system will be performed from Banyuls (France) during spring 2004. The first scientific use of the Aeroclipper is planned in February 2005 in the Indian Ocean South of the Equator in link with the pilot phase of the Vasco (Variability of the Atmosphere at the intra-Seasonal time scale and Coupling with the Ocean) experiment.

  16. Dielectric Behavior of Biomaterials at Different Frequencies on Room Temperature

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.; Barde, Ravindra; Mishra, A.; Phadke, S.

    2014-09-01

    Propagation of electromagnetic (EM) waves in radiofrequency (RF) and microwave systems is described mathematically by Maxwell's equations with corresponding boundary conditions. Dielectric properties of lossless and lossy materials influence EM field distribution. For a better understanding of the physical processes associated with various RF and microwave devices, it is necessary to know the dielectric properties of media that interact with EM waves. For telecommunication and radar devices, variations of complex dielectric permittivity (referring to the dielectric property) over a wide frequency range are important. For RF and microwave applicators intended for thermal treatments of different materials at ISM (industrial, scientific, medical) frequencies, one needs to study temperature and moisture content dependencies of the Permittivity of the treated materials. Many techniques have been developed for the measurement of materials. In the present paper authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biomaterials. Dielectric properties of Biomaterials with the frequency range from 1Hz to 10 MHz at room temperature with low water content were measured by in-situ performance dielectric kit. Analysis has been done by Alpha high performance impedance analyzer and LCR meters. The experimental work were carried out in Inter University Consortium UGC-DAE, CSR center Indore MP. Measured value indicates the dielectric constant (ɛ') dielectric loss (ɛ") decreases with increasing frequency while conductivity (σ) increases with frequency increased.

  17. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.

    PubMed

    Qiu, Xinhong; Sasaki, Keiko; Takaki, Yu; Hirajima, Tsuyoshi; Ideta, Keiko; Miyawaki, Jin

    2015-04-28

    Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900°C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by (11)B NMR, (27)Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution-reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500°C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca(2+) ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900°C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO3(2-) into the interlayer, most the LDHs. PMID:25661174

  18. Extracting the Global Sea Surface Temperature Evolutions of Different Timescales

    NASA Astrophysics Data System (ADS)

    Feng, J.; Wu, Z.

    2012-12-01

    A new data analysis procedure, involving empirical orthogonal functions (EOF) analysis and ensemble empirical mode decomposition (EEMD), is employed to extract the evolutions of global Sea Surface Temperature (SST) of different timescales spanning the period from 1880 to 2009 (130 yr). Specifically, EOF analysis serves as a means of lossy data compression to eliminate the spatial-temporally incoherent, noise-like part of the data; and EEMD decomposes SST time series into different time scales, which facilitates research on SST-related weather and climate phenomena that have various timescales. Through validation, it is shown that the difference between the results and the original SST time series are mostly white noises, both spatially and temporally incoherent. We apply the results to study El Niño-Southern Oscillation (ENSO) events. Each ENSO event is examined and we find an oceanic region off Baja California coast ( ) that is instrumental to some ENSO events, especially those recently called ENSO Modoki, whose initial warming may be traced back to earlier warming signals from Baja California.

  19. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  20. Responses in rectal and skin temperatures to centrifugal forces in rats of different ambient temperatures

    NASA Astrophysics Data System (ADS)

    Ohara, K.; Sato, H.; Okuda, N.; Makino, Y.; Isobe, Y.

    1982-03-01

    Effects of centrifugation upon rectal (Tre) and tail skin temperatures (Ts) were studied in male Wistar rats at varying ambient temperature (Ta) using a centrifuge which was placed in a climatic chamber. Centrifugal forces of Gz of 3.0 were imposed on rats which were suspended at horizontal body position using a newly developed mesh suits holding method in the animal box placed on the rotating arm of the centrifuge. Headwards or tailwards forces were applied according to the experimental design. No significant difference of the responses was observed between the two force directions. Centrifugations imposed at different Ta of 15, 20, 25, 30 and 32.5‡C resulted in falls in Tre accompanied by rises in tail Ts at the cooler environments, while rises in Tre accompanied by falls in Ts in the warmer environments. The Ta at which the response pattern of Tre and Ts was reversed (critical ambient temperature) was 26.8±2.3 (mean and SE) and 27.9±2.8‡C, respectively. Tolerance to centrifugation was markedly increased in cooler environments than in wanner ones. It was suggested that the increased skin pressure due to centrifugation exerted some inhibitory effects upon central thermoregulatory ability.

  1. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  2. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses. PMID:19234721

  3. Measurement of relative permittivity of LTCC ceramic at different temperatures

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  4. Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.

    2002-01-01

    The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.

  5. MP3 - A Meteorology and Physical Properties Package for Titan Air-Sea Studies

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Stofan, E.; Lunine, J. I.; Zarnecki, J. C.; Harri, A.-M.; Karkoschka, E.; Newman, C. E.; Bierhaus, E. B.; Clark, B. C.; Yelland, M.; Leese, M. R.; Boldt, J.; Darlington, E.; Neish, C. D.; Sotzen, K.; Arvelo, J.; Rasbach, C.; Kretsch, W.; Strohbehn, K.; Grey, M.; Mann, J.; Zimmerman, H.; Reed, C.

    2012-10-01

    MP3 is a sensor suite for the proposed Titan Mare Explorer (TiME) Discovery mission to Ligeia Mare. MP3 will measure temperatures, and wind velocity, methane humidity, and pressure, as well as sea turbidity, dielectric properties, and depth via sonar.

  6. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  7. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2016-06-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  8. Study on different characteristics of doped tri calcium phosphate at different sintering temperatures

    NASA Astrophysics Data System (ADS)

    Samanta, Sujan Krishna; Chanda, Abhijit

    2016-04-01

    Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.

  9. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature.

    PubMed

    Cerasoli, Sofia; Wertin, Timothy; McGuire, Mary Anne; Rodrigues, Ana; Aubrey, Doug P; Pereira, João Santos; Teskey, Robert O

    2014-01-01

    Most investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C). The temperature treatments had the same mean temperature over each warm and cool cycle and over the entire study. Our goal was to examine the influence of recurring temperature shifts on growth. Net photosynthesis (A) was relatively insensitive to changes in growth temperature (from 20 to 35 °C), suggesting a broad range of optimum temperature for photosynthesis. Leaf respiration (R) exhibited substantial acclimation to temperature, having nearly the same rate at 13 °C as at 33 °C. There was no evidence that preconditioning through temperature cycles affected the response of A or R to treatment temperature fluctuations. Averaged across the complete warm/cool temperature cycle, the A : R ratio did not differ among the temperature treatments. While foliar carbon balance was not affected, the temperature treatments significantly affected growth. Whole-plant biomass was 1.5 times greater in the M treatment relative to the C treatment. Carbon allocation was also affected with shoot volume and biomass greater in the M and E treatments than in the C treatment. Our findings indicate that temperature fluctuations can have important effects on growth, though there were few effects on leaf gas exchange, and can help explain differences in growth that are not correlated with mean growth temperature. PMID:24876300

  10. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  11. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  12. Study of calcinations of ammonium diuranate at different temperatures

    NASA Astrophysics Data System (ADS)

    Manna, Subhankar; Karthik, Phani; Mukherjee, Abhishek; Banerjee, Joydipta; Roy, Saswati B.; Joshi, Jyeshtharaj B.

    2012-07-01

    Effect of calcination temperature has been studied on tap density, surface area, porosity, O/U ratio, morphology and crystal phases of uranium oxides. The oxides were produced by calcination of ammonium diuranate (ADU). It has been observed that O/U ratio reduces with an increase in temperature. Surface area and porosity increases with temperature, passes through maxima and then reduces. These observations have been explained using high resolution SEM. The crystal phase analysis has shown that the heating of ADU results in to α-U3O8 via β-UO3.

  13. The Development of Instrumentation and Methods for Measurement of Air-Sea Interaction and Coastal Processes from Manned and Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Reineman, Benjamin D.

    I present the development of instrumentation and methods for the measurement of coastal processes, ocean surface phenomena, and air-sea interaction in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at Mc

  14. Micrometeorological survey of air-sea ice CO2 fluxes in arctic coastal waters

    NASA Astrophysics Data System (ADS)

    Heinesch, Bernard; Tison, Jean-Louis; Carnat, Gauthier; Heicken, Hajo; Geilfus, Nicolas-Xavier; Goosens, Thomas; Papakyriakou, Tim; Yernaux, Michel; Delille, Bruno

    2010-05-01

    We carried out a 6 month study that aimed to robustly track CO2 exchange between land-fast sea-ice and the atmosphere during the winter and spring season. A meteorological mast equipped for eddy-covariance measurements was installed on land-fast sea-ice near Barrow (Alaska), 1 km off the coast, from the end of January 2009 to the beginning of June 2009, before ice break-up. These data were supported by continuous measurements of solar radiation, snow depth, ice thickness and temperature profile in the ice. Biogeochemical data necessary for the understanding of the CO2 dynamics in sea-ice were obtained through discrete ice coring. Two regimes were detected for the CO2 exchanges linked with the status of the sea-ice: a winter regime and a spring summer regime. From 27 of March onwards brine volume at the sea ice-snow interface was above the threshold of permeability for liquid according to Golden et al (1998). During this period, we observed some conspicuous CO2 fluxes events tightly linked to wind speed. The flux was directed from the sea-ice to the atmosphere and reached up to 0.6 umol m-2 s-1 (51.8 mmol m-2 d-1). This flux to the atmosphere is expected as sea-ice at the air interface is permeable during a large part of the period and brines are oversaturated compared to the atmosphere. CO2 may accumulate in the snow layer which thus acts as a buffer that is flushed under occurrence of high wind speeds and associated pressure pumping. During the spring-summer period i.e. from 27 of April onwards, we observed a marked increase in sea ice temperature. Temperature profiles suggest that convective events occurred within the ice cover between April 27 and May 05. Within these convective events, two regimes were observed. First, for a period of 5 days, pCO2 was still above the threshold of saturation and CO2 fluxes were still mainly positive but lower than in the winter period, ranging from 0.1 to 0.2 umol m-2 s-1. This flux was only moderately controlled by windspeed

  15. N₂O accumulation from denitrification under different temperatures.

    PubMed

    Poh, Leong Soon; Jiang, Xie; Zhang, Zhongbo; Liu, Yu; Ng, Wun Jern; Zhou, Yan

    2015-11-01

    The effects of temperature on nitrous oxide (N2O) accumulation during denitrification and denitritation were investigated. Batch experiments were performed to measure N2O accumulation at 25 and 35 °C. More N2O accumulation was observed during denitritation at the higher temperature as compared with full denitrification and low temperature tests. The highest nitrite concentration tested in this study (25 mg/L NO2 (-)N and pH 8.0) did not show inhibitory effect on N2O reduction. It was found that the major cause of more N2O accumulation during denitrification at higher temperature was due to higher N2O production rate and lower N2O solubility. Specific nitrate, nitrite, and N2O reduction rates increased 62, 61, and 41 %, respectively, when temperature rose from 25 to 35 °C. The decrease of N2O solubility in mixed liquor at 35 °C (when compared to 25 °C) resulted in faster diffusing rate of N2O from liquid to gas phase. It was also more difficult for gas phase N2O to be re-dissolved. The diffused N2O was then accumulated in the headspace, which was not available for denitrification by denitrifiers. The results of this study suggest higher temperature may worsen N2O emission from wastewater treatment plants (WWTPs). PMID:26129949

  16. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    PubMed Central

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-01-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived. PMID:27245575

  17. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-01-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived. PMID:27245575

  18. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  19. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  20. Swimming of pregnant rats at different water temperatures.

    PubMed

    Osorio, R A L; Silveira, V L F; Maldjian, S; Morales, A; Christofani, J S; Russo, A K; Silva, A C; Piçarro, I C

    2003-08-01

    We studied the chronic effect of exercise during water immersion, associated with thermal stress (water temperature at 22, 35 and 40 degrees C) at an intensity of 80% of maximal work load supported in pregnant rats (P) and non-pregnant female rats (NP). P and NP were subdivided into three subgroups according to water temperature during exercise (P22 and NP22; P35 and NP35; P40 and NP40). The animals were submitted to daily swimming sessions of 10-15 min, for 19 days of pregnancy (P) or experimental conditions (NP). Plasma concentration of triglycerides, cholesterol, glucose, total protein, albumin and corticosterone were determined 24 h after the last exercise session. Weight gain and rectal temperature pre- and post-swimming session were also determined. The offspring were examined just after caesarian section on the 20th day of pregnancy to check weight, length and litter size. Pregnant rats showed an increase of triglycerides, reduction of glycemia, total protein and albumin and cholesterol (at 35 degrees C) when compared to non-pregnant animals. Such effects probably lead to an adequate delivery of substrate to the fetus and prepare the mother for lactation. Daily thermal stress did not modify metabolic responses to exercise in pregnant rats. Results also show a deleterious effect on offspring when the mother is exposed daily to extreme temperatures during swimming. These results suggest that water temperature (cold and hot) in swimming have to be considered to avoid damage in fetal development. PMID:12890550

  1. Surface heat flux parameterizations and tropical Pacific sea surface temperature simulations

    SciTech Connect

    Giese, B.S. University Corp. for Atmospheric Research, Boulder, CO ); Cayan, D.R. )

    1993-04-15

    The authors report on a study of the problem of getting good model results for the sea surface temperature in the tropical Pacific ocean. The tropical Pacific is particularly important because of its size, the large areas of warm surface temperature, its impact on global atmospheric circulation, and the fact that it serves as an indicator of climatic variations. To simulate sea surface temperature it is necessary to have an energy budget which fits into a general ocean circulation model. The main input, from solar flux, is not well known in the tropical Pacific. The authors use two different models to describe the latent flux and the radiative flux at the sea surface. Parameters of concern include the relative humidity, air-sea temperature difference, latent heat formulae, and radiative heat flux. They use these parameters in their models in different ways, and compare results with measurement sets from the Tropical Pacific.

  2. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  3. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  4. CO2 air-sea fluxes across the Portuguese estuaries Tagus and Sado

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, G.; Nogueira, M.

    2009-04-01

    Generally, estuaries and proximal shelves under the direct influence of river runoff and large inputs of organic matter are mostly heterotrophic and, therefore, act as a carbon source. In this context the CO2 dynamics in Tagus and Sado estuaries (SW Portugal) was studied under two different climate and hydrological situations. These moderately productive mesotidal coastal-plain lagoon-type estuaries, localised in the center of Portugal and distant 30-40 km apart, present quite different freshwater inflows, surface areas and water residence times. A study performed in 2001 revealed that the magnitude of CO2 fluxes in the two estuarine systems varied seasonally. CO2 emissions during the huge rainfall winter were similar in both estuaries, reaching a mean value of ~50 mmol m-2 d-1, while in spring emissions from Sado were ~6 times higher then Tagus ones, attaining a mean value of 62 mmol m-2 d-1. Nevertheless, in both sampling periods, Sado estuary showed, within the upper estuary (salinity

  5. Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2014-06-01

    In this study we present gas exchange measurements conducted in a large scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.8 to 15 m s-1 conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of three) was observed for N2O under a surfactant covered water surface. In contrast, the surfactant affected CH3OH, the high solubility tracer only weakly.

  6. Microwave and Electro-optical Transmission Experiments in the air-sea Boundary Layer

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    2002-12-01

    Microwave and electro-optical signal propagation over a wind-roughened sea is strongly dependent on signal interaction with the sea surface, the mean profiles of pressure (P), humidity (Q), temperature (T), wind (U) and their turbulent fluctuations (p, q, t, u). Yet, within the marine surface layer, these mechanisms are not sufficiently understood nor has satisfactory data been taken to validate propagation models, especially under conditions of high seas, high winds, and large surface gradients of Q and T. To address this deficiency, the Rough Evaporation Duct (RED) experiment was designed to provide first data for validation of meteorological, microwave, and electro-optical models in the marine surface layer for rough surface conditions including the effects of surface waves. The RED experiment was conducted offshore of the Hawaiian Island of Oahu in late summer, mid-August to mid-September, of 2001. R/P FLIP, moored about 10 km off of the NE coast of Oahu, hosted the primary meteorological sensor suites and served as a terminus for the propagation links. There were eleven scientists and engineers aboard R/P FLIP who installed instruments measuring mean and turbulent meteorological quantities, sea wave heights, directions, and kinematics, upward and downward radiance, near surface bubble generation, atmospheric particle size distributions, laser probing of the atmosphere, and sources for both microwave and electro-optic signals. In addition to R/P FLIP, two land sites were instrumented with microwave and electro-optic receivers and meteorological sensors, two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions. In all, more than 25 people from four countries, six universities, and four government agencies were directly involved with the RED experiment. While the overall outcome of the RED experiment is positive, we had a number of major and minor problems with the outfitting

  7. Longevity of crapemyrtle pollen stored at different temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperatures for storage of crapemyrtle (Lagerstroemia app.) pollen over time were studied using clones of two interspecific hybrids (L. 'Cheyenne' and L. 'Wichita') and five species (L. indica 'Catawba', L. subcostata (NA 40181), L. limii, L. speciosa, and L. fauriei 'Kiowa'). Pollen samples were s...

  8. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange

    NASA Astrophysics Data System (ADS)

    de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.

    2015-11-01

    The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas air-sea exchange in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating

  9. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. PMID:26879106

  10. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D'Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-08-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment.

  11. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    PubMed Central

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-01-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment. PMID:26244712

  12. The ESA SMOS+SOS Project: Oceanography using SMOS for innovative air-sea exchange studies

    NASA Astrophysics Data System (ADS)

    Banks, Chris; Gommenginger, Christine; Boutin, Jacqueline; Reul, Nicolas; Martin, Matthew; Ash, Ellis; Reverdin, Gilles; Donlon, Craig

    2013-04-01

    We report on the work plan of the SMOS+Surface Ocean Salinity and Synergy (SMOS+SOS) project. SMOS+SOS is funded through the Support to Science Element (STSE) component of the European Space Agency's (ESA) Earth Observation Envelope Programme. The SMOS+SOS consortium consists of four organisations namely the National Oceanography Centre (UK), the LOCEAN/IFREMER/CATDS research team (France), the Met Office (UK) and Satellite Oceanographic Consultants Ltd (UK). The end of the SMOS+SOS project will be marked by a final open workshop most likely hosted by the UK Met Office in September/October 2014. The project is concerned with demonstrating the performance and scientific value of SMOS Sea Surface Salinity (SSS) products through a number of well-defined case studies. The case studies include: Amazon/Orinoco plumes (freshwater outflow); Agulhas and Gulf Stream (strong water mass boundary); Tropical Pacific/Atlantic (strong precipitation regime); sub-tropical North Atlantic (ie SPURS; strong evaporative regime); and Equatorial Pacific (equatorial upwelling). With SMOS measuring the SSS in the top cm of the ocean, validating SMOS against in situ salinity data taken typically at a few meters depth introduces assumptions about the vertical structure of salinity in the upper ocean. To address these issues, the project will examine and quantify discrepancies between SMOS and in situ surface salinity data at various depths in different regions characterised by strong precipitation or evaporation regimes. Equally, data editing and spatio-temporal averaging play a central role in determining the quality, errors and correlations in SMOS SSS data. The project will explore various processing and spatio-temporal averaging choices to define the SMOS SSS products that best address the needs of the oceanographic and data assimilation user community. One key aspect of this project is to determine how one can achieve useful accuracy/uncertainty in SSS without jeopardising SMOS's ability

  13. The Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiments at the Martha's Vineyard Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Edson, J. B.

    2001-12-01

    The Woods Hole Oceanographic Institution (WHOI) completed the initial phase of the Martha's Vineyard Coastal Observatory (MVCO) in July of 2001. The MVCO is being using to monitor coastal atmospheric and oceanic processes. Specifically, the observatory is expected to: - Provide continuous long-term observations for climate studies. - Provide a reliable system and rugged sensors that allow opportunistic sampling of extreme events. - Provide a local climatology for intensive, short duration field campaigns. - Further facilitate regional studies of coastal processes by providing infrastructure that supports easy access to power and data. This talk provides an example of the last two objectives using the low wind component of the Office of Naval Research's (ONR) Coupled Boundary Layers and Air-Sea Transfer (CBLAST) program. CBLAST-LOW has been designed to investigate air-sea interaction and coupled atmospheric and oceanic boundary layer dynamics at low wind speeds where the dynamic processes are driven and/or strongly modulated by thermal forcing. This effort is being carried out by scientists at WHOI, NPS, NOAA, NRL, Rutgers, UW/APL, JH/APL, OSU, NCAR, and other institutions, and includes observational and modeling components. The MVCO is providing observations and infrastructure in support of several intensive operating periods in the summers of 2001, 2002, and possibly 2003. During these periods, the observational network around the observatory was and will be greatly expanded using traditional oceanographic moorings and bottom mounted instrumentation, innovative 2- and 3-D moored and drifting arrays, survey ships, AUVs, satellite remote sensing, and heavily instrumented aircraft. In addition, the MVCO cabled components will be extended out to the 20-m isobath where we plan to deploy a 35-m tower. The tower will be instrumented from 15-m above the ocean surface to the ocean bottom with instruments capable of directly measuring the momentum, heat, and radiative

  14. Rate dependent of strength in metallic glasses at different temperatures

    PubMed Central

    Wang, Y. W.; Bian, X. L.; Wu, S. W.; Hussain, I.; Jia, Y. D.; Yi, J.; Wang, G.

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10−6 s−1 to 10−2 s−1 are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  15. Rate dependent of strength in metallic glasses at different temperatures.

    PubMed

    Wang, Y W; Bian, X L; Wu, S W; Hussain, I; Jia, Y D; Yi, J; Wang, G

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10(-6) s(-1) to 10(-2) s(-1) are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  16. Rate dependent of strength in metallic glasses at different temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Y. W.; Bian, X. L.; Wu, S. W.; Hussain, I.; Jia, Y. D.; Yi, J.; Wang, G.

    2016-06-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10‑6 s‑1 to 10‑2 s‑1 are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs.

  17. Tropical air-sea coupling accelerates the recovery of the Atlantic Meridional Overturning Circulation after glacial meltwater event

    NASA Astrophysics Data System (ADS)

    Krebs-Kanzow, U.; Timmermann, A.

    2009-04-01

    During "Heinrich events" brief and exceptionally large discharges of icebergs from the Laurentide and European ice sheets coincide with cold periods followed abrupt warmings. Climate reconstructions suggest that the freshwater pulses caused a temporary collapse of the Atlantic Meridional Overturning Circulation (AMOC) by stabilizing the stratification in the regions of North Atlantic Deep Water (NADW) formation. Using a coupled ocean sea-ice atmosphere model of intermediate complexity we trigger a complete shut-down of the AMOC by injection of a freshwater pulse to the northern North Atlantic. (Analyzing)The analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions reveals that the reduction of northward heat transport in the North Atlantic leads to a cooling north of the thermal equator. Due to advection of cold air and an intensification of the tradewinds the Intertropical Convergence Zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shut-down phase of the AMOC, the cross-equatorial oceanic surface flow is halted, preventing a dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind driven ocean circulation the positive salinity anomaly increases the upper ocean density in the deep water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments which neglect tropical air-sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case.

  18. Transition from downward to upward air-sea momentum transfer in swell-dominated light wind condition

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Högström, Ulf; Rutgersson, Anna

    2016-04-01

    Atmospheric and surface wave data from two oceanic experiments carried out on FLIP and ASIS platforms are analysed in order to identify swell-related effects on the momentum exchange during low wind speed conditions. The RED experiment was carried out on board an R/P Floating Instrument Platform, FLIP, anchored north east of the Hawaiian island Oahu with sonic anemometers at four levels: 5.1 m, 6.9 m, 9.9 m and 13.8 m respectively. The meteorological conditions were characterized by north- easterly trade wind and with swell present during most of the time. During swell the momentum flux was directed downwards meaning a positive contribution to the stress. The FETCH experiment was carried out in the Gulf of Lion in the north-western Mediterranean Sea. On the ASIS (air-sea interaction spar) buoy a sonic anemometer was mounted at 7 m above the mean surface level. During strong swell conditions the momentum flux was directed upwards meaning a negative contribution to the stress in this case. The downward momentum flux is shown to be a function of the orbital circulation while the upward momentum flux is a function of wave height. The dividing wind speed is found to be 3.5 m/s Conclusion: Wind speed > 3.5 m/s creates waves (ripples) and thus roughness. Combination of orbital motion and asymmetric structure of ripples lead to flow perturbation and downward transport of negative momentum. With low wind speed (no ripples but viscosity) circulations will form above the crest and the trough with opposite direction which will cause a pressure drop in the vertical direction and an upward momentum transport from the water to the air.

  19. Estimation of the temperature of a radiating body by measuring the stationary temperatures of a thermometer placed at different distances

    NASA Astrophysics Data System (ADS)

    Barragán, V. M.; Villaluenga, J. P. G.; Izquierdo-Gil, M. A.; Pérez-Cordón, R.

    2016-07-01

    This paper presents a novel method for determining the temperature of a radiating body. The experimental method requires only very common instrumentation. It is based on the measurement of the stationary temperature of an object placed at different distances from the body and on the application of the energy balance equation in a stationary state. The method allows one to obtain the temperature of an inaccessible radiating body when radiation measurements are not available. The method has been applied to the determination of the filament temperature of incandescent lamps of different powers.

  20. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  1. Single layer porous gold films grown at different temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Hummelgård, Magnus; Olin, Håkan

    2010-11-01

    Large area porous gold films can be used in several areas including electrochemical electrodes, as an essential component in sensors, or as a conducting material in electronics. Here, we report on evaporation induced crystal growth of large area porous gold films at 20, 40 and 60 °C. The gold films were grown on liquid surface at 20 °C, while the films were grown on the wall of beakers when temperature increased to 40 and 60 °C. The porous gold films consisted of a dense network of gold nanowires as characterized by TEM and SEM. TEM diffraction results indicated that higher temperature formed larger crystallites of gold wires. An in situ TEM imaging of the coalescence of gold nanoparticles mimicked the process of the growth of these porous films, and a plotting of the coalescence time and the neck radius showed a diffusion process. The densities of these gold films were also characterized by transmittance, and the results showed film grown at 20 °C had the highest density, while the film grown at 60 °C had the lowest consistent with SEM and TEM characterization. Electrical measurements of these gold films showed that the most conductive films were the ones grown at 40 °C. The conductivities of the gold films were related to the amount of contamination, density and the diameter of the gold nanowires in the films. In addition, a gold film/gold nanoparticle hybrid was made, which showed a 10% decrease in transmittance during hybridization, pointing to applications as chemical and biological sensors.

  2. Shock Initiation of Energetic Materials at Different Initial Temperatures

    SciTech Connect

    Urtiew, P A; Tarver, C M

    2005-01-14

    Shock initiation is one of the most important properties of energetic materials, which must transition to detonation exactly as intended when intentionally shocked and not detonate when accidentally shocked. The development of manganin pressure gauges that are placed inside the explosive charge and record the buildup of pressure upon shock impact has greatly increased the knowledge of these reactive flows. This experimental data, together with similar data from electromagnetic particle velocity gauges, has allowed us to formulate the Ignition and Growth model of shock initiation and detonation in hydrodynamic computer codes for predictions of shock initiation scenarios that cannot be tested experimentally. An important problem in shock initiation of solid explosives is the change in sensitivity that occurs upon heating (or cooling). Experimental manganin pressure gauge records and the corresponding Ignition and Growth model calculations are presented for two solid explosives, LX-17 (92.5 % triaminotrinitrobenzene (TATB) with 7.5 % Kel-F binder) and LX-04 (85 % octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) with 15 % Viton binder) at several initial temperatures.

  3. Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-03-01

    Using observation-based analyses, this study identifies the leading interannual pattern of the Indian summer monsoon rainfall (ISMR) independent of ENSO and examines the potential mechanisms of its formation. For this purpose, an objective procedure is used to isolate the variability of the summer precipitation associated with the contemporary ENSO state and in previous winter-spring, which influence the Indian summer monsoon (ISM) region in opposite ways. It is shown that the leading pattern of these ENSO-related monsoon rainfall anomalies reproduces some major ISMR features and well represents its connections to the global-scale ENSO features in both lower and upper troposphere. On the other hand, the leading pattern derived from the precipitation anomalies with the ENSO component removed in the ISM and surrounding region also accounts for a substantial amount of the monsoon precipitation centered at the eastern coast of the subtropical Arabian Sea, extending into both the western Indian Ocean and the Indian subcontinent. The associated atmospheric circulation change is regional in nature, mostly confined in the lower to mid troposphere centered in the Arabian Sea, with a mild connection to an opposite tendency centered at the South China Sea. Further analyses show that this regional pattern is associated with a thermodynamic air-sea feedback during early to mid summer season. Specifically, before the monsoon onset, an anomalous atmospheric high pressure over the Arabian Sea causes excessive shortwave radiation to the sea surface and increases SST in May. The warm SST anomalies peak in June and reduce the sea level pressure. The anomalous cyclonic circulation generates regional convection and precipitation, which also induces subsidence and anticyclonic circulation over the South China Sea. The combined cyclonic-anticyclonic circulation further transport moisture from the western Pacific into the Indian Ocean and causes its convergence into the Arabian Sea. As a

  4. Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec

    2014-05-01

    Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of sea surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and air-sea CO2 fluxes. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main

  5. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Jen; Cai, Wei-Jun; Wang, Yongchen; Lohrenz, Steven E.; Murrell, Michael C.

    2015-03-01

    River-dominated continental shelf environments are active sites of air-sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air-sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low-salinity zones (0≤S<17) to a strong CO2 sink in the middle-to-high-salinity zones (17≤S<33), and finally was a near-neutral state in the high-salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen-enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air-sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m-2 yr-1 (1.15 ± 4.4 Tg C yr-1).

  6. Spatial and temporal variability of heat, water vapor, carbon dioxide, and momentum air-sea exchange in a coastal environment

    NASA Astrophysics Data System (ADS)

    Crawford, Timothy L.; McMillen, Robert T.; Meyers, Tilden P.; Hicks, Bruce B.

    1993-07-01

    Simultaneous eddy correlation measurements from a tower, a boat, and an aircraft platform are used to assess the spatial and temporal variability of heat, moisture, momentum, and CO2 turbulent fluxes in a coastal environment. Dissolved CO2 in the coastal waters and atmospheric CO2 concentrations were continuously measured throughout the experiment. Good agreement was found among the different sensing systems. Air-to-sea gas, momentum, and energy flux density measurements are shown to be achievable from both a boat and an aircraft. The observed 10 W/sq m sensible heat flux was time-invariant but did not vary spatially with surface temperature, which was strongly correlated with ocean depth. The 100 to 200 W/sq m evaporative moisture flux dominated energy exchange and varied both in time and space. No consistent diurnal variation was observed, but the spatial trend also followed surface temperature. CO2 exchange exhibited large spatial and temporal variance.

  7. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Arruda, R.; Calil, P. H. R.; Bianchi, A. A.; Doney, S. C.; Gruber, N.; Lima, I.; Turi, G.

    2015-10-01

    We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the southwestern Atlantic Ocean. Overall, the region acts as a sink of atmospheric CO2 south of 30° S, and is close to equilibrium with the atmospheric CO2 to the north. On the shelves, the ocean acts as a weak source of CO2, except for the mid/outer shelves of Patagonia, which act as sinks. In contrast, the inner shelves and the low latitude open ocean of the southwestern Atlantic represent source regions. Observed nearshore-to-offshore and meridional pCO2 gradients are well represented by our simulation. A sensitivity analysis shows the importance of the counteracting effects of temperature and dissolved inorganic carbon (DIC) in controlling the seasonal variability of pCO2. Biological production and solubility are the main processes regulating pCO2, with biological production being particularly important on the shelves. The role of mixing/stratification in modulating DIC, and therefore surface pCO2, is shown in a vertical profile at the location of the Ocean Observatories Initiative (OOI) site in the Argentine Basin (42° S, 42° W).

  8. Heat resistance of Yersinia enterocolitica grown at different temperatures and heated in different media.

    PubMed

    Pagán, R; Mañas, P; Raso, J; Trepat, F J

    1999-03-01

    In the range of 4-20 degrees C, growth temperature did not influence the heat resistance at 54-66 degrees C for Yersinia enterocolitica at pH 7 in citrate phosphate buffer. However, when cells were grown at 37 degrees C. the D62 increased from 0.044 to 0.17 min. This increase was constant at all heating temperatures tested (z = 5.7-5.8). Growth temperature did not influence the proportion of heat-damaged cells after a heat treatment, as measured by their response to a 2% of sodium chloride added to the recovery medium. The sensitivity of heat treated cells to nisin or lysozyme depended on growth temperature: Whereas the number of cells grown at 4 degrees C surviving heat treatment was the same regardless of the presence of 100 IU/ml of nisin or 100 microg/ml of lysozyme in the recovery medium, that of cells grown at 37 degrees C was, in these media, lower. The pH of maximum heat resistance in citrate phosphate buffer was pH 7 for cells grown at 37 degrees C, but pH 5 for those grown at 4 degrees C. In both suspensions the magnitude of the effect of pH on heat resistance was constant at all heating temperatures. For cells grown at 4 degrees C the heat resistance at 54-66 degrees C, in skimmed milk or pH 7 buffer, was the same. For cells grown at 37 degrees C this also applied for heat treatment at 66 degrees C but at 56 degrees C the heat resistance in skimmed milk was higher. PMID:10357274

  9. Influence of temperature difference on surface figure controlling during continuous polishing

    NASA Astrophysics Data System (ADS)

    Hong, Meijuan; Xu, Xueke; Dun, Aihuan; Yang, Minghong; Gao, Wenlan; Wei, Chaoyang; Liu, Shijie; Shao, Jianda; Zhang, Yang

    2015-08-01

    During continuous polishing, temperature is a significant source of processing uncertainty. Three work pieces of different kind material (K9, Nd:glass and ULE) were polished on 2.4m continuous polisher. It turns out that temperature difference has different influence on different material work pieces. It also indicates that temperature difference aggravates the processing uncertainy. The deformation caused by temperature difference is simulated using ANSYS. It shows that, with top-bottom temperature difference of 0.1°C, the deformation of Nd:glass, K9 and ULE are 0.444E-6 m (about 0.7025λ), 0.249E-6 m (about 0.3925λ ), and 0.105E-8 m (about 0.00166λ), respectively. With radial temperature difference of 0.1°C, the deformation of Nd:glass, K9 and ULE are 0.831E-7 m (about 0.1313λ), 0.465E-7 m (about 0.07348λ) and 0.196E-9 m (about 3.0973E-4λ), respectively. To explore the top-bottom temperature difference and radial temperature difference along the polishing surface, a small aperture Nd:glass and a large aperture Nd:glass in polishing have been measured using thermal infrared imager. The results showed that for Ø 260 mm × 26 mm Nd: glass, the radial temperature difference is about 0.1°C, while the top-bottom temperature difference is about 0.1°C ~ 0.21°C. Contrastively, for 810 mm×460 mm×40 mm Nd:glass, the radial temperature difference have reached 0.4°C, while top - bottom temperature difference ranges between 0.1°C ~ 0.27°C. When element gets larger, it will suffer greater temperature difference. These temperature differences are great enough to cause deformation far beyond the polishing accuracy required. Finally, methods are proposed to diminish the effect of temperature difference.

  10. Air-sea interaction during an extreme cold air outbreak from the eastern coast of the United States

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Betts, Alan K.

    1990-01-01

    An aircraft investigation of boundary layer mean and turbulent structure is reported, and the Lagrangian budgets of temperature and moisture in the subcloud layer following a streamline during an extreme cold air outbreak are evaluated. The maximum sea-air temperature difference was 23 K. Two aircraft were used: the NCAR Electra, which measured turbulent fluxes and investigated subcloud layer conditions, and the NASA Electra, which measured the height of cloud tops using lidar. A stratocumulus overcast was found from about 60 km offshore to the Gulf Stream core with cloud top rising downstream. East of the Gulf Stream cumulus congestus and snow showers were observed. Cloud base decreased downstream and numerous steam plumes filled the subcloud layer. Temperature cross sections show most warming, and moistening of the subcloud layer occurred before the Gulf Stream core. Windspeeds increased downstream and maxima were observed near cloud top (inversion) and in the subcloud layer. Lagrangian budgets showed most warming, and moistening of the layer between 70 m and about 100 m below mean cloud base was due to turbulent flux divergence.

  11. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A., Sr.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  12. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  13. Seasonality of Air-sea-ice-land Variables for Arctic Tundra in Northern Eurasia and North America

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Steele, M.; Epstein, H.; Jia, G.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2009-12-01

    The strength of tundra productivity trends as measured by the annual maximum Normalized Difference Vegetation Index (MaxNDVI) and time integrated NDVI (TI-NDVI) vary around the Arctic over the 1982-2008 period. Our analysis suggests that the timing of terrestrial vegetation growth is connected to seasonal patterns of sea-ice concentrations, ocean temperatures and land surface temperatures. This study used SSMI estimates of sea ice concentration, based on a bootstrap algorithm and AVHRR radiometric surface temperature. Summer Warmth Index (SWI) was calculated as the sum from May to August of the degree months above freezing of surface temperature at each pixel and is an accepted measure of plant growth potential. The Normalized Difference Vegetation Index (NDVI) represents vegetation greenness and has been used extensively to monitor changes in the Arctic. The albedo of green plants varies with solar radiation wavelength, which is the basis for the NDVI index. The analysis was conducted within 50 km of the Arctic coastline to focus on the region of maximum maritime influence. Time series of regional sea-ice concentration, SWI and NDVI were constructed for the 50-km width domains for the Pan-Arctic, North America, Eurasia and Arctic subregions. Standard climate analysis techniques were applied to the regional time series to investigate the seasonality of sea ice, NDVI and SWI. MaxNDVI has increased in the 50-km land domain contiguous to the Beaufort Sea by 17% since 1982, whereas it has only increased by 3% in the coastal Kara Sea region. Analysis of semimonthly MaxNDVI indicates that the vegetation greens up more rapidly in the spring in the Beaufort than the W. Kara and the Kara has slightly higher NDVI in the fall. The climatological weekly sea ice concentrations in 50-km coastal domain displays an earlier breakup in the Beaufort and a later freeze-up in the Kara Sea area. Regional differences in the seasonal cycle can in part explain the spatially varied trends

  14. Direct Measurement of Air-Sea Exchange of N2O5 and ClNO2 at a Polluted Coastal Site (Invited)

    NASA Astrophysics Data System (ADS)

    Bertram, T. H.; Kim, M.; Ryder, O. S.; Farmer, D.

    2013-12-01

    The reactive uptake of N2O5 at aqueous interfaces can serve as both an efficient NOx removal mechanism and regionally significant halogen activation process through the production of photo-labile ClNO2 molecules. Both the reaction rate and ClNO2 product yield are a complex function of the chemical composition and chloride molarity of the reactive surface. To date, analysis of the impact of N2O5 chemistry on oxidant loadings in the marine boundary layer has been limited to reactions occurring on aerosol particles, with little attention paid to reactions occurring at the air-sea interface. Here, we report the first direct measurements of the air-sea flux of N2O5 and ClNO2 made via eddy covariance in the polluted marine boundary layer in La Jolla, CA. We observe rapid N2O5 deposition to the ocean surface, while ClNO2 deposition rates were significantly lower and fastest during the first three hours following sunset. The results are interpreted using a time-dependent box-model, suggesting that under conditions characterized by shallow marine boundary layer heights (< 100 m) and representative aerosol reactive uptake coefficients (< 0.01), N2O5 deposition to the ocean surface can account for over 50% of the total N2O5 loss rate.

  15. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    NASA Astrophysics Data System (ADS)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile (~ 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  16. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ayako; Palter, Jaime B.

    2016-03-01

    Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.

  17. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature.

    PubMed

    Yamamoto, Ayako; Palter, Jaime B

    2016-01-01

    Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331

  18. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  19. Effect of saddle height on skin temperature measured in different days of cycling.

    PubMed

    Priego Quesada, Jose Ignacio; Carpes, Felipe P; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2016-01-01

    Infrared thermography can be useful to explore the effects of exercise on neuromuscular function. During cycling, it could be used to investigate the effects of saddle height on thermoregulation. The aim of this study was to examine whether different cycling postures, elicited by different knee flexion angles, could influence skin temperature. Furthermore, we also determined whether the reproducibility of thermal measurements in response to cycling differed in the body regions affected or not affected by saddle height. Sixteen cyclists participated in three tests of 45 min of cycling at their individual 50 % peak power output. Each test was performed in a different knee flexion position on the bicycle (20°, 30°, 40° knee flexion when the pedal crank was at 180°). Different knee angles were obtained by changing saddle height. Skin temperatures were determined by infrared thermography before, immediately after and 10 min after the cycling test, in 16 different regions of interest (ROI) in the trunk and lower limbs. Changes in saddle height did not result in changes in skin temperature in the ROI. However, lower knee flexion elicited higher temperature in popliteus after cycling than higher flexion (p = 0.008 and ES = 0.8), and higher knee flexion elicited lower temperature variation in the tibialis anterior than intermediate knee flexion (p = 0.004 and ES = 0.8). Absolute temperatures obtained good and very good intraday reproducibility in the different measurements (ICCs between 0.44 and 0.85), but temperature variations showed lower reproducibility (ICCs between 0.11 and 0.74). Different postures assumed by the cyclist due to different saddle height did not influence temperature measurements. Skin temperature can be measured on different days with good repeatability, but temperature variations can be more sensitive to the effects of an intervention. PMID:27026901

  20. Aptamer and PNIPAAm co-conjugated nanoparticles regulate activity of enzyme with different temperature.

    PubMed

    Yu, Jiemiao; Yang, Liangrong; Liang, Xiangfeng; Dong, Tingting; Qu, Hongnan; Rong, Meng; Liu, Huizhou

    2016-10-01

    In this paper, we described a temperature responsive nano-system that can regulate activity of enzyme with different temperature. Temperature responsive polymer poly(N-isopropylacrylamide) (PNIPAAm), with low critical solution temperature of 32°C, was synthesized with thiol modification. PNIPAAm and thrombin aptamer were co-functionalized on the surface of gold nanoparticles for effective regulation of thrombin activity with different temperature. On the one hand, we studied the thermal responsive properties of this inhibitor via UV-visible spectroscopy. On the other hand, we investigated the regulation of thrombin activity by this platform with different temperature. The PNIPAAm chains could extend and shrink with different temperature, which suggested that PNIPAAm on the surface of gold nanoparticles could regulate interaction between thrombin and aptamer according to temperature changing. At 25°C, PNIPAAm was hydrophilic extended state, which blocked the interaction between thrombin and aptamer on the surface of gold nanoparticles, therefore thrombin activity had no change. On the contrary, at 37°C, PNIPAAm transformed from hydrophilic extended state to hydrophobic shrank state, allowing the aptamer to capture thrombin, inhibiting the activity of thrombin. More interestingly, this regulation was reverse to normal condition, where 37°C was always the optimum reaction temperature for most of human enzymes. This system we prepared was opposite, which was capable of inhibiting the thrombin activity at 37°C. Furthermore, this was the first report of regulation of thrombin activity using this temperature responsive platform. PMID:27474278

  1. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films

    NASA Astrophysics Data System (ADS)

    Jing, Yang; De-Gang, Zhao; De-Sheng, Jiang; Ping, Chen; Zong-Shun, Liu; Jian-Jun, Zhu; Ling-Cong, Le; Xiao-Jing, Li; Xiao-Guang, He; Li-Qun, Zhang; Hui, Yang

    2016-02-01

    Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition (MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film. These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately, leading to the different variation behaviors of resistivity for HT- and LT-grown ones. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Natural Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  2. Estimating Seasonal Cycles of Atmospheric CO2 and APO Resulting from Terrestrial NEE and Air-Sea O2 Fluxes using the Transcom T3L2 Pulse-Response Functions

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2011-12-01

    We present a method for translating modeled terrestrial net ecosystem exchange (NEE) fluxes of carbon into the corresponding annual mean cycles in atmospheric CO2. The method is based on the pulse-response functions from the Transcom 3 atmospheric tracer transport model (ATM) intercomparison. An oceanic version of the method is applied to air-sea O2 fluxes to estimate the corresponding annual mean cycles in atmospheric potential oxygen (APO). The estimated atmospheric seasonal cycles can be evaluated against observed atmospheric CO2 and APO data, which are measured at high precision at a wide range of monitoring sites and reflect the integrated impact of surface CO2 and O2 fluxes, respectively, across broad regions. The pulse-response function method is considerably faster than a full forward ATM simulation, allowing seasonal cycles from 13 different ATMS to be computed in minutes, rather than the days or weeks required for a single forward simulation. We evaluate the method against the results of full forward ATM simulations and examine the uncertainties associated with neglecting additional surface fluxes, e.g., from fossil fuel combustion, that may contribute to the observed seasonal cycles of CO2 and APO.

  3. The Joint Toxicity of Different Temperature Coefficient Insecticides on Apolygus lucorum (Hemiptera: Miridae).

    PubMed

    Liu, Jia; Lincoln, Tamra; An, Jingjie; Gao, Zhanlin; Dang, Zhihong; Pan, Wenliang; Li, Yaofa

    2016-08-01

    The effect of temperature on the cotoxicity coefficient (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15 to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint toxicity of same temperature coefficient insecticide (TCI) types were unaffected by temperature. This means that even when temperatures change, the mixture ratios of the highest CTC values remained the same, and the effect of temperature on the joint toxicity of same TCI types was only on the CTC values. However, the effect of temperature was variable when considering the joint toxicity of different TCI types. The effect of temperature on the joint toxicity of both strong positive and strong negative TCI types was clear, and the highest CTC values of mixture ratios changed with temperature regularly. When comparing the influence of temperature between strong/slight positive/negative insecticides, the results indicated a greater influence of the strong TCI. Paradoxically, the highest CTC value of the imidacloprid and methomyl mixture did not change with temperature changes consistently, even with the variance of imidacloprid ratios, a strong TCI. These results will guide pest managers in choosing the most effective insecticide mixtures for A. lucorum control under given environmental conditions. PMID:27190041

  4. Influence of vertical temperature contrasts and diel cycles on near-surface seawater pCO2

    NASA Astrophysics Data System (ADS)

    Matthews, Robin; deYoung, Brad

    2016-04-01

    While the oceanic mixed layer is sometimes assumed to be of vertically-uniform temperature, it is well-known that considerable temperature gradients (>0.1C/m) can develop within its upper few meters, particularly in the tropics during daytime. Given that the partial pressure of CO2 in seawater (pCO2sw) is strongly temperature-dependent, ceteris paribus (all else being equal), we would expect to observe sizeable corresponding vertical pCO2sw gradients under such situations. If prevalent and persistent, such gradients could affect the accuracy of large-scale air-sea CO2 flux estimates since, while intended to be representative of the sea surface skin, the pCO2sw measurements used to compute these are typically from underway systems sampling at 2-4m depth. Vertical variability in pCO2sw could thus be an important but as yet, poorly quantified uncertainty in air-sea CO2 flux estimates. As a first step towards assessing this uncertainty, we derive a global gridded monthly climatology for the peak daily vertical temperature contrast between the upper (0-2m) and lower (2-10m) sea surface and compute the corresponding vertical pCO2sw differences these would cause, ceteris paribus. The latter are an estimate of the temperature-driven pCO2 contrast we would expect to find in a given month between the upper sea surface and the sampling depth of an underway system at the time of the peak temperature contrast in the daily cycle. In addition, we construct a monthly climatology for the amplitude of diel variation in upper sea temperature and compute the corresponding diel pCO2sw amplitudes these would generate, ceteris paribus. While these analyses reveal the locations and months for which vertical temperature contrasts and diel cycles are likely to exert a strong influence on pCO2sw, temperature is only one factor influencing this carbonate chemistry parameter. In situ measurements are required to reveal the actual dynamics of pCO2sw under the influence of all competing factors

  5. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed. PMID:26931659

  6. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  7. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry.

    PubMed

    Raj, Vinay C; Prabhu, S V

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector. PMID:24387454

  8. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry

    NASA Astrophysics Data System (ADS)

    Raj, Vinay C.; Prabhu, S. V.

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector.

  9. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  10. Acclimation and acute temperature effects on population differences in oxidative phosphorylation.

    PubMed

    Baris, Tara Z; Crawford, Douglas L; Oleksiak, Marjorie F

    2016-01-15

    Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range. PMID:26582639

  11. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  12. Effect of ultrasonic treatment of brown rice at different temperatures on cooking properties and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research aimed at developing quick cooking brown rice by investigating the effect of ultrasonic treatment at different temperatures on cooking time and quality. The medium grain brown rice was ultrasonically treated in water at temperatures of 25°C, 40°C and 55°C for 30 min and then dried by ai...

  13. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures.

    PubMed

    Gilbert, Eva M; Agrawal, Shelesh; Schwartz, Thomas; Horn, Harald; Lackner, Susanne

    2015-09-15

    Partial Nitritation/Anammox (PN/A) is a well-established technology for side-stream nitrogen removal from highly concentrated, warm wastewaters. The focus has now shifted to weakly concentrated municipal wastewaters with much lower concentrations and temperatures. The major challenge is the temperature, which ranges from moderate 20 °C in summer to cold 10 °C in winter. For this study, the most frequently used configurations for side-stream applications were exposed to a slow temperature reduction from 20 °C to 10 °C to simulate a realistic temperature gradient. To evaluate the behavior of the different biomasses based on their properties, four lab reactors were operated in two different configurations. Synthetic wastewater was used to avoid side effects of heterotrophic growth. Differences in the response of the different reactor systems to this temperature gradient clearly indicated, that the geometry of the biomass has a major impact on the overall PN/A performance at low temperatures: While anammox activity in suspended biomass suffered already at 15 °C, it persevered in granular biomass as well as in biofilms on carriers for temperatures down to <13 °C. Further, anammox activity in thicker biofilms was less affected than in thinner biofilms and even adaption to low temperatures was observed. PMID:26043375

  14. Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth

    PubMed Central

    Nagai, Takeshi; Makino, Amane

    2009-01-01

    The temperature responses of photosynthesis (A) and growth were examined in rice and wheat grown hydroponically under day/night temperature regimes of 13/10, 19/16, 25/19, 30/24 and 37/31°C. Irrespective of growth temperature, the maximal rates of A were found to be at 30–35°C in rice and at 25–30°C in wheat. Below 25°C the rates were higher in wheat, while above 30°C they were higher in rice. However, in both species, A measured at the growth temperature remained almost constant irrespective of temperature. Biomass production and relative growth rate (RGR) were greatest in rice grown at 30/24°C and in wheat grown at 25/19°C. Although there was no difference between the species in the optimal temperature of the leaf area ratios (LARs), the net assimilation rate (NAR) in rice decreased at low temperature (19/16°C) while the NAR in wheat decreased at high temperature (37/31°C). For both species, the N-use efficiency (NUE) for growth rate (GR), estimated by dividing the NAR by leaf-N content, correlated with GR and with biomass production. Similarly, when NUE for A at growth temperature was estimated, the temperature response of NUE for A was similar to that of NUE for GR in both species. The results suggest that the difference between rice and wheat in the temperature response of biomass production depends on the difference in temperature dependence of NUE for A. PMID:19251744

  15. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  16. Dependence of the microwave radar cross section on ocean surface variables - Comparison of measurements and theory using data from the Frontal Air-Sea Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Weissman, David E.

    1990-01-01

    The purpose of this investigation was to study the ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions. The dependence of the RCS on wind stress (as opposed to wind speed) was also studied. An extensive amount of experimental data was acquired during the Frontal Air-Sea Interaction Experiment. Measurements across an ocean front demonstrated that the vertical polarization and horizontal polarization radar cross section were more strongly dependent on wind stress than on wind magnitude. Current theoretical models for the RCS, based on stress, were tested with this data. In situations where the Bragg scattering theory does not agree with the measured radar cross section (magnitude and angle dependence), revisions are hypothesized and evaluated.

  17. Blast94: Bromine latitudinal air/sea transect 1994. Report on oceanic measurements of methyl bromide and other compounds. Technical memo

    SciTech Connect

    Lobert, J.M.; Butler, J.H.; Geller, L.S.; Yvon, S.A.; Montzka, S.A.

    1996-02-01

    Methyl bromide (CH3Br) is of particular interest because it is both produced and consumed in the ocean, thus allowing the ocean to act as a buffer for CH3Br in the atmosphere. The main objective of the two NOAA/CMDL Bromine Latitudinal Air/Sea Transect Expeditions has been to resolve the discrepancy in previously reported data for oceanic CH3Br, and to extend the understanding of the distribution and cycling of CH3Br between the atmosphere and ocean. This was pursued by making frequent, shipboard measurements of CH3Br in the surface water and the marine atmosphere along the cruise tracks and by obtaining depth profiles of CH3Br at selected stations. Secondary objectives included obtaining atmospheric and surface water data for other methyl halides, most notably CH3Cl, CH3I, CH2Br2, and CHBr3.

  18. Modeling the impact of air, sea, and land travel restrictions supplemented by other interventions on the emergence of a new influenza pandemic virus

    PubMed Central

    2012-01-01

    Background During the early stages of a new influenza pandemic, travel restriction is an immediate and non-pharmaceutical means of retarding incidence growth. It extends the time frame of effective mitigation, especially when the characteristics of the emerging virus are unknown. In the present study, we used the 2009 influenza A pandemic as a case study to evaluate the impact of regulating air, sea, and land transport. Other government strategies, namely, antivirals and hospitalizations, were also evaluated. Methods Hong Kong arrivals from 44 countries via air, sea, and land transports were imported into a discrete stochastic Susceptible, Exposed, Infectious and Recovered (SEIR) host-flow model. The model allowed a number of latent and infectious cases to pass the border, which constitutes a source of local disease transmission. We also modeled antiviral and hospitalization prevention strategies to compare the effectiveness of these control measures. Baseline reproduction rate was estimated from routine surveillance data. Results Regarding air travel, the main route connected to the influenza source area should be targeted for travel restrictions; imposing a 99% air travel restriction delayed the epidemic peak by up to two weeks. Once the pandemic was established in China, the strong land connection between Hong Kong and China rendered Hong Kong vulnerable. Antivirals and hospitalization were found to be more effective on attack rate reductions than travel restrictions. Combined strategies (with 99% restriction on all transport modes) deferred the peak for long enough to establish a vaccination program. Conclusion The findings will assist policy-makers with decisions on handling similar future pandemics. We also suggest regulating the extent of restriction and the transport mode, once restriction has been deemed necessary for pandemic control. Although travel restrictions have yet to gain social acceptance, they allow time for mitigation response when a new and

  19. Air-sea interactions over Terra Nova Bay during winter: Simulation with a coupled atmosphere-polynya model

    NASA Astrophysics Data System (ADS)

    Gallée, Hubert

    A preliminary simulation of the Terra Nova Bay polynya has been performed with a coupled atmosphere-polynya model. The atmospheric model is a hydrostatic primitive equations model that has been validated previously by a simulation of the strong katabatic winds observed in that area. The polynya model includes a representation of the free drift of frazil ice and simple sea-ice dynamics and thermodynamics. Two and three-dimensional experiments have been performed under polar night conditions. Two-dimensional experiments show that an open (warm) water area influences significantly the atmospheric circulation in the antarctic coastal zone: an additional ice-breeze effect is simulated and is responsible for the strengthening of the katabatic winds near the coast. Because of the important temperature difference between the continental air and the ice-free ocean (up to 40°C), strong surface heat fluxes are simulated over the polynya. Finally, a three-dimensional experiment has been performed. The integration domain includes Terra Nova Bay. The polynya observed in that region is well simulated. It is found that heat losses from the polynya surface are stronger than previously thought but are probably constrained by the idealized representation of frazil ice, which is assumed to be uniform in each grid box. This stresses the need for having a better knowledge of frazil ice evolution in large polynyas.

  20. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits. PMID:27503719

  1. Electrical transport in carbon black-epoxy resin composites at different temperatures

    NASA Astrophysics Data System (ADS)

    Macutkevic, J.; Kuzhir, P.; Paddubskaya, A.; Maksimenko, S.; Banys, J.; Celzard, A.; Fierro, V.; Bistarelli, S.; Cataldo, A.; Micciulla, F.; Bellucci, S.

    2013-07-01

    Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25-500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration. At lower temperatures, the electrical conductivity is governed by electron tunneling and hopping. The electrical conductivity and dielectric permittivity of composites strongly decrease after annealing composites at high temperatures (500 K); at the same time potential barrier for carriers tunneling strongly increases. All the observed peculiarities can be used for producing effective low-cost materials on the basis of epoxy resin working at different temperatures for electrical applications.

  2. Tailoring biochars from different feedstock and produced at different temperature and time of pyrolysis for their use as soil amendments

    NASA Astrophysics Data System (ADS)

    Zornoza, Raul; Moreno, Fabian; Acosta, Jose A.; Gomez Lopez, Maria Dolores; Faz, Angel

    2015-04-01

    Biochar used as a soil amendment to improve soil quality and fertility and increase soil carbon sequestration has been the focus of much research in the recent past. Unlike most conventional soil organic materials, which are readily decomposed, the recalcitrant nature of biochar increases its potential value as a soil amending material for the longer term. However, many biochars can be hydrophobic, and added to soil can aggravate water availability in areas where water scarcity is a major limiting factor for agriculture or forestry. It has been shown that biochar characteristics are influenced by production variables, especially feedstock, pyrolysis temperature and time of pyrolysis. Although there have been different studies characterizing biochars prepared from different sources, there are few studies comparing different types of biochar produced from domestic residues, manures or crop residues pyrolysis; there are, in addition, fewer studies dealing with the hydrophobic properties of the biochars. The different feedstock can have different properties which would result into different biochars even produced at the same operational factors. The main objective of this experiment was to study the influence of feedstock properties and pyrolysis temperature and time on nutrient contents, heavy metals, recalcitrance, thermal stability and hydrophobicity of biochars from cotton crop residues (CR), pig manure (PM) and domestic waste (DW). Biochars were obtained by pyrolysis under oxygen-limited conditions in a muffle furnace. The temperature was increased at 5°C min-1 to 300°C, 400°C, 500°C and 700°C and then maintained for 1h, 2h, 4 and 5 h at this temperature. All biochar properties were strongly influenced by feedstock source except for pH, the recalcitrance index and hydrophobicity. Nutrient contents were normally higher in the PM biochar, except for Cu and Ca which were higher in the DW biochar and B in the CR biochar. Heavy metal contents were significantly

  3. Temperature dependent competition between different recombination channels in organic heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Linderl, Theresa; Hörmann, Ulrich; Beratz, Sergej; Gruber, Mark; Grob, Stefan; Hofmann, Alexander; Brütting, Wolfgang

    2016-02-01

    A modification of the Shockley-Queisser theory for organic heterojunctions is presented with a special focus on constellations, where a linear extrapolation of the temperature dependence of the open circuit voltage results in the optical gap of the absorber rather than in the intermolecular charge transfer (CT) gap. We demonstrate that, depending on the electronic coupling strength between donor and acceptor molecules, either singlet or CT recombination is dominant in different temperature regimes. The different regimes are separated by a transition temperature that is usually well above room temperature (RT). However, in the case of small energy level offset and weak electronic coupling, it can be around 300 K or even below. We point out that a linear extrapolation of the open circuit voltage V oc towards 0 K for measured temperatures larger than the transition temperature results in a photovoltaic gap that is close to the optical gap, whereas for values below the transition temperature the CT gap will be extracted. We show that for α-sexithiophene (6T)/diindenoperylene (DIP) solar cells heating the substrate during 6T deposition leads to a molecular configuration at the interface where the coupling between donor and acceptor molecules is strongly reduced. This leads to a transition temperature well below RT which is confirmed by temperature dependent electroluminescence measurements. By comparing the temperature dependent spectra of high temperature and RT grown 6T/DIP solar cells to the spectra of the individual materials, the different contributions from the CT gap and the optical gap are separated.

  4. Preparation of thermosensitive microgels via suspension polymerization using different temperature protocols.

    PubMed

    Zhang, Ying; Zhu, Wen; Ding, Jiandong

    2005-11-01

    A thermosensitive and biodegradable microgel for protein drug release was synthesized from a thermosensitive macromer via inverse suspension polymerization. Preparation was made under a constant temperature or under variable temperatures. In the latter protocol, dispersion was performed at a low temperature below lower critical solution temperature of the macromer aqueous solution and polymerization was performed at a high temperature above lower critical solution temperature. According to the experiments, the constant-temperature method was not suitable for preparation of microgels when the macromer concentration was high, because early physical gelation at the preparation temperature seriously influenced formation of dispersed droplets. If the macromer concentration was low, both temperature protocols resulted in spherical hydrogel microparticles, but the properties of the resulting microgels were different to a certain degree. In both cases, the model protein bovine serum albumin was loaded into microgels by a postfabrication encapsulation technique, which takes advantage of the microgels' negative thermosensitivity. The results demonstrate that, in microgel preparation, the variable-temperature protocol is useful in suspension polymerization of negatively thermosensitive macromers at a wide rage of monomer concentrations. PMID:16082695

  5. Evaluation of steam sterilization processes: comparing calculations using temperature data and biointegrator reduction data and calculation of theoretical temperature difference.

    PubMed

    Lundahl, Gunnel

    2007-01-01

    When calculating of the physical F121.1 degrees c-value by the equation F121.1 degrees C = t x 10(T-121.1/z the temperature (T), in combination with the z-value, influences the F121.1 degrees c-value exponentially. Because the z-value for spores of Geobacillus stearothermophilus often varies between 6 and 9, the biological F-value (F(Bio) will not always correspond to the F0-value based on temperature records from the sterilization process calculated with a z-value of 10, even if the calibration of both of them are correct. Consequently an error in calibration of thermocouples and difference in z-values influences the F121.1 degrees c-values logarithmically. The paper describes how results from measurements with different z-values can be compared. The first part describes the mathematics of a calculation program, which makes it easily possible to compare F0-values based on temperature records with the F(BIO)-value based on analysis of bioindicators such as glycerin-water-suspension sensors. For biological measurements, a suitable bioindicator with a high D121-value can be used (such a bioindicator can be manufactured as described in the article "A Method of Increasing Test Range and Accuracy of Bioindicators-Geobacillus stearothermophilus Spores"). By the mathematics and calculations described in this macro program it is possible to calculate for every position the theoretical temperature difference (deltaT(th)) needed to explain the difference in results between the thermocouple and the biointegrator. Since the temperature difference is a linear function and constant all over the process this value is an indication of the magnitude of an error. A graph and table from these calculations gives a picture of the run. The second part deals with product characteristics, the sterilization processes, loading patterns. Appropriate safety margins have to be chosen in the development phase of a sterilization process to achieve acceptable safety limits. Case studies are

  6. Comparing different protocols of temperature selection in the parallel tempering method

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.

    2011-09-01

    Parallel tempering Monte Carlo simulations have been applied to a variety of systems presenting rugged free-energy landscapes. Despite this, its efficiency depends strongly on the temperature set. With this query in mind, we present a comparative study among different temperature selection schemes in three lattice-gas models. We focus our attention in the constant entropy method (CEM), proposed by Sabo et al. In the CEM, the temperature is chosen by the fixed difference of entropy between adjacent replicas. We consider a method to determine the entropy which avoids numerical integrations of the specific heat and other thermodynamic quantities. Different analyses for first- and second-order phase transitions have been undertaken, revealing that the CEM may be an useful criterion for selecting the temperatures in the parallel tempering.

  7. Comparing different protocols of temperature selection in the parallel tempering method.

    PubMed

    Fiore, Carlos E

    2011-09-21

    Parallel tempering Monte Carlo simulations have been applied to a variety of systems presenting rugged free-energy landscapes. Despite this, its efficiency depends strongly on the temperature set. With this query in mind, we present a comparative study among different temperature selection schemes in three lattice-gas models. We focus our attention in the constant entropy method (CEM), proposed by Sabo et al. In the CEM, the temperature is chosen by the fixed difference of entropy between adjacent replicas. We consider a method to determine the entropy which avoids numerical integrations of the specific heat and other thermodynamic quantities. Different analyses for first- and second-order phase transitions have been undertaken, revealing that the CEM may be an useful criterion for selecting the temperatures in the parallel tempering. PMID:21950850

  8. Ambient temperature influences core body temperature response in rat lines bred for differences in sensitivity to 8-hydroxy-dipropylaminotetralin.

    PubMed

    Nicholas, Andrea C; Seiden, Lewis S

    2003-04-01

    Agonist-induced decrease in core body temperature has commonly been used as a measure of serotonin1A (5-HT(1A)) receptor sensitivity in mood disorder. The thermoregulatory basis for 5-HT(1A) receptor agonist-induced temperature responses in humans and rats remains unclear. Therefore, the influence of ambient temperature on 5-HT(1A) receptor-mediated decreases in core body temperature were measured in rat lines bred for high (HDS) or low (LDS) sensitivity to the selective 5-HT(1A) receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT). HDS and LDS rats were injected with either saline, 0.25 or 0.50 mg/kg 8-OH-DPAT at ambient temperatures of 10.5, 24, 30, or 37.5 degrees C, and core temperature was measured by radiotelemetry. For both lines, the thermic response to acute 8-OH-DPAT was greatest at 10.5 degrees C and decreased in magnitude as ambient temperature increased to 30 degrees C, consistent with hypothermia. HDS rats displayed a greater hypothermic response than LDS rats at 10.5, 24, and 30 degrees C. At 37.5 degrees C, LDS rats showed a lethal elevation of temperature in response to 0.50 mg/kg 8-OH-DPAT. All thermic responses to 8-OH-DPAT, including the lethality, were effectively blocked by pretreatment with the 5-HT(1A) receptor antagonist WAY100635, suggesting line differences in thermoregulatory circuits that are influenced by 5-HT(1A) receptor activation. Following repeated injection of 8-OH-DPAT, the magnitude of the hypothermic response decreased in both lines at 10.5 degrees C, but increased in HDS rats treated with 0.50 mg/kg 8-OH-DPAT at 30 and 37.5 degrees C. This pattern was reversed in HDS rats following 8-OH-DPAT challenge at 24 degrees C, suggesting that a compensatory thermoregulatory response accounts for changes in the hypothermic response to chronic 8-OH-DPAT. PMID:12649391

  9. Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Skinner, Walter R.

    1997-10-01

    Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of

  10. Cycle life analysis of series connected lithium-ion batteries with temperature difference

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Huang, Chih-Sheng; Chen, Kuo-Ching

    2014-10-01

    Within a battery pack of electric vehicles, a constant and homogeneous temperature distribution is an ideal case. However, what is in fact frequently observed is an unbalanced cycle life performance between series/parallel connected cells. While previous studies have proposed models that simulate the capacity fade of a single lithium-ion battery (LIB) in cycle life tests, most of them do not consider the accompanying effects when batteries are connected, and these models could only investigate cycling under a constant cell temperature. To analyze the temperature difference effect on a battery pack, we develop a cycle life model that allows for temperature variation of LIBs during cycling, and we apply the model to the simulation of series connected LIBs based on the porous electrode theory. We assign different hypothetical temperatures to each of the cells in series. Such a design generates a state of performance imbalance. Our result shows that the capacity degradation of the battery pack increases with the increase of temperature difference and of the average temperature. We then conduct an experiment to verify this adverse effect. The experimental data agree well with the simulation result.

  11. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Hao, Zhixin; Sun, Di

    2016-04-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after tropical volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport,therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  12. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Sun, D.; Hao, Z.; Zheng, J.

    2015-12-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after equatorial volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  13. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  14. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  15. Cloacal and surface temperatures of tom turkeys exposed to different rearing temperature regimes during the first 12 weeks of growth.

    PubMed

    Mayes, S L; Strawford, M L; Noble, S D; Classen, H L; Crowe, T G

    2015-06-01

    Years of genetic selection have caused an increase in growth rate and market body mass in agricultural poultry species compared to earlier genetic strains, potentially altering their physiological requirements. The objective of this study was to expose Hybrid Converter tom turkeys on a weekly basis to the recommended rearing temperature regime (TCON: control) or 4°C below the recommended standard (TTRT: treatment) to determine their thermal responses. Once per week for 12 weeks, 12 turkeys were individually exposed to either TCON or TTRT for a 2-h period. Surface temperatures of the breast (TBREAST), wing (TWING), drumstick (TDRUM), head (THEAD), and shank (TSHANK) were measured at 20-min intervals using an infrared camera, while a thermal data logger measured the skin surface temperature under the wing (TLOGGER) at 30-s intervals. The cloacal temperature (TCORE) was measured using a medical thermometer at the start and end of the exposure period. Regardless of exposure temperature, the TBREAST (TCON: P<0.001 and TTRT: P<0.001), TWING (TCON: P<0.001 and TTRT: P<0.001), and TDRUM (TCON: P<0.001 and TTRT: P<0.001) decreased from weeks 4 to 6 and remained constant from weeks 1 to 3 and 8 to 12. THEAD was elevated in week 2 (TCON: P<0.001) or week 3 (TTRT: P<0.001), TSHANK increased slightly during week 3 for both TCON (P<0.001) and TTRT (P<0.001), and TLOGGER (TCON: P<0.001 and TTRT: P=0.001) and TCORE (TCON: P<0.001 and TTRT: P<0.001) were lower during the first week. Thereafter, THEAD, TSHANK, TLOGGER, and TCORE remained constant. Exposure to TTRT resulted in lower TBREAST, TWING, and TDRUM compared to TCON. Generally, THEAD, TSHANK, TLOGGER, and TCORE were not affected by the different exposure temperatures. The data demonstrated that the degree of thermal response expressed is dependent on the location of measurement, age, and exposure temperature. PMID:25589083

  16. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  17. Effect of soil temperature on root resistance: implications for different trees under Mediterranean conditions.

    PubMed

    García-Tejera, Omar; López-Bernal, Álvaro; Villalobos, Francisco J; Orgaz, Francisco; Testi, Luca

    2016-04-01

    The effect of temperature on radial root hydraulic specific resistance (Rp) is a known phenomenon; however, the impact ofRpvariations expected from soil temperature changes over the tree root system is unknown. The present article analyses the relations hip ofRpwith temperature in olive 'Picual' and a hybrid rootstock, GF677, at five different temperatures, showing that a variation of 3- and 4.5-folds exists for olive 'Picual' and GF677 in the range from 10 to 20 °C. The functions obtained were scaled up to show the theoretical changes of total radial root system resistance in a common tree orchard in a Mediterranean climate at a daily and seasonal scale, using recorded soil temperature values: a difference between summer and winter of 3.5-fold for olive 'Picual' and 9-fold for GF677 was observed. Nevertheless,Rpchanges are not only related to temperature, as cavitation or circadian rhythms in aquaporin expression may also play a role. The results obtained from an experiment with the two cultivars submitted to constant pressure and temperature during several hours exhibited a variation inRp, but this was of lower magnitude than that observed due to temperature changes. Finally, a comparison ofRpat 25 °C between GF677 and GN15 (another rootstock obtained from the same parental as GF677) showed significant differences. According to our results, diurnal and seasonal changes inRpdue to temperature variations are of significant importance, and it would therefore be advisable to assess them explicitly into soil-plant-atmosphere continuum models. PMID:26769470

  18. Temperature Profiles Along the Root with Gutta-percha Warmed through Different Heat Sources

    PubMed Central

    Simeone, Michele; Santis, Roberto De; Ametrano, Gianluca; Prisco, Davide; Borrelli, Marino; Paduano, Sergio; Riccitiello, Francesco; Spagnuolo, Gianrico

    2014-01-01

    Objectives: To evaluate temperature profiles developing in the root during warm compaction of gutta-percha with the heat sources System B and System MB Obtura (Analityc Technology, Redmond, WA, USA). Thirty extracted human incisor teeth were used. Root canals were cleaned and shaped by means of Protaper rotary files (Dentsply-Maillefer, Belgium), and imaging was performed by micro-CT (Skyscan 1072, Aartselaar, Belgium). Methods: Teeth were instrumented with K-type thermocouples, and the roots were filled with thermoplastic gutta-percha. Vertical compaction was achieved through the heat sources System B and System MB, and temperature profiles were detect-ed by means of NI Dac Interface controlled by the LabView System. With both heat sources, higher temperature levels were recorded in the region of the root far from the apex. When the warm plugger tip was positioned at a distance of 3 mm from the root apex, temperature levels of about 180°C were used to soften gutta-percha, and no statistically significant differences were observed between peak temperatures developed by the two heating sources at the root apex. However, a temperature level higher than 40°C was maintained for a longer time with System MB. Results: Statistically significant differences were observed in peak temperature levels recorded far from the root apex. Thus, with a temperature of about 180°C and the warm plugger positioned at 3 mm from the root apex, both heating sources led to a temperature slightly higher than 40°C at the apex of the root, suggesting that the gutta-percha was properly softened. Significance: A temperature level higher than 40°C was maintained for a longer time with System MB, thus providing an ad-equate time for warm compaction of the gutta-percha. PMID:25614768

  19. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system.

    PubMed

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns; Larhed, Mats

    2013-01-01

    In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications. PMID:24204419

  20. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  1. Lipase-catalyzed interesterification in packed bed reactor using 2 different temperatures.

    PubMed

    Chae, Mi-Hwa; Park, Hye-Kyung; Kwon, Kwang-Il; Kim, Jong-Wook; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2011-05-01

    Lipase-catalyzed interesterification of high oleic sunflower oil and fully hydrogenated soybean oil (70 : 30, wt/ wt) was carried out in a packed bed reactor using an immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) and the effect of a stepwise temperature protocol involving the 2 different temperatures, 60 and 70 °C, was investigated. The melting point of a fat that was incubated at 70 °C for 9 min was 57 °C, which suggested that it should be to employ a lower reaction temperature of 60 °C, after the first 9 min of the reaction. There were no significant differences (P < 0.05) in the conversion degree, triacylglycerol profile, and solid fat content between a constant temperature protocol (70 °C) and a stepwise temperature protocol (a combination of 70 and 60 °C). After 50 cycles, the overall residual activities of enzymes employed in stepwise temperature protocol were significantly (P < 0.05) higher than those of enzymes employed in constant temperature protocol. PMID:22417335

  2. Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures.

    PubMed

    Donkov, Alexander A; Tiwari, Sudarshan; Liang, Tengfei; Hardt, Steffen; Klar, Axel; Ye, Wenjing

    2011-07-01

    It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined between two parallel structured surfaces at different temperatures, i.e., orthogonal to the temperature gradient. We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The discovered phenomena could find applications in methods for energy-conversion and thermal pumping of gases. PMID:21867301

  3. Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures

    NASA Astrophysics Data System (ADS)

    Donkov, Alexander A.; Tiwari, Sudarshan; Liang, Tengfei; Hardt, Steffen; Klar, Axel; Ye, Wenjing

    2011-07-01

    It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined between two parallel structured surfaces at different temperatures, i.e., orthogonal to the temperature gradient. We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The discovered phenomena could find applications in methods for energy-conversion and thermal pumping of gases.

  4. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  5. Experimental set up of a magnetoelectric measuring system operating at different temperatures

    NASA Astrophysics Data System (ADS)

    Gil, K.; Gil, J.; Cruz, B.; Ramirez, A.; Medina, M.; Torres, J.

    2016-02-01

    The magnetoelectric effect is the phenomenon whereby through a magnetic stimulation can be produced an electrical response or vice versa. We implement a magnetoelectric voltage measuring device through the dynamic method for a different range of temperatures. The system was split into an electric set and an instrumentation and control set. Design and element selection criteria that the experimenter must take into account are presented, with special emphasis in the design of the sample holder, which is the fundamental component that differentiates the system operating at high temperature and the one operating at room temperature. The experimental equipment consists of an electromagnet with DC magnetic flux density (B) in a range of (0.0 to 1.6) KOe, a Helmholtz coil which operates with a sinusoidal B between (0.0 and 0.016) KOe and a PT100 temperature sensor. A tubular heating resistance, a Checkman temperature control and an SSR 40A were used for controlling the temperature. As an application of the system, the transverse and longitudinal magnetoelectric coefficient was measured for a thin film of BiFeO3 at room temperature and 307K. It was observed that the behaviour of the longitudinal and transverse magnetoelectric coefficient matches the reported value and decreased with increasing temperature.

  6. Temperature Characterization of Different Urban Microhabitats of Aedes albopictus (Diptera Culicidae) in Central-Northern Italy.

    PubMed

    Vallorani, Roberto; Angelini, Paola; Bellini, Romeo; Carrieri, Marco; Crisci, Alfonso; Mascali Zeo, Silvia; Messeri, Gianni; Venturelli, Claudio

    2015-08-01

    Aedes albopictus (Skuse) is an invasive mosquito species that has spread to many countries in temperate regions bordering the Mediterranean basin, where it is becoming a major public health concern. A good knowledge of the thermal features of the most productive breeding sites for Ae. albopictus is crucial for a better estimation of the mosquitoes' life cycle and developmental rates. In this article, we address the problem of predicting air temperature in three microhabitats common in urban and suburban areas and the air and water temperature inside an ordinary catch basin, which is considered the most productive breeding site for Ae. albopictus in Italy. Temperature differences were statistically proven between the three microhabitats and between the catch basin external and internal temperature. The impacts on the developmental rates for each life stage of Ae. albopictus were tested through a parametric function of the temperature, and the aquatic stages resulted as being the most affected using the specific temperature inside a typical catch basin instead of a generic air temperature. The impact of snow cover on the catch basin internal temperature, and consequently on the mortality of diapausing eggs, was also evaluated. These data can be useful to improve epidemiological models for a better prediction of Ae. albopictus seasonal and population dynamics in central-northern Italian urban areas. PMID:26314064

  7. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  8. Genetically determined differences in ethanol sensitivity influenced by body temperature during intoxication

    SciTech Connect

    Alkana, R.L.; Finn, D.A.; Bejanian, M.; Crabbe, J.C.

    1988-01-01

    The present study investigated the importance of body temperature during intoxication in mediating differences between five inbred strains of mice (C57BL/6J; BALB/cJ; DBA/2J; A/HeJ; 129/J) in their acute sensitivity to the hypnotic effects of ethanol. Mice exposed to 22/degrees/C after ethanol injection became hypothermic and exhibited statistically significant differences between strains in rectal temperatures at the return of the righting reflex (RORR), duration of loss of the righting reflex (LORR), and blood and brain ethanol concentrations at RORR. Exposure to 34/degrees/C after injection offset ethanol-hypothermia and markedly reduced strain-related differences in rectal temperatures and blood and brain ethanol concentrations at RORR. Brain ethanol concentrations at RORR were significantly lower in C57, BALB, DBA and A/He mice exposed to 34/degrees/C compared to mice exposed to 22/degrees/C during intoxication suggesting that offsetting hypothermia increased ethanol sensitivity in these strains. Taken with previous in vitro studies, these results suggest that genetically determined differences in acute sensitivity to the behavioral effects of ethanol reflect differences in body temperature during intoxication as well as differences in sensitivity to the initial actions of ethanol at the cellular level.

  9. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES.

    PubMed

    Badilla-Ramírez, Yanán; Fallas-Padilla, Karolina L; Fernández-Jaramillo, Heriberto; Arias-Echandi, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter from Campylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (10(4) CFU/mL and 10(7) CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers. PMID:27007565

  10. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES

    PubMed Central

    BADILLA-RAMÍREZ, Yanán; FALLAS-PADILLA, Karolina L.; FERNÁNDEZ-JARAMILLO, Heriberto; ARIAS-ECHANDI, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter fromCampylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (104 CFU/mL and 107 CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers. PMID:27007565

  11. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  12. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  13. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  14. Air sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: Prospects for a long-term global time series

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Frew, Nelson M.; McCue, Scott J.

    2007-06-01

    Estimation of global and regional air-sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325-331.] for estimating the air-sea gas transfer velocity ( k) from the mean square slope of short wind waves (40-100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The

  15. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.

    PubMed

    Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G

    2012-11-01

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. PMID:22696485

  16. Atomic dynamics in molten AlCu alloys of different compositions and at different temperatures by cold neutron scattering

    SciTech Connect

    Dahlborg, U.; Besser, M.; Kramer, Matthew J.; Morris, J. R.; Calvo-Dahlborg, M.

    2013-12-21

    The atomic motions in molten Al1-xCux (x=0.10, 0.171 and 0.25) around the eutectic composition (x=0.171) were studied by cold neutron inelastic scattering at three different temperatures (973 K, 1173 K and 1373 K). An alloy of eutectic composition containing the 63Cu isotope was also studied. Self-diffusion coefficients for the Cu ions were determined from the width of quasielastic peaks and were found to decrease slightly with increasing Cu concentration. Longitudinal current correlation functions Jl(Q,E) exhibit at all temperatures and at all compositions a shoulder at energies below 10 meV and one main maximum at higher energies. These features can be interpreted in terms of excitations of acoustic and optic nature. The shape of Jl(Q,E) is sensitive to composition, being considerably more structured for larger Cu content. This can be coupled to the existence of a prepeak in the measured zeroth moment of dynamic scattering function indicating an increased chemical ordering with increasing Cu concentration for all temperatures. Indications for an existence of a liquid–liquid phase transition are presented.

  17. Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Hongjian; Chen, Wenyuan; Shan, Yu; Wang, Wenzhen; Zhang, Zhenyu; Jia, Junhong

    2015-12-01

    The nanostructured titanium nitride (TiN) films were fabricated by pulsed laser deposition (PLD) technique at different substrate temperatures under residual vacuum, and the influence of substrate temperatures on the microstructure, mechanical and tribological properties of TiN films was investigated and discussed. The results shown that the consistent stoichiometric TiN films were obtained and the grain size increased from 10.5 to 38.7 nm with the increasing of substrate temperature. The hardness of films decreased with the substrate temperatures increasing, the highest hardness reached to 30.6 GPa at the substrate temperature of 25 °C, and the critical load increased first and decreased at 500 °C, the highest critical load was 23.8 N at the substrate temperature of 300 °C. The film deposited at the substrate temperature of 25 °C registered the lowest friction coefficient of 0.088 and wear rate of 7.8 × 10-7 mm3/(N m). The excellent tribological performance of the films was attributed to the small grain size, high hardness and smooth surface of the film.

  18. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    NASA Astrophysics Data System (ADS)

    Duta, L.; Stan, G. E.; Stroescu, H.; Gartner, M.; Anastasescu, M.; Fogarassy, Zs.; Mihailescu, N.; Szekeres, A.; Bakalova, S.; Mihailescu, I. N.

    2016-06-01

    We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN "seed" layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4-2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0-5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  19. Demographic comparison and population projection of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) reared on sugarcane at different temperatures.

    PubMed

    Peng, Lu; Miao, Yunxin; Hou, Youming

    2016-01-01

    Understanding how temperature affects fitness is important for conservation and pest management, especially in the era of global climate change. Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) is a worldwide pest of many economically important crops. Although much is known about this pest's life cycle, its adaptability to different temperatures is not fully understood. Here, we used age- and stage-specific life tables to investigate the effects of temperature on fitness-related traits and demographic parameters of R. ferrugineus under eight constant temperature regimens in the laboratory. The growth potential of these populations was also evaluated. The greatest longevity for males and females was 158.0 d at 24 °C and 144.5 d at 21 °C, respectively, but mean total fecundity was the highest at 27 °C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) increased initially at low temperatures and then decreased. All metrics reached a maximum at 27 °C and a minimum at 36 °C. Mean generation times (T ) decreased across the temperature range with a minimum at 36 °C. Our results indicate that the optimum temperature for growth of R. ferrugineus was approximately 27 °C. Our work will be of value for developing strategies for control management of this pest species. PMID:27545594

  20. Levels of major proteins of Escherichia coli during growth at different temperatures.

    PubMed Central

    Herendeen, S L; VanBogelen, R A; Neidhardt, F C

    1979-01-01

    The adaptation of Escherichia coli B/r to temperature was studied by measuring the levels of 133 proteins (comprising 70% of the cell's protein mass) during balanced growth in rich medium at seven temperatures from 13.5 to 46 degrees C. The growth rate of this strain in either rich or minimal medium varies as a simple function of temperature with an Arrhenius constant of approximately 13,500 cal (ca. 56,500 J) per mol from 23 to 37 degrees C, the so-called normal range; above and below this range the growth rate decreases sharply. Analysis of the detailed results indicates that (i) metabolic coordination within the normal (Arrhenius) range is largely achieved by modulation of enzyme activity rather than amount; (ii) the restricted growth that occurs outside this range is accompanied by marked changes in the levels of most of these proteins; (iii) a few proteins are thermometer-like in varying simply with temperature over the whole temperature range irrespective of the influence of temperature on cell growth; and (iv) the temperature response of half of the proteins can be predicted from current information on their metabolic role or from their variation in level in different media at 37 degrees C. PMID:156716

  1. Demographic comparison and population projection of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) reared on sugarcane at different temperatures

    PubMed Central

    Peng, Lu; Miao, Yunxin; Hou, Youming

    2016-01-01

    Understanding how temperature affects fitness is important for conservation and pest management, especially in the era of global climate change. Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) is a worldwide pest of many economically important crops. Although much is known about this pest’s life cycle, its adaptability to different temperatures is not fully understood. Here, we used age- and stage-specific life tables to investigate the effects of temperature on fitness-related traits and demographic parameters of R. ferrugineus under eight constant temperature regimens in the laboratory. The growth potential of these populations was also evaluated. The greatest longevity for males and females was 158.0 d at 24 °C and 144.5 d at 21 °C, respectively, but mean total fecundity was the highest at 27 °C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) increased initially at low temperatures and then decreased. All metrics reached a maximum at 27 °C and a minimum at 36 °C. Mean generation times (T ) decreased across the temperature range with a minimum at 36 °C. Our results indicate that the optimum temperature for growth of R. ferrugineus was approximately 27 °C. Our work will be of value for developing strategies for control management of this pest species. PMID:27545594

  2. Piezoresistive Sensitivity, Linearity and Resistance Time Drift of Polysilicon Nanofilms with Different Deposition Temperatures

    PubMed Central

    Shi, Changzhi; Liu, Xiaowei; Chuai, Rongyan

    2009-01-01

    Our previous research work indicated that highly boron doped polysilicon nanofilms (≤100 nm in thickness) have higher gauge factor (the maximum is ∼34 for 80 nm-thick films) and better temperature stability than common polysilicon films (≥ 200nm in thickness) at the same doping levels. Therefore, in order to further analyze the influence of deposition temperature on the film structure and piezoresistance performance, the piezoresistive sensitivity, piezoresistive linearity (PRL) and resistance time drift (RTD) of 80 nm-thick highly boron doped polysilicon nanofilms (PSNFs) with different deposition temperatures were studied here. The tunneling piezoresistive model was established to explain the relationship between the measured gauge factors (GFs) and deposition temperature. It was seen that the piezoresistance coefficient (PRC) of composite grain boundaries is higher than that of grains and the magnitude of GF is dependent on the resistivity of grain boundary (GB) barriers and the weight of the resistivity of composite GBs in the film resistivity. In the investigations on PRL and RTD, the interstitial-vacancy (IV) model was established to model GBs as the accumulation of IV pairs. And the recrystallization of metastable IV pairs caused by material deformation or current excitation is considered as the prime reason for piezoresistive nonlinearity (PRNL) and RTD. Finally, the optimal deposition temperature for the improvement of film performance and reliability is about 620 °C and the high temperature annealing is not very effective in improving the piezoresistive performance of PSNFs deposited at lower temperatures. PMID:22399960

  3. Piezoresistive sensitivity, linearity and resistance time drift of polysilicon nanofilms with different deposition temperatures.

    PubMed

    Shi, Changzhi; Liu, Xiaowei; Chuai, Rongyan

    2009-01-01

    Our previous research work indicated that highly boron doped polysilicon nanofilms (≤100 nm in thickness) have higher gauge factor (the maximum is ∼34 for 80 nm-thick films) and better temperature stability than common polysilicon films (≥ 200nm in thickness) at the same doping levels. Therefore, in order to further analyze the influence of deposition temperature on the film structure and piezoresistance performance, the piezoresistive sensitivity, piezoresistive linearity (PRL) and resistance time drift (RTD) of 80 nm-thick highly boron doped polysilicon nanofilms (PSNFs) with different deposition temperatures were studied here. The tunneling piezoresistive model was established to explain the relationship between the measured gauge factors (GFs) and deposition temperature. It was seen that the piezoresistance coefficient (PRC) of composite grain boundaries is higher than that of grains and the magnitude of GF is dependent on the resistivity of grain boundary (GB) barriers and the weight of the resistivity of composite GBs in the film resistivity. In the investigations on PRL and RTD, the interstitial-vacancy (IV) model was established to model GBs as the accumulation of IV pairs. And the recrystallization of metastable IV pairs caused by material deformation or current excitation is considered as the prime reason for piezoresistive nonlinearity (PRNL) and RTD. Finally, the optimal deposition temperature for the improvement of film performance and reliability is about 620 °C and the high temperature annealing is not very effective in improving the piezoresistive performance of PSNFs deposited at lower temperatures. PMID:22399960

  4. Surface acoustic wave velocity of gold films deposited on silicon substrates at different temperatures

    SciTech Connect

    Salas, E.; Jimenez Rioboo, R. J.; Prieto, C.; Every, A. G.

    2011-07-15

    Au thin films have been deposited by DC magnetron sputtering on Si (001) substrates at different substrate temperatures, ranging from 200 K to 450 K. With increasing temperature, the expected crystallinity and morphology of the Au thin film are clearly improved, as shown by x ray diffraction, atomic force microscopy and scanning electron microscopy experiments. Parallel to this, the surface acoustic wave propagation velocity shows a clear enhancement toward the ideal values obtained from numerical simulations of a Au thin film on Si (001) substrate. Moreover, a very thin and slightly rough interlayer between the Si (001) substrate and the Au thin film is developed for temperatures above 350 K. The composition and nature of this interlayer is not known. This interlayer may be responsible for the steep change in the structural and elastic properties of the Au thin films at the higher temperatures and possibly also for an improvement of the adhesion properties of the Au on the Si (001) substrate.

  5. Effects of different sitting positions on skin temperature of the lower extremity

    PubMed Central

    Namkoong, Seung; Shim, JeMyung; Kim, SungJoong; Shim, JungMyo

    2015-01-01

    [Purpose] The purpose of this study was to identify the effect of different sitting positions on the skin temperature of the lower extremity. [Subjects] The subjects of this study were 23 healthy university students (8 males, 15 females). [Methods] Normal sitting (NS), upper leg cross (ULC) and ankle on knee (AOK) positions were conducted to measure the changes in skin temperature using digital infrared thermographic imaging (DITI). [Results] ULC upper ankle, NS upper shin, ULC upper shin and NS lower shin showed significant declines in temperature with time. [Conclusion] These finding suggest that the ULC and NS sitting positions cause decline of blood flow volume to the lower extremity resulting in decrease of temperature of the lower extremity. Especially, sitting with the legs crossed interferes with the circulation of blood flowing volume much more than just sitting in a chair. PMID:26355265

  6. Compressive strength development of concrete with different curing time and temperature

    SciTech Connect

    Kim, J.K.; Moon, Y.H.; Eo, S.H.

    1998-12-01

    In this experimental and analytic research, the strength development for various curing histories was investigated with particular regard to the influences of curing time points with given temperatures. For this purpose, four different points of curing time were considered with an individual interval of 24 h. Two different temperatures of 5 C and 40 C were applied for the selective intervals, whereas the rest period days were under the reference curing condition of 20 C. A new model for the strength prediction was suggested based on the rate constant model. In this model, the equivalent ages introduced in the Saul and Arrhenius models were modified to show the effects of curing temperature at different ages. Test results show that the concrete subjected to a high temperature at an early age attains higher early-age strength but eventually attains lower later-age strength. The concrete subjected to a low temperature at an early age leads to lower early-age strength but almost the same later-age strength. Moreover, the proposed model showed better agreement with the test results than the existing models.

  7. Temperature rise during polymerization of different cavity liners and composite resins

    PubMed Central

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112

  8. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    PubMed

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality. PMID:23065402

  9. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    NASA Astrophysics Data System (ADS)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C – 74% relative humidity (room no AC) and 23,80C – 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  10. Hot in Baltimore: linking urban form to fine-scale temperature differences

    NASA Astrophysics Data System (ADS)

    Scott, A.; Waugh, D.; Zaitchik, B. F.; Guikema, S.

    2015-12-01

    Better understanding how urban morphology creates microclimates can help policymakers and planners mitigate the effects of heatwaves and other negative urban heat island effects. In Baltimore, where the observed downtown-rural temperature difference (as measured by NOAA stations) can reach 5°C, low-income neighborhoods are almost entirely covered by impervious surfaces like concrete but lack trees and parks. Their urban-rural temperature difference is then expected to exceed the reported one. However, that difference is not well quantified because these areas lack weather station coverage. Additionally, high resolution satellite imagery shows only land surface temperatures (inadequate for policy and health interventions) and may miss severe heat events. To remedy this, a low-cost monitoring network was installed in East Baltimore over summer 2015 aiming to characterize spatial and temporal variability and examine how heat excess varies during heat events. Results confirm that E. Baltimore exceeds downtown temperatures and show that a dense network of low cost sensors can help attribute temperature anomalies to local features such as land cover, building density and tree canopy.

  11. Influence of Different Temperature Sensors on Measuring Energy Efficiency and Heating-Up Time of Hobs

    NASA Astrophysics Data System (ADS)

    Beges, G.; Drnovsek, J.; Ogorevc, J.; Bojkovski, J.

    2015-03-01

    Measuring performance, mainly temperature dependence, for electric cooking ranges, hobs, ovens, and grills for household use is essential for producers as low power consumption of appliances represents a powerful selling point and also in terms of ecodesign requirements. It is also important from a consumer perspective, as these appliances are responsible for the significant share of households' electricity bills. The aim of the paper was to highlight and clearly define possible ambiguities and weaknesses of standardized procedures for measuring hob performance. Differences between measurement/test results of testing laboratories are possible due to lack of detailed information in the standard, and it is difficult to obtain technical accessories required in the standard. An energy consumption comparison of three different hobs is presented (standard iron electrical hob, radiant-glass ceramic, and induction hob). Various temperature sensors (different types of thermocouples and a platinum resistance thermometer) and technical accessories (e.g., different cookware) were used to research differences or influences on final result of hobs' energy efficiency. Results show that temperature measurements with different sensors have an influence on the time difference in critical points for determination of hob energy efficiency.

  12. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures

    PubMed Central

    Wan, Chunpeng; Yu, Yanying; Zhou, Shouran; Liu, Wei; Tian, Shuge; Cao, Shuwen

    2011-01-01

    Background: Extraction temperature influences the total phenolic content (TPC), total flavonoid content (TFC) of medicinal plant extracts to a great extend. TPC and TFC are the principle activity constituents present in the plant. The effects of extraction temperature on TPC, TFC and free radical-scavenging capacity of Gynura divaricata leaf extracts are worth to study. Materials and Methods: Folin–Ciocalteu and aluminum chloride colorimetric assay were used to determine the TPC and TFC of Gynura divaricata leaf extracts at different temperatures. The antioxidant and free radical-scavenging activity were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and phosphomolybdenum methods. Results: TPC and TFC were significantly elevated with increasing extraction temperature (from 40°C to 100°C). However, TPC and TFC were not significantly different (P > 0.05) at the extraction temperatures 90°C and 100°C. Also, the extracts obtained at a higher temperature exhibited a significant free radical-scavenging activity compared with extraction at lower temperatures (P < 0.05). The TPCs (13.95-36.68 mg gallic acid equivalent/g dry material) were highly correlated with DPPH (R2 = 0.9229), ABTS (R2 = 0.9951) free radical-scavenging capacity, and total antioxidant activity (R2 = 0.9872) evaluated by phosphomolybdenum method. Conclusion: The TPC and TFC of G. divaricata leaf was significantly influenced by the extraction temperatures, which were the main antioxidant constituents present in the G. divaricata plant. PMID:21472078

  13. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  14. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    NASA Astrophysics Data System (ADS)

    Tocoglu, U.; Cevher, O.; Akbulut, H.

    2016-04-01

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

  15. The study of the formation of monolayers of quantum dots at different temperatures

    NASA Astrophysics Data System (ADS)

    Gorbachev, Ilya A.; Goryacheva, Irina Y.; Brezesinski, Gerald; Gluhovskoy, Evgeny G.

    2016-04-01

    The process of formation of Langmuir monolayers of quantum dots at the different subphase temperatures was studied by means of compression isotherm, Brewster angle microscopy and transmission electron microscopy. The increasing of the maximum surface pressure from 32 to 44 mN/m takes place with decreasing the temperature from 34 to 11°C. This is due to a decrease in the rate of dissolution of surfactant molecules in water. The increasing of a filling degree of monolayer by the quantum dots and increasing of it uniformity in thickness takes place in this temperature range. The area of bilayer and multilayer film of quantum dots decreasing and the area of quantum dots monolayer is increasing. This change explained by the difference in the phase condition of oleic acid molecules, which stabilized quantum dots.

  16. THE GROWTH AND DURATION OF LIFE OF CELOSIA CRISTATA SEEDLINGS AT DIFFERENT TEMPERATURES.

    PubMed

    Edwards, T I; Pearl, R; Gould, S A

    1934-07-20

    Daily measurements of hypocotyl length were made on Celosia cristata seedlings cultured in darkness under aseptic conditions at six constant temperatures between 14.5 degrees and 40.5 degrees C. At 40.5 degrees roots did not penetrate the agar and only the hypocotyls that were supported by the wall of the test tube could be measured. The growth curves were of the generalized logistic type, but of different degrees of skewness. The degree of symmetry of the growth curves was influenced by temperature. At the lower temperatures the maximal growth rate came relatively late in the grand period of growth; at successively higher temperatures it came progressively earlier. The mean total time rate of growth (millimeter per diem) was found to be a parabolic function of the temperature. The maximum rate of growth was found from the curve to be at 30.48 degrees C. The maximum observed rate of growth, and the maximum yield, were found to be at 30 degrees C. At all temperatures above 14.5 degrees the maximum growth activity fell in the second quarter of the whole growth period. At all temperatures tested other than 30 degrees , and at all parts of the growth cycle, the growth yield as measured by height of hypocotyl at any given equivalent point was less than at 30 degrees . The total duration of life of the seedlings, and the duration of life after the end of the growth period (intermediate period) were inversely proportional to the mean total growth rate. The observations on Celosia cristata seedlings are thus in accord with the "rate of living" theory of life duration. The optimal temperature for life duration is the minimum temperature, within the range of these observations. PMID:19872811

  17. CFTR: Temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway

    PubMed Central

    Liu, Xuehong; Dawson, David C.

    2011-01-01

    Cysteine scanning has been widely used to identify pore-lining residues in mammalian ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR). These studies, however, have been typically conducted at room temperature rather than human body temperature. Reports of substantial effects of temperature on gating and anion conduction in CFTR channels as well as an unexpected pattern of cysteine reactivity in the sixth transmembrane segment (TM6), prompted us to investigate the effect of temperature on the reactivity of cysteines engineered into TM6 of CFTR. We compared reaction rates at temperatures ranging from 22°C to 37°C for cysteines placed on either side of an apparent size-selective, accessibility barrier previously defined by comparing reactivity toward channel-permeant and channel-impermeant, thiol-directed reagents. The results indicate that reactivity of cysteines at three positions extracellular to the position of the accessibility barrier, 334, 336 and 337, is highly temperature dependent, such that at 37°C cysteines at these positions were highly reactive toward MTSES−, whereas at 22°C the reaction rates ranged from two to six-fold slower to undetectable. An activation energy of 157 kJ/mole for the reaction at 337 is consistent with the hypothesis that, at physiological temperature, the extracellular portion of the CFTR pore can adopt conformations that differ significantly from those accessible at room temperature. However, the position of the accessibility barrier defined empirically by applying channel-permeant and channel-impermeant reagents to the extracellular aspect of the pore is not altered. The results illuminate previous scanning results and indicate that assay temperature is a critical variable in studies designed to use chemical modification to test structural models for the CFTR anion conduction pathway. PMID:22014307

  18. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  19. Resistivity Variation due to CO2 Migration in Different Temperature and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Onishi, K.; Yamada, Y.; Matsuoka, T.; Xue, Z.

    2007-12-01

    CO2 geological sequestration is one of the effective approaches solving the global warming problem. Captured CO2 is injected to the deep aquifers or depleted oil and gas fields. Injected CO2 migrates thorough the reservoir rock, however, the details behavior of injected CO2 under the ground at super critical phase is not yet fully understood. Migration of injected CO2 will change by the condition of the injected reservoir such as the temperature and pressure. Also density and permeability of the rock may be changed due to temperature or pressure variations. These changes control the migration behavior of injected CO2. In this study, experiments of resistivity measurements were conducted to detect the migration difference of CO2 in different temperature and pressure conditions by using sandstone core samples. Core sample was taken from Berea sandstone and processed to 5cm diameter and 12cm length. For the resistivity measurement, impression electrode was set on the both end and the measurement electrode of ring condition was set on the side of the rock sample. We stetted the core sample in the pressure vessel and recreated the condition of underground reservoir which is high pressure and high temperature. We injected supercritical CO2 in different pressure and temperature for each experiment. Pressure was changed in range of 8 to 11MPa and temperature was changed in range of 35° to 45°. This means that all the experiments were conducted in supercritical phase. From the measured resistivity variation, we verified the migration of CO2 and compared the migration behavior of CO2 in different conditions.

  20. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2011-07-01

    The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L. PMID:23573022

  1. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  2. Effects of different temperature treatments on biological ice nuclei in snow samples

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  3. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Gabruk, Michał; Glińska, Sława; Michlewska, Sylwia; Dłużewska, Jolanta; Sawicka, Anna; Kruk, Jerzy; Laitinen, Roosa

    2015-06-01

    During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions. PMID:25214438

  4. Effect of temperature on the intrinsic viscosity and conformation of different pectins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of temperature on the intrinsic viscosity and on the conformation of different pectins obtained from citrus, apple and sunflower in a 0.17M NaCl solution were studied. The intrinsic viscosity and the flow activation energy of the polymer (Ea) derived from slope of d In [']/ d(l/T) as an ...

  5. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  6. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    ERIC Educational Resources Information Center

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  7. Northeast China summer temperature and North Atlantic SST

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Yang, Song; Liu, Shi; Sun, Li; Lian, Yi; Gao, Zongting

    2011-08-01

    A previous study revealed a close relationship between interannual variations of northeast China (NEC) summer temperature and a tripole sea surface temperature (SST) anomaly pattern in the North Atlantic in preceding spring. The present study investigates the change in the above relationship and the plausible causes for the change. A tripole SST index is defined with its positive value corresponding to positive SST anomalies in the tropics and midlatitudes and negative SST anomalies in the subtropics. The tripole SST anomaly pattern has a weak correlation with NEC summer temperature during the 1950s through the mid-1970s, in sharp contrast to the 1980s and 1990s. This change is related to the difference in the persistence of the tripole SST pattern. Before the late 1970s, the tripole SST pattern weakened from spring to summer, and thus, the spring North Atlantic tripole SST pattern had a weak connection with NEC summer temperature. On the contrary, after the late 1970s, the tripole SST pattern displayed a tendency of persistence from spring to summer, contributing to circulation changes that affected NEC summer temperature. There are two factors for the persistence of the tripole SST pattern from spring to summer. One is the North Atlantic air-sea interaction, and the other is the persistence of SST anomalies in the eastern equatorial Pacific during the decay of El Niño-Southern Oscillation (ENSO). It is shown that the North Atlantic SST anomalies can have an impact on NEC summer temperature independent of ENSO.

  8. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach

    PubMed Central

    2014-01-01

    Background Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Results Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. Conclusions An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems

  9. Simulation of a Supercritical Fluid Flow with Large Temperature Difference under the Assumption of Constant Pressure

    NASA Astrophysics Data System (ADS)

    Komurasaki, Satoko

    2015-11-01

    Eruption of geothermally heated water from the hydrothermal vent in deep oceans of depth over 2,000 meters is numerically simulated. The hydrostatic pressure of water is assumed to be over 200 atmospheres, and the temperature of heated water is occasionally more than 300°C. Under these conditions, a part of heated water can be in the supercritical state, and the physical properties can change significantly by the temperature. Particularly, thermal diffusivity at the critical temperature becomes so small, which prevents heat diffusion, and the temperature gradients can become high. Simulation of this kind of fluid flow can be carried out only by using a highly robust scheme. In this paper, a scheme for a highly-unsteady-flow computation is introduced, and a supercritical fluid flow with a large temperature difference is simulated at a constant pressure. In the computation, the compressible Navier-Stokes equations are solved using a method for the incompressible equations under constant pressure. The equations are approximated by the multidirectional finite difference method and KK scheme is used to stabilize the high-accuracy computation. This work was partially supported by Grant-in-Aid for Scientific Research from MEXT/JSPS (26610119).

  10. In vitro evaluation of temperature rise during different post space preparations

    PubMed Central

    Gokturk, Hakan; Ozkocak, Ismail; Taskan, Mehmet Murat; Aytac, Fatma; Karaarslan, Emine Sirin

    2015-01-01

    Objective: The aim of this study was to evaluate temperature alterations on the outer root surface during post space preparation with six different post drills by using an infrared thermometer. Materials and Methods: Sixty extracted single-rooted human mandibular incisor teeth were used. After root canal obturation, the specimens were divided into six groups (n = 10). During post space preparation, the temperature rises were measured in the middle third of the roots using a noncontact infrared thermometer with a sensitivity of 0.1°C. The temperature data were transferred from the thermometer to the computer and were observed graphically. Results: The maximum temperature rise was observed in Snowpost 2 (29.95 ± 10.2°C) (P < 0.001), but there were no significant differences among Snowpost 2 (29.95 ± 10.2°C), Snowpost 1 (24.6 ± 8.0°C), and Relyx 2 (17.68 ± 9.1°C) (P > 0.05). Conclusions: Although water coolant used, the critical temperature rise was observed on the outer root surface in all post drill systems. PMID:26929693

  11. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients

    PubMed Central

    Sniegowski, Matthew; Erlanger, Michael; Velez-Montoya, Raul; Olson, Jeffrey L

    2015-01-01

    Purpose To assess the change in ocular surface temperature between healthy phakic and pseudophakic patients. Methods We included patients with no history of ocular disease other than cataract. Patients were divided into three groups: clear lens, cataract, and pseudophakic. All patients had two ocular surface digital thermal scans. An average of five surface points was used as the mean ocular surface temperature. Results were analyzed with a one-way analysis of variance and a Tukey’s least significance difference test. The patients were further divided into phakic and pseudophakic groups. Correlation coefficients between several variables were done in order to assess dependencies. Results Fifty-six eyes (28 cataracts, 12 clear lenses, 16 pseudophakic) were enrolled. The mean ocular surface temperature in the cataract group was 34.14°C±1.51°C; clear lens: 34.43°C±2.27°C; and pseudophakic: 34.97°C±1.57°C. There were no statistical differences among the study groups (P=0.3). There was a nonsignificant negative correlation trend between age and surface temperature in the phakic group. The trend inverted in the pseudophakic group but without statistical significance. Conclusion Although cataract extraction and intraocular lens implantation seem to induce a mild increase in ocular surface temperature, the effect is not clear and not significant. PMID:25834383

  12. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting. PMID:25209736

  13. The influence of different acupuncture manipulations on the skin temperature of an acupoint.

    PubMed

    Huang, Tao; Huang, Xin; Zhang, Weibo; Jia, Shuyong; Cheng, Xinnong; Litscher, Gerhard

    2013-01-01

    This study was performed to observe the influence of sham and different verum acupuncture manipulations on skin temperature of the stimulated acupoint in healthy volunteers. Thirty-seven healthy volunteers with a mean age of 25.4 ± 2.2 years were enrolled in the study. All volunteers had experienced acupuncture before. They received sham acupuncture and two different kinds of verum acupuncture stimulation (lifting-thrusting and twisting-rotating) on Zusanli (ST36). The skin temperature of ST36 was measured before acupuncture, after needle insertion, after needle manipulation, immediately after removal of the needle, and as further control 5 minutes after removal of the needle using a FLIR i7 infrared thermal camera. During the measurement, the needling sensations of volunteers were enquired and recorded. During the sham acupuncture stimulation, the skin temperature of ST36 decreased in the first 5 minutes, when the point was exposed, and then increased gradually. During verum acupuncture stimulations, the skin temperature increased continually and then decreased in the last phase. The increase in temperature caused by lifting-thrusting stimulation was significantly higher than that of twisting-rotating manipulation, which may be related to the stimulation intensity. PMID:23476709

  14. Fitness costs associated with different frequencies and magnitudes of temperature change in the butterfly Bicyclus anynana.

    PubMed

    Franke, Kristin; Heitmann, Nadja; Tobner, Anne; Fischer, Klaus

    2014-04-01

    Plastic responses to changes in environmental conditions are ubiquitous and typically highly effective, but are predicted to incur costs. We here investigate the effects of different frequencies and magnitudes of temperature change in the tropical butterfly Bicyclus anynana, considering developmental (Experiment 1) and adult stage plasticity (Experiment 2). We predicted negative effects of more frequent temperature changes on development, immune function and/or reproduction. Results from Experiment 1 showed that repeated temperature changes during development, if involving large amplitudes, negatively affect larval time, larval growth rate and pupal mass, while adult traits remained unaffected. However, results from treatment groups with smaller temperature amplitudes yielded no clear patterns. In Experiment 2 prolonged but not repeated exposure to 39°C increased heat tolerance, potentially reflecting costs of repeatedly activating emergency responses. At the same time fecundity was more strongly reduced in the group with prolonged heat stress, suggesting a trade-off between heat tolerance and reproduction. Clear effects were restricted to conditions involving large temperature amplitudes or high temperatures. PMID:24679977

  15. Quantitative determination based on the differences between spectra-temperature relationships.

    PubMed

    Li, Zhe; Zhou, Mei; Luo, Yongshun; Li, Gang; Lin, Ling

    2016-08-01

    In the Near-infrared (NIR) spectral measurement it is not always possible to keep the experimental conditions constant. The fluctuations in external variables, such as temperature, will result in a nonlinear shift and a broadening of the spectral bands. In this study, the temperature-induced spectral variation coefficient (TSVC) was obtained by using loading space standardization (LSS). The relationship between TSVC and normalized squared temperature was quantitatively analyzed and applied to the quantitative determination of the compositions in mixtures. NIR spectra of peanut-soy-corn oil mixtures measured at seven temperatures were analyzed. It was found that, the relationship between TSVC and normalized squared temperature can be established by using LSS. Furthermore, the quantitative determination of the compositions in a mixture can be achieved by using the difference between the relationships, i.e., the slope of the relationship. The calibration curves between slope and composition volume are found to be reliable with the correlation coefficients (R(2)) as high as 0.9992. Quantitative determination by the calibration curves were also validated. Therefore, the method can be an effective tool for investigating the effect of temperature and quantitatively analysis. PMID:27216655

  16. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    PubMed Central

    Smith, Amanda L.; Garbus, Haley; Rosenkrantz, Ted S.; Fitch, Roslyn Holly

    2015-01-01

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen. PMID:26010486

  17. Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone

    PubMed Central

    Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto

    2016-01-01

    Purpose. Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. Materials and Methods. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Results. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Conclusion. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability. PMID:27110567

  18. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  19. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes.

    PubMed

    Mkiga, A M; Mwatawala, M W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  20. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax.

    PubMed

    Toffan, Anna; Panzarin, Valentina; Toson, Marica; Cecchettin, Krizia; Pascoli, Francesco

    2016-05-26

    Betanodaviruses are the causative agents of a highly infectious disease of fish known as viral nervous necrosis (VNN). To date, 4 different nervous necrosis virus (NNV) genotypes have been described, but natural reassortant viruses have also been detected, which further increase viral variability. Water temperature plays an important role in determining the appearance and the severity of VNN disease. We assessed the effect of temperature (20°, 25° and 30°C) on mortality and virus load in the brain of European sea bass Dicentrarchus labrax experimentally infected with 4 genetically different betanodaviruses, namely red-spotted grouper NNV (RGNNV), striped jack NNV (SJNNV) and the reassortant strains RGNNV/SJNNV and SJNNV/RGNNV. The RGNNV/SJNNV virus possesses the polymerase gene of RGNNV and the coat protein gene of SJNNV, and vice versa for the SJNNV/RGNNV virus. The obtained results showed that the RGNNV strain is the most pathogenic for juvenile sea bass, but clinical disease and mortality appeared only at higher temperatures. The SJNNV strain is weakly pathogenic for D. labrax regardless of the temperature used, while virus replication was detected in the brain of survivors only at 20°C. Finally, reassortant strains caused low mortality, independent of the temperature used, but the viral load in the brain was strongly influenced by water temperature and the genetic type of the polymerase gene. Taken together, these data show that nodavirus replication in vivo is a composite process regulated by both the genetic features of the viral strain and water temperatures. PMID:27225206

  1. Effects of Urban Morphology on Intra-Urban Temperature Differences: Two Squares in Glasgow City Centre

    NASA Astrophysics Data System (ADS)

    Drach, P. R. C.; Emmanuel, R.

    2014-12-01

    The perspective of climate change increases the necessity of tackling the urban over heating effects, by developing strategies to mitigate/adapt to changes. Analysing the influence of urban form on intra-urban temperature dynamics could be a helpful way of reducing its negative consequences. Also, it would help untangle the urban effect from the effect caused by atmospheric conditions. The present paper presents the effect of atmospheric conditions as exemplified by atmospheric stability (modified Pasquill-Gifford-Turner classification system) and urban morphology as measured by the Sky View Factor (SVF) on intra-urban variations in air temperature in a cold climate city, in and around the mature urban area of Glasgow, UK (55° 51' 57.294"N, 4° 15' 0.2628"W). The aim is to highlight their combined importance and to make preliminary investigations on the local warming effect of urban morphology under specific atmospheric stability classes. The present work indicates that the maximum intra-urban temperature differences (i.e. temperature difference between the coolest and the warmest spots in a given urban region) is strongly correlated with atmospheric stability. The spatial patterns in local temperature variations consistently show that water bodies and urban parks have lower temperature variations. Thus, greenery and urban materials could play an important role in influencing the local climate in cold cities. The knowledge of urban morphology's influence on local temperature variations could be an important tool for devising appropriate planning/design strategies to face urban overheating in the coming years as the background climate continues to warm.

  2. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes

    PubMed Central

    Mkiga, A. M.; Mwatawala, M. W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  3. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    NASA Astrophysics Data System (ADS)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  4. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    PubMed

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  5. Discriminating among different tea leaves using an operating temperature-modulated tin oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Rastkhadiv, Ali; Jenabi, Amin; Souri, Asma

    2016-03-01

    We report distinguishing different types of tea leaves from each other based on their aroma using a thermal shock-induced generic tin oxide gas sensor. The sensor used in this work consists of a microheater and a tin oxide pellet, both connected to outside circuitry with noble metal contacts. The heater is powered with a series of narrow high magnitude voltage impulses of predetermined thermal impacts adjusted to produce step-like temperature rises of different magnitudes on the gas sensitive pellet. The sensor is exposed to aromas collected from various types of tea leaves at different concentrations. Within 4.5 s, nine 500 ms-wide voltage pulses, each as high as 9.3 V in magnitude, are applied to the microheater. Each pulse causes a step-like temperature jump on the pellet temperature. The transient responses recorded for different tea leaves look different even after amplitude normalization. The sensor profiles are recorded, digitized, and compared with the database of previous experiences. A heuristically defined high dimensional feature vector is automatically generated for each analyte. Classifications are graphically achieved in a 3-D feature space after applying principle component analysis for dimension reduction.

  6. Co-doped sodium chloride crystals exposed to different irradiation temperature

    SciTech Connect

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J, C.; Hernandez A, J.; Murrieta S, H.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  7. Thermographic imaging of facial skin—gender differences and temperature changes over time in healthy subjects

    PubMed Central

    Christensen, J; Vaeth, M; Wenzel, A

    2012-01-01

    Objectives To assess changes in facial skin temperature over time, to identify sources of variation related to skin temperature and to evaluate interobserver reproducibility in measurements of the thermograms. Methods 62 volunteers (32 females, 30 males, mean age 23.4, range 19.5–29.5 years) underwent thermography of the face (left and right side lateral images) on four occasions with approximately 2 months between each session. Three observers recorded the images and marked regions of interest (ROIs) in each image using dedicated software. Smoking, exercise habits and use of oral contraceptives were recorded. Results A significant difference between sessions (≤1 °C, p < 0.001) and between observers (≤0.11 °C, p < 0.001) was identified. The difference between sides was not significant (≤0.07 °C, p = 0.7). None of the interactions between side, session and observer were significant. Smoking, exercise habits and oral contraceptive intake were not significant impact factors when included as covariates in the analysis (p > 0.1). ROI temperature was significantly higher in males than in females (0.7 °C, p < 0.001). A mixed model analysis of variance showed that observer had little impact on the expected standard deviation, whereas session and subject had a greater impact. Conclusions Face temperature is symmetrical and varies over time. The non-significant difference between sides is highly reproducible, even between observers. PMID:22554986

  8. Shelf-life of almond pastry cookies with different types of packaging and levels of temperature.

    PubMed

    Romeo, F V; De Luca, S; Piscopo, A; Santisi, V; Poiana, M

    2010-06-01

    Almond pastries are typical cookies of the south of Italy. Introduction of new packaging for this kind of cookies requires shelf-life assessments. This study, related to different types of packaging under various storage conditions of time and temperature, identifies critical parameters, as color and texture, to track during storage studies and to extend the shelf-life. The cookies were packed in three different ways and stored at two different temperatures. The pastries were separately stored: (1) in polyvinylchloride film; (2) in aluminum foil (ALL); (3) with modified atmosphere (MAP) in plastic vessels sealed into a polyamide/ polyethylene film; and (4) in vessels without any polymeric film. The storage temperatures were 20 and 30 °C. Evolution of texture, water activity, dry matter and color was assessed. Texture was evaluated by a texture analyzer with a puncturing test. Indices for hardening were the area under the curve (N × mm) up to 10 mm of distance, and the maximum force (N) corresponding to the crust fracture. The best results were obtained with ALL packaging and MAP condition, and above all, in all the trials a temperature of 30 °C reduced the crust hardness. PMID:21339139

  9. Generalization of Logarithmic Mean Temperature Difference Method for Heat Exchanger Performance Analysis

    NASA Astrophysics Data System (ADS)

    Utamura, Motoaki; Nikitin, Konstantin; Kato, Yasuyoshi

    A generalized mean temperature difference (GMTD) method for heat exchangers is proposed. In the analysis of the performance of heat exchangers logarithmic temperature difference (LMTD) method has been widely used. This method, however, limits its application to those heating media with constant physical property. In turn GMTD method allows analysis with physical property distributed in an entire heat exchanger. Temperature profiles of the heat exchanger taken as function of heat load in place of axial position, mean temperature difference is evaluated numerically. It is mathematically demonstrated that LMTD method is an extremity of the GMTD method in the case of constant physical property. The GMTD method is applied to a hot water supplier with supercritical carbon dioxide as a heating media which is attracting attention as energy saving tactics. The hot water supplier operates under the condition of pseudo critical point of carbon dioxide where specific heat behaves anomaly. Incorporating GMTD method averaged overall heat transfer coefficient and subsequently formula of local Nusselt number are successfully derived for microchannel heat exchanger while formal application of LMTD method is found to give poor results i.e. two times less value with a larger error. This proves the validity of GMTD method.

  10. Examination of air-sea CO2 fluxes from the low-latitude coastal Eastern Pacific: Application of predictive algorithms to new VOS observations.

    NASA Astrophysics Data System (ADS)

    Hales, B.; Alin, S.; Feely, R. A.; Hernandez-Ayon, M.; Letelier, R.; Strutton, P. G.; Cosca, C.

    2008-12-01

    Coastal oceans are regions of large and highly variable air-sea CO2 fluxes, leading to highly uncertain predictions of globally significant contributions to the atmospheric carbon budget. Estimates of net annual regional fluxes are often the balance between poorly-constrained, large-magnitude sinks and sources. This is the case for the Pacific coast of North America, where a recent synthesis (Chavez et al., 2007) predicted low total fluxes resulting from the near-cancellation of large, lightly-sampled fluxes of opposite sign. In particular, the low latitude coastal waters off Central America appeared to be a large source of CO2 to the atmosphere, but there was very low spatial and temporal observational coverage in these waters. Recently, new VOS data in this region has become available that has dramatically increased both spatial and temporal sampling density in this region. In previous work we developed a new remote sensing-based synthetic approach applied to the mid-latitude regions of the North American Pacific coast that gave strong predictive power and was subsequently validated by in-water measurements in the summer of 2007. We present the results of applying this predictive approach to the target study region, and the predictive relationship is then combined with seasonally resolved remote sensing data to generate annual net flux estimates and to evaluate the prediction of strong efflux from these low-latitude waters based on the sparse historical data.

  11. Inference of super-resolution ocean pCO2 and air-sea CO2 fluxes from non-linear and multiscale processing methods

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, Ismael; Sudre, Joel; Garçon, Veronique; Yahia, Hussein; Dewitte, Boris; Garbe, Christoph; Illig, Séréna; Montes, Ivonne; Dadou, Isabelle; Paulmier, Aurélien; Butz, André

    2014-05-01

    In recent years the role of submesoscale activity is emerging as being more and more important to understand global ocean properties, for instance, for accurately estimating the sources and sinks of Greenhouse Gases (GHGs) at the air-sea interface. The scarcity of oceanographic cruises and the lack of available satellite products for GHG concentrations at high resolution prevent from obtaining a global assessment of their spatial variability at small scales. In this work we develop a novel method to reconstruct maps of CO2 fluxes at super resolution (4km) using SST and ocean colour data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). The responsible process for propagating the information between scales is related to cascading properties and multiscale organization, typical of fully developed turbulence. The methodology, based on the Microcanonical Multifractal Formalism, makes use, from the knowledge of singularity exponents, of the optimal wavelet for the determination of the energy injection mechanism between scales. We perform a validation analysis of the results of our algorithm using pCO2 ocean data from in-situ measurements in the upwelling region off Namibia.

  12. The European Fixed point Open Ocean Observatory network (FixO3): Multidisciplinary observations from the air-sea interface to the deep seafloor

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard; Cristini, Luisa; Alexiou, Sofia

    2015-04-01

    The Fixed point Open Ocean Observatory network (FixO3, http://www.fixo3.eu/ ) integrates 23 European open ocean fixed point observatories and improves access to these infrastructures for the broader community. These provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Started in September 2013 with a budget of 7 Million Euros over 4 years, the project has 29 partners drawn from academia, research institutions and SME's coordinated by the National Oceanography Centre, UK. Here we present the programme's achievements in the 18 months and the activities of the 12 Work Packages which have the objectives to: • integrate and harmonise the current procedures and processes • offer free access to observatory infrastructures to those who do not have such access, and free and open data services and products • innovate and enhance the current capability for multidisciplinary in situ ocean observation Open ocean observation is a high priority for European marine and maritime activities. FixO3 provides important data and services to address the Marine Strategy Framework Directive and in support of the European Integrated Maritime Policy. FixO3 provides a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.

  13. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-01

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  14. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings

    PubMed Central

    2013-01-01

    Background The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. Methods Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. Results Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. Conclusions Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes

  15. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm. PMID:22562450

  16. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Wigley, T. M. L.; Boyle, J. S.; Gaffen, D. J.; Hnilo, J. J.; Nychka, D.; Parker, D. E.; Taylor, K. E.

    2000-03-01

    This paper examines trend uncertainties in layer-average free atmosphere temperatures arising from the use of different trend estimation methods. It also considers statistical issues that arise in assessing the significance of individual trends and of trend differences between data sets. Possible causes of these trends are not addressed. We use data from satellite and radiosonde measurements and from two reanalysis projects. To facilitate intercomparison, we compute from reanalyses and radiosonde data temperatures equivalent to those from the satellite-based Microwave Sounding Unit (MSU). We compare linear trends based on minimization of absolute deviations (LA) and minimization of squared deviations (LS). Differences are generally less than 0.05°C/decade over 1959-1996. Over 1979-1993, they exceed 0.10°C/decade for lower tropospheric time series and 0.15°C/decade for the lower stratosphere. Trend fitting by the LA method can degrade the lower-tropospheric trend agreement of 0.03°C/decade (over 1979-1996) previously reported for the MSU and radiosonde data. In assessing trend significance we employ two methods to account for temporal autocorrelation effects. With our preferred method, virtually none of the individual 1979-1993 trends in deep-layer temperatures are significantly different from zero. To examine trend differences between data sets we compute 95% confidence intervals for individual trends and show that these overlap for almost all data sets considered. Confidence intervals for lower-tropospheric trends encompass both zero and the model-projected trends due to anthropogenic effects. We also test the significance of a trend in d(t), the time series of differences between a pair of data sets. Use of d(t) removes variability common to both time series and facilitates identification of small trend differences. This more discerning test reveals that roughly 30% of the data set comparisons have significant differences in lower-tropospheric trends

  17. Plant Canopy Temperature and Heat Flux Profiles: What Difference Does an Isothermal Skin Make?

    NASA Astrophysics Data System (ADS)

    Crago, R. D.; Qualls, R. J.

    2015-12-01

    Land surface temperature Ts plays a vital role in the determination of sensible (H) and latent heat flux, upwelling long-wave radiation, and ground heat flux. While it is widely recognized that there is a range of skin temperatures represented in even a homogeneous canopy, it is often necessary or convenient to treat the surface as isothermal. This study investigates, at the sub-canopy scale, the implications of assuming that a canopy is isothermal. The focus is on profiles within the canopy of air, foliage, and soil surface temperature, and of sensible and latent heat flux source strength. Data from a dense grassland at the Southern Great Plains experiment in 1997 (SGP97) were used to assess the ability of a multi-layer canopy model to match measured sensible and latent heat fluxes along with radiometric surface temperatures. In its standard mode, the model solves the energy balance for each canopy layer and uses Localized Near Field (LNF) theory to model the turbulent transport. The results suggest the model captures the most important features of canopy flux generation and transport, and support its use to investigate scalar profiles within canopies. For 112 data points at SGP97, the model produced realistic temperature and sensible heat flux source profiles. In addition, it was run in a mode that seeks the isothermal (soil and foliage) skin temperature (Ti) that provides the same Hproduced by the model in its standard mode. This produces profiles of air and foliage temperature and of sensible heat source strength that differ significantly from profiles from the standard mode. Based on these simulations, realistic canopies may have a mixture of positive and negative sensible heat flux sources at various heights, typically with large contributions from the soil surface. There is frequently a discontinuity between foliage temperatures near the soil and the actual soil surface temperature. For isothermal canopies, heat sources at all levels had the same sign and

  18. The effect of using different regions of interest on local and mean skin temperature.

    PubMed

    Maniar, Nirav; Bach, Aaron J E; Stewart, Ian B; Costello, Joseph T

    2015-01-01

    The dynamic nature of tissue temperature and the subcutaneous properties, such as blood flow, fatness, and metabolic rate, leads to variation in local skin temperature. Therefore, we investigated the effects of using multiple regions of interest when calculating weighted mean skin temperature from four local sites. Twenty-six healthy males completed a single trial in a thermonetural laboratory (mean ± SD): 24.0 (1.2)°C; 56 (8%) relative humidity; <0.1 m/s air speed). Mean skin temperature was calculated from four local sites (neck, scapula, hand and shin) in accordance with International Standards using digital infrared thermography. A 50 mm × 50 mm, defined by strips of aluminium tape, created six unique regions of interest, top left quadrant, top right quadrant, bottom left quadrant, bottom right quadrant, centre quadrant and the entire region of interest, at each of the local sites. The largest potential error in weighted mean skin temperature was calculated using a combination of a) the coolest and b) the warmest regions of interest at each of the local sites. Significant differences between the six regions interest were observed at the neck (P<0.01), scapula (P<0.001) and shin (P<0.05); but not at the hand (P = 0.482). The largest difference (± SEM) at each site was as follows: neck 0.2 (0.1)°C; scapula 0.2 (0.0)°C; shin 0.1 (0.0)°C and hand 0.1 (0.1)°C. The largest potential error (mean ± SD) in weighted mean skin temperature was 0.4 (0.1)°C (P<0.001) and the associated 95% limits of agreement for these differences was 0.2-0.5 °C. Although we observed differences in local and mean skin temperature based on the region of interest employed, these differences were minimal and are not considered physiologically meaningful. PMID:25774024

  19. Thermal performance of a heat storage module using PCM's with different melting temperature; Experimental

    SciTech Connect

    Farid, M.M. ); Kim, Y.; Kansawa, A. )

    1990-05-01

    A latent heat storage module was constructed, consisting of 45 cylindrical capsules fixed vertically in 15 rows. The capsules, made of 0.335-m long copper tubes having external diameters of 31.8 mm, were fixed in an insulated rectangular duct. Three commercial waxes having melting temperatures of 44{degrees}C, 53{degrees}C, and 64{degrees}C were selected. Each of the three sets of 15 tubes was filled with different wax. For comparison purposes, experiments were also done with a single commercial wax, having a melting temperature of 53{degrees}C, in all the tubes. During heat charge, hot air flowed across the capsules such that the melting temperature of the waxes decreased in the flow direction. Air flow direction was reversed during heat discharge. This paper reports that experimental measurements showed some improvement in the heat transfer rates during both heat charge and discharge when three types of PCM's were used.

  20. Characterization of LaF 3 coatings prepared at different temperatures and rates

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Shen, Yanming; Cui, Yun; Qi, Hongji; Shao, JianDa; Fan, ZhengXiu

    2008-01-01

    LaF 3 thin films were prepared by thermal boat evaporation at different substrate temperatures and various deposition rates. X-ray diffraction (XRD), Lambda 900 spectrophotometer and X-ray photoelectron spectroscopy (XPS) were employed to study crystal structure, transmittance and chemical composition of the coatings, respectively. Laser-induce damage threshold (LIDT) was determined by a tripled Nd:YAG laser system with a pulse width of 8 ns. It is found that the crystal structure became more perfect and the refractive index increased gradually with the temperature rising. The LIDT was comparatively high at high temperature. In the other hand, the crystallization status also became better and the refractive index increased when the deposition rate enhanced at a low level. If the rate was super rapid, the crystallization worsened instead and the refractive index would lessen greatly. On the whole, the LIDT decreased with increasing rate.

  1. [The functional brain state of hibernators and nonhibernators at different animals temperatures].

    PubMed

    Ignat'ev, D A; Gordon, R Ia; Patrushev, I V; Popov, V I

    2012-01-01

    Literature and our own data on structural and functional state of neocortex and hippocampus during both entrance in hibernation of ground squirrel (Spermophilus undulates) and Wistar rats in hypothermia were generalized. During hibernation when body temperature is about 2-4 degrees C the suppression of both bioelectrical and protein-synthesizing activity, the decrease of neuronal cell bodies and the branching of dendrites, retraction of dendritic spines, and a decrease of postsynaptic active zones of synapses were observed. Similar changes in those parameters were triggered for rats during hypoxia-hypercapnia at body temperature 17-19 degrees C. Hypoxia-hypercapnia facilitates the entrance in torpid state for hole animals. Nonhibernating animals during cooling and hypoxia-hypercapnia trigger functioning some mechanisms similar hibernators during entrance in hibernation. Similar morphological and functional changes for both hibernators and nonhibernators at low temperature state show similarity of mechanisms which induce a low level of brain activity of different animals. PMID:22567829

  2. [Regularities of carbon monoxide outgassing from two nonmetallic materials at different temperatures].

    PubMed

    Zhang, X; Wei, Y; Yu, B

    1998-06-01

    To investigate the regularity of carbon monoxide outgassing from nonmetallic materials in air tight cabin, two nonmetallic materials was observed. 30-9304 foam plastics and aluminum-plated polyester adhesive film were sealed in airtight glass ampules, and outgassed for 70 days at four different temperatures. The outgassing CO was determined continuously with transform/gas chromatography. Curve fitting and regression were used in data analysis. The results showed that: (1) when temperature was kept constant, the relation between the outgassed CO and outgassing time appeared to be a "s" shaped or exponented curve; (2) at a fixed time the amount of outgassed CO increased with temperature exponentially; (3) the amount of CO outgassed in 12 h at 100 degrees C from the two materials corresponds those for 45 d at 50 degrees C, there is an iso-effect principle for CO outgassing. PMID:11541422

  3. Behavior of Arcobacter butzleri and Arcobacter cryaerophilus in ultrahigh-temperature, pasteurized, and raw cow's milk under different temperature conditions.

    PubMed

    Giacometti, Federica; Serraino, Andrea; Pasquali, Frederique; De Cesare, Alessandra; Bonerba, Elisabetta; Rosmini, Roberto

    2014-01-01

    The growth and survival of Arcobacter butzleri and Arcobacter cryaerophilus in milk were investigated at different storage temperatures. Three strains of each Arcobacter species were inoculated into ultrahigh-temperature (UHT), pasteurized, and raw cow's milk and stored at 4, 10, and 20°C for 6 days. The survival of Arcobacter spp. during storage was evaluated by a culture method. Results clearly showed that A. butzleri and A. cryaerophilus remained viable in milk when stored at 4°C and 10°C for a period of 6 days. When UHT and pasteurized milk were stored at 20°C, the A. butzleri count increased, with a longer lag-phase in pasteurized milk, whereas the A. cryaerophilus count increased in the first 48 h and then rapidly decreased to below the detection limit on the sixth storage day. When raw milk was stored at 20°C, the A. butzleri and A. cryaerophilus counts decreased from the first day of storage and no viable bacteria were recovered on the last day of storage. Generally, A. butzleri displayed a significantly better growth and survival capacity than A. cryaerophilus in milk. The present study is the first to assess the survival and/or growth of A. butzleri and A. cryaerophilus in milk. The evidence suggests that in case of primary contamination of milk or secondary contamination due to postprocessing contamination, milk can act as a potential source of Arcobacter infection in humans and could have public health implications, especially for raw milk consumption. PMID:24066903

  4. Archaeal Community Structures in the Solfataric Acidic Hot Springs with Different Temperatures and Elemental Compositions

    PubMed Central

    Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L−1, (2) Pond-B: 66°C and 2248 mg L−1, (3) Pond-C: 88°C and 198 mg L−1, and (4) Pond-D: 67°C and 340 mg L−1. In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations. PMID:23710131

  5. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    PubMed

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste. PMID:26524113

  6. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect

    NASA Astrophysics Data System (ADS)

    Wilson, R. Chris; Hook, Simon J.; Schneider, Philipp; Schladow, S. Geoffrey

    2013-09-01

    water, infrared radiometers on satellites measure radiation leaving from the surface skin layer and therefore the retrieved temperature is representative of the skin layer. This is slightly different from the bulk layer deeper in the water where various floating thermometers take temperature measurements to validate satellite measurements. The difference between the bulk and skin temperature (skin effect) must be understood to properly validate schemes that use surface skin temperature to infer bulk temperatures. Further skin temperatures retrieved over inland waters may show different patterns to those retrieved over oceans due to differences in conditions such as wind speed, aerosols, and elevation. We have analyzed the differences between the skin and bulk temperatures at four permanent monitoring stations (buoys) located on Lake Tahoe since 1999 and compared the results with similar studies over the ocean typically obtained from boat cruises. Skin effect distributions were found to be consistent across the buoys; however, the diurnal behavior of the skin effect was slightly different and shown to be related to wind speed measured at an individual buoy. When wind speed was less than 2 m s-1, the skin temperature osclillated and greatly increased the uncertainty in the skin effect reported over Lake Tahoe. When downwelling sky radiation was increased from clouds or high humidity, this led to nighttime skin temperatures that were warmer than bulk temperatures by as much as 0.5 K. The size of the warm skin effect is larger than other ocean studies that observed warm nighttime skin values around 0.1 K. The nighttime skin effect was seen to be more consistent with a smaller standard deviation compared to the daytime skin effect. The nighttime skin behavior had a mean and standard deviation that ranged between 0.3 and 0.5 K and between 0.3 and 0.4 K, respectively. In contrast, daytime skin effect was strongly influenced by direct solar illumination and typically had a

  7. Effect of four different reflective barriers on black-globe temperatures in calf hutches

    NASA Astrophysics Data System (ADS)

    Friend, T. H.; Haberman, J. A.; Binion, W. R.

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher ( P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature.

  8. Temperature Control During Therapeutic Hypothermia for Newborn Encephalopathy Using Different Blanketrol Devices

    PubMed Central

    Kilbride, Howard; Shepherd, Edward; McDonald, Scott A.; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D.

    2014-01-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33°C and 34°C (target 33.5°C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6°C±1.0°C for B2 vs. 33.9°C±1.2°C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33°C and 34°C was similar for B2 compared to B3 cohorts (94.8%±0.1% vs. 95.8%±0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia. PMID:25285767

  9. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures

    NASA Astrophysics Data System (ADS)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T. C.; Tyagi, A. K.; Ray, Uday Sankar

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n = 63, ambient temp. at HA: -6º to +10ºC; SOJ 2, n = 81, ambient temp. at HA: 3º-22ºC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  10. Effect of four different reflective barriers on black-globe temperatures in calf hutches.

    PubMed

    Friend, T H; Haberman, J A; Binion, W R

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher (P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature. PMID:24619461

  11. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

    SciTech Connect

    Kohring, G.W.; Rogers, J.E.; Wiegel, J.

    1989-01-01

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72C was investigated. Anaerobic sediment slurries prepared from local freshwater sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50C, although methane was formed up to 60C. In sediment samples from two sites and at all temperatures from 5 to 50C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25C, were essentially constant between 25 and 35C, and increased in the tubes incubated at temperatures between 35 and 40C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP.

  12. Intravaginal and in vitro temperature changes with tampons of differing composition and absorbency.

    PubMed

    Hill, Donna R; Davis, Catherine C; Osborn, Thomas W

    2010-02-01

    Vaginal tampons are Class II medical devices used by women to manage menstruation. The purpose of this study was to investigate intravaginal temperature changes with simulated and actual menstrual tampon use. Tampons (with varying absorbent compositions) embedded with a thermocouple sensor were used to study temperature effects in vitro in a model of the vagina (condom placed in a hollow glass tube, jacketed in a 37 degrees C water bath, and dosed with human menses to fluid saturation) and clinically during menstrual tampon wear under controlled conditions (up to 8 h in a stationary, supine position). Elevations in the temperature of the tampon core occurred upon menses fluid acquisition both in vitro and clinically. Temperature profile characteristics varied from a transient spike with commercial cotton-rayon blend tampons of two different absorbencies to a small but sustained rise (> or =6 h) with a carboxymethyl cellulose (CMC)-containing prototype. On the basis of the results from this study, fluid absorption by tampons generates an exothermic event whose characteristics vary with tampon design and composition. We speculate the small, sustained increased in tampon temperature noted during this study may enhance the production of a bacterial exotoxin associated with tampons composed of CMC. PMID:20024967

  13. Characteristics of wall sheath and secondary electron emission under different electron temperature in Hall thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Qin, Haijuan; Cao, Anning; Zhou, Xinwei; Chen, Long; Gao, Hong

    2013-09-01

    Characteristics of discharge channel wall plasma sheath in Hall thruster have great effects on its performance. In this paper, we establish a two-dimensional physical model in Hall thruster sheath area to investigate the influences of the different electron temperature, propellant and particle weight on sheath potential and secondary electron emission in Hall thruster, by the method of Particle In Cell (PIC) simulation. And the electric field at the particle position is obtained by solving the Poisson's equation. The numerical results show that when the electron temperature is low, the change of sheath potential drop is bigger than that with electrons at high temperature, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is high, the surface potential maintains persistent oscillation, and the stability of the sheath is reduced. Along with the increase of electron temperature, the coefficient of secondary electron emission in wall reduce after the first increasing. For three kinds of propellant (Ar, Kr, Xe), with the increase of ion mass, sheath potential and the secondary electron emission coefficient in turn reduce.

  14. On the sensitivity of a residual circulation model to differences in input temperature data

    NASA Technical Reports Server (NTRS)

    Guthrie, Paul D.; Jackman, Charles H.; Rosenfield, Joan E.; Kucsera, Tom L.

    1990-01-01

    The residual mean circulation (RMC) formulation of zonally averaged transport in the middle atmosphere produces a circulation which depends on the distributions of net diabatic heating and temperature. Such circulations are from two temperature data sets, using the same radiative transfer code (Rosenfield et al. 1987). These circulations are then used to transport N2O in a photochemical model. The circulations and the resulting N2O distributions are notably different during the Northern Hemisphere winter, with that based on the NMC temperatures producing too much upward transport in the tropical stratosphere, as judged by comparison with the stratospheric and mesoscale sounder data. The experiment demonstrates that model calculations, in general, and perturbation assessments, in particular, are likely to be quite sensitive to the choice of input temperature data (where this is not computed self-consistently). It also reveals what appears to be a seasonally dependent bias in NMC zonally averaged temperatures with respect to those obtained from the LIMS instrument during 1978/1979.

  15. Sorption characteristics of fluoride on to magnesium oxide-rich phases calcined at different temperatures.

    PubMed

    Sasaki, Keiko; Fukumoto, Naoyuki; Moriyama, Sayo; Hirajima, Tsuyoshi

    2011-07-15

    The effect of calcination temperature during production of magnesium oxide-rich phases from MgCO(3) on the sorption of F(-) ions in the aqueous phase has been investigated. Magnesium oxide-rich phases were formed by calcination at over 873 K for 1h. Higher calcination temperatures produced more crystalline MgO with smaller specific surface area and provided larger values of the total basicity per unit surface area. The higher calcination temperatures lead to slower F(-) removal rate, and lower equilibrium F(-) concentrations, when the equilibrium F(-) concentrations are less than 1 mmol dm(-3). Larger total basicity per unit surface area made the reactivity with F(-) ions in aqueous phase more feasible, resulting in a greater degree of F(-) sorption. For equilibrium F(-) concentrations more than 1 mmol dm(-3), lower calcination temperatures favored the co-precipitation of F(-) with Mg(OH)(2), probably leading to the formation of Mg(OH)(2-x)F(x), and the achievement of larger sorption density. This is the first paper which describes the relationship between the solid base characteristics obtained by CO(2)-TPD for MgO with different calcination temperatures as a function of the reactivity of F(-) sorption in the aqueous phase. PMID:21571430

  16. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration. PMID:26604397

  17. Temperature dependence of in vitro Rubisco kinetics in species of Flaveria with different photosynthetic mechanisms.

    PubMed

    Perdomo, Juan Alejandro; Cavanagh, Amanda P; Kubien, David S; Galmés, Jeroni

    2015-04-01

    There is general consensus in the literature that plants with different photosynthetic mechanisms (i.e. C3 vs. C4) have Rubiscos characterised by different kinetic performances. However, potential differences in the temperature dependencies of Rubisco kinetic parameters between C3 and C4 plants are uncertain. Accordingly, six species of Flaveria with contrasting photosynthetic mechanisms (C3, C3/C4 and C4) were selected and their Rubisco Michaelis-Menten constants for CO2 and RuBP (K c and K RuBP), carboxylase catalytic turnover rate ([Formula: see text]) and CO2/O2 specificity factor (S c/o) were measured between 10 and 40 °C. The results confirmed different Rubisco characteristics between C3 and C4 plants. Rubisco from the C3 species had higher E a for K c and [Formula: see text] than that from C4 species, which were translated into differences in the temperature response of the carboxylase catalytic efficiency ([Formula: see text]/K c). However, E a did not differ for S c/o or K RuBP. Although a mechanism remains uncertain, it appears that the Asp/Glu-149-Ala and Met-309-Ile substitutions lead to differences in the temperature responses of catalysis between C3 and C4 Rubiscos in Flaveria. Therefore, the above observations are consistent with the fact that C3 species have a higher photosynthetic efficiency and ecological dominance in cool environments, with respect to C4 species in temperate environments. PMID:25663529

  18. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature.

    PubMed

    Zhou, Chunlüe; Wang, Kaicun

    2016-01-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2. PMID:27531421

  19. Degradation of typical antibiotics during human feces aerobic composting under different temperatures.

    PubMed

    Shi, Honglei; Wang, Xiaochang C; Li, Qian; Jiang, Shanqing

    2016-08-01

    Four typical antibiotics were added to human feces for aerobic composting using batch reactors with sawdust as the bulk matrix. Under three composting temperatures (room temperature, 35 ± 2 °C and 55 ± 2 °C), decreases in the extractable concentrations of antibiotics in the compost were monitored for 20 days. As a result, the removals of extractable tetracycline and chlortetracycline were found to be more temperature-dependent than the removals of sulfadiazine and ciprofloxacin. However, more than 90 % of all of the extractable antibiotics were removed at 55 ± 2 °C. Three specific experiments were further conducted to identify the possible actions for antibiotic removal, including self-degradation in aqueous solution, composting with a moist sterile sawdust matrix without adding feces and composting with human feces and moist sterile sawdust. As a result, it was found that the removal of tetracycline and chlortetracycline was mainly due to chemical degradation in water, whereas the removal of sulfadiazine was mainly attributed to adsorption onto sawdust particles. The microbial activity of compost varied with temperature to a certain extent, but the differences were insignificant among different antibiotics. Although microbial action is important for organic matter decomposition, its contribution to antibiotic degradation was small for the investigated antibiotics, except for ciprofloxacin, which was degraded by up to 20 % due to microbial action. PMID:27083910

  20. [IR spectral-analysis-based range estimation for an object with small temperature difference from background].

    PubMed

    Fu, Xiao-Ning; Wang, Jie; Yang, Lin

    2013-01-01

    It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K. PMID:23586223

  1. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  2. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature

    PubMed Central

    Zhou, Chunlüe; Wang, Kaicun

    2016-01-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2. PMID:27531421

  3. A dual-temperature-difference approach to estimate daytime sensible and latent heat fluxes under advective conditions during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dual-Temperature-Difference (DTD) approach uses continuous radiometric surface temperature measurements in a two-source (soil + vegetation) energy balance model to solve for the daytime evolution of the sensible and latent heat fluxes. By using the surface-air temperature difference at two time...

  4. Numerical Modelling of Airflow and Temperature Distribution in a Living Room with Different Heat Exchange Conditions

    NASA Astrophysics Data System (ADS)

    Gendelis, S.; Jakovičs, A.

    2010-01-01

    Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.

  5. Releasing H2 molecules with a partial pressure difference without the use of temperature

    NASA Astrophysics Data System (ADS)

    Lee, Hoonkyung; Huang, Bing; Duan, Wenhui; Ihm, Jisoon

    2010-08-01

    Using the pseudopotential density-functional method as well as equilibrium thermodynamic functions, we explore the process of releasing H2 molecules adsorbed on a transition-metal atom caused by the hydrogen-ammonia partial pressure difference. The H2 molecules bind to a transition-metal atom at H2 pressure- NH3 pressure-temperature 50atm-10-9atm-25°C , and they are released at 3atm-10-6atm-25°C . This process involves the same mechanism responsible for carbon monoxide poisoning of hemoglobin with the O2-CO partial pressure difference. We show that our findings can be applicable to an approach to induce hydrogen desorption on nanostructured hydrogen-storage materials without the need for increasing temperature.

  6. Prediction of thermodynamic and surface properties of Pb-Hg liquid alloys at different temperatures

    NASA Astrophysics Data System (ADS)

    Yadav, S. K.; Jha, L. N.; Jha, I. S.; Singh, B. P.; Koirala, R. P.; Adhikari, D.

    2016-06-01

    The thermodynamic properties, such as free energy of mixing, heat of mixing, activity and structural properties, such as concentration fluctuation in long wavelength limit, short-range order parameter of Pb-Hg liquid alloy at 600 K have been calculated using theoretical modelling. It has then been correlated with modified Butler model to compute the surface tension of the alloys at different temperatures. The Pb-Hg system at 600 K is found to be ordering at higher concentration of Pb.

  7. Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations.

    PubMed

    Yuan, Kat Xiaoli; Cullis, Jeff; Lévesque, C André; Tambong, James; Chen, Wen; Lewis, Christopher T; De Boer, Solke H; Li, Xiang Sean

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations. Analysis of these genome sequences will provide detailed insight on virulence, functionality, and plant/pest interactions of this widely distributed and regulated pathogen. PMID:26272559

  8. Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations

    PubMed Central

    Yuan, Kat (Xiaoli); Cullis, Jeff; Lévesque, C. André; Tambong, James; Chen, Wen; Lewis, Christopher T.; De Boer, Solke H.

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations. Analysis of these genome sequences will provide detailed insight on virulence, functionality, and plant/pest interactions of this widely distributed and regulated pathogen. PMID:26272559

  9. The ratios of partition functions at different temperatures - Sensitivity to potential energy shape II

    NASA Astrophysics Data System (ADS)

    Buchowiecki, Marcin

    2016-05-01

    The ratios of partition functions at different temperatures are calculated and its dependence on potential energy shape is analyzed. The role of anharmonicity and non-rigidity of rotations is discussed in the context of the angular frequency and the shape of potential energy curve. A role of inflection point of potential energy curve for the quality of rigid rotor harmonic oscillator and rigid rotor Morse oscillator is elucidated.

  10. Light responses and light adaptation in rat retinal rods at different temperatures

    PubMed Central

    Nymark, S; Heikkinen, H; Haldin, C; Donner, K; Koskelainen, A

    2005-01-01

    Rod responses to brief pulses of light were recorded as electroretinogram (ERG) mass potentials across isolated, aspartate-superfused rat retinas at different temperatures and intensities of steady background light. The objective was to clarify to what extent differences in sensitivity, response kinetics and light adaptation between mammalian and amphibian rods can be explained by temperature and outer-segment size without assuming functional differences in the phototransduction molecules. Corresponding information for amphibian rods from the literature was supplemented by new recordings from toad retina. All light intensities were expressed as photoisomerizations per rod (Rh*). In the rat retina, an estimated 34% of incident photons at the wavelength of peak sensitivity caused isomerizations in rods, as the (hexagonally packed) outer segments measured 1.7 μm × 22 μm and had specific absorbance of 0.016 μm−1 on average. Fractional sensitivity (S) in darkness increased with cooling in a similar manner in rat and toad rods, but the rat function as a whole was displaced to a ca 0.7 log unit higher sensitivity level. This difference can be fully explained by the smaller dimensions of rat rod outer segments, since the same rate of phosphodiesterase (PDE) activation by activated rhodopsin will produce a faster drop in cGMP concentration, hence a larger response in rat than in toad. In the range 15–25°C, the waveform and absolute time scale of dark-adapted dim-flash photoresponses at any given temperature were similar in rat and toad, although the overall temperature dependence of the time to peak (tp) was somewhat steeper in rat (Q10≈ 4 versus 2–3). Light adaptation was similar in rat and amphibian rods when measured at the same temperature. The mean background intensity that depressed S by 1 log unit at 12°C was in the range 20–50 Rh* s−1 in both, compared with ca 4500 Rh* s−1 in rat rods at 36°C. We conclude that it is not necessary to assume major

  11. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  12. Effect of Different Cooling Regimes on the Mechanical Properties of Cementitious Composites Subjected to High Temperatures

    PubMed Central

    Yu, Jiangtao; Weng, Wenfang; Yu, Kequan

    2014-01-01

    The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens. PMID:25161392

  13. A comparison of three different types of temperature measurement in HITU fields

    NASA Astrophysics Data System (ADS)

    Haller, J.; Jenderka, K.-V.; Seifert, F.; Klepsch, T.; Martin, E.; Shaw, A.; Durando, G.; Guglielmone, C.; Girard, F.

    2012-10-01

    The spatial and temporal distribution of the temperature elevation caused by high-intensity therapeutic ultrasound (HITU) in a tissue-mimicking material (TMM) has been determined with magnetic resonance (MR) thermometry, infrared (IR) thermometry and a thermal test object with an integrated thin-film thermocouple at three different National Metrological Institutes (PTB/Germany, NPL/UK, INRIM/Italy). Results obtained from the different types of measurement are compared and some general aspects of the methods are discussed, particularly with regard to their suitability for the in vitro characterization of transducers for treatment planning.

  14. Absorption of crystalline water ice in the far infrared at different temperatures

    NASA Astrophysics Data System (ADS)

    Reinert, C.; Mutschke, H.; Krivov, A. V.; Löhne, T.; Mohr, P.

    2015-01-01

    The optical properties of ice in the far infrared are important for models of protoplanetary and debris disks. In this report, we derive a new set of data for the absorption (represented by the imaginary part of the refractive index κ) of crystalline water ice in this spectral range. The study includes a detailed inspection of the temperature dependence, which has not been conducted in such detail before. We measured the transmission of three ice layers with different thicknesses at temperatures ϑ = 10...250 K and present data at wavelengths λ = 80...625 μm. We found a change in the spectral dependence of κ at a wavelength of 175 ± 6 μm. At shorter wavelengths, κ exhibits a constant flat slope and no significant temperature dependence. Long-ward of that wavelength, the slope gets steeper and has a clear, approximately linear temperature dependence. This change in behaviour is probably caused by a characteristic absorption band of water ice. The measured data were fitted by a power-law model that analytically describes the absorption behaviour at an arbitrary temperature. This model can readily be applied to any object of interest, for instance a protoplanetary or debris disk. To illustrate how the model works, we simulated the spectral energy distribution (SED) of the resolved, large debris disk around the nearby solar-type star HD 207129. Replacing our ice model by another, commonly used data set for water ice results in a different SED slope at longer wavelengths. This leads to changes in the characteristic model parameters of the disk, such as the inferred particle size distribution, and affects the interpretation of the underlying collisional physics of the disk.

  15. Temperature dependence of far-infrared difference reflectivity of YBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Krenn, H.; Bauer, G.; Vogl, G.; Strasser, G.; Gornik, E.

    1989-04-01

    Far-infrared difference reflectivity spectra (50-450 cm-1) below, across and above the transition temperature on polycrystalline single-phase YBa2Cu3O7-y samples were measured. The data are compared with model fits using the explicit temperature dependence of the Mattis-Bardeen conductivity, an effective-medium approach and temperature-dependent phonon oscillator parameters and alternatively a plasma model. For the plasma model we alternatively use a generalized Drude-like expression with a frequency-dependent damping after Thomas et al. [Phys. Rev. B 36, 846 (1987)] or the original model with Orenstein et al. [Phys. Rev. B 36, 729 (1987)] and Sherwin, Richards, and Zettl [Phys. Rev. B 37, 1587 (1988)] with a Drude contribution plus a mid-infrared oscillator, but with constant carrier relaxation rates. The models explain the difference reflectivity data (precision <0.2%) with a fitting accuracy of 1-2 % (Mattis-Bardeen model) or 2-3 % (plasma model) over the full temperature range. In order to investigate their applicability, reflectivity, and conductivity data of a highly oriented YBa2Cu3O7-y sample, as recently published by Bonn et al. [Phys. Rev. Lett. 58, 2249 (1987)], were also fitted with both models. Because of the frequency dependence of the free-carrier damping rates, it was important to fulfill the Kramers-Kronig relations between the real and the imaginary part of the dynamic conductivity in the calculations. For both models the characteristic dependences of the conductivity on frequency and temperature are given. Whereas, naturally, the Mattis-Bardeen model yields a gaplike depression of the conductivity for frequencies below an assumed gap, the plasma model results in somewhat smoother dependences of Re(σ(ω)) and Im(σ(ω)) in the frequency region of interest.

  16. Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s-1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker.

  17. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

    SciTech Connect

    Kohring, G.W.; Rogers, J.E.; Wiegel, J.

    1989-02-01

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50/degree/C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40/degree/C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25/degree/C, were essentially constant between 25 and 35/degree/C, and increased in the tubes incubated at temperatures between 35 and 40/degree/C. The degradation rates increased exponentially between 15 and 30/degree/C, had a second peak at 35/degree/C, and decreased to about 5% of the peak activity by 40/degree/C. In tubes from one sediment sample, incubated at temperatures above 40/degree/C, an increase in the degradation rate was observed following the minimum at 40/degree/C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12/degree/C resulted in increased adaptation times, but did not affect the degradation rates.

  18. Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Marandino, Christa

    2012-08-01

    This study is the first to directly correlate gas transfer velocity, measured at sea using the eddy-correlation (EC) technique, and satellite altimeter backscattering. During eight research cruises in different parts of the world, gas transfer velocity of dimethyl sulfide (DMS) was measured. The sample times and locations were compared with overpass times and locations of remote sensing satellites carrying Ku-band altimeters: ERS-1, ERS-2, TOPEX, POSEIDON, GEOSAT Follow-On, JASON-1, JASON-2 and ENVISAT. The result was 179 pairs of gas transfer velocity measurements and backscattering coefficients. An inter-calibration of the different altimeters significantly reduced data scatter. The inter-calibrated data was best fitted to a quadratic relation between the inverse of the backscattering coefficients and the gas transfer velocity measurements. A gas transfer parameterization based on backscattering, corresponding with sea surface roughness, might be expected to perform better than wind speed-based parameterizations. Our results, however, did not show improvement compared to direct correlation of shipboard wind speeds. The relationship of gas transfer velocity to satellite-derived backscatter, or wind speed, is useful to provide retrieval algorithms. Gas transfer velocity (cm/hr), corrected to a Schmidt number of 660, is proportional to wind speed (m/s). The measured gas transfer velocity is controlled by both the individual water-side and air-side gas transfer velocities. We calculated the latter using a numerical scheme, to derive water-side gas transfer velocity. DMS is sufficiently soluble to neglect bubble-mediated gas transfer, thus, the DMS transfer velocities could be applied to estimate water-side gas transfer velocities through the unbroken surface of any other gas.

  19. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures.

    PubMed

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Berti, William R; Landis, Richard C

    2015-03-01

    Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority <0.1%) of the total C in the biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. PMID:26023986

  20. The influence of the textural properties of activated carbons on acetaminophen adsorption at different temperatures.

    PubMed

    Galhetas, Margarida; Andrade, Marta A; Mestre, Ana S; Kangni-foli, Ekoé; Villa de Brito, Maria J; Pinto, Moisés L; Lopes, Helena; Carvalho, Ana P

    2015-05-14

    The influence of temperature (20-40 °C) on the acetaminophen adsorption onto activated carbons with different textures was studied. Different temperature dependences, not explained by kinetic effects, were observed for carbons with different micropore size distribution patterns: adsorption capacity increased for pine gasification residues (Pi-fa) derived carbons and decreased for sisal based materials. No significant variation was seen for carbon CP. The species identified by (1)H NMR spectroscopy on the back-extraction solution proved that during the adsorption process exist the conditions required to promote the formation of acetaminophen oligomers which have constrained access to the narrow microporosity. The rotation energy of the dihedral angle between monomers (estimated by electronic DFT methods) showed that conformations in the planar form are less stable than the non-planar conformation (energy barrier of 70 and 23 kJ mol(-1)), but have critical dimensions similar to the monomer and can access most of the micropore volume. The enthalpy change of the overall process showed that the energy gain of the system (endothermic) for Pi-fa samples (≈40 kJ mol(-1)) was enough to allow a change in the dimer, or even a larger oligomer, conformation to the planar form. This will permit adsorption in the narrow micropores, thus explaining the uptake increase with temperature. Non-continuous micropore size distributions centered at pore widths close to the critical dimensions of the planar form seem to be crucial for a positive evolution of the adsorption capacity with temperature. PMID:25898008

  1. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes

    NASA Astrophysics Data System (ADS)

    Crook, J. A.; Jackson, L. S.; Osprey, S. M.; Forster, P. M.

    2015-09-01

    Earth radiation management has been suggested as a way to rapidly counteract global warming in the face of a lack of mitigation efforts, buying time and avoiding potentially catastrophic warming. We compare six different radiation management schemes that use surface, troposphere, and stratosphere interventions in a single climate model in which we projected future climate from 2020 to 2099 based on RCP4.5. We analyze the surface air temperature responses to determine how effective the schemes are at returning temperature to its 1986-2005 climatology and analyze precipitation responses to compare side effects. We find crop albedo enhancement is largely ineffective at returning temperature to its 1986-2005 climatology. Desert albedo enhancement causes excessive cooling in the deserts and severe shifts in tropical precipitation. Ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection have the potential to cool more uniformly, but cirrus cloud thinning may not be able to cool by much more than 1 K globally. We find that of the schemes potentially able to return surface air temperature to 1986-2005 climatology under future greenhouse gas warming, none has significantly less severe precipitation side effects than other schemes. Despite different forcing patterns, ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection all result in large scale tropical precipitation responses caused by Hadley cell changes and land precipitation changes largely driven by thermodynamic changes. Widespread regional scale changes in precipitation over land are significantly different from the 1986-2005 climatology and would likely necessitate significant adaptation despite geoengineering.

  2. Thermal performance of a heat storage module using PCM's with different melting temperatures

    SciTech Connect

    Farid, M.M.; Kanzawa, A.

    1989-05-01

    The performance of a heat storage unit consisting of number of vertical cylindrical capsules filled with phase change materials, with air flowing across them for heat exchange has been analyzed. Earlier theoretical models did not consider temperature distribution in the radial direction within the capsules, an assumption that limits their applications for small diameter capsules. The mathematical model developed in this work is based on solving the heat conduction equation in both melt and solid phases in cylindrical coordinates, taking into account the radial temperature distribution in both phases. Heat flux was then evaluated at the surface of the first row of the capsules to determine the temperature of the air leaving that row by a simple heat balance. It was found that such computation may be carried out for every few rows rather than for a single row to minimize computer time. The simulation study showed a significant improvement in the rate of heat transfer during heat charge and discharge when phase change materials with different melting temperatures were used.

  3. Transformations in Sol-Gel Synthesized Nanoscale Hydroxyapatite Calcined Under Different Temperatures and Time Conditions

    NASA Astrophysics Data System (ADS)

    Seema, Kapoor; Uma, Batra; Suchita, Kohli

    2012-08-01

    Nano-hydroxyapatite (HAP) has been synthesized using sol-gel technique. Calcium nitrate tetrahydrate and potassium dihydrogen phosphate were used as precursors for calcium and phosphorus, respectively. A detailed study on its transformation during calcination at two crucial temperatures has been undertaken. The synthesized nanopowder was calcined at 600 and 800 °C for different time periods. The results revealed that the obtained powders after calcining at 600 and 800 °C are composed of hydroxyapatite nanoparticles. The nano-HAP powders were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and BET surface area analyzer techniques. The results indicate that crystallite size as well as crystallinity of synthesized HAP nanopowders increase with increase in calcination temperature as well as calcination time, but the effect of temperature is more prominent as compared to that of calcination time. TEM micrograph revealed the presence of majority of HAP powder particles as agglomerates and a few as individual particles. It also revealed that HAP produced after sintering at 600 °C is 26-45 nm in size, which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the as-synthesized nano-HAP powder. The BET surface area decreased with increase in calcination temperature and time. The results clearly demonstrate the significant role of calcination parameters on the characteristics of nano-HAP powders.

  4. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  5. Cold-induced vasodilatation response at different water bath temperatures in monkeys.

    PubMed

    Mathew, L; Purkayastha, S S; Malhotra, M S

    1978-08-01

    The response of cold-induced vasodilatation (CIVD) at different water bath temperatures was studied in 20 monkeys (3.5 kg) in a conscious state in a thermoneutral room. The animals were controlled by seating in a monkey chair, and the right hind limb up to 7.5 cm from the heel was immersed in a water bath for 60 min. Four series of experiments were conducted at water bath temperatures of 0 degrees, 4 degrees, 8 degrees, and 12 degrees C, respectively, at weekly intervals and the skin temperatures were measured from three sites in the foot. Marked CIVD response was noted from the dorsum and, to a lesser extent, from the sole of the foot, but no response was seen from the tip of the middle toe at 0 degrees, 4 degrees, and 8 degrees C water bath temperatures. The pattern of CIVD response at 4 degrees C was identical to that of 0 degrees C, but the response at 8 degrees C was poor and was absent at 12 degrees C. Three patterns of CIVD--such as hunting, proportional control, and slow, steady, and continuous rewarming--was observed. However, 15% of the animals did not exhibit any CIVD. The observations show that the CIVD response of monkeys is remarkably similar to that of man. PMID:98160

  6. Effects of elevated temperatures on different restorative materials: An aid to forensic identification processes

    PubMed Central

    Pol, Chetan A.; Ghige, Suvarna K.; Gosavi, Suchitra R.; Hazarey, Vinay K.

    2015-01-01

    Background: Heat-induced alterations to dental and restorative materials can be of great interest to forensic dentistry. Knowing the specific optical behavior of dental materials can be of high importance as recognition of changes induced by high temperatures can lead to the determination of material which was used in a dental restoration, facilitating identification of burned human remains. Aim: To observe the effects of predetermined temperatures (200°C–400°C–600°C–800°C–1000°C) on unrestored teeth and different restorative materials macroscopically and then examine them under a stereomicroscope for the purpose of identification. Materials and Methods: The study was conducted on 375 extracted teeth which were divided into five groups of 75 teeth each as follows: group 1- unrestored teeth, group 2- teeth restored with all-ceramic crowns, Group 3- with class I silver amalgam filling, group 4- with class I composite restoration, and group 5- with class I glass ionomer cement restoration. Results: Unrestored and restored teeth display a series of specific macroscopic & stereomicroscopic structural changes for each range of temperature. Conclusion: Dental tissues and restorative materials undergo a series of changes which correlate well with the various temperatures to which they were exposed. These changes are a consequence of the nature of the materials and their physicochemical characteristics. PMID:26005305

  7. On the large deformation behaviour of reinforced rubber at different temperatures

    NASA Astrophysics Data System (ADS)

    Lion, Alexander

    1997-11-01

    This essay investigates the temperature dependence of the mechanical properties of a filler-loaded tread compound experimentally and proposes a physically based method to represent this behaviour in the framework of non-linear continuum thermomechanics. To this end, we realise a series of monotonic and cyclic strain controlled tests on cylindrical specimens in tension at different temperature levels. The experimental data show the isothermal mechanical behaviour to be mainly influenced by non-linear elasticity in combination with non-linear rate dependence and weak equilibrium hysteresis. We observe that the rate sensitivity of the material depends strongly on the temperature : at low temperature levels, the rate sensitivity is essentially higher than at high temperatures. The elastic properties of the material depend comparatively less on the temperature. Nevertheless, higher temperature levels lead to higher equilibrium stresses. In order to represent the material behaviour, we start with a multiplicative split of the deformation gradient into a mechanical and a thermal part as proposed by Lu and Pister (1975). Physically, this idea corresponds to a stress-free thermal expansion followed by an isothermal stress-producing deformation. We suppose the thermal part of the deformation gradient to be isotropic. As a consequence of this, the velocity gradient decomposes additively into a pure thermal and a pure mechanical part. By using these elements, we exploit the Clausius Duhem inequality and assume the so-called 'mechanical second Piola Kirchhoff stress tensor' to be a functional of the 'mechanical Green's strain tensor'. In a further step, we define this functional by a system of constitutive equations which are based on a rheological model. The evolution equations for the internal variables are formulated by using the concept of dual variables proposed by Haupt and Tsakmakis (1989, 1996). The rate sensitivity is modelled by a stress and temperature dependent

  8. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  9. Cavitation performance simulation of turbine meter under different temperature water condition

    NASA Astrophysics Data System (ADS)

    Huang, Y. Z.; Zhang, B. S.; Chen, G.; Zhu, B. L.

    2015-01-01

    A cavitation thermodynamics model based on phase change, which is suitable for prediction of cavitation with thermal effects is developed. The cavitation characteristic at different temperature and cavitation number is investigated and analyzed. The initial cavitation of turbine flow meter generally occurs in the blade suction side. With the development of cavitation, the cavitation zone will appear on the front and the back end of the conditioner. In order to avoid the gather of cavitation, the design of the optimizing the blade structure should be adapted, and at the same time, the back pressure should be limited on the installation requirements. Expanding the measurement range and preventing cavitation occurs are the goal of the design and installation. The temperature effects on the cavitation of turbine flow meter is quite obvious and the increase of the temperature will delay the occurrence of cavitation. Pressure difference and the impeller torque will change obviously with the decrease of the cavitation number, which will cause the measurement error of the turbine meter.

  10. Ferromagnetism in Semiconductor C-Ni Films at Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Smohammad

    2016-02-01

    In this work, the microstructure and magnetic properties of carbon-nickel (C-Ni) composite films annealed at different temperatures (300-1000∘C) were investigated. The films were grown by radio frequency magnetron sputtering on quartz substrates at room temperature. The nickel concentration in the films are affected by changing of the value of evaporation nickel atoms and measured by Rutherford backscattering spectroscopy (RBS). Values of coercive field were measured under both increasing and decreasing applied magnetic field. It is shown that the coercive field of films strongly dependent on the annealing temperature and at 500∘C films has maximum value of 93.67Oe. The difference in the coercive fields increased for films annealed from 300 to 500∘C and then decreased from 500 to 1000∘C. The ID/IG ratio of Raman spectra would indicate the presence of higher sp2 bonded carbon in the films annealed at 800∘C.

  11. Air-Sea CO2 fluxes and NEP changes in a Baja California Coastal Lagoon during the anomalous North Pacific warm condition in 2014

    NASA Astrophysics Data System (ADS)

    Ávila López, M. D. C.; Martin Hernandez-Ayon, J. M.; Camacho-Ibar, V.; Sandoval Gil, J.; Mejía-Trejo, A.; Félix-Bermudez, A.; Pacheco-Ruiz, I.

    2015-12-01

    The present study examines the temporal variability of seawater carbonate chemistry and air-sea CO2 fluxes (FCO2) in a Baja California Mediterranean-climate coastal lagoon. This study was carried out from Nov-2013 to Nov-2014, a period in which anomalous warm conditions were present in the North Pacific Ocean influenced the local oceanography in the adjacent coastal waters off Baja California. These ocean conditions resulted on a negative anomaly of upwelling index, which led to summer-like season (weak upwelling condition) that could be observed in the response of carbon dynamics and metabolic status in San Quintín Bay. Minor changes in dissolved inorganic carbon (DIC) concentration during spring months (~100 µmol kg-1) where observed and were associated to biological processes within the lagoon. High DIC (~2200 µmol kg-1), pCO2 (~800 μatm), and minimum pH (~7.8) values were observed in summer, reflecting the predominance of respiration processes apparently mostly linked to the remineralization of sedimentary organic matter supplied from macroalgal blooms. San Quintín Bay acted as a weak source of CO2 to the atmosphere during the study period, with maximum value observed in July (~10 mmol C m-2 d-1). Temporal biomass production of macroalgae contributed to about 50% of total FCO2 estimated in spring-summer seasons, that was a potencial internal source of organic matter to fuel respiration processes in San Quintín Bay. Eelgrass metabolism contributes in a lower degree in total FCO2. During the anomalous ocean conditions in 2014, the lagoon switched seasonally between net heterotrophy and net autotrophy during the study period, where photosynthesis and respiration processes in the lagoon were closer to a balance. Whole-system metabolism and FCO2 clearly indicated the strong dependence of San Quintín Bay on upwelling conditions and benthic metabolism activity, which was mainly controlled by dominant primary producer communities.

  12. Study of air-sea interaction processes over the Arabian Sea and the Bay of Bengal using satellite data

    SciTech Connect

    Gautam, N.; Simon, B.; Pandey, P.C.

    1995-12-01

    The main objective of this work is to study the latitudinal and seasonal variation of latent heat fluxes (LHF) and associated atmospheric and oceanic parameters over the Arabian Sea (AS) and the Bay of Bengal (BB) for the year 1988. A significant latitudinal variation is observed in LHF for most of the months over the AS and the BB, while other oceanic and atmospheric parameters are characterized by a strong latitudinal variation in nonmonsoon months. Seasonal variations in LHF are more significant at higher latitudes compared to lower latitudes over the AS and the BB. The effect of coastal upwelling near the Somali coast decreases LHF, while surface winds near the Indian coast during monsoon months increases LHF. A comparative study over the AS and the BB demonstrates higher PW and SST over the BB than over the AS. LHF is found to be greater over the AS than over the BB for nonmonsoon months. Correlation analysis indicates that LHF is found to be highly correlated with DQ (difference between the humidity at the surface and humidity near the surface) over the AS and weakly correlated over the BB during nonmonsoon months. Throughout the year, DQ is found to be a dominant factor for LHF over the AS. However, WS exercised better control over the BB in generating LHF. SST and PW are found to be highly correlated with each other over the AS (r = 0.87) and the BB (r = 0.75) for nonmonsoon months. The correlation becomes weakly negative over the AS (r = 0.15) and weak over the BB (r = 0.26) during monsoon months. Precipitable water is found to have a high correlation with WS over the AS (r = 0.72). This unique feature is revealed by SSM/I data and has not been reported earlier due to paucity of data over this region.

  13. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].

    PubMed

    Tao, Zhi-qiang; Chen, Yuan-quan; Zou, Juan-xiu; Li, Chao; Yuan, Shu-fen; Yan, Peng; Shi, Jiang-tao; Sui, Peng

    2016-02-01

    This paper discussed the response of spectral characteristics on high temperature at grain filling stage of different spring maize varieties by adopting two spectrometer (SPAD-502 Chlorophyll Meter and Sunscan Plant Canopy Analyzer), and analyzed the impact of high temperature on the photosynthetic properties of spring maize in North China Plain. The test was conductedfrom the year 2011 to 2012 in Wuqiao County, Hebei Province. This test chose three different varieties, i. e. Tianyu 198 (TY198), Xingyu 998 (XY998) and Tianrun 606 (TR606), then two sowing date (April 15th and April 25th) was set. We analyzed chlorophyll relative content (SPAD), leaf area index (LAI) and photosynthetically active radiation (PAR) at grain filling stage. The results showed that the days of daily maximum temperature above 33 °C and the mean day temperature at grain filling stage in spring maize sowing on April 15th increased 3.5 d and 0.8 °C, respectively, compared to that sowing on April 25th, moreover the sunshine hours, rainfall, diurnal temperature and length of growing period were similar. Compared with XY998 and TR606, TY198's stress tolerance indices (STI) increased by 2.9% and 11.0%, respectively. According to STI from high to low order, TY198, XY998 and TR606 respectively as heat resistant type, moderate heat resistant type and thermo-labile type variety. TY198, compared with XY998 and TR606 sowing on April 15th, yield increased by 4.1% and 13.7%, SPAD increased by 12.5% and 19.6%, LAI increased by 5.3% and 5.6%, PAR increased by 4.0% and 14.0%. Sowing on April 15th, yield increased by 1.3% and 2.8%, SPAD increased by 3.5% and 6.0%, LAI increased by 1.7% and 4.1%, PAR increased by -4.4% and 0.9%. Three varieties had significant yield differences in the environment of high temperature stress, heat resistant type have significant (p < 0.05) advantage in the aspect of yield, SPAD and LAI. The production of TY198, XY998 and TR606 sowing on April 15th compared to that sowing on

  14. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  15. Deformation and failure of bulk metallic glasses under different initial temperatures

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Chen, X. W.; Huang, F. L.

    2015-09-01

    Based on the coupled thermo-mechanical model, a constitutive model for bulk metallic glasses (BMGs), which is generalized to the multi-axial stress state and considers the effects of free volume, heat and hydrostatic stress, has been modified in the present paper. Besides, a failure criterion of critical free volume concentration is introduced based on the coalescence mechanism of free volume. The constitutive model as well as the failure criterion is implemented into the LS-DYNA commercial software by user material subroutine (UMAT). Then FEM simulations for different initial material temperatures are conducted and the evolutions of material parameter as well as corresponding macroscopic mechanical behaviour of material are analyzed. Relative analysis shows that the initial material temperature significantly affects the deformation and failure of material.

  16. Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature

    NASA Astrophysics Data System (ADS)

    Xin, X.; Altan, H.; Saint, A.; Matten, D.; Alfano, R. R.

    2006-11-01

    Terahertz time-domain spectroscopy has been used to measure the absorption of water vapor in 0.2-2.4THz range from low to high humidity at room temperature. The observed absorption lines are due to the water molecular rotations in the ground vibrational state. We find that the absorption strength of para transitions increases as humidity increases, while the absorption strength of ortho transitions increases and then decreases in intensity with increasing humidity. We explain this difference based on the nuclear spin statistics based ratio of ortho to para water monomer populations at room temperature. The preferential adsorption on the solid surfaces of para water leads to an ortho dominated vapor cloud whose monomer rotational absorption intensity decreases due to the effects of dimerization, molecular collisions, clustering, and interactions with liquid droplets at high concentrations.

  17. Temperature dependent electrical conductivity measurement of Qn-(TCNQ)2 grown by different methods

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2013-06-01

    We measured the temperature dependent electrical conductivity on single crystal of charge transfer complex (CTC), Qn-(TCNQ)2 grown by different methods. Where, Qn and TCNQ are representing qunolinium and tetracyanoquinodimethane. The room temperature conductivity is found 100 ohm-1 cm-1 with activation energy 0.021 eV in the sample grown by electrochemical method. Whereas it is found 22 ohm-1 cm-1 with activation energy 0.026 eV for the sample grown by solution growth method. In all conductivity measurements, the observations are carried out along high conducting chain direction, which happens to be needle direction of the single crystal and known as a-direction.

  18. [Similarities and Differences in Wheat Plant Responses to Low Temperature and Cadmium].

    PubMed

    Venzhik, V; Talanova, V V; Titov, A F; Kholoptseva, E S

    2015-01-01

    A comparative study was performed on the accumulation of biomass, dynamics of indicators of the activity of photosynthetic apparatus, and cold tolerance in the seedlings of frost-tolerance wheat varieties under the effect of a low hardening temperature and cadmium. It was found that the plant responses to the effects of the stressors studied are similar: an increase in cold tolerance of leaves, slowing rates of plant growth and photosynthesis, and increased non-photochemical fluorescence quenching were observed in both cases. At the same time, it was noted that the plant responses to the actions of low temperature and Cd have certain differences associated with the negative effect of Cd on growth and photosynthetic activity. PMID:26852479

  19. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  20. Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.

    PubMed

    García-Usach, F; Ferrer, J; Bouzas, A; Seco, A

    2006-01-01

    In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour. PMID:16889256